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Abstract: The resistance to sintering of Ni/Al2O3 catalysts with different additives for methanation
reaction was modeled and predicted by data mining. In the screening, the resistance to sintering of
Na, Ca, Ce, Mg, La, Cu, Zn, Zr, In, Mo, and Ti promoted Ni/Al2O3 catalyst were measured in terms of
the increased rate of the size of the metallic nickel particles. The resistance to sintering of catalysts,
described by the increased rate of Ni particle size as well as basic physicochemical properties of the
11 selected elements, was adopted for optimization model construction by data mining. Through
regression model prediction and experimental verification, Cs was found to be an additive, and
promotes the resistance to sintering mostly for Ni/Al2O3 catalysts. This result provides further
evidence that data mining techniques can be employed as a highly efficient tool for the discovery of
new catalysts in comparison with the traditional experimental method.
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1. Introduction

Natural gas is a clean fossil fuel, and the global consumption of natural gas has increased steadily
in the last decade [1–6]. Nevertheless, reserves of natural gas are expected to be depleted in the
next few decades and its prices are continuously rising [7–10]. In this respect, synthetic natural gas
(SNG) production from syngas from coal or renewable biomass has received significant attention in
some countries. The conventional route for SNG procedure is in accordance with the gasification and
methanation of coal to synthetic gas (CO+H2) [4,11,12]. More recently, at least 15 coal-to-gas plants
are planned in the United States, and more than 20 coal-to-gas plants are under construction and
planned in China [13]. CO reaction (CO + 3H2→ CH4 + H2O, ∆H298K = −206.1 kJ mol−1), as one of
the fundamental steps in making coal-formed gas process, has raised broad interest after Sabatier
and Senderens originally discovered it in 1902 [14]. This can to a large extent be attributed to its
broad utility in chemical production, e.g. elimination of micro amounts of CO from H2-rich feed gas,
purification of reforming gas for fuel-cell manufacture, technologies in respect of Fischer–Tropsch
synthesis production, among others [15–18]. Hence, exploiting a new and high-efficiency catalyst for
methanation is nowadays a matter of great concern.

Normally, Ni supported on Al2O3 is one of the most widely studied catalysts in methanation
reactions for the production of SNG as a result of its lower price, higher catalytic activity, and the
better selectivity for the methane product [19–23]. Al2O3, especially the γ-modification with larger
specific surface area and mechanical strength, developed pore structure, and greater acid and alkali
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resistance on the surface, strongly affects the catalytic performance, which increases activity and
stability for methanation [24,25]. However, methanation, as a key step of SNG production, is a highly
exothermic reaction. For each 1% CO and each 1% CO2, the representative methanation gas component
temperature rise in ammonia plants is 74 and 60 ◦C, separately [26]. In the high-temperature reaction
environment, the Ni-based methanation catalyst is prone to sintering, resulting in the accelerated
migration and aggregation of the nickel microcrystalline particles, and the decrease of the nickel
dispersion and the effective specific surface area [27,28]. Al2O3 support also suffers the disadvantage of
poor thermal stability. Thus, the catalytic activity is reduced. Therefore, solving the catalyst sintering
problem is the biggest challenge for the methanation process.

Many efforts have been devoted to further increasing the performance of resistance to sintering of
Ni/Al2O3 catalyst. The sintering rate of the catalyst is related to the size and distribution of the nickel
crystallites, the structure, morphology and transition state of the support [26]. Adding additives is one
of the most effective means to improve the anti-sintering performance of the catalyst. For example,
adding ZrO2 can sequester NiO and γ-Al2O3 and weaken their interactions, which play the role of
limiting the aggregation of γ-Al2O3 [17]. The addition of Rh and Ru was reported to improve the
heat stability of nickel loading on alumina [29,30]. Adding La2O3 [1], MgO [31] can form LaAlO3 and
MgAl2O4 surface layers and prevent their activity component Ni2+ diffused into the Al2O3 bulk phase
to form NiAl2O4, slowing down the catalyst sintering rate. CeO2 was added to inhibit the migration of
Ni atoms on the surface of Al2O3 and improve the dispersion of nickel particles owing to the strong
metal–support interaction (SMSI) [32]. Recently, Ma et al [33] and Bao and coworkers [34] reported
that encapsulating Ni particles with graphene or hexagonal boron nitride shells could enhance the
anti-sintering ability of Ni-based methanation catalysts.

Although a lot of research efforts have been made towards searching for new promoters to improve
the resistance to sintering of Ni/Al2O3 catalysts for methanation [31–37], it is difficult to understand
the intrinsic contribution of various promoters because of the complexity of the catalytic mechanism.
As a result, the exploration of new additives for methanation catalysts has mainly been dependent on
trial and error methods until now.

In contrast with the traditional catalyst development, whereby researchers obtain all the handled
experimental results and provide guidance for the subsequent studies, data mining as a new
approach does not require any starting hypotheses, since it can be readily applied to any non-linear
catalytic phenomena and global search potential correlations and modes between the input variables
(catalysts component, preparation conditions, and reaction parameters) and output variables (catalysts
characterization and performance) through massive amounts of raw information [38]. In our previous
work, data mining techniques was used to screen potential additives of Ni/Al2O3 catalyst for improving
the catalytic activity [39]. We constructed a regression model through data mining and it forecast that
as a potential auxiliary agent, Re improves the catalytic activity. There is an acceptable agreement
between the predicted and experimental results. More specifically, it demonstrated that Re can be
considered to be the most effective of all additives. These powerful computational techniques avoid
the blind search process and complex interactions within the catalyst and could expedite the design of
new catalyst systems.

Anti-sintering performance is another important indicator of methanation catalysts [40,41]. It is
of great significance to predict and screen new additives based on existing experimental data. And as
such the aim was to select element additives, which can retain high resistance to sintering at long-term
high temperatures. In this paper, data mining was used to build an optimization model and to
forecast the resistance to sintering of Ni/Al2O3 catalysts with different additives, thus screening the
optimal additives.

2. Results and Discussion

Data mining is an emerging concept, mainly referring to the process of knowledge discovery in
databases. It constantly explores how to extract knowledge that is difficult to obtain through theoretical



Catalysts 2019, 9, 493 3 of 15

calculations from some massive and seemingly disorganized observation data. This knowledge often
has the following characteristics: it is previously unknown, effective and practical. It is then used to
analyze practical problems and make effective predictions for complex, fuzzy, and jagged datasets.
Normal process of the data mining is shown in Figure 1. The general procedure of the data mining is
summarized, including a) data collection, b) data cleaning, c) data transformation, d) data loading,
e) data analysis and f) result report. Owing to the diversity of data sources, aggregation is required
prior to loading the data [41]. The specific explanation for using data-mining screen additives of
Ni/Al2O3 catalyst is as follows:
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Figure 1. Normal process of data mining.

2.1. Data Collection

This design aims to model the relationship between the additives of Ni/Al2O3 catalyst and its
anti-sintering performance through data-mining technology. The optimal additive is then predicted
and screened. Therefore, when modeling, different additive elements are taken as input, and their
corresponding anti-sintering properties are taken as output. The basic process and data to be collected
is shown in Figure 2.
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Figure 2. Input, output and process of modeling.

2.1.1. Input Data

Based on previous research results, 63 elements except for gases, poisons, radioactive ones were
selected as candidate additives for Ni/Al2O3 catalyst. The inter-relationship between the type of the
element additives and the resistance to sintering of Ni/Al2O3 catalysts is then established. Here, the
additive element cannot be applied straightforwardly as input variables and need to be transformed into
a series of representative data. Physicochemical properties of elements affect the catalytic performance,
i.e. specific surface area, metal dispersion degree, electron configuration, morphology features, and
heat stability. These properties, in sequence, identify the catalytic performance [42–45]. Moreover, the
physicochemical properties of additive elements were selected as explanatory variables that describe
each element and were used for the prediction of the catalytic performance in the process of building
the regression model.

In this study, 16 physicochemical properties were utilized as proper descriptors for each element,
illustrated by Table 1. In the field of data-mining technology, these properties were recorded in the
“data.csv” file, as explained in Table 2, where only a portion of the file is displayed. The properties are
stored in the 1–16th columns. Correlated symbols are stored in the 17th column, simultaneously.

Table 1. Physicochemical property for featuring each element.

Property Unit Property Unit

1st ionization energy (1I) eV 2nd ionization energy (2I) eV
electric dipole polarizability (ED) Å3 electronegativity (EN) -

melting point (MP) K boiling point (BP) K
oxide formation enthalpy(FE) kJ/mol specific heat capacity (HC) J/g/K

heat of fusion (HF) kJ/mol heat of vapor vaporization (HV) kJ/mol
thermal conductivity (TC) W/mK density (DS) g/cm3

covalent radius (CR) pm ionic radius (IR) pm
atomic weight (AW,) g/mol valence of ion (VA) -
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Table 2. Data file for data-mining techniques.

FE 1I . . . VA Symbol

1 416 4.958 . . . 1 Na
2 601.8 7.377 . . . 2 Ca
...

...
...

...
...

...
63 217.6 7.156 . . . 3 Pb

16 physicochemical properties as the explanatory variables were reduced by principal component
analysis (PCA), which is clarified in Section 2.3.

2.1.2. Output Data

For the purpose of ensuring the accuracy of regression model, data of 63 elements that enable the
whole periodic table to be represented were available for K-means element cluster analysis [46,47].
Subsequently, one or two characteristic elements were chosen for each cluster. A pool of 11 elements
(Na, Ca, Ce, Mg, La, Cu, Zn, Zr, In, Mo, and Ti) was chosen for the corresponding experiment.

The obtained experimental data were shown in Table 3. Bare is the Ni/Al2O3 catalyst. The
crystallite sizes of the Ni, before and after catalyst evaluation, were marked as d and d’. The variation
of crystallite sizes of the Ni were marked as d4.

Table 3. Experimental result of anti-sintering for data mining.

Additive
Crystallite Sizes of the Ni (nm)

Increase Rate
d d’ d4

1 In 28.1 36.2 8.1 0.288
2 Na 15.8 22.9 7.1 0.449
3 Ti 51.3 76.0 24.7 0.481
4 La 14.2 21.7 7.5 0.528
5 Zr 14.8 22.9 8.1 0.547
6 Bare 14.1 22.2 8.1 0.574
7 Cu 14.4 22.7 8.3 0.576
8 Ce 16.9 27.0 10.1 0.598
9 Mg 16.4 28.0 11.6 0.707
10 Mo 15.0 26.1 11.1 0.740
11 Ca 16.0 28.1 12.1 0.756
12 Zn 14.9 29.4 14.5 0.973

Sintering leads to an increase in Ni crystallites, which is one of the main reasons for catalyst
deactivation. The increase rate of crystallite size of the Ni was selected as output variables and used
for data analysis. The lower the increase rate, the better anti-sintering performance.

2.2. Data Cleaning

Data cleaning can be defined as a process of which damages or errors are detected and corrected
(or eliminated) in data representation among data sources. The ultimate goal is to gain high-quality
data that is elementary for accurate data analysis [48]. The datasets assembled in our work is intact
and reliable, and there is no need to clean.

2.3. Data Transformation

The use of 16 physicochemical properties to characterize each additive element means that the
input variable is transformed into a set of 16-dimensional data. At this point, the input variable
has a larger dimension. High dimensionality makes analysis extremely difficult and unfavorable
for modeling; additionally, the required computing time would become much longer [49]. Hence,
reducing the amount of input variables is crucial through data transformation.
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Dimension reduction is of great importance; on the one hand, high-dimensional data cannot be
directly applied in some specific algorithm, dimension reduction can solve the “dimension disaster”
(that is involved in vector calculation problems, computation exponentially multiply with the increase
of digits), reduce the complexity of data, ensuring some algorithms can be used normally; On the other
hand, high-dimensional data often contain a lot of noise and redundancy. Dimensional reduction can
refine the data structures of interest in high-dimensional data and present them in low-dimensional
space in order to better understand the data.

PCA is used in almost all scientific disciplines in reducing dimensionality [50]. PCA is based on
the location distribution of the sample point in the multidimensional pattern space, the maximum
direction of variance, which is the maximum direction of the change of the sample point in the space,
as the discriminant vector to realize the feature extraction and data compression of the data. From
the point of view of probability and statistics, the greater the variance of a random variable, the more
information the random variable contains. If the variance of a variable is zero, this variable is a
constant value and it does not contain any information. The so-called principal components are new
variables obtained by a linear combination (or mapping) of several variables of the original data. The
first principal component might have the maximum variance; each principal component is linearly
independent, that is, orthogonal. From the first principal component, the principal components are
arranged in the order of variance (i.e. the corresponding eigenvalues are arranged in the order of size).
The later principal components are considered to be included in the noise and redundancy, and these
variables are not introduced into the model in the analysis. Thus PCA can conduce to extracting most
of the signal into the first few principal components, reducing the principal component of the analysis
to achieve the purpose of reducing the dimension.

The number of input variables (16 physicochemical properties) was lessened by means of PCA.
As can be seen in Figure 3, the cumulative contribution ratio versus the amount of principal component
is presented.
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Figure 3. Scree plot of the cumulative contribution ratio versus principal components of the
physicochemical properties.

The scree plot indicates that the cumulative contribution radio of 6 principal components involves
more than 85% information. As a matter of fact, 6 principal components are adequate to generalize
the characteristic of 16 physicochemical properties. Thereby, 16 physicochemical properties were
converted to 6 principal components, which were used for data mining. The details were recorded in
the “pcdata.csv” file as shown in Table 4.
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Table 4. Principal component.

Symbol PC1 PC2 PC3 PC4 PC5 PC6

1 Na −4.4937 −2.3331 −0.3341 1.6384 −0.5100 0.5386
2 Ca −2.3613 −0.5930 −0.2064 0.2247 0.6403 −0.5807
3 Ce −0.4507 2.3991 0.2552 0.3157 −0.1669 −0.2053
4 Mg −1.6915 −2.1294 0.5409 −0.3025 0.3747 −0.8766
5 La −0.7296 2.5065 0.3964 0.4895 −0.2748 −0.0154
6 Zr 0.4382 1.0243 1.2377 0.0225 −0.0842 −0.3463
7 Cu 0.5306 −2.7485 −1.8363 0.3687 0.4199 −0.7745
8 Zn −0.5839 −2.1809 −0.4995 −1.5155 0.3046 −0.8257
9 In −0.5671 −0.1366 −0.1965 −0.7385 −0.1178 −0.7170

10 Mo 2.9809 −0.0167 0.1473 1.1944 0.0759 0.1035
11 Ti −0.0041 0.7963 1.6307 1.5408 7.1646 0.7350
12 Cs −5.5148 2.1166 −2.1336 0.3439 0.2223 1.0677
13 Pb 0.0123 −0.1370 −2.3945 −1.8833 −0.0560 −0.1917
14 Bi −0.1575 0.2925 −1.2227 −2.1246 −0.2919 −0.2747
15 Li −5.3394 −4.9617 1.5072 4.4598 −2.1287 1.6791
16 Be −0.0422 −3.7374 1.3584 0.9780 0.0000 −0.8547
17 B 1.8890 −2.1963 2.6368 1.1828 −0.3254 0.2201
18 Al −0.4859 −1.5670 1.4001 0.5802 −0.1453 −1.1017
19 Si 1.3901 −1.8215 1.8616 0.0100 0.1982 −0.4558
20 P 0.1109 −1.6922 3.9914 −2.8601 −0.6084 −1.9119
21 K −5.2054 −0.1698 −1.0614 1.0598 0.1477 0.6275
22 Sc −0.3441 0.4999 1.9521 0.3799 −0.0789 −0.4072
23 V −0.0921 −0.3732 1.2543 −0.0726 −0.1303 −0.2292
24 Mn −0.0243 −1.0383 0.6824 −0.2757 0.0628 −0.4408
25 Fe 0.7548 −1.1968 0.1286 0.1516 0.1281 −0.3575
26 Co 0.8136 −1.4482 −0.6134 0.2281 0.2527 −0.2292
27 Ni 0.8075 −1.4076 −0.3220 0.2367 0.1353 −0.2136
28 Ga −0.5398 −0.6326 0.7324 −0.5734 −0.1867 −0.8265
29 Ge 1.1991 −1.0044 0.9964 −0.8346 0.1748 −0.4919
30 As 0.9978 −2.7580 2.3675 −4.7562 0.0112 5.6521
31 Rb −5.1896 0.9599 −1.6261 0.4956 0.2165 0.7728
32 Sr −2.6362 0.9411 −0.3388 −0.2900 0.5101 −0.0959
33 Y −0.2723 1.5312 1.2343 0.5041 −0.0971 −0.1741
34 Ru 2.6622 −0.5648 −0.8152 0.9724 0.1674 0.1244
35 Nb 2.1728 1.1007 1.0659 1.6163 −0.2420 0.2596
36 Rh 2.3402 −0.8977 −0.8947 0.5321 0.1227 −0.0666
37 Pd 1.3995 −1.2676 −1.3862 −0.2708 0.1700 0.0564
38 Ag −0.2682 −2.4074 −3.6047 0.0505 0.4128 −0.3322
39 Cd −0.7424 −1.4188 −1.2913 −1.8597 0.3148 −0.6027
40 Sn 0.6506 −0.3180 0.1437 −1.1355 0.0984 −0.9817
41 Sb 0.1471 −0.7792 0.2540 −2.0601 0.0053 −0.5371
42 Ba −2.9022 2.0680 −1.0525 −0.1713 0.3115 0.2947
43 Cr 0.4685 −1.0551 0.2006 0.6326 0.1772 −0.2196
44 Pr −0.5280 2.2808 0.2327 0.1221 −0.1295 −0.2281
45 Nd −0.8871 2.3965 0.4200 0.0970 −0.3468 −0.0491
46 Sm −1.3286 2.0645 0.4123 −0.6867 −0.3939 −0.1523
47 Eu −1.5234 1.8859 0.4615 −0.8284 −0.1108 −0.1924
48 Gd −0.0690 2.0926 0.4568 0.2059 −0.3961 0.0243
49 Tb 0.0368 2.5625 0.8608 0.0744 −0.4979 −0.1087
50 Dy −0.3856 2.1112 0.4324 −0.2671 −0.4420 0.0111
51 Ho −0.2105 2.0891 0.4164 −0.2174 −0.4525 0.0306
52 Er 0.0875 2.1022 0.4785 −0.0846 −0.4758 0.1911
53 Tm −0.2964 1.8734 0.4289 −0.6181 −0.4749 0.0745
54 Yb −1.1545 1.6328 0.4297 −1.1359 −0.2951 −0.3353
55 Lu 0.3369 2.2590 0.3557 0.3901 −0.5661 0.3121
56 Hf 2.3448 1.8948 0.1696 1.0018 −0.4667 0.4073
57 Ta 3.7629 1.7138 0.2209 1.6872 −0.6980 0.8046
58 Ir 4.2483 −0.3053 −2.0454 0.5417 −0.2065 0.4819
59 Pt 3.2775 −0.6054 −2.2724 −0.0009 −0.2082 0.4988
60 Au 2.1345 −2.1964 −3.9288 −0.5559 0.0923 −0.0104
61 Tl −1.0802 0.8609 −2.4039 −1.3550 −0.4237 0.0548
62 W 5.2568 0.5402 −1.0652 1.8146 −0.3212 0.7266
63 Re 4.8499 1.4997 −0.2068 1.3307 −0.5620 0.6653
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2.4. Data Loading

Data mining (Supplementary Materials) was conducted in our work using the statistic language
R. The datasets were loaded on R and the main functions used were:

prcomp for PCA,
Kmeans for element k-means clustering analysis, and
bgp as the installation package developed by Gramacy for modeling [51,52].

2.5. Data Analysis

As mentioned earlier, the models for screening potential additives was determined using the
22 data sets comprised the input data, that is, six principal components of 11 elements, and the target
values, containing resistance to sintering feature. However, a small sample of data makes processing
and modeling tough. Prior modeling with small data sets, an adaptable data analysis methodology
was chosen properly to overcome this limitation.

The successful application of various widespread modeling and optimizing approaches has been
already investigated and reported by many researchers in the design of catalysts [53–57]. So far,
artificial neural networks (ANN) and support vector machines (SVM) are the most universal because
of their wide range of suitability, particularly in nonlinear catalytic phenomena for finding correlations.
However, the accuracy of ANN and SVM methods utilized for modeling and predicting was not
sufficient in this research with respect to the viewpoint of regression models.

• As original methods, ANN and SVM are suitable for processing large datasets; the model should
be therefore constructed using a mass of validation data to ensure its applicability and reliability.
Considering the situation above, those two methods are not appropriate for data analysis of small
sample datasets.

• Input of several key parameters utilized frequently in ANN and SVM can have a large impact
on the feasibility of the model; for instance, the type of kernel functions adopted by an SVM, or
the structure design parameter of a neural network. Parameter optimisation is significant and
become more difficult on the basis of small sample datasets.

• There are no indicators in ANN and SVM for further improving accuracy of the regression model.

To tackle these obstacles, a Gaussian process regression (GPR) methodology was applied to
promote the catalytic performance of the resistance to sintering by establishing a regression model
in accordance with the physicochemical properties of each selected element. The major advantage
for exploiting this probabilistic nonparametric modeling method into the resistance to sintering of
the catalysts optimization is that, accuracy of the modeling prediction and applicability of analyzing
high-dimensional, nonlinear, small sample datasets [58,59].

y =
∑9

i=1
wiexp

[
−

1
2σi

(x− ci)
2
]
, (1)

where wi is the weight, ci the center vector, and σi the radius. Thus, the output y is calculated from the
input vector x.

It is difficult to find appropriate parameters when modeling with small datasets. In the present
study, a nonparametric algorithm is applied to the GPR model, that is, the estimated parameters are not
necessary. The weights of GPR, as an a posteriori probability, were determined. Moreover, a unique
radius parameter in each dimension was employed in the bgp function. Both improvements made for
better performance of the GPR.

In particular, expected improvement (EI) function was introduced into the GPR and the indicator
EI was produced [60]. EI that serves as discrimination criteria of the new potential optimal solution
manifests itself in possibly increasing the predictability and feasibility of the GPR model since the
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experimental results were applied to the modeling. Therefore, imperative supplementary tests are
forecast by the index EI. If the largest EI is approaching zero, then the optimization process can be
completed owing to no further expected improvement which is found by performing supplementary
tests. Figure 4 displays a flowsheet for the process of modeling and anticipating by data mining
techniques in this part of work.
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2.6. Result Report

For developing the GPR model, as in Table 4, model input data were PC1–PC6 for Na through Ti.
Meanwhile, the increase rate of Na through Ti has been utilized as model outputs, summarized in
Table 3. Thereafter, Table 4 clearly gives PC1–PC6 for Cs through Re, used for predicting the outcome
in GPR model. Figure 5 respectively illustrates the increase rate of Cs through Re, which has been
already predicted by aforementioned procedure, and ranked elements in accordance with the EI.
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From the perspective of additional experiments, effectively additive elements of Pb, Cs, and
Bi were explored, according to their high resistance to sintering of the catalysts and high EI. The
predicted increased rate (Means) and the 90% confidence interval (q1, q2) are listed in Table 5. Thereby,
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experiments with respect to the anti-sintering of Pb, Cs, and Bi, which promoted Ni/Al2O3 catalytic
performance, were executed. More detailed data correlated with resistance to sintering are revealed in
Table 6 and experimentally determined.

Table 5. Prediction by the first regression model for further screening.

Rank Symbol EI Means q1 q2

1 Pb 0.2125 0.0427 0.0321 0.0747
2 Cs 0.1954 0.0819 0.0467 0.1024
3 Bi 0.1658 0.2176 0.1378 0.3375

Table 6. Experimental result of anti-sintering for verifing.

Additive
Crystallite Sizes of the Ni (nm)

Increase Rate
d1 d2 d4

1 Cs 15.7 22.4 6.4 0.408
2 Pb 16.0 23.9 7.9 0.494
3 Bi 23.0 54.2 31.2 1.357

According to these results, it is apparent that three additive elements, namely, the Pb, Cs, and Bi,
with resistance to sintering superior than one of Ni-In/Al2O3 catalysts, which were estimated to be
candidates. However, this prediction was incorrect. The increase rate for Ni-Pb/Al2O3, Ni-Cs/Al2O3,
and Ni-Bi/Al2O3 catalysts are higher than that of Ni-In/Al2O3 catalysts. Thereafter, additional
experiments were carried out utilizing Pb, Cs, as well as Bi element for building the second regression
model by GPR. In this context, as depicted by Figure 6, elements were ranked with respect to the
EI. Through the prediction of the second regression model, it is found that among the remaining
elements, adding Li has the best anti-sintering performance, and the detailed data are shown in Table 7.
However, the experimental results reveal that the effect of adding Li is not as good as that of adding
Cs; furthermore, its EI value is quite low. Consequently, the screening process was eventually finished.
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Table 7. Prediction by the second regression model for further screening.

Rank Symbol EI Means q1 q2

1 Li 0.05124 0.4279 0.3165 0.5762

It is noticeable that, as one of the Ni/Al2O3 catalytic promoters, Cs addition possessed exceptional
performance, which was determined by the predicted model outputs and its corresponding experimental
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values. Although the increase rate of Ni-Cs/Al2O3 catalysts are higher than that of Ni-In/Al2O3 catalysts,
its crystallite sizes of the Ni, before and after catalyst evaluation, are less than those of Ni-In/Al2O3

catalysts. Apart from those mentioned above, more significantly, it has the minimal variation of
crystallite sizes of the Ni.

2.7. Effect of Physicochemical Properties on Catalytic Anti-Sintering

The superiority of regression model by GPR in finding an anti-sintering Ni-Cs/Al2O3 catalyst is
verified by the obtained results. It obviously shows that the proposed model can quickly search for
potential optima with respect to improvement of regression accuracy and suggestion of necessary
additional experiments. Another major concern is whether underlying non-linear correlations or
patterns are existed in the regression model, which is determined by GPR, between the physicochemical
properties and catalytic performance of resistance to sintering. Based on the method of virtual elements,
the effect of physicochemical properties of each element on resistance to sintering was calculated.

As indicated in Table 2, one of the physicochemical properties of Cs was selected to change from
the minimum to the maximum of the performance of 63 elements. Accordingly, the six principal
components and the growth rate predicted by GPR model were also changed. Consequently, the effect
of the physicochemical property can be estimated. Difference of the predicted increased rate chosen
here, that is, corresponding to the difference between 20% and 100% of the normalized physicochemical
property, represented the influence of different physicochemical properties on the anti-sintering
performance of the catalyst, by reason that the effects were monotonous. As can be seen in Figure 7, the
effects of size factors, for instance, IR (ionic radii), DS (density), and AW (atomic weight) are large in
the sintering resistance, while the effects of thermal properties such as HV (heat of vaporization), MP
(melting point), BP (boiling point) are small. Particularly, IR (ionic radii) is an important factor to limit
Ni sintering. The difference of the predicted increased rate obtained by calculation, whose absolute
value greater than 0.6, is the largest of all values. In this manner, the influence of each property on the
catalytic anti-sintering clearly showed that some properties are influential and others are not. Whereas
how those different properties affect the anti-sintering performance is not revealed immediately, this
should be clarified in further research.
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3. Experimental Section

3.1. Materials

All the reagents were of analytical grade and used as received, which are embodied below:
NaNO3, Ca(NO3)2·4H2O, Ce(NO3)3·6H2O, Mg(NO3)2·6H2O, La(NO3)3·6H2O, Cu(NO3)2·3H2O,
Zr(NO3)4·5H2O, Zn(NO3)2·6H2O, In(NO3)3·4.5H2O, H24Mo7N6O24·4H2O, C16H36O4Ti, Cs2CO3,
Bi(NO3)3·5H2O, PbC4H6O4·3H2O, Ni(NO3)2·6H2O, and deionized water. After calcining in air
at 550 ◦C for 6 h, commercial γ-Al2O3 can be used.

3.2. Catalyst Preparation

Presently, a total of fourteen elements (Na, Ca, Ce, Mg, La, Cu, Zn, Zr, In, Mo, Ti, Cs, Bi, and Pb)
were selected as candidates in the experiment for the additives to supported Ni/Al2O3 catalyst. And
the justification for choosing these elements is illustrated in the Section 2.1. A successive impregnation
method, as described in our pervious paper, was implemented to synthesize the catalysts [39].

To result into the Ni/Al2O3 catalyst with 15 wt% Ni, this typical synthesis procedure was as
follows. Initially, the support was added to deionize aqueous solution with appropriate concentration
of nickel nitrate hexahydrate with vigorous stirring. The slurry with continuous stirring was then
maintained at room temperature overnight. Afterwards, the heating of the solution was controlled at
80 ◦C until the water completely evaporated. Followed by drying process at 110 ◦C in air for 12 h, the
mixture finally calcined at 550 ◦C in static air during 4 h at a rate of 3 ◦C min−1.

The Ni-X/Al2O3 catalysts (X = Na, Ca, Ce, Mg, La, Cu, Zn, Zr, In, Mo, Ti, Pb, Cs, or Bi) with a
Ni/X molar ratio of 3 were further obtained utilizing the method mentioned above. Operational details
about relevant experimental process are presented by the same authors. Hence, this only gives a brief
description of the points that need to be noticed in this process. Two grams of ready-prepared Ni/Al2O3

catalyst were required for making up the corresponding aqueous solution. Thereafter, 1.704 mmol of
added nitrate reagent was dissolved in the precursor solution to form a suspension. Lastly, through
the same rate of heating, a calcination treatment was conducted in a muffle furnace for 4 h at 450 ◦C.

3.3. Catalyst Evaluation

The evaluation of the collected catalysts resistance to sintering for CO methanation reaction was
performed at 1 MPa pressure in a fixed bed continuous flow reactor, which made of stainless-steel
tubing (i.d. 10mm). About 200 mg of powder catalysts (40–80 mesh), which dispread between quartz
wool at the center of the reactor, was reduced at 500 ◦C in a hydrogen flow of 25 mL min−1 for 2 h
before starting each experiment and then cooled to the temperature of 240 ◦C. The resulting mixed
gas here comprised H2 and CO with molar ratio of 3 was then fed into the reactor. The weight hourly
space velocity (WHSV) was maintained at 30,000 mL g−1 h−1. The temperature range of the measured
was between 240 and 800 ◦C. The observation points selected are spaced at an interval of 40 ◦C.
To evaluate the sintering resistance of the catalyst more effectively, the temperature was kept at 800
◦C for 24 h. Meanwhile, the outlet gas composition (H2, CO, CH4 and CO2) was analyzed using an
online gas chromatograph instrument, which was equipped with thermal conductivity detector (TCD),
condensing and separating the generated water before the analysis.

3.4. Structural Characterization

The conventional Ni-based catalysts for this reaction often deactivate severely due to sintering of the
Ni particles, which is caused by the poor dispersion of nickel particles because of the weak metal–support
interaction between Ni and support [61]. In order to gain an insight into the structure–catalytic
anti-sintering properties relationship, powder X-ray diffraction (XRD) characterizations of the catalysts
before and after the catalytic reaction were performed in the present study [11].

XRD patterns of the tested samples were obtained in step scanning on a Rigaku D/Max 2500
diffractometer utilizing CuKα radiation (λ = 1.54056 Å) operating at 40 kV and 100 mA over a 2θ range



Catalysts 2019, 9, 493 12 of 15

of 10-80◦ at 4◦ min−1. The crystallite size characterization of the Ni on the basis of (1, 1, 1) surface was
calculated using the following Scherrer–Warren equation [62,63]:

d(XRD) =
κλ
βcosθ

, (2)

where κ represents Scherrer’s constant, which is 0.94, and λ (incident wavelength) is 1.5418 Å. The
half-height width of diffraction peak of the tested sample is described as β. Bragg diffraction angle,
which represented as parameter of θ, is need to be measured. Here, d(XRD) only as the descriptor of
the crystalline size of perpendicular to the direction of the grain surface has nothing to do with the
other directions.

4. Conclusions

In this paper, data-mining technology were successfully developed to the modeling and screening
of methanation catalysts. The data mining technology could be conveniently applied to build a new
modeling framework and prediction from the high-dimensional, discrete and complex catalytic data
arising from catalysis experimentation. The application of regression models within physicochemical
properties of elements utilized as promoters of Ni/Al2O3 catalysts has been implemented to predict the
resistance to sintering of Ni/Al2O3 catalysts in the field of methanation reactions. A better catalyst,
adding Cs into Ni/Al2O3 catalyst, which was discovered by utilizing the regression model with GPR,
could obtain excellent anti-sintering catalytic performance. Furthermore, on account of using virtual
elements, the influence of physicochemical properties on the anti-sintering was evaluated.

More importantly, the agreement between predicted and observed experiment values was highly
acceptable, therefore demonstrating the viability of data-mining techniques in the analysis and
prediction of resistance to sintering. This work confirmed that the novel data mining approach with
avoiding the huge and blind experimental process may eventually serve as a scientific and efficient
tool to optimize the design and screening of new catalytic systems in a more rapid manner.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/6/493/s1:
Content 1: The use of program code in data mining process, Content 2: Explanation of the GPR model reliability,
Content 3: XRD characterization of methanation catalysts with different additives before and after the reaction,
Files: (a) data.csv (b) pcdata.csv.
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