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Abstract: Fe/N-doped carbon (Fe-NC) is an excellent base-metal catalyst for use in an electrocatalytic
oxygen reduction reaction (ORR) with high activity. In this paper, graphite phase carbon nitride
(g-C3N4) was first obtained from the pyrolyzing of melamine, and then different proportions of
FeCl3 were separately doped into g-C3N4 to further prepare the Fe-NC catalyst. The Fe-NC catalyst
was applied in an ORR reaction, and the results show that the Fe-NC catalyst doped with 0.5 mmol
FeCl3 possesses exceptional electrocatalytic performance, with an onset potential of 0.96 V and a
half-wave potential of 0.81 V, which approaches that of a Pt/C catalyst. Meanwhile, the Fe-NC
catalyst displays high stability and methanol resistance. The results supply a new way to prepare
efficient ORR electrocatalysts.

Keywords: Fe-N-C; g-C3N4; doping; ORR

1. Introduction

With the increasingly prominent fossil resource crisis and global environmental issues,
the development of new renewable green alternative energy has become an important
measure for coping with global energy shortages and climate change [1–3]. In recent
years, metal-air batteries have attracted a lot of attention in the field of electrochemistry
because of the simplicity of operation, sustainability, environmental friendliness, and high
efficiency. Among the existing metal-air batteries, the rechargeable zinc-air battery (ZABs)
is widely regarded as one of the energy storage and conversion systems with the most
potential, owing to its high energy density, reliability, environmental friendliness, and
superior safety [4]. Oxygen reduction reaction (ORR) and oxygen extraction reaction (OER)
are the two basic electrode reactions involved in ZABs [5]. However, the sluggish kinetics
of ORRs on air cathodes leads to the low energy conversion efficiency output performance
and long-cycle stability of zinc-air batteries; therefore, it is imperative to rationally design
OER and ORR electrocatalysts with high activity [6,7]. Currently, the commonly used
Pt/C electrocatalyst exhibits advantages in electrochemical performance, but poor OER
activity due to the oxidation of Pt at high overpotentials, the shortage of precious metal
resources, and the increase in cost still cannot completely solve the problem of cathodes
for zinc-air batteries [2,8–10]. For these reasons, the large-scale commercial construction
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and application of zinc-air batteries have always been seriously hindered. Therefore,
developing efficient and stable base-metal catalysts is of great significance for improving
the performance of zinc-air batteries [11].

A M-N-C catalyst formed by nitrogen-doped carbon-supported transition metal atoms
(Fe, Co, etc.) is a class of highly efficient oxygen electrocatalysts [2,12–15]. Among them,
the Fe-NC catalyst has attracted huge attention because of the activity of ORRs, such as a Pt-
based catalyst [16–19]. Due to the uniform distribution of electron cloud density between
C-C bonds, the ORR electrocatalytic activity and stability of the carbon materials are
weakened. The N and Fe co-doping of carbon-based materials is beneficial as it can chang
the electron cloud density around C atoms, polarize the C atoms near the heteroatoms, and
improve the electrocatalytic activity of ORR catalysts [20]. Meanwhile, N atoms have a
higher electronegativity than C atoms, resulting in easier coordination between Fe and N
when forming the catalytic active center FeNx [21].

The high-temperature cracking of precursors containing metal Fe, N, and C is a
traditional method for preparing Fe-NC [22–25]. In general, a high nitrogen content in the
precursor is required in order to retain more nitrogen during the pyrolysis process and
form highly nitrogen-doped carbon. Graphite phase carbon nitride(g-C3N4) is a typical
carbon–nitrogen compound with a graphene-like lamellar structure. The poor electrical
conductivity of g-C3N4 limits its direct application in the field of electrocatalysis. However,
owing to its extremely high nitrogen content of up to 57.1 at%, g-C3N4 is an excellent
precursor for synthesizing nitrogen-doped carbon materials. By doping iron salts, g-C3N4
can be converted into Fe and N co-doped electrocatalytic carbon-based materials.

In this paper, low-cost melamine is used to produce g-C3N4, followed by the addition
of iron salts. The mixture is pyrolyzed at a high temperature in order to produce Fe-NC
materials. Finally, Fe-NC is used as an electrocatalyst in the ORR reaction. The results
show that Fe-NC exhibits outstanding electrocatalytic performance, approaching that of
the commercial Pt/C catalyst. Meanwhile, Fe-NC also possesses an exceptional methanol
resistance and long-term stability.

2. Results and Discussion

Figure 1 shows the preparation diagram of the Fe-NC catalyst. Melamine was first
heated at 550 ◦C and converted into g-C3N4. Subsequently, the as-obtained g-C3N4 was
mixed with different proportions of FeCl3·6H2O. Finally, the mixture was heated at 800 ◦C
to obtain the Fe-NC catalyst. The Fe-NC catalysts prepared by adding different amounts of
iron salts were marked as Fe-NC-x (x indicates the amount of iron salt added; for example,
Fe-NC-0.1 indicates the addition of 0.1 mmol FeCl3·6H2O).
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The SEM and TEM of g-C3N4 are analyzed and shown in Figure 2a,b, from which
it can be observed that the g-C3N4 formed via the heat treatment of melamine exhibits
a blocky structure, which consists of irregular two-dimensional lamellae stacked on top
of each other. The elemental composition and content of g-C3N4 were investigated using
XPS and the results are shown in Figure 2c. From the figure, it can be discovered that
g-C3N4 has a N content of up to 44%, close to the content of C. The rich nitrogen content
of the precursor is provides benefits when forming active centers. To better observe the
morphology of nitrogen-doped carbon matrix-loaded Fe atoms, the SEM characterization
of Fe-NC-0.1, Fe-NC-0.5, and Fe-NC-1.5 was performed, as shown in Figure 2d–f. From the
figures, it can be seen that the lamellar g-C3N4 was transformed into elongated nanotubes
carbon under the catalytic effect of Fe atoms [26], which is favorable for the improvement of
the active site and mass transfer kinetics [27]. With the increase in the Fe content, the tubes
gradually become clear and elongated. However, when the Fe doping amount reaches
1.5 mmol, the tubes gradually become blurred and decrease in number, which might be
ascribed to the agglomeration triggered by the excessive Fe atoms, making the density of
Fe single atoms decrease, and the catalytic performance weaken.
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Figure 3a–c show the TEM characterization of Fe-NC-0.1, Fe-NC-0.5, and Fe-NC-1.5,
respectively. From the images, it can be seen that the different doping ratios all form a
folded tubular morphology. The Fe-NC-0.1 and Fe-NC-0.5 samples have a clear tubular
morphology with clear walls, but the walls of the Fe-NC-1.5 sample become blurred and
lack a clear boundary. In addition, black Fe nanoparticles are observed in all Fe-NC samples,
some of which are encapsulated in intertwined tubes, and some are located in the outer
tube walls. The size of the nanoparticles becomes progressively larger as the amount of
iron doping increases, indicating increasingly severe Fe agglomeration. In addition, the
holes in the tube are irregular and almost invisible. To determine the material structure and
composition of the Fe-NC catalyst, the Fe-NC-0.5 sample was characterized using HRTEM
and fast Fourier inverse transform (FFT). As can be seen in Figure 3d,e, the largest layer
spacing of 0.346 nm should correspond to the (002) facets of graphite, the layer spacing
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of 0.201 nm is attached to the Fe3C substance, and the smallest layer spacing of 0.193 nm
reflects the (110) facets of the α-Fe.
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The elemental distribution scanning mapping of Fe-NC-0.5 (Figure 3f) reveals that
both C and N are uniformly distributed throughout the sample, indicating the generation
of N-doped carbon. Iron atoms are distributed inside nitrogen-doped carbon nanotubes,
suggesting that the iron is doped in the carbon.

The XRD patterns of all the samples are shown in Figure 4a. From the XRD pattern of
g-C3N4, it can be seen that there are two diffraction peaks at 13.2◦ and 27.4◦, which belong
to the (100) and (002) facets of the g-C3N4, respectively. After the addition of FeCl3·6H2O
and the second calcination at 800 ◦C, a serial of diffraction peaks at 44.7◦, 43.8◦, 45.8◦, and
26.2◦ appeared in the XRD spectrum. The strong peak at 44.7◦ represents diffraction from
the Fe3C substance. The peak at 43.8◦ is generated by the diffraction of the (111) facet of
hexagonal ε-Fe3N. The weak and broad peak at 26.2◦ might be the (002) crystal facet of
carbon, and the peak at 45.8◦ should be the (110) crystal facet of Fe. In addition, some small
weak peaks might be attributed to Fe3C, but it is debatable whether they are catalytically
active or not [28]. According to the literature [21,29], through high-temperature treatment,
FeCxNy or FeNx might also be formed due to the interactions between Fe, N, and C. In
ORRs, FeCxNy or FeNx molecules with α-Fe and ε-Fe3N constitute the electrocatalytic
active center [30,31].

The Raman spectra of pure g-C3N4 and Fe-NC catalysts are displayed in Figure 4b.
From the figure, it can be seen that g-C3N4 shows only a high intensity noise line. All
Fe-NC materials exhibit two strong characteristic peaks near 1350 cm−1 and 1580 cm−1,
belonging to the disordered carbon bands (D-band) and graphitic carbon bands (G-band),
respectively [22]. This indicates that g-C3N4 is converted to carbon under pyrolysis at
800 ◦C. The intensity area ratio (ID/IG) of the two bands reflects the disorder degree in the
carbon structure [32]. The high ID/IG ratio implies a high degree of disorder in carbon. As



Catalysts 2024, 14, 279 5 of 15

the amount of Fe added increases, the ID/IG value of the Fe-NC material decreases from
1.06 to 0.92, indicating an increase in the graphitization degree of carbon. The reason for
this is that the heterogeneous catalytic effect of Fe reduces the activation energy for the
transition from the amorphous to the graphite phase, thus promoting an increase in the
graphitization. In addition, higher ID/IG values indicate the presence of a large amount of
defects in the samples caused by N doping, and the defects can then become the catalytic
active center [33,34].
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The specific surface area and pore structures of the three samples were detected utiliz-
ing a nitrogen adsorption/desorption technique. Figure 5 reveals the nitrogen absorption
and desorption curves of the three samples and the corresponding pore diameter distribu-
tion. It can be seen from the figures that the specific surface areas of Fe-NC-0.1, Fe-NC-0.5,
and Fe-NC-1.5 are 52.9, 89.2, and 41.6 m2 g−1, respectively. The high surface area can
supply more active sites. In addition, the figure shows that the three samples make up
the hierarchical distribution of micropores and mesopores, providing a favorable material
transport channel for ORR reactions.
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XPS was used to analyze the surface chemical elements and binding states of all samples
(Figure 6). As displayed in Figure 6a, the total XPS spectra reveal the existence of C, N, Fe,
and O elements in all of the samples, where the presence of O could be attributed to the
exogenous oxygenated compounds adsorbed on the surface. As can be seen in Figure 6b, the
Fe-NC-0.5 sample has the highest N and O content among all the samples. The C1s spectra of
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the Fe-NC samples in Figure 6c,f,i can be divided into four peaks, representing the telescopic
vibrations of C=C/C-C (284.5 eV), C=N (285.3 eV), C-O (286.5 eV), and C=O (289.0 eV),
respectively [22,31]. The relatively strong peak intensity corresponding to C=N suggests more
N doping in the carbon. From Figure 6d,g,j, the N1s spectra can be divided into four peaks
located at 398.2, 400.3, 401.3, and 404.0 eV. Among them, the peaks at 400.3, 401.3, and 404.0 eV
represent pyrrole N, graphitized N, and quaternary N, respectively, whereas the peak situated
at 398.2 eV represents the pyridine N and Fe-N [35–37]. According to the literature [38], the N
group-modified conductive surfaces are able to provide binding sites because the active sites
are generated on the surfaces via metal–nitrogen coordination. In addition, the ORR activity of
N-doped catalysts is also affected by the content of pyridine and graphitized N. It is generally
considered that pyridine N and graphitized N might promote oxygen-selective reduction
through a four-electron mechanism [37,39,40]. Table 1 displays the nitrogen contents of all
three catalysts. The contents of pyridine N and graphitized N in Fe-NC-0.5 accounted for
84.7% of the total peak content, slightly higher than those found in Fe-NC-0.1 and Fe-NC-1.5,
which was conducive to the enhancement of active sites and electrical conductivity, thus
promoting the ORR reaction. Figure 6e,h,k show the detailed valence states of Fe elements in
Fe-NC compounds. The peaks situated at 706.8 eV and 707.3 eV belong to Fe3N and metallic
Fe, respectively [29]. The peaks at 720.3 eV and 710.1 eV belong to the Fe2+ states pertaining to
Fe 2p1/2 and Fe 2p3/2 [23]. The peak situated at 723.4 eV represents the Fe3+2p1/2, and another
peak located at 712.3 eV indicates the Fe3+2p3/2 [41]. Since no iron oxides were discovered in
XRD, the Fe2+ and Fe3+ should stem from the existence of FeCxNy and FeNx [42].

Table 1. Different peak contents of C1s by XPS.

Samples Quarternary-N
(%) Graphitic-N (%) Pyrrolic-N (%) Pyridinic-N (%)

0.1 Fe 7.97 22.59 13.69 55.74
0.5 Fe 8.42 28.27 6.88 56.43
1.5 Fe 6.71 27.37 11.72 54.21

To analyze the ORR performances of all catalysts, cyclic voltammetry (CV) curves
were operated in a three-electrode system using the rotating electrode method in an oxygen-
free/oxygen-saturated 0.1 M KOH alkaline electrolyte, as displayed in Figure 7. In the
oxygen-saturated electrolyte, all the fabricated electrocatalysts except g-C3N4 show obvious
ORR peaks. Among them, the oxygen reduction peak of Fe-NC-0.5 is the most obvious,
and the oxidation peak appears in the oxygen-saturated CV curve at about 0.9 V, indicating
that the redox reactions occurred between Fe(II) and Fe(III) in the existence of O2. No ORR
peaks were found in the oxygen-free saturated electrolyte, which also proved the catalyst’s
capability of oxygen reduction. In addition, both the Fe-NC-0.5 and Fe-NC-1.5 samples
show reversible and featureless wide dual-layer charging current profile characteristics
under an oxygen-free medium, thus implying good electronic conductivity and charge
diffusion [43].

The ORR performance of Fe-NC catalysts with different Fe doping levels in the oxygen-
saturated 0.1 M KOH solution was further investigated using linear scanning voltammetry
(LSV) on an RDE at 1600 rpm, and the electrochemical parameters related to the ORR
performance are shown in Figure 8 and Table 2. As can be observed from the data in Table 2,
Fe-NC-0.5 has the best electrocatalytic property, with an onset potential (Eonset) of 0.96 V, a
half-wave potential (E1/2) of 0.81 V, and a limiting current density (Jd) of 5.97 mA cm−2,
which is close to that of Pt/C. In the same conditions, the catalytic activities of Fe-NC-
0.1 (Eonset = 0.92 V, E1/2 = 0.76 V, and Jd = 4.6 mA cm−2) and Fe-NC-1.5 (Eonset = 0.88 V,
E1/2 = 0.77 V, and Jd = 4.14 mA cm−2) are relatively low. The results might prove the key
role of metal Fe in the catalyst. Among these catalysts, F-NC-0.5 has the lowest surface
nitrogen content, but shows the best ORR performance, probably because Fe plays a more
critical catalytic role. The doping of Fe provides single-atom active sites, but the excessive
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doping of Fe might result in severe agglomeration, forming large-sized particles, which
leads to a decrease in the density of Fe single atoms [44].
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cm−2, which is close to that of Pt/C. In the same conditions, the catalytic activities of Fe-
NC-0.1 (Eonset = 0.92 V, E1/2 = 0.76 V, and Jd = 4.6 mA cm−2) and Fe-NC-1.5 (Eonset = 0.88 V, E1/2 = 

Figure 6. (a) Full XPS spectra of three catalysts and g-C3N4. (b) Elemental change diagrams of three
catalysts. (c,f,i) C1s, (d,g,j) N1s, and (e,h,k) Fe 2p XPS spectra of three catalysts.
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Table 2. ORR properties of different catalysts.

Samples Onset Potential
(Eonset V)

Half-Wave Potential
(E1/2 V)

Limiting Current Density
(mA cm−2)

Electron Transfer Number
(n)

0.1 Fe 0.92 0.76 4.6 3.81
0.5 Fe 0.96 0.81 5.97 3.90
1.5 Fe 0.88 0.77 4.14 3.89
Pt/C 0.98 0.84 5.48 —

g-C3N4 0.69 — 1.4 —

The LSV curves and K-L plots of the Fe-NC catalysts at different rotational speeds
were conducted and displayed in Figure 9. From Figure 9a,c,e, it can be discovered that
the current density enhances significantly when the rotational speed increases. The charge
transfer numbers were calculated from the slope of the j−1 vs. ω−1 curves according to
the Koutecky–Levich (K-L) equation. As revealed in Table 2, the charge transfer numbers
of Fe-NC-0.1, Fe-NC-0.5, and Fe-NC-1.5 catalysts are 3.81, 3.90, and 3.89, respectively.
The results indicate that these catalysts undergo four-electron reactions during oxygen
reduction. Among them, Fe-NC-0.5 has the largest number of electrons transferred and the
fastest four-electron reaction rate.

The reaction kinetics were further explored via the analysis of the polarization curves
of all catalysts at 1600 rpm through the Tafel equation. As shown in Figure 10a,b, the Tafel
slopes of Fe-NC-0.1, Fe-NC-0.5, and Fe-NC-1.5 are 93, 68, and 94 mV dec−1, respectively.
The smaller the Tafel slope, the faster the current density can increase as the change
in overpotential decreases. The smallest slope for Fe-NC-0.5 indicates its outstanding
electrocatalytic kinetics. The stability of the Fe-NC-0.5 catalyst was detected in an oxygen-
saturated 0.1 M KOH electrolyte (0.4 V at 1600 rpm). From Figure 10c, it can be seen
that there is no significant change in the polarization curve of Fe-NC-0.5 after 5000 cycles,
which confirms the outstanding stability of the prepared Fe-NC-0.5. To test the methanol
resistance of the catalyst, the LSV curves of Fe-NC-0.5 in the solution with or without
methanol are compared and displayed in Figure 10d. It can be seen that no significant
differences occurred between the two LSV curves, thus indicating the excellent methanol
tolerance of the Fe-NC-0.5 catalyst.

The electrochemical dual layer capacitance (Cdl) can be used to calculate the effective
surface area involved in an electrochemical reaction, called the electrochemical active
area (ECSA). In electrochemical reactions, a larger active surface area indicates the higher
utilization of active sites. The linear fitting of the electrochemical double-layer capacitance
is conducted via measuring the non-Faraday interval double-layer capacitance currents
at different scan rates. The central potential used for the study is 0.1 V, with a potential
range of 50 mV and scanning rates of 10 mV s−1, 20 mV s−1, 30 mV s−1, and 50 mV s−1.
By plotting the charging current density difference (∆J = Janode − Jcathode) against the
scan rate, the corresponding slope is twice that of Cdl, meaning the electrochemically
active area can be represented by the corresponding slope. Figure 11a–d shows the CV
curves of the four catalysts at different sweep speeds, which were linearly fitted to obtain
Figure 11e. From Figure 11e, the slopes of Fe-NC-0.1, Fe-NC-0.5, and Fe-NC-1.5 are 1.35,
4.51, and 0.19 mF cm−2, respectively. The largest slope for Fe-NC-0.5 indicate a larger
electrochemically active area, improving its catalytic activity.
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The excellent ORR performance of the Fe-NC-0.5 catalyst could be ascribed to several
reasons. Firstly, the N doping in the catalyst derived from g-C3N4 provides more surface
defects and catalytically active sites, thus promoting the ORR reaction. In addition, by
changing the electron cloud density, N activates the adjacent C atoms, increasing the
electron transfer from metal atoms to carbon atoms and generating high catalytic activity.
Secondly, the catalytic effect of Fe increases the graphitic degree of carbon materials, which
is conducive to the improvement of electronic conductivity. Thirdly, the nanotube structures
of carbon are beneficial for improving the mass transfer (such as O2, H2O, and intermediate
products), which then enhances the reaction kinetics in the ORR reaction. Fourthly, the
relatively high specific surface area also increases the exposure of the active site and thus
enhances the catalytic activity. Finally, the formation of α-Fe, Fe3N, FeCxNy, or FeNx from
the interactions between Fe, N, and C further enhances the active sites of the ORR reaction.
In summary, the synergistic effect of multiple factors leads to excellent electrochemical
performance of Fe-NC-0.5 catalysts.

3. Materials and Methods
3.1. Chemicals and Materials

Melamine (C3H6N6) was obtained from Sinopharm Chemical Reagent Co., Ltd., Shang-
hai, China. Ferric chloride hexahydrate (FeCl3·6H2O) and potassium hydroxide (KOH)
were gained from Aladdin Bio-technology Co., Ltd., Shanghai, China. The Nafion solution
(C9HF17O5S.5%) was purchased from DuPont, Wilmington, DE, USA, and the platinum
carbon (Pt/C, 20%) was purchased from Johnson Matthey Company (London, UK). All
chemical reagents utilized in this experiment were of an analytical grade. The entire
experiment was carried out using deionized water.

3.2. Preparation of Fe-NC Catalysts

Firstly, melamine was heated to 550 ◦C under an argon atmosphere at an elevated
rate of 5 ◦C/min and kept for 4 h; in turn, a light-yellow g-C3N4 powder was gained.
Furthermore, 2 g g-C3N4 was mixed with 0.1, 0.5, and 1.5 mmol of FeCl3·6H2O, respectively,
and then immersed in a beaker containing 80 mL of deionized water and 20 mL of ethanol
solution, followed by drying at 80 ◦C. The mixture was heated at 800 ◦C in a tube furnace
(Henan Fryer Instrument Co., Luoyang, China), and then held for 2 h to obtain the Fe-NC
catalyst. The Fe-NC catalysts with different Fe doping amounts were named Fe-NC-0.1,
Fe-NC-0.5, and Fe-NC-1.5, respectively.

3.3. Characterization of Materials

The microstructure and morphology of the samples were studied using scanning elec-
tron microscopy (SEM, SUPRA-55, Carl Zeiss AG, Oberkochen, German) and transmission
electron microscopy (TEM, FEI-Tecnai G2 F20, Hillsboro, OR, USA). The phase structure
was investigated via an X-ray powder diffraction (XRD, model: Smartlab X-ray diffrac-
tometer (Rigaku, Akishima, Japan) with Cu-Ka radiation, wavelength: λ = 0.15406 nm,
scanning: angle 2θ ranging from 10 to 80◦) technique. The phase structures of the samples
were further detected via the use of Raman spectroscopy (HORIBA Scientific Lab RAM
HR Evolution, Kyoto, Japan). X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi,
ThermoFischer, Waltham, MA, USA) was utilized to investigate the elemental composition
and valence states of the sample surfaces, and the measured data were analyzed using
Thermo Avantage 5.9931.

3.4. Electrochemical Measurements

The electrochemical property of the catalyst in the ORR was tested on a CHI760E
electrochemical workstation (CH Instruments, Bee Cave, TX, USA) with a three-electrode
system. Graphite is a counter electrode, with reference electrodes of a modified glassy
carbon disk electrode (RDE, 0.19625 cm−2) and a saturated calomel electrode (SCE). The
working electrode was in argon- and oxygen-saturated 0.1 M KOH electrolyte. The mixture
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of the 2 mg Fe-NC catalyst, 100 µL deionized water, 95 µL anhydrous ethanol, and 5 µL
of Nafion solution (5 wt%) was sonicated for 2 h. Subsequently, 10 µL of the mixture
(at a concentration of about 0.5 mg cm−2) was dropped onto the working electrode. The
electrolyte was filled with oxygen or argon for 30 min before testing. Cyclic voltammetry
(scanning speed of 50 mV s−1, voltage range from −1.0 V to 0.2 V) and linear scanning
voltammetry (scanning speed of 10 mV s−1, rotational speed from 400 to 1600 rpm) were
then tested on the RDE. The ORR performance of commercial 20% Pt/C electrodes was also
tested in order to compare with the performance of the Fe-NC catalysts. The LSV curves
were compared before and after 5000 cycles to assess the durability of the catalyst (voltage
0.4 V, speed 1600 rpm). LSV was performed in 0.1 M KOH + 3 M methanol solution to
assess the tolerance of the catalyst to methanol. The charge transfer number of the Fe-NC
catalyst can be calculated using the Koutecky–Levich equation [29,45]:

1
J

=
1
JL

+
1
JK

=
1

Bω1/2 +
1
JK

B = 0.62nFC0D0
2/3υ−1/6

where J represents the current density, JL denotes the diffusion current density, JK stands
for the kinetic current density, ω represents the rotation rate of the RDE, F is Faraday’s
constant (96,485 C mol−1), C0 is the volumetric concentration of O2 in oxygen-saturated
0.1 M KOH, D0 is the diffusion coefficient of O2, υ denotes the kinetic viscosity, and n is the
number of charge transfers that can be calculated based on the slope of the K-L plot.

4. Conclusions

In this paper, g-C3N4 was first synthesized with pyrolyzing melamine and then
converted to a series of Fe-NC catalysts through mixing with FeCl3·6H2O and a calcination
process. Among them, the Fe-NC-0.5 catalyst exhibits outstanding performance with
Eonset potential of 0.96 V and E1/2 potential of 0.81 V, respectively, which are significantly
higher than those of the Fe-NC-0.1 and Fe-NC-1.5 catalysts. In addition, Fe-NC-0.5 exhibits
high catalytic stability and an excellent methanol tolerance. These results express that
the Fe-NC-0.5 catalyst is a prospective candidate material for ORR electrocatalysis. The
conspicuous ORR property of Fe-NC-0.5 is ascribed to its rich surface defects derived from
N doping, nanotube structures, the increased degree of graphitization, and the formation
of multiple active centers, such as α-Fe, ε-Fe3N, FeCxNy, or FeNx.
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