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Abstract: The Kolkata Paise Restaurant Problem is a challenging game in which n agents decide
where to have lunch during their break. The game is not trivial because there are exactly n restaurants,
and each restaurant can accommodate only one agent. We study this problem from a new angle and
propose a novel strategy that results in greater utilization. Adopting a spatially distributed approach
where the restaurants are uniformly distributed in the entire city area makes it possible for every
agent to visit multiple restaurants. For each agent, the situation resembles that of the iconic traveling
salesman, who must compute an optimal route through n cities. We rigorously prove probabilistic
formulas that confirm the advantages of this policy and the increase in utilization. The derived
equations generalize formulas that were previously known in the literature, which can be seen as
special cases of our results.

Keywords: Kolkata Paise Restaurant Problem; TSP; optimization; metaheuristics; probabilistic
analysis; utilization

1. Introduction
1.1. The Kolkata Paise Restaurant Problem

The Kolkata Paise Restaurant Problem (KPRP for short) is a repeated game that
was named after the city Kolkata in India. In KPRP, there are n cheap restaurants (Paise
Restaurants) and N laborers who choose among these places for their quick lunch break.
If the restaurant they go to is crowded, they have to return to work hungry, since they do
not have time to visit another restaurant. For a player to win, that is, to eat lunch, only
one player should go to each restaurant. If two or more agents visit the same restaurant
at the same time, one agent is chosen randomly, and only this agent is served. The player
who eats has a payoff equal to 1, whereas all others who also chose this restaurant have a
payoff equal to 0. Each agent prefers to go to an unoccupied restaurant rather than visit a
restaurant where there are other agents as well. This realization, in turn, implies that the
pure strategy Nash equilibria of the stage game are Pareto efficient. Consequently, there
are exactly n! pure strategy Nash equilibria for the stage game. This, combined with the
rationality of the players, leads to the conclusion that it is possible to sustain a pure strategy
Nash equilibrium of the stage game as a sub-game perfect equilibrium of the KPRP.

1.2. The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a famous optimization problem described
as follows: a salesman has to visit all the nearby cities, starting from a specific city to
which the salesman must return. The only constraints are that the salesman must start
and finish at the same city and visit each other city only once. The visiting order is to be
determined by the salesman each time the problem arises. The cities are connected through
a railway or a road network, and the time it takes to move from one city to an adjacent
one is modeled by the cost assigned to the corresponding edge of the graph. The salesman
has just one purpose, and that is to visit all the cities with the minimum possible travel
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cost. In this problem, the optimum solution is the fastest, shortest and cheapest solution.
The TSP is easily expressed as a mathematical problem that typically assumes the form
of a graph, where the nodes represent the cities that the salesman has to visit. The TSP is
an NP-hard problem, and the results of the practical, heuristic solutions are not always
optimal, but approximate [1]. The simplest “naive” solution to this problem is to try all
possibilities and explore all paths, but the cost in time and complexity is so huge that it
is practically impossible. To overcome that, when solving a TSP, the pragmatic focus is a
near-optimal route instead of always the best route.

1.3. Related Work
1.3.1. The Kolkata Paise Restaurant Problem

The Kolkata Paise Restaurant Problem (KPRP) was initially introduced in an earlier
form in 2007 [2]. Its current formulation appeared in 2009 in [3,4]. Subsequently, many
creative ideas from different lines of thought have been published, and even a quantum
version of the game has arisen. In [3], the importance of diversity is emphasized, while
herd behavior is penalized. Some of the strategies developed for the KPRP are discussed
in [5], which also discusses problems where these strategies can be successfully applied.
Ghosh et al. presented a dictator’s, or, as they call it, a social planner’s solution. In this
solution, the agents form a queue, and the planner assigns each of them to a ranked restau-
rant depending on the queue of the first evening. The following evening, the agents go to
the next-ranked restaurant, and the last in the queue goes to the first-ranked restaurant.
This solution is called the fair social norm. In real life, each agent decides in parallel or
democratically every evening, so this solution may be considered somewhat unrealistic.
However, the parallel decision or democratic decision strategy is not as efficient as the dic-
tated one, with the latter leading to one of the best solutions to this problem. Banerjee et al.
in [6] offered a generalization of the problem in such a way that the cyclically fair norm
is sustained. Each strategy is viewed as a sub-game of perfect equilibrium of the KPRP.
In 2013, Ghosh et al. published an article about stochastic optimization strategies in the
KPRP [7]. There, they point out that a stochastic crowd-avoiding strategy results in efficient
utilization in the KPRP. Reinforcement learning was first introduced to the KPRP in [8],
together with six revision protocols aiming at efficient resource utilization. These protocols
combine local information with reinforcement learning. Each revision protocol has two
variants, depending on whether or not customers who were once served by a restaurant
remain loyal to that restaurant in all subsequent periods. Some of these protocols were
experimentally tested and shown to improve the utilization rate. Another generalization
was introduced by Yang et al. in [9], aiming at dynamic markets. They studied what
happens when agents can either divert to another district or stay in the current one. Each
agent may replace another agent with no prior knowledge of the game, following a Poisson
distribution. Agarwal et al. in [10] showed that the KPRP could be reduced to a Majority
Game. In the latter, capacity is not restricted, and agents aim at choosing with the herd.
If many agents choose the same option, the utility decreases (see also [11,12]). Abergel et al.
in [13] applied the KPRP to hospitals and beds. Among the local hospitals, the local patients
choose those with the best ranking and compete with the other patients. If the patients are
not treated in time, it is a clear case of social waste of service for the rest of the hospitals.
Park et al. in [14] introduced the KPRP to the context of the Internet of Things (IoT) and
IoT devices. They used a KPRP approach to develop a scheme for these devices because
it allowed them to model situations where multiple resources are shared among multiple
users, each with individual preferences. In [15], Sinha et al. proposed a phase transition
behavior, where if two or more agents visit the same restaurant, one is randomly chosen
to eat.

A significant trend, quite evident in the last two decades, is to enhance classical games
using unconventional means. The most prominent direction is to cast a classical game
in a quantum setting. Since the pioneering works of Meyer [16] and Eisert et al. [17],
quantum versions for a plethora of well known classical games have been studied in the
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literature. Starting from the most famous of all games, the Prisoners’ Dilemma [17–20],
many researchers have sought to achieve better solutions by employing quantumness
(see the recent [20–22] and references therein), or other tools, such as automata [23]. It is
not surprising that unconventional approaches to classical games are undertaken because
they promise clear advantages over classical ones, or additional insights over traditional
interpretations as in [24]. Another line of research is to turn to biological systems for
inspiration. Most game situations can easily find analogs in biological and bio-inspired
processes (see also [25]). A quantum version of the KPRP was proposed in [26], where the
agents cannot communicate with each other and have to choose among m choices, but an
agent wins by making a unique choice. Higher payoffs than the classical version were
observed due to shared entanglement and the use of quantum operators. In Sharif’s [27]
review, quantum protocols for quantum games were introduced, including a protocol
for a three-player quantum version of the KPRP. In [28], the authors studied the effect of
quantum decoherence on a three-player quantum KPRP using tripartite entangled qutrit
states. They observed that, in the case of maximum decoherence, the influence of the
amplitude-damping channel dominates over depolarizing and flipping channels.

1.3.2. The Traveling Salesman Problem

The first appearance of the term “Traveling Salesman Problem” probably occurred
between 1931 and 1932, and it was first studied by Karl Menger during the 1930s at Harvard
and Vienna. The core of the TSP problem, however, was first mentioned over a century
before in an 1832 German book [29]. The mathematical formulation was introduced by Sir
William Rowan Hamilton and Thomas Kirkman.

Research efforts on the TSP and closely related problems include Ascheuer et al. [30],
who addressed the asymmetric TSP-TW using more than three alternative integer program-
ming formulations and more than ten neighborhood structures. Gutin and Punnen [31]
studied the effect of sorting-based initialization procedures. The authors claimed that
understanding the algorithmic behavior was the best way to find solutions since this would
help in determining the best one out of those available.

The difficulty of tackling the TSP motivated researchers to explore other avenues. One
such notable and particularly promising approach is based on metaheuristics. A meta-
heuristic is a high-level heuristic that is designed to recognize, build, or select a lower-level
heuristic (such as a local search algorithm) that can provide a fairly good solution, partic-
ularly with missing or incomplete information or with limited computing capacity [32].
The term “metaheuristics” was coined by Glover. Metaheuristics can be used for a wide
range of problems. It must be noted of course that metaheuristic procedures, in contrast
to exact methods, do not guarantee a globally optimal solution [33]. Papalitsas et al. [34]
designed a metaheuristic based on VNS for the TSP, with emphasis on time windows.
Another quantum-inspired method, based on the original General Variable Neighborhood
Search (GVNS), was proposed to solve the standard TSP [35]. This quantum-inspired
procedure was also applied successfully to the solution of real-life problems that can be
modeled as TSP instances [36]. A quantum-inspired procedure for solving the TSP with
time windows was also presented in [37]. More recently, ref. [38] applied a quantum-
inspired metaheuristic for tackling the practical problem of garbage collection with time
windows that produced particularly promising experimental results, as further compar-
ative analysis demonstrated in [39]. A thorough statistical and computational analysis
of asymmetric, symmetric, and national TSP benchmarks from the well known TSPLIB
benchmark library was conducted in [40]. Very recently, Papalitsas et al. expressed the
TSPTW in the Quadratic Unconstrained Binary Optimization (QUBO for short) frame-
work [41]. The QUBO formulation enables TSPTW to run on a quantum annealer and
is a critical step towards the ultimate goal of running the TSPTW using pure quantum
optimization methods. Stochastic optimization can be implemented through several meta-
heuristic processes. The obtained solution depends on the set of random variables [32].
Metaheuristic processes may find successful solutions with less computational effort than
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accurate algorithms, iterative methods, or basic heuristic procedures by looking for a wide
variety of feasible solutions [33]. Hence, metaheuristic procedures are extremely useful
and practical approaches for optimization because they can guarantee good solutions in a
small amount of time. For example, a problem instance with thousands of nodes can be
run for 30–40 s and produce a solution with a 3–5% deviation from the optimal. In view of
the small amount of time they require and of the good quality of the solution they produce,
we advocate their functional use in the Distributed Kolkata Paise Restaurant game.

Contribution. In this paper, we approach the Kolkata Paise Restaurant Problem from
an entirely new perspective. This provides the opportunity for an entirely new setting
and the adoption of a novel approach that leads to a new and more efficient strategy and,
ultimately, to greater utilization of the restaurants. For the first time, to the best of our
knowledge, we focus on the spatial setting of the game, and we propose a more realistic
and plausible topological layout for the restaurants. We perceive the restaurants to be
uniformly distributed over the entire city area. This has profound ramifications on the
topological layout of the game: the restaurants now get closer and, as their number n
increases, the distances between nearby restaurants decrease. Due to the distribution of
the restaurants, the resulting version of the game is aptly named the Distributed Kolkata
Paise Restaurant Game. Thus, it is now realistic to assume that every agent has a second,
a third, and maybe even a fourth chance. The agent is no longer a single destination
and back traveler. The agent now resembles the iconic traveling salesman, who must
pass through a network of cities and come back to the starting point, all while following
the optimal route. This entirely new setting is formalized and rigorously analyzed via
probabilistic tools. We derive general formulas that mathematically confirm the advantages
of this policy and the increase in utilization. The proposed scheme demonstrably achieves
utilization ranging from 0.85 to 0.95, and even beyond, from the first day. The steady-state
utilization, to which the game rapidly converges, is, as expected, 1.0. The equations we
derive generalize formulas that were previously presented in the literature, showing that
the latter are special cases of our results.

1.4. Organization

The structure of this paper is as follows. In Section 1, we provide a comprehensive
description of the KPRP and the TSP. The rigorous formulations of the KPRP and the TSP
are presented in Section 2. In Section 3, we give a thorough explanation and presentation of
the distributed version of the game. We analyze mathematically the topological situation
regarding the restaurants in Section 4. We formally prove the main results of the paper in
Section 5. Finally, in Section 6, we summarize our results and discuss future extensions of
this work.

2. Background
2.1. Formulation of the Standard Kolkata Paise Restaurant Problem

In its most usual formulation, the Kolkata Paise Restaurant Problem is a repeated
game with infinite rounds. There is a set of players, typically called agents or customers,
that is denoted by A = {a1, . . . , an}, a set of restaurants that is denoted by R = {r1, . . . , rn},
and a utility vector u = (u1, . . . , un) ∈ Rn that is associated with the restaurants and is
common to every agent. On any given day, all agents decide to go to one of the n restaurants
for lunch. If just one agent arrives at a specific restaurant, she has lunch and is happy.
If, however, two or more agents choose the same restaurant for lunch, just one of them
eats. The one who eats is chosen randomly. So, in such a case, all but one are unhappy.
The utility of a happy agent is 1 and 0 otherwise. In Chakrabarti et al. [3], the KPRP is
modeled as a general one-shot restaurant game, where the set of agents is considered to
be finite, and the utilities are ranked as follows: 0 < un ≤ . . . ≤ u2 ≤ u1. The set of
agents A and the ranking of the utilities can be used to define the game. The latter can
be represented as G(u) = (A, S, ∏), where A is the set of agents, S is the set of strategies
available to all agents, and ∏ = (∏1, . . . , ∏n) stands for the payoff vector. If the ith agent
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ai decides to go to the jth restaurant rj, then the corresponding strategy is si = j. Every day,
each agent decides which of the n restaurants she visits. Given any strategy combination
s = (s1, . . . , sn) ∈ Sn, the associated payoff vector is defined as ∏(s) = (∏1(s), . . . , ∏n(s)),
where the payoff ∏i(s) of player ai is

usi
Ni(s)

, and Ni(s) is the total number of players who
have made the same choice. The strategy combination is the restaurants the agents choose
to eat at, and their payoff depends on their decision and the number of other agents who
have made the same choice. In the literature, a game such as KPRP, where there are
potentially infinite rounds and the same stage game is played in each round, is referred to
as a supergame [42].

2.2. Formulation of the TSP

The TSP is an NP-hard problem of great significance to different fields, e.g., operational
research and theoretical computer science. Usually, the TSP is represented by a graph.
The fact that the TSP is NP-hard implies that there is no known polynomial-time algorithm
for finding an optimal solution [43]. There are two types of models for the TSP: symmetric
and asymmetric. The former is represented by a complete undirected graph G = (V, E) and
the latter by a complete directed graph G = (V, A). Assuming that n denotes the number
of cities (nodes), V = {1, 2, 3, . . . , n} is the set of vertices, E = {(i, j) : i, j ∈ V, where i < j}
is the set of edges, and A = {(i, j) : i, j ∈ V, where i 6= j} is the set of arcs. A cost matrix
C = [ci,j], which satisfies the triangle inequality ci,j ≤ ci,k + ck,j for every i, j, k, is defined
for each edge or arc. If ci,j is equal to cj,i, the TSP is symmetric (sTSP), otherwise it is
asymmetric (aTSP). In particular, this is the case for problems where the vertices are points

Pi = (Xi, Yi) of the Euclidean plane, and ci,j =
√
(Xj − Xi)2 + (Yj −Yi)2 is the Euclidean

distance. The triangle inequality holds if the quantity ci,j represents the length of the
shortest path from i to j in the graph G [44]. In the case of the symmetric TSP, the number
of all possible routes covering all cities and corresponding to all feasible solutions is given
by (n−1)!

2 (recall that the number of cities is n). The cost of the route is the sum of the costs
of the edges followed.

3. Formulation of the DKPRG

The Kolkata Paise Restaurant Problem (KPRP) involves multiple players (n), each
having multiple choices (N). In its most general form, it is possible that n 6= N. In this
paper, we follow the standard approach that the number of agents is equal to the number
of restaurants, i.e., n = N. We advocate a spatially distributed and, in our view, more
realistic version of the KPRP by taking into account the topology of the restaurants and by
allowing the agents to begin their routes from different starting points. We call our version
the Distributed Kolkata Paise Restaurant Game, or DKPRG from now on. In the original
formulation of the KPRP, one may point out the following underlying assumptions.

(A1) The agents start from the same location.
(A2) All restaurants are close enough to the point of origin of every customer that each

customer can, in principle, go to any restaurant, eat there, and return to work on time.
(A3) Every restaurant is sufficiently far away from every other restaurant to make pro-

hibitive the possibility of any customer visiting a second restaurant if their first choice
proved fruitless.

In the two-dimensional setting of Kolkata, the above assumptions taken together
imply the topology depicted in Figure 1. There, the agents are concentrated within a very
narrow region, which can be viewed as the center of a conceptual “circle”. The restaurants
are located on this “circle” and, since no two of them are allowed to be close, they form a
“regular polygon”. This precludes a situation such as the one shown in Figure 2. The spatial
layout depicted there is strictly forbidden. The proximity of two, three, or more restaurants
contradicts the impossibility of a second chance. In the standard KPRP, no agent is allowed
a second chance. We write “circle” and “regular polygon” inside quotation marks because
we are not dealing with a perfect geometric circle or a perfect regular polygon, but with two-
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dimensional approximations resembling the aforementioned symmetric shapes. Clearly,
this is a very special topological layout, one that is highly unlikely to be observed in practice.
There is no compelling reason for the restaurants to exhibit this regularity or the agents to
be confined to approximately the same location. On the contrary, it would seem far more
reasonable to assume that the restaurants and perhaps the agents are uniformly distributed.
Moreover, the usual assumption that the preference ranking of the restaurants is common
to all customers seems a bit too special and probably too restrictive.

Restaurants

r1

r2

r3

rn−1

rn

Agents

a1

an

Figure 1. In the original formulation of the KPRP, the above topology is assumed implicitly.

Restaurants

rj−1
rjrj+1

rp rq

Agents

a1

an

Figure 2. In the original formulation of the KPRP, the above spatial layout is strictly forbidden.

With that motivation in mind, we propose to abolish all these assumptions. The re-
sulting game is spatially distributed in terms of restaurants and is called the Distributed
Kolkata Paise Restaurant Game (DKPRG). In our setting, each customer may have a unique
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starting point that is, in general, different from the starting locations of the other customers.
The starting locations can either be concentrated in a small region of the Kolkata city area,
precisely like the standard KPRP, or they may be assumed to follow a random distribution.
The fundamental difference from prior approaches is that now the restaurants are viewed
as being uniformly distributed over the city of Kolkata. This uniform randomness in the
placement of the restaurants implies that there must be restaurants near each other. This
conclusion becomes inescapable, particularly in the case where the number of restaurants
is large (n → ∞). As we show, the expected distance between “adjacent” restaurants is
relatively short and decreases as the number n of restaurants increases. This leads to a
personalized situation for each individual agent: each agent is faced with a personalized
Traveling Salesman Problem. To every agent corresponds an individual graph. This graph
has n + 1 nodes, which are the locations of the n restaurants plus the location of the starting
point of the customer. The costs assigned to the edges are also personalized; each agent
combines an objective factor, namely, the spatial distances between the restaurants, with a
subjective factor, her personal preferences. In the DKPRG, we forego the common pref-
erence restriction, and we let every customer have a distinct preference. Let us clarify,
however, that being served, even at the least preferable restaurant, is more desirable than
not being served at all. This, in turn, leads to a possibly unique ordering of the restaurants
from the most preferable to the least preferable for each agent.

Hence, every agent is faced with a distinctive network topology that is the combined
result of the inherent randomness of the spatial locations and the subjectiveness of the
preferences. The topology of the restaurants has a further critical implication: a customer
whose first choice is a particular restaurant now has, with very high probability, the
opportunity to visit a second, a third, or even a fourth restaurant in the same area. For each
agent, the time cost is dominated by the time taken to visit the first restaurant; the trip to
other nearby restaurants in the same region incurs a negligible time cost due to their spatial
proximity. The customer has a second (or even a third) chance to be served during the
lunch break. Thus, an efficient, if not optimal, method for every customer to make well
informed decisions regarding the first, second, third, etc., choice is to solve the Traveling
Salesman Problem for her personalized graph. Although the TSP is an NP-hard problem,
near-optimal solutions of practical value can be achieved in a very short time by employing
metaheuristics. Starting from this perspective, we propose a distributed strategy that
leads to an efficient global solution. All agents use a common high-level strategy that is
fine-tuned according to their individual preferences. To enhance clarity, we explicitly state
below the game settings that characterize the DKPRG variant.

(1) The Distributed Kolkata Paise Restaurant Game is an infinitely repeated game.
(2) The set of agents is denoted by A = {a1, . . . , an}. The n agents (also referred to as

customers) may have different starting locations. The set of restaurants is denoted by
R = {r1, . . . , rn}. The n restaurants are uniformly distributed within the city area. All
agents know the locations of the restaurants, but they need not know the starting
locations of the other agents.

(3) To each agent a ∈ A corresponds a distinct personal preference ordering Pa = (rj1 , rj2 ,
. . . , rjn), such that restaurant rj1 is their first preference, rj2 is their second preference,
and so on, with rjn being the least preferable.

(4) Each restaurant can accommodate only one customer at a time; if two or more
customers arrive at a restaurant, only one can be served. The one to be served
is chosen randomly.

(5) Each agent a ∈ A perceives a personalized graph Ga = (Va, Ea). Ga is a complete
undirected graph having n + 1 vertices v0, v1, . . . , vn, where v0 is the starting location
of a and vj is the location of restaurant j, 1 ≤ j ≤ n. The graph Ga is complemented
with the (symmetric) cost matrix Ca that assigns to each edge (u, v) a cost cu,v.

(6) Each agent a ∈ A solves the corresponding TSP using an efficient metaheuristic that
outputs a near-optimal tour Ta = (l0, l1, . . . , ln, ln+1), where l0 = ln+1 is the starting
point of a and lk, 1 ≤ k ≤ n, is the index of the restaurant in the kth position of the tour.
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(7) Endowed with their individual tour Ta, all customers follow a common strategy. They
travel from their starting location l0 to the restaurant rl1 . If they are served, then they
conclude their route successfully. If not, they proceed to rl2 . If their attempt at eating
lunch there also fails, then they proceed to rl3 , and so on.

(8) The Revision Strategy. The agents operate independently, and no communication
takes place between any two of them. Therefore, each customer is completely unaware
of the routes of the other customers. Every evening they revise their strategy, taking
into account only what happened during the current day. If they were served at a
specific restaurant this day, then tomorrow they go straight to the same restaurant.
This applies even if this restaurant is not the first destination of their tour. Those who
failed to eat lunch only know which restaurants were left vacant. The unserved agents
construct and solve their new personalized TSP, this time using as vertices only the
vacant restaurants (plus of course their starting location).

4. Topological Considerations

We begin this section by fixing the notation and giving some definitions to clarify the
most important concepts of our exposition.

Definition 1. The one-shot DKPRG takes place every day. We use the parameter t = 1, 2, . . . , to
designate the day under consideration.

• To every agent a ∈ A corresponds a personalized network Ga = (Va, Ea) with cost
matrix Ca. Agent a follows the tour Ta = (l0, l1, . . . , ln, ln+1), which is the solution to the
personalized TSP.

• The quality and efficiency of the strategy are measured by the utilization ratio f . This is the
fraction of agents being served in a day, or, equivalently, the fraction of restaurants serving
customers in a day.

An agent a who has opted to follow tour Ta = (l0, l1, . . . , ln, ln+1) initially tries to eat
lunch at restaurant rl1 . If she succeeds, she eats and returns to her starting point. If not, she
visits the next restaurant of the tour, i.e., rl2 . If she eats lunch there, she goes back to work.
This goes on until either she is served or runs out of time, in which case she must interrupt
the tour and return to work. If the time constraints allow her to pass through the first m
restaurants in the tour, in the worst-case scenario of m− 1 consecutive failures, then we say
that Ta is an m-stop tour. In the rest of this work, we study the case where m ≥ 2 because
the case where m = 1 reduces to the standard treatment of the KPRP, which has already
been analyzed extensively in the literature.

Definition 2. The tour Ta = (l0, l1, . . . , ln, ln+1) is an m-stop tour, m ≥ 2, if, in the worst case,
agent a can visit restaurants l1, l2, . . . , lm in this order without violating the time constraints.
In such a tour, l1 is the first stop, l2 is the second stop, and so on, with lm being the final mth stop.
If ∀a ∈ A, Ta is an m-stop tour, and the resulting game is the m-stop DKPRG.

Let us now explore the spatial ramifications of our assumption that the restaurants are
uniformly distributed within the overall city area.

Definition 3. Given a region B on the plane, a random variable L that takes values in B has
uniform distribution on B, if for any subregion C the following holds:

P(L ∈ C) =
area(C)
area(B)

, C ⊂ B , (1)

where P denotes the probability.

The above definition is adapted from [45]. For a more general and sophisticated
definition in terms of measures, we refer the interested reader to [46].
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In order to enhance the readability of this work, we have placed the proofs of all the
results that follow in the Appendix A.

Proposition 1. Assuming that the n restaurants are uniformly distributed over the whole city
area, then, if the city area is partitioned into n regions of equal area, the expected number Np of
restaurants in each region is exactly 1.

Np = 1 , 1 ≤ p ≤ n . (2)

This topological layout of the restaurants is shown in Figure 3. The regions are
drawn are squares, but this is just for convenience and to facilitate their graphic depiction.
For very large values of n, partitioning a city into very small identical squares is a good
approximation, as we know from the field of image representation. We emphasize that
the use of squares does not lead to any loss of generality. From a theoretical point of view,
the standard metric topology of R2 is the same irrespective of whether the topological basis
consists of squares or circular balls or diamond shape regions (a thorough analysis of this
fact can be found in [47]).

B1 B2 B3

Bn−2 Bn−1 Bn

· · ·

·

·

·

·

·

·

·

·

·

· · ·

Uniformly Distributed Restaurants

r1

r2 r3

rn−2

rn−1

rn

Figure 3. If the restaurants are uniformly distributed, then the expected number of restaurants in each
region is 1.

Let us observe that there is a meaningful notion of distance between any two points
in the city area. In reality, this can be the geographical distance between any two locations.
Consider, for instance, two points x and y with spatial coordinates (x1, x2) and (y1, y2),
respectively. A typical manifestation of the notion of distance is the Euclidean distance:√
(x2 − x1)2 + (y2 − y1)2 between x and y. We take for granted the existence of a distance

function defined on every pair of points (x, y), denoted by d(x, y).
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Definition 4.

• The distance between two regions Bp and Bq is defined as

d(Bp, Bq) = inf{d(x, y) : x ∈ Bp and y ∈ Bq} . (3)

• Two regions Bp and Bq are adjacent if

d(Bp, Bq) = 0 . (4)

• The diameter (see also [47]) of a region Bp, 1 ≤ p ≤ n, is defined as

diamBp = sup{d(x, y) : x, y ∈ Bp} . (5)

Proposition 2. Let the n restaurants be uniformly distributed over the city area and assume that
the whole area is partitioned into n regions of equal area. If rp and rq are located at adjacent regions
Bp and Bq, 1 ≤ p 6= q ≤ n, then

d(rp, rq) ≤ diamBp + diamBq , 1 ≤ p 6= q ≤ n . (6)

As shown in Figure 4 the expected distance between restaurants which lie in adjacent
regions becomes shorter, as the number of restaurants increases. The above upper bound
can be simplified if we assume that all regions have the same geometric shape. This implies
that diamB1 = . . . = diamBn = D, in which case inequality (6) becomes:

d(rp, rq) ≤ 2D , 1 ≤ p 6= q ≤ n . (7)

In the special case where the regions are squares, D ∝
√

2
n .

B1

B2

B3

Bn−2 Bn−1

Bn

· · ·

·

·

·

·

·

·

·

·

·

· · ·

r1

r2 r3

rn−2

rn−1

rn

dia
m

B 1

diam
B
2

dia
m

B 3

diam
B
n−2

dia
m

B n−
1

dia
m

B n

d(r1 , r2 )

d(r2, r3)

d(rn−2 , rn−1 )

d(
r n−

1,
r n
)

Figure 4. The expected distances between restaurants located in adjacent regions.
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The diameter of the regions decreases as n increases, and in the special case shown in
the previous figures, the diameter decreases in proportion to 1√

n . This means that adjacent
restaurants are very close to each other as n→ ∞.

5. Mathematical Analysis of the Utilization

This section is devoted to the analytic estimation of the evolution of the game parame-
ters and the daily utilization of the proposed strategy scheme.

Definition 5.

• The expected number of agents who had lunch during day 1 is denoted by As
1 and the expected

number of those who failed to do so is denoted by Au
1 .

• The expected number of agents who ate for the first time during day t, t = 2, 3, . . ., is denoted
by As

t . The expected number of agents who failed to eat during day t, t = 2, 3, . . ., is denoted
by Au

t .
• Symmetrically, the expected number of restaurants that served lunch during day 1 is denoted

by Rr
1, the expected number of restaurants that did not is denoted by Rv

1, the expected number
of restaurants that served a customer for the first time during day t, t = 2, 3, . . ., is denoted
by Rr

t , and the expected number of those who failed to do so is denoted by Rv
t .

• The vacancy probability of day 1 is the probability that a restaurant did not accommodate any
customer during day 1 and is designated by VP1. The vacancy probability of day t, t = 2, 3, . . .,
denoted by VPt, is the probability that a restaurant that has not served any customer before
day t did not serve a customer during day t either.

• In the m-stop DKPRG, the agents who actively play the game at the beginning of day t,
seeking a restaurant at which to eat lunch, are called active players, and their expected number
is denoted by nt.

• The expected utilization of day t, t = 1, 2, . . ., designated by ft, is the fraction of the expected
number of agents who were served during day t. The steady-state utilization is defined as
f∞ = sup{ ft : t ∈ N}.

The following analysis is based on the premise that all n! tours are equiprobable. We
shall refer to it as the equiprobability of tours assumption (EPT for short). Given the discussion
in the previous sections, this premise is well justified. An immediate consequence of the
EPT assumption is the equiprobability of each restaurant appearing in any position. For easy
reference, these facts are collected in the next Proposition 3, for which the proof is trivial
and thus omitted.

Proposition 3. Assuming the equiprobability of tours, the following hold.

∀a ∈ A, ∀r ∈ R, ∀k, 1 ≤ k ≤ n, P(r is in position k of Ta) =
1
n

(8)

∀a ∈ A, ∀r ∈ R, ∀k, 1 ≤ k ≤ n, P(r not in position k of Ta) =
n− 1

n
(9)

The above can be generalized to handle the case of a restaurant r appearing in one of w distinct
positions k1, k2, . . . , kw, where 1 < w ≤ n.

∀a ∈ A, ∀r ∈ R, P(r is in one of positions k1, . . . , kw of Ta) =
w
n

(10)

∀a ∈ A, ∀r ∈ R, P(r not in any of positions k1, . . . , kw of Ta) =
n− w

n
(11)

Since the probability that restaurant r ∈ R is in the kth position of the tour of agent a
is 1

n , the probability of the complementary event is n−1
n . If we deem as “success” the case

where r is indeed in the kth position of Ta and as “failure” the case where r is not, then
this situation is a typical example of a Bernoulli trial, having probability of success 1

n (also
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referred to as parameter, see [48]) and probability of failure n−1
n . Analogously, the probability

that restaurant r ∈ R appears in one of w, 1 < w ≤ n, distinct positions of the tour of agent a
is w

n . The probability of the complementary event is n−w
n . Again, this is a Bernoulli trial,

this time with parameter w
n . The fact that the n agents calculate their tours independently

implies that n independent Bernoulli trials take place simultaneously, all with the same
success and failure probabilities. This situation is described by the binomial distribution
with parameters (n, p) (see [45,48] for details), denoted by Bin(n, p), where p = 1

n in the
simple case of one position and p = w

n in the general case of w positions. Using well known
formulas from probability textbooks, we may assert the following Proposition 4, the proof
of which is also trivial.

Proposition 4. Given a restaurant r, the probability of appearing in a specified position k exactly l
times in total in n tours is given by

∀r ∈ R, ∀k, 1 ≤ k ≤ n, P(r appears l times in position k) =
(

n
l

)(
1
n

)l(n− 1
n

)n−l
. (12)

In the special case, where r never appears in position k, the above formula becomes:

P(r never appears in position k) =
(

n
0

)(
1
n

)0(n− 1
n

)n
=

(
n− 1

n

)n
. (13)

More generally, the probability that restaurant r appears exactly l times in total in one of the w
distinct positions k1, . . . , kw, 1 < w ≤ n, is given by

∀r ∈ R, P(r appears l times in positions k1, . . . , kw) =

(
n
l

)(w
n

)l
(

n− w
n

)n−l
. (14)

The probability that r never appears in the designated positions is

P(r never appears in positions k1, . . . , kw) =

(
n
0

)(w
n

)0
(

n− w
n

)n
=

(
n− w

n

)n
. (15)

According to the strategy scheme employed in the m-stop DKPRG, at the start of the
second (third, etc.) day, the satisfied customers always go straight to the restaurant that
eventually served them during the previous day. This strategy is followed by all agents,
which guarantees that the customers who were satisfied the previous day remain satisfied
today. Effectively, this implies that the satisfied agents have “won” the game and from now
on they do not need to solve their personalized TSP. The game is played competitively by
the unsatisfied agents of the previous day. We assume that they are aware of the unoccupied
restaurants and, therefore, each one of them once again solves their personalized TSP to
compute their tour. Of course, today the network of restaurants consists only of the
unoccupied restaurants. The one-shot m-stop DKPRG of today is different from the one-shot
game of the previous day in a critical factor: the number of “actively competing” players
is significantly smaller. By the nature of the game, the number of active players at the
beginning of stop 1 of the present day is equal to the number of unsatisfied customers at the
end of the previous day. The expected number of active players varies with each passing
day according to Theorem 1.

Theorem 1. The daily progression of the m-DKPRG is described by the following formulas, where
t stands for the day in question.
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VPt =

(
nt −m

nt

)nt

, nt ≥ m, t = 1, 2, . . . , (16)

Rv
t = nt

(
nt −m

nt

)nt

, nt ≥ m, t = 1, 2, . . . , (17)

Rr
t = nt

(
1−

(
nt −m

nt

)nt
)

, nt ≥ m, t = 1, 2, . . . , (18)

Au
t = nt

(
nt −m

nt

)nt

, nt ≥ m, t = 1, 2, . . . , (19)

As
t = nt

(
1−

(
nt −m

nt

)nt
)

, nt ≥ m, t = 1, 2, . . . , (20)

n1 = n , (21)

nt+1 = nt

(
nt −m

nt

)nt

, nt ≥ m, t = 2, 3, . . . , (22)

ft =
∑t

d=1 nd

(
1−

(
nd−m

nd

)nd
)

n
=

n− nt

(
nt−m

nt

)nt

n
, nt ≥ m . (23)

Let us now make an important observation: Formula (17) that we derived above is
completely general and subsumes more special formulas found in the literature. Take, for
example, the special case where t = 1 and m = 1. For these values, (17) computes the
expected number of vacant restaurants at the end of day 1 for the standard one-stop KPRP.
We can readily derive the expected utilization ratio for day 1, as shown below.

f1 =
n− n

(
n−1

n

)n

n
= 1−

(
n− 1

n

)n
. (24)

One assumption that is taken for granted in the literature is that the number of agents n
tends to infinity. By recalling that limn→∞

(
1 + x

n
)n → ex, we see that limn→∞ f → 1− e−1,

which is in complete agreement with a well known result of the literature. When n→ ∞,
the following Corollary 1 provides useful approximations of the formulas of Theorem 1. Its
proof follows almost verbatim the proof of Theorem 1 and is, therefore, omitted.

Corollary 1. If we assume that n→ ∞, then the following approximations hold, where t is the day
in question.

nt+1 ≈ ne−tm , t = 1, 2, . . . , (25)

Au
t ≈ ne−tm , t = 1, 2, . . . , (26)

As
t ≈ n

(
1− e−m)e−(t−1)m = ne−(t−1)m − ne−tm , t = 1, 2, . . . , (27)

Rv
t ≈ ne−tm , t = 1, 2, . . . , (28)

Rr
t ≈ ne−(t−1)m − ne−tm , t = 1, 2, . . . , (29)

VPt ≈ e−tm , t = 1, 2, . . . , (30)

ft ≈ 1− e−tm , t = 1, 2, . . . . (31)

f∞ ≈ 1 . (32)

To demonstrate how the exact Formulas (16)–(23) reflect the daily evolution of the
m-DKPRG, we study a 3-DKPRG game in the following example.

Example 1. In this game, the number m of steps is 3, meaning that each agent may visit up to three
restaurants if need be, and the number n of agents is 109. Such an instance, with a large number
of agents, can serve as the best demonstration of the dramatic improvement that can be obtained
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by an increase in the number of steps. Indeed, the numerical application of the Formulas (16)–(23)
is depicted in Figure 5. A visual inspection corroborates this expectation, as one can see that all
restaurants are utilized by the end of day 4, and the utilization at the end of the first day is already
up to an impressive 0.95 and becomes 1, for all practical purposes, at the end of day 3.

The value of the approximate Formulas (25)–(32) lies in the fact that they can provide
easy-to-compute and particularly good approximations for a large n. A simple comparison
of the approximation shown in Figure 5 with Figure 6 ascertains their accuracy.

1 day 2 day 3 day 4 day 5 day 6 day 7 day 8 day

0.96

0.97

0.98

0.99

1

Days t = 1, 2, . . .

m
=

3
Ex

pe
ct

ed
ut

ili
za

ti
on

f t

Figure 5. This figure depicts the expected utilization ft, as given by Equation (23), for the 3-DKPRG
studied herein.

1 day 2 day 3 day 4 day 5 day 6 day 7 day 8 day

0.72

0.75

0.78

0.81

0.84

0.87

0.9

0.93

0.96

0.99

Days t = 1, 2, . . .

m
=

3
f t
≈

1
−

e−
3t

Figure 6. This figure depicts the approximate expected utilization ft ≈ 1 − e−3t as given by
Equation (31) for m = 3.

6. Discussion and Conclusions

This work explored a completely new angle of the Kolkata Paise Restaurant Problem.
The topological layout of the restaurants takes center stage in this new paradigm. Initially,
we explicitly stated certain assumptions that are only implicitly present in the standard for-
mulation of the game. Having done that, we undertook the radical step of going past them
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and creating an entirely new setting. The critical examination of the topological setting of
the game enhanced our perception regarding the locations of the restaurants and suggested
a more realistic topological layout. We argued that their uniform distribution over the
entire city area is the most logical, fair, and probable situation. As a result, we defined a
new version of the game that is spatially distributed and is aptly named the Distributed
Kolkata Paise Restaurant Game (DKPRG). The uniform probabilistic distribution of the
restaurants enabled us to rigorously prove that, as their number n increases, the restaurants
get closer, and the distance between adjacent restaurants decreases. In such a network, every
customer has the opportunity to pass through more than one restaurant within the allowed
time window. The agents now become traveling salesmen, and this led us to suggest the
innovative idea that the TSP can be used to increase the chances of success in this game.
This culminated in the development of a new and more efficient strategy where every agent
uses metaheuristics to solve their personalized TSP, thereby achieving greater utilization.

After rigorously formulating the DKPRG, we proved completely general formulas
that assert the increase in the utilization of our scheme. We established that utilization
ranging from 0.85 to 0.95 is achievable. Apart from the exact formulas, we also derived the
approximate Formulas (25)–(31). They can be quite useful because they are considerably
easier to compute and are exceedingly good approximations for a large n. This fact is easily
corroborated by comparing Figure 5 to the approximation shown in Figure 6. Let us remark
that the derived equations generalize previously presented formulas in the literature.

It is worth mentioning that the fact that our strategy exhibits very rapid convergence
to the steady state of utilization, 1.0, can potentially be used to address the following
situation. An issue that remains and is common to almost all works in the literature is
the simple matter that a near-optimal utilization may not, in general, be optimal for every
agent individually. A socially efficient outcome, where every agent eats lunch and every
restaurant has a customer to serve, is not necessarily optimal for the individual customer,
in the sense that an agent may be served in a restaurant of low preference. A possible
solution to this might be to reset the game periodically. We expect that adopting a reset
period, i.e., setting a specific period of days after which the system is reset, and the game
starts from scratch, may alleviate this drawback.

We believe that the proposed game can be successfully applied to many real-life
situations of practical importance. For example, the distributed nature of the proposed
game would make it particularly suitable for tackling the problem studied in [7]. There,
a region or a country provides hospitals and beds in different parts of an area. However,
there are cases of patients who prefer to go to higher-ranking hospitals at a greater distance
than to lower-ranking hospitals at shorter distances. This results in a long waiting list as
both local and non-local patients wait more, causing untimely treatment for patients (as
the estimated number of patients increases) and a social waste of services for inaccessible
hospitals. In the health care context, there are two more cases in which the game we suggest
could offer a solution. The first concerns ambulance offload delays, i.e., when an ambulance
arriving at the emergency department cannot leave the patient because there are no beds
available. This solution can work on two levels, choosing the best route for the ambulance
to arrive on time and contributing to better management of hospital resources in order for
the treatment of the patient to start immediately [49]. At the same time, numerous problems
concerning route optimization, resource allocation, and utilization appear in the area of
public transport. The most common question about transportation is how limited resources
should be utilized to maximize social benefits, taking into consideration the peak periods
and the unequal distribution of resources [50]. A traffic problem that our proposal could
tackle, similar to the previous one, is the school bus routing problem [51]. The difficulty of
the school bus routing problem stems from the strict routine and timetable the buses have
to follow, the requirement that the students need to arrive on time for their classes, and the
calculation of the optimal route for the bus in order to collect all the students.

Another possible direction for future work could include extensive experimental tests
and further investigation of other versions of the TSP. For instance, there exists a more
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restrictive version of the TSP, the Traveling Salesman Problem with Time Windows (TSP-
TW). TSP-TW is a constrained version of the TSP in which the salesman must visit the
cities within a specific time window. This version is even more complicated and difficult
to solve. However, the inherent time constraints built in to the TSP-TW may provide for
even more realistic modeling of the DKPRG, so it is a research avenue that we believe is
worth pursuing.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

Proof. Let B stand for the whole city area and let B1, . . . , Bn be the n regions. The game
settings assert that:

1. B1 ∪ . . . ∪ Bn = B,
2. Bp ∩ Bq = ∅, if 1 ≤ p 6= q ≤ n, and

3. area(B1) = area(B2) = . . . = area(Bn) =
area(B)

n .

From the fact that the n restaurants are uniformly distributed, we know from (1) that
for every restaurant rj, 1 ≤ j ≤ n, and every region Bp, 1 ≤ p ≤ n,

P(rj ∈ Bp) =
area(Bp)

area(B)
=

1
n

, 1 ≤ j, p ≤ n . (A1)

We define the auxiliary random variables Npj, where 1 ≤ p, j ≤ n.

Npj =

{
1 if restaurant rj is located in region Bp
0 otherwise

. (A2)

By combining (A1) with (A2), we conclude that

Npj =

{
1 with probability 1

n
0 with probability n−1

n
, 1 ≤ p, j ≤ n . (A3)

Then, the random variable

Np =
n

∑
j=1

Npj (1 ≤ p ≤ n) (A4)
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gives the number of restaurants in region Bp, 1 ≤ p ≤ n. We are not interested in the actual
value of the random variable Np, per se, but in its expected value E

[
Np
]
. The latter can be

easily computed as follows.

Np = E
[
Np
] (A4)

= E

[
n

∑
j=1

Npj

]
=

n

∑
j=1

E
[
Npj
] (A3)

=
n

∑
j=1

(
1 · 1

n

)
= 1 (A5)

This proves that the expected number of restaurants in each region is 1.

Appendix A.2. Proof of Proposition 2

Proof. Consider two adjacent regions Bp and Bq. By (4), this means that d(Bp, Bq) = 0,
which in turn implies that ∀ε ∃x ∈ Bp ∃y ∈ Bq such that d(x, y) ≤ ε (?). In view of
Proposition 1, one expects to find exactly one restaurant in Bp and exactly one restaurant
in Bq. Let rp and rq be the restaurants located in Bp and Bq, respectively, and consider
the distance d(rp, rq) between them. By the triangle inequality, which is a fundamen-
tal property of every distance function, we know that d(rp, rq) ≤ d(rp, x) + d(x, y) +
d(y, rq), ∀x ∈ Bp ∀y ∈ Bq (??). From (?) and (??) we conclude that ∀ε ∃x ∈ Bp ∃y ∈
Bq, such that d(rp, rq) ≤ d(rp, x)+ d(y, rq)+ ε (? ? ?). According to (5), d(rp, x) ≤ diamBp
and d(y, rq) ≤ diamBq. These two relations combined with (? ? ?), give that d(rp, rq) ≤
diamBp + diamBq, as desired.

Appendix A.3. Proof of Theorem 1

Proof. The proof of the given formulas is as follows.

1. We first prove that the vacancy probability at the beginning of stop z, 1 ≤ z ≤ m, of day
t is

VPt,z =

(
nt + 1− z

nt

)nt

, 1 ≤ z ≤ m . (A6)

• At the beginning of stop 1 of day t, the expected number of restaurants that have
not served any customer yet is equal to the expected number nt of active agents.
On day t, the game is all about the active agents and the restaurants that have
never been utilized up to now. At this moment in time, all these restaurants are
still unutilized, so vacancy is a certainty. Thus, indeed VPt,1 = 1.

• At the beginning of day t, the expected number of restaurants that have not
served any customer yet is equal to the expected number nt of active players.
At the beginning of stop 2 of day t, the probability that restaurant r has not
served lunch yet is precisely the probability that r never appears in position 1 in
any tour of the active players. This last probability is given from (13), where of

course n must now be replaced by nt. Hence, VPt,2 =
(

nt−1
nt

)nt
.

• The customers who have failed to eat lunch at their first destination immediately
proceed to their second destination. However, an added complication arises now.
It may be the case that rl2 is already occupied from stop 1. In such a case rl2 is
completely unavailable. In view of this fact, we may conclude that the restaurants
that are vacant at the beginning of stop 3 must satisfy two properties:

(a) they must be vacant at the beginning of stop 2, which means that must
never appear in position 1 in any tour of the active players, and

(b) they must never appear in position 2 in any tour of the active players.

Therefore, VPt,3 = P(r never appears in positions 1 or 2 in nt tours)
(15)
=
(

nt−2
nt

)nt
,

which is again in agreement with (A6) when z = 3.
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• The same reasoning can be employed to show that the vacancy probability VPt,z

at the beginning of stop z of day t is VPt,z =
(

nt+1−z
nt

)nt
. Hence, we have proved

the validity of (A6).
• Finally, the probability that a restaurant r that has not served any customer up to

day t is still vacant at the end of stop m of day t, is the probability that r never
appears in positions 1, or, 2, or . . ., or m in any tour of the active players. Thus,

VPt =
(

nt−m
nt

)nt
, which verifies (16), as desired. For the Equation (16) to be

meaningful, it must hold that nt ≥ m. The physical meaning of this restriction
is that (16) is correct as long as there are at least as many active players as stops
m. If on some day t we have that nt ≤ m, then the strategy we adhere to ensures
that all nt active players manage to eat lunch during day t.

2. The expected number of restaurants that remained vacant at the end of day t is given
by Rv

t . First, we express probabilistically those restaurants that remain vacant after
all agents visit their first m destinations. We define the family of random variables
Rv

tj, 1 ≤ j ≤ nt. Specifically, if Rv
tj has the value 1, then restaurant rj is vacant at the

end of day t, whereas if Rv
tj is 0, then rj is occupied.

Rv
tj =

{
1 if rj is vacant at the end of day t
0 otherwise

, 1 ≤ j ≤ nt . (A7)

By combining Equations (A7) and (16), we deduce that

Rv
tj =

1 with probability
(

nt−m
nt

)nt

0 with probability 1−
(

nt−m
nt

)nt , 1 ≤ j ≤ nt . (A8)

We define the random variable Rv
t , which counts the the number of restaurants that are

vacant at the end of day t:

Rv
t =

nt

∑
j=1

Rv
tj . (A9)

We are interested not in the actual value of Rv
t , but in its expected value E[Rv

t ]. In view
of (A9) and the linearity of the expected value operator

Rv
t = E[Rv

t ]
(A9)
= E

[
nt

∑
j=1

Rv
tj

]
=

nt

∑
j=1

E
[

Rv
tj

]
(A8)
=

nt

∑
j=1

(
nt −m

nt

)nt

(A10)

= nt

(
nt −m

nt

)nt

, (A11)

which verifies (17).
3. Rr

t denotes the expected number of restaurants that were visited by an agent by the
end of day t. The random variables Rr

tj, 1 ≤ j ≤ nt, indicate whether restaurant rj is
occupied or not at the end of day t.

Rr
tj =

{
1 if rj is occupied at the end of day t
0 otherwise

, 1 ≤ j ≤ nt . (A12)

By combining (A12) and Equation (16), we deduce that

Rr
tj =

1 with probability 1−
(

nt−m
nt

)nt

0 with probability
(

nt−m
nt

)nt , 1 ≤ j ≤ nt . (A13)



Games 2022, 13, 33 19 of 21

Having done that, we define the random variable Rr
t , which counts the the number of

restaurants that are occupied at the end of day t.

Rr
t =

nt

∑
j=1

Rr
tj . (A14)

In view of (A14) and the linearity of the expected value operator

Rr
t = E[Rr

t ]
(A14)
= E

[
nt

∑
j=1

Rr
tj

]
=

nt

∑
j=1

E
[

Rr
tj

]
(A13)
=

nt

∑
j=1

1 ·
(

1−
(

nt −m
nt

)nt
)

= nt

(
1−

(
nt −m

nt

)nt
)

, (A15)

which verifies (18).
4. The rules of the game stipulate that the number of customers who have not managed

to eat lunch at the end of day t is equal to the number of restaurants that have not
served any customer at the end of day t. Hence, their expected values are also equal,
i.e., Au

t = Rv
t and (19) is proved.

5. Likewise, the adopted strategy ensures that the number of the active players who
succeeded in eating lunch at the end of day t is equal to the number of restaurants
that, although they had not served any agent up to day t, managed to accommodate
a customer by the end of day t. Their expected values are also equal, i.e., As

t = Rr
t

and (20) is proved.
6. We are now in a position to compute the expected number of active players.

• At the beginning of the first day, there are n active players.
• The adopted strategy in the m-DKPRG ensures that the number of agents who

have not eaten lunch at the end of day t is always equal to the number of active
players on day t + 1. Thus, the expected number of active agents on day t + 1 is
equal to the expected number of unsatisfied agents at the end of day t:

nt+1 = Au
t . (A16)

By combining the previous result (A16) with (19), we derive

nt+1 = nt

(
nt −m

nt

)nt

, (A17)

which establishes the validity of (22), as desired.

7. The expected utilization ft for day t = 1, 2, . . ., is the ratio of the expected number
of agents who were served during day t. This is equal to the expected number
of customers who ate lunch on day 1, plus the expected number of the additional
customers who ate lunch on day 2, and so on. The additional agents on day t are
precisely those agents who had failed to eat lunch prior to day t, but succeeded on
day t. Their expected number is As

t , which is given by Equation (20). Hence, the total
number of agents who have eaten lunch up to and including day t is given by

t

∑
d=1

As
d
(20)
=

t

∑
d=1

nd

(
1−

(
nd −m

nd

)nd
)

, t = 1, 2, . . . . (A18)

An equivalent way to compute this number is by subtracting from the total number
of agents n the expected number of agents who failed to eat lunch on day t, which is
Au

t given by Equation (19). Thus,
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n− Au
t
(19)
= n− nt

(
nt −m

nt

)nt

, t = 1, 2, . . . . (A19)

Together the two Formulas (A18) and (A19), allow us to conclude that

ft
(A18)
=

∑t
d=1 nd

(
1−

(
nd−m

nd

)nd
)

n
(A19)
=

n− nt

(
nt−m

nt

)nt

n
, (A20)

which establishes the validity of (23), as desired.
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