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Simple Summary: Breast cancer is considered as the most common malignancy among females,
and its treatment takes many forms and types. Neoadjuvant chemotherapy (NACT), which is the
treatment precedes the surgical intervention, became the preferred treatment approach for some
subtypes of breast tumors. However, some patients exhibit good response to the neoadjuvant
treatment, while others do not. Therefore, the proactive prediction of patients’ response to NACT
is a necessity to reduce the exposure to unnecessary doses of treatment, treatment costs, and side
effects. Many researchers proposed prediction models to predict patients’ response to NACT either
at early stage of treatment or prior to the initiation of the first cycle. They used various radiomics,
pathological, and clinical predictors and markers. This review discusses some of the researches
conducted the last decade based on statistical, machine learning, or deep learning approaches.

Abstract: Breast cancer retains its position as the most prevalent form of malignancy among females
on a global scale. The careful selection of appropriate treatment for each patient holds paramount
importance in effectively managing breast cancer. Neoadjuvant chemotherapy (NACT) plays a
pivotal role in the comprehensive treatment of this disease. Administering chemotherapy before
surgery, NACT becomes a powerful tool in reducing tumor size, potentially enabling fewer invasive
surgical procedures and even rendering initially inoperable tumors amenable to surgery. However, a
significant challenge lies in the varying responses exhibited by different patients towards NACT. To
address this challenge, researchers have focused on developing prediction models that can identify
those who would benefit from NACT and those who would not. Such models have the potential
to reduce treatment costs and contribute to a more efficient and accurate management of breast
cancer. Therefore, this review has two objectives: first, to identify the most effective radiomic markers
correlated with NACT response, and second, to explore whether integrating radiomic markers
extracted from radiological images with pathological markers can enhance the predictive accuracy
of NACT response. This review will delve into addressing these research questions and also shed
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light on the emerging research direction of leveraging artificial intelligence techniques for predicting
NACT response, thereby shaping the future landscape of breast cancer treatment.

Keywords: breast cancer; computed tomography; mammography; magnetic resonance imaging;
multi-modal imaging; neoadjuvant chemotherapy; pathological markers; predictive models; radiomic
markers; treatment response

1. Introduction

Breast cancer stands as the most prevalent malignancy among females globally,
comprising 11.7% of all cancer incidences worldwide, with 2.3 million new cases and
685,000 fatalities recorded in 2020. It ranks as the fifth leading cause of cancer-related
deaths on a global scale [1,2]. In the United States, projections for 2023 indicate an es-
timated 300,590 new cases, resulting in 43,700 deaths across both genders [3]. Among
females, breast cancer contributes to 31% of all cancer instances, foreseeing 297,790 new
cases and 43,170 deaths in the US during 2023 [3]. The significance of early breast can-
cer detection cannot be overstated, holding the potential to substantially lower mortality
and morbidity rates, enhance prospects of cure and survival, and facilitate accessible and
cost-effective treatment options [4].

There are two primary treatment options for breast cancer: local therapy, which com-
prises surgery and radiation therapy; and systemic treatment, which includes chemother-
apy, endocrine (hormone) therapy, and targeted therapy [5,6]. The selection of the appropri-
ate treatment for each patient depends on various factors, such as age, menopausal status,
tumor subtype, and stage, as well as the patient’s overall health and preferences [5,7].
Moreover, systemic therapy traditionally follows surgery in the adjuvant setting, while
in the neoadjuvant setting, it precedes surgery [8,9]. Neoadjuvant chemotherapy (NACT)
can, in some cases, reduce tumor size, downstage the disease, minimize the extent of
local surgery, and increase the likelihood of breast-conserving surgery (lumpectomy) over
mastectomy [10,11]. Currently, it is considered the gold standard treatment for locally
advanced breast cancer (LABC), which refers to an aggressive stage of breast cancer where
the tumor size exceeds 5cm and may involve the skin or chest wall [12–14].

Additionally, NACT became the preferred treatment approach for HER2-positive
(HER2+) and triple-negative breast cancers (TNBC), even in very early breast cancer (breast
mass more than 1.5 cm), according to the American Society of Clinical Oncology (ASCO)
and National Comprehensive Cancer Network (NCCN) guidelines [15–18]. In the case of
HER2+ tumors, the neoadjuvant regimen often comprises the HER2-targeted therapy drugs
(such as trastuzumab and pertuzumab) in addition to chemotherapy (e.g., anthracycline- or
taxane-based therapies). In contrast, immunotherapy drugs (e.g., pembrolizumab) may be
included in the neoadjuvant treatment of TNBC tumors [18,19]. Incorporation of these new
drugs yields a paradigm shift in the management of these molecular types of breast cancer
and increases the pathological complete response after neoadjuvant therapy. Neoadjuvant
therapy (NAT) also has a crucial role in the guidance of the adjuvant treatment by evaluating
the sensitivity of the tumor to therapy [20,21]. Moreover, the tumor response to NAT can
be considered a significant prognostic factor for the likelihood of recurrence [21,22]. Given
the numerous advantages of NACT treatment, this review will primarily focus on exploring
its aspects.

The response to NACT can be classified into four categories: pathological Complete
Response (pCR), pathological Partial Response (pPR), Progressive Disease (PD), and Stable
Disease with No Response (SDNR) [10,23]. Several grading systems are used to evaluate
pathological response, and the definition of pCR varies depending on these systems. For
instance, while some systems assess the breast only, others consider both the breast and the
Lymph Nodes (LNs). These grading systems encompass the Sinn Score, Sataloff, Miller-
Payne grading system, Residual Cancer Burden (RCB), and AJCC ypTNM (8th Edition),
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among other systems discussed in a review by See et al. [23]. The neoadjuvant treatment
setting often utilizes the same chemotherapeutic drugs as the adjuvant treatment setting,
potentially resulting in comparable long-term and short-term side effects. These effects
may include leukemia, infertility, osteoporosis, cardiomyopathy/heart diseases, fatigue,
risk of infection, neuropathy, vomiting, nausea, cognitive impairment, and hair loss [24,25].
Therefore, the early prediction of patient responses aids in determining suitable treatment
regimens, thereby reducing unnecessary toxicities, costs, and side effects related to NACT
treatment. As a result, significant interest exists in developing predictive methods that
utilize clinical, radiomic, pathological, and molecular markers [26]. The motivation for this
review article stems from the unmet need for these prediction models. It is worth noting that
some researchers such as O’Donnell et al. [27], Pesapane et al. [28], and Liang et al. [29]
conducted systematic reviews and meta-analyses to compare the accuracies of the predictive
models based on MRI images.

Recently, Artificial Intelligence (AI) and its sub-fields, namely machine learning (ML)
and Deep Learning (DL), have assumed an increasingly pivotal role in predicting pa-
tients’ responses to treatment, while also optimizing personalized or precision medicine—a
paradigm that intricately considers the individuality of each patient. This trend is under-
pinned by promising outcomes in detecting, diagnosing, and prognosing various cancers.
Figure 1 delineates the fundamental constituents of a typical AI-driven treatment response
prediction system. This system leverages medical images procured through diverse imag-
ing modalities, encompassing both anatomical and functional perspectives, as its primary
model inputs, followed by an intricate radiomics feature extraction procedure. Moreover,
the prediction model can be supplemented with clinical markers (e.g., CA 125 and CA15-3),
pathological indicators (such as estrogen receptor (ER), progesterone receptor (PR), Ki67
index, and HER2 expression), and treatment alternatives. The ultimate culmination of
these inputs is the prediction of the patient’s response to NACT treatment, encompassing
potential outcomes like pCR, pPR, PD, or SDNR.

Figure 1. The main components of a typical AI-driven treatment response prediction system.

This review discusses studies published from 2010 to 2023 that utilized ML models, DL
models, or statistical methods to predict responses in breast cancer patients who underwent
NACT. Some researchers predicted Recurrence-Free Survival (RFS), Event-Free Survival
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(EFS), Disease-Specific Survival (DSS), or Progression-Free Survival (PFS), in addition to
predicting the response to NACT. It is important to note that this review exclusively fo-
cuses on the outcomes of predicting patients’ responses to NACT. Studies that constructed
their models based on conventional mammography and Contrast-Enhanced Spectral Mam-
mography (CESM) images are detailed in Section 2, with their results, findings, markers,
and patient numbers summarized in Table 1. Ultrasound-based studies are outlined in
Section 3 and summarized in Table 2. Research-based on Positron Emission Tomogra-
phy/Computed Tomography (PET/CT), Dynamic Contrast-Enhanced Magnetic Resonance
Imaging (DCE-MRI), and Multi-modal imaging are addressed in Sections 4–6, respectively,
with summaries presented in Tables 3–5. Throughout this paper, abbreviations such as
ACC, AUC, SEN, SPE, PPV, and NPV denote accuracy, area under the curve, sensitivity,
specificity, positive predictive value, and negative predictive value, respectively, in all
tables.

2. Mammography and Contrast-Enhanced Spectral Mammography

Mammography serves as the standard imaging modality for the screening and detec-
tion of breast tumors. This low-dose X-ray imaging technique is commonly employed to
identify masses, asymmetries, micro-calcifications, and architectural distortions with an
accuracy ranging between 85% and 90% [30–32]. The two primary mammogram views
are the mediolateral oblique (MLO) and craniocaudal (CC) views, supplemented by ad-
ditional views like actual lateral, magnification, and point compression views, which are
used for further assessment of abnormalities [33,34]. Notably, a limited number of studies
(as indicated in Table 1) have employed mammography or contrast-enhanced spectral
mammography to predict patients’ responses to NACT.

Recent AI studies predict early response to NACT using baseline mammogram images,
showcased by Shin et al. [35] and Skarping et al. [36]. Shin et al. [35] developed a multi-
scale patch-net resizing CC and MLO images to three scales (1792 × 1792, 1356 × 1356,
896 × 896) for a three-level image pyramid. They extracted features using ResNet-34
with a 3×3 kernel, and the classifier included a sigmoid activation followed by a fully
connected layer. Kernel size affected performance: Area Under the Curves (AUCs) were
0.803 (kernel 3) and 0.661 (kernel 7); multi-scale outperformed single-scale (AUC = 0.803
vs. AUC < 0.73). Moreover, Skarping et al. [36] introduced a tumor detection model that
distinguishes between pCR and non-pCR. The network features dual pathways based on
ResNet-18. One processes tumor image patches, while the other handles contralateral
cancer-free patches. Extracted features are concatenated and fed through fully connected
layers to a soft-max layer. The model achieved notable metrics: AUC of 0.71, sensitivity
of 0.46, and specificity of 90%. However, the study’s limitations include a heterogeneous
cohort in terms of tumor subtype and NACT period.

Contrast-Enhanced Spectral Mammography (CESM) is a dual-energy technique
where low-energy and high-energy images, obtained after iodinated contrast adminis-
tration, are subtracted to create diagnostic subtraction images [37,38]. It serves as an MRI
alternative, especially for patients with contraindications like severe claustrophobia or
MRI-incompatible implants (pacemakers, defibrillators, neurostimulators, cochlear im-
plants) [39,40]. CESM shows comparable diagnostic accuracy and sensitivity to MRI in
various studies [40–42], finding applications in breast cancer screening, diagnosis, tumor
staging, monitoring, and predicting NACT response [37,38,43].

In addition to employing AI methodologies for predicting NACT responses, Xing
et al. [44] utilized statistical approaches to forecast patient responses to NACT. Specifically,
they employed a t-test statistical method to assess the significance of the reduction percent-
age of the CESM gray value (∆CGV) in CC and MLO views for early response prediction.
Their findings indicated that gray values of pCR were notably lower compared to non-pCR
instances, revealing a significant discrepancy in ∆CGV between the two response categories
after the second treatment cycle. Within the pCR group, ∆CGV was observed to be higher
than in the non-pCR group, with a p-value of less than 0.001 and t-values of 5.430 and
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3.942 for CC and MLO views, respectively. Moreover, the CC view exhibited an AUC of
0.776, a sensitivity of 75%, and a specificity of 72.15% at a cut-off value exceeding 26.41.
However, it is noteworthy that relying solely on a single factor, namely the gray value,
could be considered a significant limitation of their study.

In a separate study, Wang et al. [45] developed a radiomics nomogram that incorpo-
rates the radiomics score along with three features: Background Parenchymal Enhancement
(BPE), Human Epidermal Growth Factor Receptor-2 status (HER-2 status), and Ki-67 index.
This nomogram aims to predict the effectiveness of NACT in cancer treatment, utilizing
multivariate logistic regression analysis. The study yielded an impressive AUC of 0.81.
Their findings clearly highlight the radiomics model’s heightened discriminative power
when compared to the pathological model. Notably, the radiomics model achieved AUCs of
0.81 and 0.55 in the validation set, outperforming the pathological model in both instances.
Additionally, Mao et al. [46] employed multiple ML algorithms to examine the efficacy of
radiomics features derived from both the tumor and its neighboring areas, encompassing
intratumoral and peritumoral regions. They derived five distinct radiomics signatures from
these regions: intratumoral, 5 mm peritumoral, 10 mm peritumoral, intratumoral + 5 mm
peritumoral, and intratumoral + 10 mm peritumoral. Their analysis culminated in the
finding that the radiomics features extracted from the intratumoral + 5 mm peritumoral
region exhibited superior predictive performance, as evaluated by the Least Absolute
Shrinkage and Selection Operator (LASSO) regression, with an AUC of 0.85, sensitivity of
0.577, and specificity of 0.909.

It is worth noting that the studies conducted by Wang and Mao [45,46] exhibited certain
limitations, given their nature as single-institutional retrospective investigations reliant on
relatively modest sample sizes. Such constraints undermine the broad applicability of their
findings. Furthermore, the utilization of manual (as seen in [45]) and semi-automated (as
observed in [46]) ROI segmentation introduces the potential for inter- and intra-observer
discrepancies. Table 1 provides a comprehensive overview of these studies, encompassing
mammography and CESM, detailing the research objectives, patient count, markers or
predictors, outcomes, and significant discoveries.

Table 1. Conventional Mammography & Contrast Enhanced Spectral Mammography (CESM).

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Shin et al. [35]

To construct a multi-scale
patch learning method to
early predict pCR to NACT
using pre-NACT
mammogram images.

288 patients
Training (n = 228)
Test (n = 60)
Study type: single-center
study

• Clinical: N/A
• Pathological: N/A
• Radiomics:

texture and shape features
extracted from CC &
MLO views by ResNet-32
with a kernel size of 3.
(before extraction, images
were resized to 3 different
scales, then fixed-size
patches were extracted
from them. Patch sets
were created by
concatenating those
patches)

The prediction performance
using: kernel size of 3:
AUC: 0.803, SEN: 0.733, SPE:
0.767
kernel size of 7:
AUC: 0.661, SEN: 0.5, SPE: 0.833
They found that when using
extracted patches, the model
performance was affected by
kernel size. In addition, using
the whole CC & MLO
mammogram images
outperformed ROI-based
approaches.

Skarping et al. [36]

To propose a DL-based
model to predict the pCR to
NACT depending on
baseline digital
mammograms.

453 patients
Training (n = 400)
Validation (n = 53)
Study type: single-center
study based on both
retrospective & prospective
cohorts

• Clinical: N/A
• Pathological: N/A
• Radiomics: Image patches

from the tumor &
corresponding position in
the reference image were
processed in two parallel
pathways CNN (based on
ResNet18), and then
features from the two
pathways were
concatenated and
processed through FC & a
final soft-max layer.

Prediction accuracy of the AI
model:
AUC: 0.71, SEN: 0.46, SPE: 0.9
They concluded that AI has the
potential to assist in clinical
decision-making. However,
further research is needed with
refined approaches and larger
data sets to explore the utility of
AI in predicting patients’
responses to NACT.
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Table 1. Cont.

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Xing et al. [44]

To investigate the effect of
the reduction percentage of
the CESM gray value (CGV)
in the early prediction of
patients’ response to NACT
(whether pCR or non-pCR).

111 patients
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: percentage of

gray value reduction
(∆CGV) [difference
between pre-NACT &
after 2nd cycle] obtained
from CC & MLO views on
the CESM subtraction
images.

Before NACT, the differences in
gray values between the pCR
and non-pCR were not statically
significant (p-value > 0.05).
∆CGV after two cycles in pCR
patients was higher than the
non-pCR (p-value < 0.001). The
diagnostic value of ∆CGV using:
CC view:
AUC: 0.776, cut-off > 26.41, SEN:
75%, SPE: 72.15%
MLO view:
AUC: 0.733, cut-off > 13.59, SEN:
81.25%, SPE: 51.9%
They found that ∆CGV can
predict response to NACT after
the second cycle.

Wang et al. [45]

Developed a radiomics
nomogram to predict
NACT-insensitive cancers
prior to treatment based on
CESM.

117 patients Training
(n = 97) Validation (n = 20)
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: Ki-67 index

and HER2 status
• Radiomics:

background parenchymal
enhancement (BPE) in
addition to shape- and
size-based features,
first-order statistical, and
texture features.

Prediction accuracy for:

• Pathological markers +
BPE
AUC: 0.55, ACC: 0.65,
SEN: 0.70, SPE: 0.60

• Radiomics
AUC: 0.81, ACC: 0.8
SEN: 0.90, SPE: 0.70

• Integrating radiomics &
pathological markers
AUC: 0.81, ACC: 0.80,
SEN: 0.90, SPE: 0.70

They found that the radiomics
score has a good predictive
ability; however, adding
pathological markers did not
significantly improve the model
performance.

Mao et al. [46]

To study the performance
of intratumoral and
peritumoral radiomics
acquired from CESM to
predict the effect of NACT
preoperatively.

118 patients Training
(n = 81) Validation (n = 37)
Study type: single-center
retrospective study

• Clinical: N/A
• Demographic: age
• Pathological: T stage,

molecular subtype
(according to ER, PR,
HER2, & ki67)

• Radiomics: first-order
statistics (describe the
voxel intensity),
shape-based features,
texture features
(gray-level co-occurre
matrix (GLCM),
gray-level run-length
matrix (GLRLM),
gray-level size zone
matrix (GLSZM)), and
filters (logarithm,
exponential, gradient,
square, square root, LBP,
& wavelet) extracted from
5 ROIs. (intratumoral, 5
mm peritumoral, 10 mm
peritumoral, intratumoral
+ 5 mm peritumoral, and
intratumoral + 10 mm
peritumoral regions).

The prediction accuracy for:
Pathological markers: no
significant risk factors were
found.
Radiomics:
the AUCs based on: tumoral
region: 0.74
5 mm peritumoral: 0.75
10 mm peritumoral: 0.78
tumor + 5 mm peritumoral: 0.85
tumor + 10 mm peritumoral:
0.84
The prediction model based on
intratumoral+5 mm peritumoral
yielded AUC: 0.85, SEN: 0.577,
& SPE: 0.909
They concluded that the
features extracted from the
intratumoral + 5 mm
peritumoral regions exhibited
the best performance using
LASSO Regression.

3. Ultrasound

Ultrasound modality relies on detecting the reflected echoes of transmitted high-
frequency sound waves [47]. Several researchers have utilized ultrasound-acquired images
and data to predict patients’ response to NACT at an early stage, leveraging its accessibility
and affordability. Moreover, its suitability for repeated scans during treatment is attributed
to its independence from contrast agents and long scanning times [48–50]. Table 2 provides
a summary of studies utilizing B-mode images, quantitative ultrasound parameters, and
other ultrasound-based modalities for the early prediction of patients’ response to NACT.
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It is evident from Table 2 that the most frequently employed imaging markers in the
literature to predict the NACT response encompass the spectral slope (SS), spectral intercept
or 0-MHz intercept (SI), mid-band fit (MBF), average scatterer diameter (ASD), average
acoustic concentration (AAC), attenuation coefficient estimate (ACE), and spacing among
scatterers (SAS) [51,52]. Below, we will emphasize the most relevant factors for predicting
NACT by utilizing markers extracted from ultrasound images.

Tadayyon et al. [52] utilized quantitative ultrasound (QUS) parameters derived from
baseline images, as well as images captured after one week, four weeks, and eight weeks of
NACT, to distinguish between responders and non-responders. Employing the k-nearest
neighbor (KNN) approach, they assessed the potential of US parameters in discerning
these response groups. Their investigation revealed that the most favorable outcomes
were achieved through a combination of MBF, SS, and SAS, yielding accuracies ranging
from 60% to 77% across different post-treatment time points. Additionally, they observed
enhanced predictive accuracies, ranging from 70% to 81%, when baseline QUS parameters
were amalgamated. Notably, despite conducting a prospective study, limitations were
evident due to a relatively small sample size and an imbalanced dataset, consisting of
42 responders and 16 non-responders. To counteract this imbalance, they implemented
random sampling with replacement.

Sadeghi-Naini et al. [48], Sannachi et al. [53], DiCenzo et al. [54], and Dasgupta
et al. [55] incorporated US parameters with textural features extracted from each parametric
map as non-invasive predictors of NACT response. Sadeghi-Naini et al. [48] employed
Linear Discriminant Analysis (LDA) to investigate the efficacy of MBF, spectral slope,
and 0-MHz intercept in predicting treatment response. They discovered that the optimal
separability between the response groups was achieved by combining textural and spectral
features extracted from MBF and 0-MHz intercept parametric images acquired after one
week of treatment, yielding sensitivity and specificity of 100% and an AUC of 1.

Furthermore, Sannachi et al. [53] and DiCenzo et al. [54] conducted textural analyses
of SS, SI, MBF, ASD, AAC, ACE, and SAS parametric maps, employing three classifiers:
k-Nearest Neighbor (KNN), Support vector Machine (SVM), and LDA. Sannachi et al. [53]
investigated the predictive capabilities of spectral and textural features in relation to
treatment response at one week, four weeks, and eight weeks. Their findings demonstrated
that SVM outperformed KNN and LDA, achieving AUCs of 0.71, 0.87, and 0.92 at weeks 1,
4, and 8, respectively.

In contrast, DiCenzo et al. [54] conducted a multicenter study utilizing pre-treatment
spectral and textural features. Their results indicated superior prediction performance by
KNN with an accuracy of 87%, sensitivity of 91%, specificity of 83%, and an AUC of 0.73.
The optimal features were AAC-homogeneity, SI-energy, and SAS-energy. Other classifiers
exhibited inferior performance: SVM attained an accuracy of 75.6% and an AUC of 0.725,
while FLD demonstrated an accuracy of 65.9% and an AUC of 0.67.

In a prospective study conducted by Dasgupta et al. [55], five quantitative US paramet-
ric maps, twenty texture maps, and eighty higher-order texture derivatives were generated
to discriminate between responders and non-responders. The authors employed three
ML algorithms, namely FLD, SVM, and KNN. Notably, KNN exhibited exceptional per-
formance, surpassing the other algorithms with an accuracy of 82%, sensitivity of 87%,
specificity of 81%, and an AUC of 0.86. In contrast, the AUCs of FLD and SVM did not
exceed 0.79, and their accuracies remained below 70%. The authors concluded that utilizing
US texture-derivative features resulted in superior predictive performance compared to
using textural features alone.

On the other hand, certain studies have integrated radiomics features with pathological
features, which can be considered invasive predictors. Tadayyon et al. [56], Sannachi
et al. [57], and Tadayyon et al. [58] incorporated US parameters and textural features with
specific pathological features, namely estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2). In 2017, Tadayyon et al. [56]
conducted a prospective study and employed FLD, KNN, and SVM classifiers to analyze
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the predictive performance of pathological features and US parameters acquired prior to
treatment from both the tumor core and its margins (at thicknesses of 3, 5, and 10 mm). The
KNN classifier exhibited the highest performance with an accuracy of 88%, a sensitivity
of 90%, a specificity of 79%, and an AUC of 0.81 when utilizing radiomics features for the
tumor core and 5mm margins. However, the incorporation of pathological features with
radiomics led to a decline in performance, as the accuracy and AUC decreased to 79% and
0.71, respectively.

Furthermore, Sannachi et al. [57] categorized patients’ responses into three groups:
complete responders, partial responders, and non-responders. They employed SVM to
distinguish between these groups based on pathological and radiomics features extracted
at 1, 4, and 8 weeks after the initiation of NACT. Their conclusion highlighted that the
combination of pathological features with mean US parameters and texture features yielded
the most robust prediction results, achieving accuracies of 79% at week 1, 86% at week 4,
and 83% at week 8. Conversely, the accuracies achieved using either pathological features
or radiomics features alone did not surpass 60% across all time points. Their findings
underscored the need for a more extensive dataset encompassing an ample number of
patients for each tumor subtype to facilitate more precise cross-validation.

In 2019, Tadayyon et al. [58] compared the prediction performances of the KNN classi-
fier and the artificial neural network (ANN) classifier during the pretreatment stage. This
analysis was based on features extracted from both the tumor and its margins (within a
5 mm perimeter around the tumor). The study encompassed both 2-class classification (cat-
egorizing responders and non-responders) and 3-class classification (identifying complete,
partial, and non-responders). The results unveiled the superior performance of the ANN
classifier across all experiments. In the context of binary classification, the ANN achieved
an average accuracy of 96% and an AUC of 0.96, while the KNN demonstrated an accuracy
of 65% and an AUC of 0.67. Furthermore, the study highlighted that pathological features
played a pivotal role in the 3-class classification, whereas such significance was absent in
the binary classification scenario.

Some studies utilized ultrasound-based techniques, including compression or strain
elastography, as well as shear-wave elastography (SWE), for the purpose of monitoring and
predicting NACT response. Both of these modalities evaluate the mechanical characteristics
of tissues, particularly their stiffness and elasticity. Compression elastography involves
assessing tissue deformation or strain following the application of static compression
through a manual maneuver using an ultrasound transducer. In contrast, shear-wave
elastography (SWE) quantifies the velocity of shear waves within the tissue, which are
induced by focused acoustic radiation force [14,59,60]. Fernandes and colleagues [14]
employed compression elastography to calculate relative changes in strain ratio (SR) of
tumors throughout the treatment course. The strain ratio (SR) exhibited a noteworthy
distinction between the two response groups following 2 weeks of NACT (p-value < 0.01).
They utilized two classifiers, KNN and Naive Bayes, for response prediction. The accuracy
rates achieved by KNN at 1, 4, 8 weeks, and the preoperative scans, were 60%, 73%, 74%,
and 72%, respectively. Notably, the Naive Bayes classifier outperformed its counterpart,
attaining accuracies of 72%, 84%, 83%, and 84% across the four time points.

Additionally, Ma et al. [60] and Gu et al. [61] investigated the interplay between
shear-wave elastography parameters and pathological features in predicting response. Ma
et al. [60] introduced a multivariable linear regression model and demonstrated that the
combination of the Ki-67 index with relative changes in SWE parameters (tumor stiffness)
after the second cycle of NACT yielded effective predictive capability, surpassing the
individual parameters. The AUCs for predicting non-responders using the Ki-67 index,
the relative change of stiffness after the second cycle, and their combination were 0.84,
0.82, and 0.93%, respectively. Similarly, Gu et al. [61] concluded that integrating Ki-67
with shear-wave parameters enhanced prediction performance at the mid-treatment stage,
yielding an AUC of 0.80. Moreover, they identified mass characteristic frequency ( f mass) as
a novel predictor capable of determining the NACT endpoint for responders.
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Several studies have employed DL techniques to predict treatment response, including
Byra et al. [49,62], Xie et al. [63], Jiang et al. [50], Liu et al. [64], and Gu et al. [65]. In
2020, Byra et al. [62] introduced transfer learning using Siamese CNNs for pairwise image
comparison between pre-treatment and post-first/second cycle images. With model fine-
tuning, the AUC was 0.828 for differentiating malignant and benign masses in US images,
while without fine-tuning, the AUC reached 0.847. This led to the conclusion that the
discriminatory features might not effectively predict response. In 2022, Byra et al. [49]
proposed an RNN capable of processing both US images and raw RF data, using pre-trained
CNNs as feature extractors. AUC was 0.81 for response prediction from pre-treatment
data using CNN pre-trained on US images and 0.93 using RGB image-pre-trained CNN
for data after the fourth cycle. Similarly, Xie et al. [63] constructed a dual-branch CNN
where baseline and post-first cycle images were fed into separate branches, yielding better
results than individual information use. Their model achieved notable metrics: sensitivity
(90.67%), specificity (85.67%), and AUC (0.939). For enhanced model generalization, further
validation with multi-center data is recommended.

On the other hand, some researchers have incorporated invasive predictors into their
DL models. Liu et al. [64], Gu et al. [65], and Jiang et al. [50] integrated pathological markers
such as ER, PR, HER2, and Ki-67 into their models. Liu et al. [64] captured the dynamic
changes of tumors before and after the first or second cycle using a Siamese network. The
authors concluded that relying solely on pathological features did not yield satisfactory
performance (with AUC not exceeding 0.52). However, combining these features with
dynamic change features resulted in impressive AUCs of 0.904 and 0.952 for the two
external validation cohorts.

Furthermore, Gu et al. [65] developed a stepwise DL model to predict responses
after the second and fourth cycles of NACT. They assessed the prediction performance of
pathological features, radiomics features extracted by the DL model, and the combination
of radiomics and pathological features at two time points (after the 2nd and 4th cycles). The
results, as presented in Table 2, led to the conclusion that the proposed model effectively
assists in early stepwise prediction. Nomograms have also been utilized in predicting
NACT responses. Yang et al. [66] and Jiang et al. [50] developed nomograms for early
assessment and prediction of treatment response. Yang et al. [66] combined pathological
features with manually crafted radiomics features extracted from baseline images, images
taken after the second cycle, and delta radiomics (the difference between pre- and post-
treatment features). Their findings revealed that the nomogram, incorporating the Ki-67
index along with radiomics features from images captured before and after the second
cycle, demonstrated the highest predictive accuracy, achieving an AUC of 0.866. In contrast,
Jiang et al. [50] fused pathological features with radiomics features extracted through a
DenseNet201-based CNN, in addition to manually crafted features from pre-treatment and
post-treatment images. The resultant nomogram achieved an AUC of 0.94, an accuracy
of 83.9%, a sensitivity of 89.33%, and a specificity of 81.37%. Their study highlighted the
efficacy of DL-based nomograms in effectively predicting pCR and offering significant
insights for individualized therapy.
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Table 2. Ultrasound.

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Tadayyon et al.
[52]

To evaluate the potential
Quantitative Ultrasound
(QUS) parameters for early
prediction of LABC patients’
clinical and pathological
response to NACT.

58 patients (leave-one-out
cross-validation)
Study Type: single-center
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: B-mode

images with parametric
maps of QUS parameters
(SS, SI, MBF, ASD, AAC,
ACE, and SAS).
These parameters were
acquired at different time
points (pre-NACT, after
1 week, 4 weeks, and
8 weeks of NACT).

The prediction ACCs using
KNN based on the combination
of MBF, SS, and SAS were 60%,
77%, and 75% using images
acquired at weeks 1, 4, & 8,
respectively. SENs: 61%, 79%, &
-. SPEs: 59%, 76%, & -.
Combining the QUS parameters
at each week with pre-treatment
achieved ACCs of 70%, 80%,
and 81%, respectively. SENs:
76%, 80%, & -. SPEs: 64%, 79%,
& -. Consequently, they found
that incorporating pre-NACT
QUS parameters could improve
the prediction performance.

Sadeghi-Naini
et al. [48]

To investigate the efficacy
of textural analysis of
quantitative ultrasound
(QUS) spectral parametric
maps for the early
prediction of clinical and
pathological response to
NACT in LABC patients.

20 LABC patients
Study Type: single-center
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: Spectral

biomarkers ( mid-band fit
(MBF), the spectral slope,
and the corresponding
0-MHz intercept)
Textural analysis
performed based on
GLCM (contrast,
correlation, and
homogeneity)

The predictive performance
using LDA when combining
spectral and textural markers
extracted from MBF and 0-MHz
intercept (AUC: 1, SEN: 100%,
SPE: 100%)
Other combinations of features
yielded AUCs from 0.59 to 0.99,
SENs (40–100%), and SPEs
(47–93%).
They found that combining
textural & spectral biomarkers
showed the best separability
between responders &
non-responders at early stages
of NACT.

Sannachi et al. [53]

To early predict LABC
patients’ clinical and
pathological response to
NACT by developing
computational algorithms
based on quantitative
ultrasound (QUS) &
textural analysis.

100 LABC patients
(leave-one-out
cross-validation) in
addition to an independent
test set for SVM-RBF
(n = 24)
Study Type: single-center
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: QUS

parameters (MBF, SS, SI,
ACE, SAS, ASD, AAC,
and their mean values)
Textural analysis
performed based on
GLCM (contrast,
correlation, homogeneity,
and energy). In addition
to changes in these
parameters after weeks 1,
4, and 8.

The accuracy of the SVM-RBF
model in independent
validation cohort at weeks 1, 4,
& 8, respectively:
Validation(1):
ACCs: 82%, 78%, & 88%
SENs: 87%, 80%, & 87%
SPEs: 50%, 67%, & 100%
Validation(2):
ACCs: 72%, 81%, & 93%
SENs: 73%, 84%, & 93%
SPEs: 50%, 67%, & 100%
They conclude that SVM-RBF
outperformed the other
classifiers (LDA & KNN) in
differentiating responders &
non-responders at all time
points. Also, the most relevant
features in distinguishing the
two groups at weeks 1 & 4 were
the changes in texture features,
while at week 8 the change in
mean QUS parameters were
more significant.

DiCenzo et al. [54]

To construct a model for the
early prediction of LABC
patients’
clinical-pathological
response to NACT using
radiomics extracted from
pre-NACT quantitative
ultrasound (QUS) images.

82 LABC patients
(leave-one-out cross
validation)
Study type: multi-center
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: B-mode

images with parametric
maps of QUS parameters
(SS, SI, MBF, ASD, AAC,
ACE, and SAS). In
addition to textural
analysis of parametric
maps using GLCM
(contrast, correlation,
energy, homogeneity)

Features showed statistically
significant differences between
responders & non-responders
(p < 0.05) were: SS, MBF, ASD,
AAC, ASD-contrast,
AAC-contrast, AAC-energy, and
AAC-homogeneity.
The best performing ML
classifier was KNN as AUC:
0.73, ACC: 87%, SEN: 91%, SPE:
83%
They found that the patients’
responses can be predicted
based on pre-NACT QUS
radiomics with acceptable
accuracy.
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Table 2. Cont.

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Dasgupta et al.
[55]

To evaluate the baseline
QUS higher-order texture
derivatives in predicting
LABC patients’
clinical-pathological
responses to NACT.

100 LABC patients
(leave-one-out cross
validation)
Study type: single-center
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: QUS

parameters (MBF, SS, SI,
ASD,& AAC), texture
features based on GLCM
(contrast, energy,
correlation, &
homogeneity), & QUS
texture-derivatives
(QUS-Tex-Tex).

The AUCs yielded by 3 ML
algorithms (FLD, KNN, & SVM)
using (QUS-Tex-Tex) were 0.61,
0.86 & 0.79, respectively.
The best prediction performance
achieved by KNN using
(QUS-Tex-Tex) as AUC: 0.86,
ACC: 82%, SEN: 87%, SPE: 81%
They concluded that QUS
texture-derivative features
(AAC-CON-ENE,
MBF-COR-ENE, SI-COR- ENE)
can predict tumor response
before the initiation of NACT.

Tadayyon et al.
[56]

To priori predict LABC
patients’ clinical and
pathological response to
NACT based on QUS
parameters and texture
features extracted from
tumor core and margins
using ML algorithms.

56 LABC patients
(leave-one-out
cross-validation)
Study type: single-center
prospective study

• Clinical: N/A
• Pathological: molecular

markers: ER, PR, & HER2
• Radiomics: features

extracted from tumor core
and margins (3, 5, 10 mm),
B-mode images with
parametric maps of QUS
parameters (SS, SI, MBF,
ASD, AAC, & ACE),
image quality features
(CMR, CMCR), & textural
analysis of tumor core
using GLCM (contrast,
correlation, energy,
homogeneity)

Using KNN, ER, PR, & HER2,
respectively, achieved AUCs:
0.67, 0.48, & 0.37. ACCs: 61%,
71%, & 48%. SENs: 55%, 95%, &
60%. SPEs: 79%, 0%, & 14%.
Three ML algorithms were used
(FLD, SVM, & KNN) and KNN
showed the best prediction
performance depending on the
tumor core and 5 mm margin, it
yielded AUC: 0.81, ACC: 88%,
SEN: 90%, SPE: 79%.
Combining molecular markers
decreased the model
performance AUC: 0.71, ACC:
79%, SEN: 86%, SPE: 57%.
They found that response to
NACT can be predicted using
non-invasive QUS features
extracted from the tumor core
and margins, and combining
molecular markers with QUS
did not improve the prediction
power.

Sannachi et al. [57]

To early predict tumor
clinical and pathological
response to NACT in LABC
patients using molecular
markers, quantitative
ultrasound (QUS)
parameters, and textural
features extracted from
baseline and after 1, 4, and
8 weeks of NACT. They can
differentiate between 3
groups of responses
(complete, partial, and no
response).

96 LABC patients
(leave-one-out
cross-validation)
Study type: single-center
study

• Clinical: N/A
• Pathological: molecular

features (PR, ER, and
HER2).

• Radiomics: QUS
parameters (MBF, SS, SI,
ACE, SAS, ASD, AAC,
and their mean values)
Textural analysis
performed based on
GLCM (contrast,
correlation, homogeneity,
and energy).

The accuracies of the SVM-RBF
classifier to differentiate
between the 3 response groups
at weeks 1, 4, & 8 using the
following markers were:
Molecular alone: 38%, 37%, &
50% (SEN: -, SPE: -).
Mean QUS + texture: 54%, 60%,
& 59% (SEN: -, SPE: -).
Mean QUS + texture +
molecular: 79%, 86%, & 83%
(SEN: -, SPE: -).
They found that combining
molecular features with mean
QUS values and texture features
improved the discrimination
power between the three
response groups.

Tadayyon et al.
[58]

To construct an artificial
neural network (ANN)
model to predict patients’
clinical and pathological
response & survival prior to
the start of NACT based on
quantitative ultrasound
(QUS) imaging and
molecular markers.

100 patients (they can be
classified either into 2
groups: responders &
non-responders or into 3
groups: pCR, pPR, &
no-response)
Study type: prospective
study

• Clinical: N/A
• Pathological: PR, ER, and

HER2 status
• Radiomics: B-mode

images with parametric
maps of QUS parameters
(SS, SI, MBF, ASD, AAC,
ACE, and SAS), texture
features using GLCM
(contrast, correlation,
energy, homogeneity),
and image quality metrics
that compare the
statistical properties of
the core ROI & the margin
which is 5 mm
surrounding the tumor
(CMR, CMCR).

The best performance was
attained using ANN when
differentiating patients who
showed some response (pCR +
pPR) from no response patients
AUC: 0.96, ACC: 96%, SEN:
93%, SPE: 98%.
Using the KNN classifier to
differentiate (pCR + pPR) from
no-response patients led to
lower predicting performance
AUC: 0.67, ACC: 65%, SEN: -,
SPE: -.
The authors found that ANN
showed good predictive
performance and can be used to
evaluate the effectiveness of the
treatment as a step toward
personalized medicine.
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Table 2. Cont.

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Fernandes et al.
[14]

To evaluate the ability of
ultrasound elastography to
differentiate between
responders (pCRs) and
non-responders (non-pCR)
to NACT by monitoring
changes in tumor stiffness
induced by treatment.

92 LABC patients
(leave-one-out
cross-validation)
Study type: single-center
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: The mean

strain ratio (SR), its
percentage decrease
relative to baseline, and
B-mode images registered
to elastography color
maps.

Using the Naive Bayes classifier,
pCR was distinguished from
non-pCR at weeks 1, 4, 8, and at
preoperative scan, respectively,
achieved:
AUCs: 0.64, 0.75, 0.77, & 0.81.
ACCs: 72%, 84%, 83%, & 84%.
SENs: 80%, 85%, 87%, & 84%.
SPEs: 64%, 83%, 80%, & 85%.
Using KNN & same time points
AUCs: 0.44, 0.72, 0.66, & 0.64.
ACCs: 60%, 73%, 74%, & 72%.
SENs: 84%, 81%, 95%, & 85%.
SPEs: 36%, 65%, 54%, & 55%.
Their findings include:
1. Changes in the strain ratio
(SR) correlate with tumor
response.
2. Strain elastography can be
used to predict response after 2
weeks.
3. The best classification
performance attained at the
preoperative scan using the NB
classifier.

Ma et al. [60]

To investigate the potential
utility of share wave
elastography (SWE) and
Ki67 index as response
predictors to NACT in
invasive breast cancer.

66 patients (response was
classified according to the
RCB protocol to RCB 0, I, II,
&III).
Study type: single-center
prospective study

• Clinical: N/A
• Pathological: ER, PR, and

Ki67 index
• Radiomics: tumor

stiffness (E) at different
time points: before NACT
(E0), after 1st & 2nd cycles
(E1,E2), and before
surgery(E6), in addition
to their relative changes
from baseline
(∆E1,∆E2,∆E6).

The accuracies of predicting
(pCR & RCBI) versus (RCBII &
RCBIII) using ∆E2, Ki67, and
their combination, respectively,
yielded:
AUCs: 0.76, 0.79, & 0.88.
SENs: 66.7%, 66.7%, & 100%.
SPEs: 88.9%, 96.3%, & 72.2&.
However, the accuracies of
predicting (RCB-III) versus
other response groups using the
same features achieved AUCs:
0.82, 0.84, & 0.93. SENs: 68.18%,
86.36%, & 95.45. SPEs: 79.55%,
72.73%, & 79.55%.
They found that a multivariable
linear regression model
combining ki67 with SWE
parameters after the 2nd cycle
of NACT showed better
diagnostic performance than
using each of them alone.

Gu et al. [61]

To evaluate the role of share
wave elastography (SWE)
in early predicting of
invasive breast cancer
patients’ response to NACT
according to the RCB score.

62 patients (leave-one-out
cross-validation)
Study type: single-center
prospective study

• Clinical: N/A
• Pathological: ER, PR,

HER2, and Ki67.
• Radiomics: tumor size,

mean & max elasticity,
ratio of mean & max
elasticity (Emean,Emax),
mass characteristic
frequency ( f mass), and
change of elasticity &
mass characteristic
frequency.

Using SWE parameters
achieved AUC: 0.75, SEN: 0.77,
& SPE: 0.75 at mid-course, while
adding Ki67 achieved AUC:
0.80, SEN: 0.72, & SPE: 0.73.
They concluded that combining
Ki67 with some SWE
parameters improves the
prediction performance.
Moreover, f mass can be
considered to be a new response
predictor & can determine the
NACT endpoint.
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Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Byra et al. [62]

To propose two transfer
learning approaches to
early predict patients’
response to NACT based on
US images acquired before
and after the first and
second cycles of NACT.

39 tumors from 30 patients
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: generic neural

features extracted from
pre-NACT images
(approach 1) and the
absolute difference
between the neural
feature vectors extracted
from pre-NACT and after
1st & 2nd cycles by
Siamese models 1 & 2,
respectively, (approach 2).
In addition to the
handcrafted
morphological features.
(Siamese model consists
of two identical
Inception-ResNet-V2
CNNs).

• Without fine tuning, the
models based on
pre-NACT mages,
Siamese1, & Siamese2
yielded:
AUCs: 0.781, 0.826, &
0.847. ACCs(%): 76.9, 82.1,
& 76.9. SENs(%): 78.9,
68.4, & 78.9. SPEs(%):
75.1, 95, & 75.2.

• With fine tuning, the
models showed
AUCs: 0.797, 0.802, &
0.828 ACCs(%): 79.4, 76.9,
& 76.9 SENs(%): 78.9, 73.6,
& 84.2 SPEs(%): 80, 80, &
70

• Using morphological
features yielded
AUCs: 0.736–0.792, ACCs:
66.6–74.3%, SENs:
63.3–73.6%, SPEs: 65–75%.

• Using morphological+
neural features
AUCs: 0.818–0.844, ACCs:
76.9–84.6%, SENs:
68.4–73.6%, SPEs: 80–95%.

They found that: 1. Pre-NACT
features can be helpful response
predictors. 2. Features used to
differentiate benign &
malignant masses may not be
efficient for response prediction.
3. Morphological features
yielded to lower performance
than DL extracted features.

Byra et al. [49]

To develop recurrent neural
networks (RNN) that can
process regular US images
and raw radio-frequency
(RF) data to predict patients’
response to NACT.

51 breast cancers from 39
patients (5-fold
cross-validation)
Study type: single-center
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: 3 pre-trained

networks were used as
feature extractors: U-Net
CNN (was developed to
segment malignant and
benign masses) based on
(1) US images (2) RF data
(3) ResNet50 CNN
pre-trained using
ImageNet dataset (RGB
images). Then the
response probability was
calculated by the gated
recurrent unit (GRU)
block and the dense
prediction layer

Using the pre-NACT data, the
AUCs of the models which
pre-trained based on US images,
RF data, & ImageNet were 0.81,
0.72, & 0.71, respectively. SENs:
0.83, 0.57, & 0.69. SPEs: 0.70,
0.89, & 0.70.
Using data acquired after 4th
cycle AUCs: 0.91, 0.85, & 0.93.
SENs: 0.9, 0.81, & 0.9. SPEs:
0.83, 0.83, & 0.87.
They revealed that:
1. Pre-trained networks used for
breast mass segmentation can
be good feature extractors for
response prediction problems.
2. Models based on b-mode
images might be sufficient for
accurate response prediction as
RF data acquisition is
considered to be difficult.

Xie et al. [63]

To early predict the LABC
patients’ pathological
response to NACT by
developing a novel DL
approach named the
dual-branch convolution
neural network (DBNN)
based on ultrasound images
acquired before and after
the first cycle of NACT.

114 LABC patients Training
(n = 91)
Test (n = 23)
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: features were

extracted from entire
breast images by a
dual-branch CNN (the
i/p of 1st & 2nd branches
were imaged before &
after 1st cycle of NACT,
respectively), each branch
consists of 9 layers CNN
then features were
weighted and shared
between each branch by
FSS method.

The prediction results of:
Combining the US image
information from pre-NACT &
after 1st cycle yielded AUC:
0.939, SEN: 90.67%, SPE: 85.67%
Using only pre-NACT images
achieved AUC: 0.73, SEN: 76%,
SPE: 68.38%
Using images after 1stcycle only,
AUC: 0.739, SEN: 53.3%, SPE:
86.38%. They found that:
Combining data from
pre-NACT & after 1st cycle
outperformed the models using
each of them separately.
DBNN achieved outstanding
results in the noninvasive
prediction of response.
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Liu et al. [64]

To early predict pCR in
HER2-positive breast
cancer patients using a
Siamese multi-task network
(SMTN) which performs
tumor segmentation of pre-
and early-treatment
longitudinal ultrasound
images, followed by
capturing the dynamic
change information of the
tumor.

393 HER2-positive breast
cancer patients Training
(n = 215)
Validation (two cohorts
n = 95 & 83)
Study type: multi-center
retrospective study

• Clinical: N/A
• Demographic: Age
• Pathological: T stage,

menopausal status,
NACT regimen & cycles,
tumor type, ER, PR,
HER2, and Ki-67.

• Radiomics:- SMTN
consists of two
subnetworks:
1. automatic tumor
segmentation
(2 U-nets)
2. pCR prediction
(captures the dynamic
change of tumor).

Mean dice coefficient (DICE) of
tumor segmentation in
validation cohorts > 0.764
The accuracy of predicting pCR
in the two validation cohorts
using different models:

• Pathological model: AUC:
0.52 & 0.54, ACC: 50.5% &
37.3%, SEN: 65.9% &
83.3%, SPE: 38.9% &
24.6%.

• SMTN: AUC: 0.902 &
0.957, ACC: 86.8% &
92.2%, SEN: 86.3% & 94%,
SPE: 87.4% & 90.4%.

• Pathological model +
SMTN: AUC: 0.904 &
0.952, ACC: 83.7% &
88.6%, SEN: 88.4% &
80.7%, SPE: 78.9% &
96.4%.

They found that SMTN could
assist clinicians in the early
adjustment of treatment regimes
for non-pCR cases. Moreover,
the performance of the clinical
model was unsatisfactory, and
integrating it with SMTN did
not improve the performance.

Gu et al. [65]

To early predict patients’
pathological response to
NACT based on US images
acquired prior to NACT,
and after the second and
the fourth cycles using the
proposed novel deep
learning radiomics pipeline
(DLRP) which consists of
two deep learning models.

168 patients Training
(n = 126)
validation (n = 42)
Study type: single-center
prospective study

• Clinical: N/A
• Pathological: ER, PR, and

HER2 status.
• Radiomics: The DLRP

consists of 2 models
(DLR2, DLR4); each
model consists of 2
Densenet121 backbones.
DLR2 takes US images
before and after 2nd cycle
as input and the extracted
features were
concatenated to predict
response after 2nd cycle,
while DLR4 takes images
before and after 4th cycle.

The prediction performance of:
Pathological2 model: (based on
ER, HER2) AUC: 0.717, SEN:
76.2%, SPE: 61.9%
Pathological4 model: (PR,
HER2, reduction of tumor
volume) AUC: 0.825, SEN:
61.9%, SPE: 76.2%
DLR2: AUC: 0.812, SEN: 90.5%,
SPE: 47.6%
DLR4: AUC: 0.937, SEN: 81%,
SPE: 90.5%.
They concluded that depending
on pathological markers only is
not reliable enough for response
prediction, while DLRP can
effectively aid in early stepwise
prediction. Moreover, hybrid
models (pathological + DLR)
showed no improvements in the
AUC.

Yang et al. [66]

To combine pathological
markers with radiomics
extracted from
pre-treatment and
early-treatment ultrasound
images for developing a
nomogram used in the
early prediction of patients’
radiological response to
NACT.

217 patients
Training
(n = 152)
Test (n = 65)
Study type: single-center
retrospective study

• Clinical: N/A
• Demographic: Age
• Pathological: Ki67,

histological type, clinical
staging, and molecular
subtype.

• Radiomics: first-order
intensity, shape, texture,
and wavelet-based
features extracted before
and after the 2nd cycle of
NACT and the difference
between them.

Radiomics features (baseline
images) yielded AUC: 0.725,
ACC: 67.7%, SEN: 77.8%, SPE:
65.8%.
Radiomics features (after 2nd
cycle) yielded AUC: 0.793, ACC:
72.3%, SEN: 60.5%, SPE: 92.6%.
The nomogram combining Ki67
and radiomics signature
achieved AUC: 0.866, ACC:
78.5%, SEN: 85.2%, SPE: 79.8%.
They found that a nomogram
combining Ki67 and radiomics
signature showed the
best-predicting performance.
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Jiang et al. [50]

To construct and validate a
DL radiomics nomogram
(DLRN) to predict pCR to
NACT based on ultrasound
images acquired before and
after treatment.

592 patients Training
(n = 356) external validation
cohort (n = 236)
Study type: retrospective
study

• Clinical: N/A
• Demographic: age
• Pathological: clinical N

stage, histologic type, ER,
PR, HER2, Ki67, &
molecular subtype.

• Radiomics: US diameter
reduction, handcrafted
features: morphology,
intensity, Coiflet wavelet
filter, and texture features
(first, second, and high
order). In addition to
features extracted by
CNN based on
DenseNet201.

• Pathological model:
univariate analysis
illustrated that diameter
reduction, PR, Ki67, &
clinical N stage showed
significant difference
between pCR & non-pCR
(p < 0.05).

• Radiomics extracted
before NACT (RS1): AUC:
0.82, SEN: -, SPE: -

• Radiomics extracted after
NACT (RS2): AUC: 0.92,
SEN: -, SPE: -

• DLRN:
AUC: 0.94, ACC: 83.90%,
SEN: 89.33%, SPE: 81.37%.

They found that the DLRN
outperformed the pathological
model, RS1, and RS2.

4. PET/CT

Positron Emission Tomography (PET) serves as a prevalent nuclear imaging method
for evaluating the glycolytic metabolism of tumors [47,67]. This technique enables the
characterization of primary tumors, determination of lymph node stages, and assess-
ment of residual tumors following NACT [68,69]. Distinguishing malignant tumors from
adjacent normal cells relies on the heightened glucose metabolism within abnormal tis-
sues compared to normal ones [47,68]. Typically, PET scans are complemented by other
imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI),
and mammography, subsequent to the introduction of a radioactive tracer such as 18F-
fluorodeoxyglucose (18F-FDG), 18F-fluorothymidine (18F-FLT), 18F-Fluciclovine, and oth-
ers [70,71]. 18F-fluorodeoxyglucose (18F-FDG) stands as the most commonly employed
radioactive tracer in oncology [72,73]. Pertaining to PET parameters, the maximum stan-
dardized uptake value (SUVmax) signifies the highest concentration of the tracer (typically
FDG) within the region of interest (ROI) or volume of interest (VOI) [74,75]. Due to poten-
tial noise-induced variability in SUVmax values, additional parameters like SUVpeak and
SUVmean may be calculated. SUVmean reflects the average standardized uptake value of all
voxels within the voxel of interest, while SUVpeak represents the parameter derived from
averaging the standardized uptake values within a fixed-size, small volume of interest
containing the region with the highest SUV [76–78].

Beyond these PET parameters, the metabolic tumor volume (MTV) denotes the total
count of voxels in a VOI exhibiting uptake surpassing a specific SUV threshold, and the
total lesion glycolysis (TLG) emerges as the product of MTV and SUVmean [76,79]. Despite
the elevated costs and radiation exposure associated with PET scans, they hold promise in
predicting treatment responses [47]. This section will delve into studies utilizing either FDG
PET/CT or FLT PET/CT for the early prediction of NACT responses, and these studies
will be summarized in Table 3. Furthermore, key factors will be underscored for predicting
NACT outcomes by leveraging markers extracted from PET/CT images.

Buchbender et al. [80] and Andrade et al. [75] employed statistical methods, specifically
the Mann–Whitney test, to predict patients’ responses. Their approach relied on assessing
the relative change in the standardized uptake value (∆SUV) between images acquired
before treatment and those obtained after the second cycle. Additionally, they determined
the optimal ∆SUV cut-off for distinguishing between pathological pCR and non-pCR
cases, as well as responders and non-responders, utilizing receiver-operating curve (ROC)
analysis. A statistically significant difference in ∆SUV between the two response groups
was observed. Buchbender et al. [80] identified a ∆SUV of −89% for pCR cases and −51%
for non-pCR cases, yielding a p-value of 0.003. Furthermore, the optimal ∆SUV threshold
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for discriminating pCR from non-pCR was determined to be−88%, resulting in a sensitivity
of 75%, specificity of 100%, and accuracy of 92%. Similarly, differentiation of responders
from non-responders was achieved using an optimal ∆SUV threshold, yielding a sensitivity
of −66%, specificity of 88%, and accuracy of 89%, with an overall accuracy of 92%.

In contrast, Andrade et al. [75] discovered a significantly higher ∆SUV value for
pCR cases (−81.58%) in comparison to non-pCR cases (−40.18%), with a p-value of 0.001.
They determined the optimal ∆SUV threshold for distinguishing pCR from non-pCR to
be −71.8%, resulting in a sensitivity of 83.3%, specificity of 78.5%, and accuracy of 62.5%.
Moreover, their differentiation of responders from non-responders using an optimal ∆SUV
threshold yielded a sensitivity of −59.1%, specificity of 68%, and accuracy of 75.0%, with
an overall accuracy of 86.3%.

On the other hand, Koolen et al. [81] investigated changes in the maximum standard-
ized uptake value (SUVmax) after 2–3 weeks and 6–8 weeks of treatment administration.
They calculated ∆SUVmax for the primary tumor, lymph nodes, a combination of both
(using logistic regression), and the highest ∆SUVmax (either primary tumor or lymph
node). Their findings revealed that in HER2+ tumors, the AUC for predicting response
using ∆SUVmax after 3 weeks of NACT ranged from 0.61 to 0.74 (specifically, 0.61 for the
primary tumor, 0.74 for axillary nodes, 0.67 for the combined approach, and 0.72 when
using the region of the highest ∆SUVmax). However, the AUCs derived from ∆SUVmax
after 8 weeks did not exceed 0.64 across all regions. In contrast, the prediction of response
in triple-negative breast cancer (TNBC) tumors proved to be more accurate. The AUCs
achieved using ∆SUVmax after 2 weeks of NACT ranged from 0.76 to 0.84 (specifically, 0.76
for the primary tumor, 0.74 for axillary nodes, 0.84 for the combined approach, and 0.76
when using the region of the highest ∆SUVmax). Remarkably, the AUCs yielded from using
∆SUVmax after 6 weeks exceeded 0.87.

Some researchers, such as Groheux et al. [82,83], Humbert et al. [84], and Luo et al. [85],
have integrated pathological markers with PET/CT parameters to predict the response
to NCAT. In 2013, Groheux et al. [82] utilized a t-test to examine the correlation between
the response and SUVmax of the primary tumor and lymph nodes at baseline and after
two cycles in HER2-positive patients. They found that neither the pathological markers
nor the SUVmax at baseline significantly correlated with patients’ response; the associated
p-values were greater than 0.08. However, non-pCR could be effectively predicted using
∆SUVmax after the second cycle of NACT, achieving an accuracy of 80%, a sensitivity of
85.7%, and a specificity of 75% with a cut-off value of less than −62%. In 2014, Groheux
et al. [83] investigated the predictive value of PET parameters and pathological markers
in triple-negative tumor response prediction. They demonstrated that using a ∆SUVmax
threshold of −50% in the primary tumor achieved an accuracy of 80%, while a threshold
of −42% achieved an accuracy of 74%, a sensitivity of 58%, and a specificity of 100%.
Furthermore, they noted that pathological markers yielded lower prediction accuracy (with
tumor grade achieving 54% and T-stage achieving 68%).

On the other hand, Humbert et al. [84] and Luo et al. [85] combined pathological
markers with radiomics and employed logistic regression to predict treatment response.
Humbert et al. [84] explored the value of ∆SUVmax after the first treatment cycle, in con-
junction with various clinical and pathological markers (such as CA 15.3, ACE, CA-125
values, estrogen receptor, progesterone receptor, HER2 expression, Ki-67 index, androgen
receptor, epidermal growth factor receptor (EGFR), Scarff-Bloom-Richardson (SBR) grade,
and cytokeratin (CK) 5/6 tumor expression). Their findings indicated that high ∆SUVmax
(p = 0.002), elevated Ki-67 (p = 0.016), and negative EGFR status (p = 0.042) demonstrated
significant associations with pCR. They achieved a predictive accuracy of 75% for pCR
cases using ∆SUVmax, with a sensitivity of 74%, specificity of 76%, and an optimal ∆SUVmax
cut-off value of −50%. Additionally, the authors identified that non-pCR cases could be
predicted with an accuracy of 92% by combining positive EGFR status and ∆SUVmax less
than −50%.
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Luo et al. [85], on the other hand, integrated Ki-67 (a proliferation marker) with
SUVmax. They computed SUVmax values at baseline, after the second cycle, and after the
fourth cycle of treatment. The AUC values for using Ki-67 alone, SUVmax after the second
cycle, and SUVmax after the fourth cycle were 0.58, 0.744, and 0.791, respectively. Their
analysis revealed that while Ki-67 alone did not significantly predict pCR, its combination
with radiomics markers enhanced predictive power, achieving an AUC of 0.824, sensitivity
of 92.31%, and specificity of 65.71%.

Cheng et al. [86], Antunovic et al. [87], and Li et al. [88] investigated the predictive
potential of pathological markers and textural features for pCR prediction using PET/CT.
Cheng and colleagues [86] explored changes in SUVmax, MTV, TLG, and textural features
(outlined in Table 3) between pre- and post-second cycle images, alongside pathological
markers. Significant differences in relative changes of SUVmax, entropy, and coarseness
were observed between pCR and non-pCR cases in the HER2-negative group, yielding
AUCs of 0.928, 0.808, and 0.8, respectively, (p-values < 0.037). In the HER2-positive group,
∆skewness and ∆SUVmax moderately predicted pCR with AUCs of 0.758 and 0.747, respec-
tively, (p-values: 0.026 and 0.033). The authors concluded HER2 status strongly correlated
with response, favoring pCR in HER2-positive tumors. Additionally, the textural analysis
predicted pCR after two NACT cycles, while ∆TLG and ∆MTV lacked predictive efficiency.

Conversely, Antunovic et al. [87] and Li et al. [88] assessed pathological and radiomics
markers’ predictive power for pCR before NACT initiation. Antunovic et al. [87] proposed
four logistic regression models. Model (1) included age and tumor molecular subtype,
achieving an AUC of 0.71. Discrimination improved slightly by adding SUVmax and
TLG (AUC = 0.73). Model (2) combined second-order (correlationGLCM) and higher-order
(CoarsenessNGLDM, GLNUGLZLM) textural features with age and molecular subtype, yield-
ing an AUC of 0.72. Models (3) and (4) employed different predictor thresholds (0.5 and
0.4, respectively). Model (3) achieved an AUC of 0.70, featuring age, molecular subtype,
correlation, and coarseness. Model (4) attained an AUC of 0.73, incorporating model (3)
features along with ER, NACT type, Ki67, and GLNU. The authors concluded that aug-
menting with SUVmax, TLG, second-order, and higher-order radiomics features did not
enhance response prediction performance.

Li et al. [88] employed a Random forest (RF) model for predicting treatment response
by identifying PET/CT radiomics predictors. They extracted 2210 radiomic features includ-
ing Run VarianceGLRLM, Zone varianceGLSZM, LGLREGLRLM, and Difference AverageGLCM.
These radiomic features resulted in an AUC of 0.722, sensitivity of 0.733, specificity of
0.8, and accuracy of 0.767. Incorporating these features with age enhancements improved
performance, yielding an AUC of 0.73, sensitivity of 0.733, specificity of 0.867, and accuracy
of 80% in the independent validation set. In contrast, the pathological model exhibited
poor predictive performance, with an AUC of 0.5.

As previously mentioned, various tracers can be administered for the PET/CT scan.
FLT has served as an indicator of proliferation [89], and a handful of studies have utilized
FLT PET/CT scans to early predict responses to NACT. Crippa et al. [90] computed the
SUVmax values in both the primary tumor and the predominant lymph node, along with
their relative changes between baseline and post-first-cycle NACT images. They introduced
a linear combination based on ∆SUVmax in both the tumor and predominant lymph node,
yielding an impressive AUC of 0.94 and a p-value below 0.001. This combination effec-
tively discriminated between patients with RCB indices of 0 & I (indicating near-complete
response) and patients with RCB indices of II & III (representing moderate & extensive
residual disease). The authors highlighted the potential utility of FLT PET/CT in predicting
NACT response, stressing the importance of further validation in a larger population.
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Table 3. PET/CT.

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Buchbender
et al. [80]

To test the ability of
FDG-PET/CT to
differentiate pCR lesions
from non-pCR lesions early,
after the second cycle of
NACT.

26 patients
Study type:
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: The absolute

and relative change in the
maximum standardized
uptake value (∆SUVmax)
between scans performed
at baseline and after the
second cycle.

The Mann–Whitney test was used to
discriminate between response
groups. After 2nd cycle, ∆SUV were
significantly higher for pCR (−89%)
than non-pCR (−51%) and the
p-value = 0.003. The optimal
threshold of ∆SUV that
discriminates:
• pCR & non-pCR: −88%

(SEN: 75%, SPE: 100%)
• responders & non-responders:

−66% (SEN: 88%, SPE: 89%)
They found that FDG-PET/CT can
be a non-invasive and efficient tool
to early predict pCR cases.

Andrade et al. [75]

To investigate the
correlation between the
relative change in the
standardized uptake value
(SUV) and the pathological
response to NACT using
FDG-PET/CT.

40 patients (with
invasive ductal breast
carcinomas)
Study type:
single-center
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: relative

change in the
standardized uptake
value (∆SUV) between
scans performed at
baseline and after the
second cycle.

The Mann–Whitney test was used to
discriminate between response
groups. After the 2nd cycle, ∆SUV
were significantly higher for pCR
(−81.58%) than non-pCR (−40.18%)
and the p-value = 0.001. The optimal
threshold of ∆SUV that
discriminates:
• pCR & non-pCR: −71.8%

(SEN: 83.3%, SPE: 78.5% )
• responders & non-responders:

−59% (SEN: 68%, SPE: 75%)
They found that ∆SUV between
baseline and second cycle scans can
predict patients’ responses.

Koolen et al. [81]

To assess the value of FDG
PET/CT scans of the
primary tumor and lymph
nodes in predicting pCR to
NACT taking tumor
subtype into consideration.

107 patients
Study type:
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: ∆SUVmax

were calculated after 2–3
weeks and 6–8 weeks for
the primary tumor, lymph
nodes, combining both of
them (using logistic
regression), and the
highest ∆SUVmax (either
tumor or lymph node).

The AUCs ranges of predicting
response using ∆SUVmax for the 4
regions of interest were:
In HER2+ tumors
• after 3 weeks: 0.61–0.72
• after 8 weeks: 0.42–0.64
In TNBC tumors
• after 2 weeks: 0.76–0.84
• after 6 weeks: 0.87–0.93

(SENs: -, SPEs: -)
They concluded that PET/CT could
accurately predict pCR in
triple-negative tumors, especially
after 6 weeks of NACT. However
HER2+ tumors showed a weaker
association between response and
the changes in SUVmax.

Groheux et al. [82]

To examine the value of
18F-FDG-PET/CT in the
early identification of
non-pCR cases after the
second cycle of NACT in
HER2+ breast cancer
patients.

30 HER2+ locally
advanced breast cancer
patients
Study type:
single-center
prospective study

• Clinical: N/A
• Pathological: tumor

grade, ER, and axillary
status

• Radiomics: The
maximum standardized
uptake values of primary
tumors and lymph nodes
at baseline (SUVmax1) and
after the second cycle
(SUVmax2). In addition to
the relative change
between both time points
(∆SUVmax).

They used a t-test to find the
correlation between the response
and tumor grade, ER, axillary status,
SUVmax1, SUVmax2, and ∆SUVmax,
and p-values were 0.5, 0.8, 0.3, 0.08,
0.0001, and 0.001, respectively.
Predicting non-pCR using:

• SUVmax2: cut-off = 3, SEN:
85.7%, SPE: 93.8%, ACC: 90%

• ∆SUVmax: cut-off < −62%,
SEN: 85.7%, SPE: 75%, ACC:
80%

They concluded that pathological
markers and SUVmax1 did not show
a significant correlation with the
response, whereas SUVmax2 and
∆SUVmax did.
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Table 3. Cont.

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Groheux et al. [83]

To assess the value of FDG
PET parameters and
pathological markers in the
early prediction of patients’
pathological response to
NACT and event-free
survival (EFS) in TNBC
patients.

50 TNBC patients
Study type:
prospective study

• Clinical: N/A
• Pathological: T-stage,

N-stage, histology type,
tumor grade, and
inflammatory

• Radiomics: The
maximum standardized
uptake values of primary
tumors and lymph nodes
at baseline (SUVmax1) and
after the second cycle
(SUVmax2). In addition to
the relative change
between both time points
(∆SUVmax).

The ACCs of predicting response
using tumor grade and T-stage were
54% and 68%, respectively, (SEN: -,
SPE: -).
Predicting response using ∆SUVmax
in the primary tumor at a
cut-off = −50%, achieved an ACC of
80% (SEN: -, SPE: -), while using a
cut-off = −42% achieved ACC: 74%,
SEN: 58%, SPE: 100%. The threshold
of −42% was chosen because it
achieved a better prediction of
relapse.
They revealed that pathological
markers were less predictive of
response compared to PET
parameters which can predict
response in TNBC patients.

Humbert et al. [84]

To assess the value of tumor
metabolic response
(acquired by FDG-PET/CT),
in addition to clinical and
pathological markers in the
early prediction of pCR to
NACT.

50 TNBC patients
Study type:
single-center
prospective study

• Clinical: CA 15.3, ACE,
and CA-125 values.

• Pathological: ER, PR,
HER2 expression, Ki-67
index, AR (AR: Androgen
Receptor), EGFR, SBR
grade, and cytokeratin
(CK) 5/6 tumor
expression.

• Radiomics: SUVmax at
baseline and after the first
cycle, in addition to the
relative difference
between them (∆SUVmax).

High ∆SUVmax (p = 0.002), high
Ki-67 (p = 0.016), and negative EGFR
(p = 0.042) showed significant
association with pCR.
Predicting pCR using ∆SUVmax:
cut-off = −50 %, ACC: 75%, SEN:
74%, SPE: 76%.
Non-pCR could be predicted by
combining +ve EGFR status and
∆SUVmax < −50% with an ACC of
92%, SEN: -, SPE: -.
They concluded that metabolic
response combined with EGFR
status can help in the early
prediction of response.

Luo et al. [85]

To assess the value of Ki-67
expression and FDG
PET/CT in predicting
pathological response to
NACT in LABC patients.

361 patients
Training (n = 301)
Validation (n = 60)
Study type:
single-center
prospective study

• Clinical: N/A
• Pathological: Ki-67 index

(a proliferation marker)
• Radiomics: SUVmax at

baseline and after the 2nd
and 4th cycle of NACT.
(∆SUV1max: difference
between baseline and 2nd
cycle scans) (∆SUV2max:
difference between
baseline and 4th cycle
scans)

The prediction accuracy of pCR:

• Pathological markers
AUC: 0.58, SEN: -, SPE: -

• ∆ SUV1max AUC: 0.744, SEN:
68.18%, SPE: 76.32%,
cut-off: −65%

• ∆ SUV2max AUC: 0.791, SEN:
100%, SPE: 51.43%,
cut-off: −69%

• Combining radiomics and
Ki-67 AUC: 0.824, SEN:
92.31%, SPE: 65.71%.

They found that Ki-67 alone did not
show a significant value in the
prediction of pCR, whereas
combining Ki-67 with ∆SUVmax
improved the prediction power of
pCR.

Cheng et al. [86]

To determine whether
textural features extracted
from 18F-FDG PET/CT
images acquired before and
after the second cycle of
treatment can predict pCR
to NACT.

61 patients with LABC
Study type:
single-center
retrospective study

• Clinical: N/A
• Pathological: ER, PR,

HER2, and Ki-67.
• Radiomics: The relative

changes (∆) of SUVmax,
MTV, TLG, and textural
features (entropy,
coarseness, and skewness
which are based on
GLCM, neighborhood
gray-tone difference
matrix (NGTDM), and
histogram, respectively)
between baseline and
after the second cycle.

• In the HER2(-) group,
∆SUVmax, ∆entropy, and
∆coarseness showed a
significant difference between
pCR and non-pCR and AUCs
of predicting them: 0.928,
0.808 & 0.8
-At SEN: 100%, combining
∆SUVmax & ∆entropy
achieved SPE: 96%, while
combining ∆SUVmax &
∆coarseness achieved SPE:
100%.

• In the HER2(+) group,
∆SUVmax and ∆skewness
moderately predicted pCR,
(AUCs: 0.747 and 0.758).

They found that textural features
can predict pCR in HER2+ & HER2-
patients. Moreover, ∆MTV & ∆TLG
were not considered to be pCR
efficient predictors.



Cancers 2023, 15, 5288 20 of 52

Table 3. Cont.

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Antunovic et al.
[87]

To assess the role of
radiomics (extracted from
FDG PET/CT) combined
with pathological markers
in the prediction of pCR to
NACT in patients with
locally advanced breast
cancer.

79 patients
100 iterations of 10-fold
cross-validation
Study type:
single-center
retropective study

• Clinical: N/A
• Demographic: Age
• Pathological: ki-67 index,

ER, HER2 status,
molecular subtype
(Luminal, HER2+, Tripple
Negative), & type of
NACT (anthracycline and
taxane, trastuzumab,
paclitaxel, letrozole, etc.)

• Radiomics: SUV max, TLG,
first, second, and higher
order texture features.
CorrelationGLCM,
CoarsenessNGLDM, and
GLNUGLZLM

They proposed 4 logistic regression
models, and the selected features for
each model were mentioned in the
main paragraph. The AUCs of
models 1, 2, 3, and 4 were 0.71, 0.72,
0.70, and 0.73, respectively, (SENs: -,
SPEs: -).
They concluded that:
1. SUVmax and TLG did not show a
good prediction performance of
pCR.
2. The discriminatory power of the
model did not improve by adding
second and higher-order radiomics
features.
3. A larger cohort is still needed to
better investigate/judge the
potential predictive role of
radiomics.

Li et al. [88]

Construct an automated
model to specify radiomics
predictors of pCR and
treatment response prior to
NACT based on FDG
PET/CT images.

100 patients
Training (n = 70,
30 times 10-fold
cross-validation)
Independent validation
(n = 30)
Study type:
single-center
retrospective study

• Clinical: N/A
• Demographic: Age
• Pathological: ER, PR, &

HER2 status
• Radiomics: shape features

(spherical ratio, surface
area, compactness, etc.),
intensity features, and
texture features (GLCM,
GLSZM, GLRLM,
GLDZM, NGTDM). In
addition to features based
on the wavelet and
Laplacian of Gaussian
(LoG) filters.

Prediction accuracy for:

• Pathological markers with age
ACC: 0.5, SEN: -, SPE: - (poor
performance)

• Radiomics AUC: 0.722, ACC:
0.767, SEN: 0.733, SPE: 0.8

• Radiomics with age AUC:
0.73, ACC: 0.8, SEN: 0.733,
SPE: 0.867

They found that the radiomics
model outperformed the
pathological model. Moreover,
incorporating age with PET-CT
radiomics showed the best
performance.

Crippa et al. [90]

To examine the ability of
18F-3′-deoxy-3′-
fluorothymidine positron
emission tomography (FLT
PET) in predicting breast
cancer patients’
pathological response after
the first cycle of NACT.

15 LABC patients
Study type:
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: SUVmax of

primary tumor (SUVTmax)
and the predominant
axillary node (SUVNmax)
and their relative
percentage change after
the 1st cycle (∆SUVTmax,
∆SUVNmax). Moreover, a
linear predictive score
based on ∆SUVTmax and
∆SUVNmax was
proposed.

The ∆SUVTmax can predict
(pCR+RCBI) yielding AUC: 0.91,
p < 0.001, cut-off ≤ −52.9%, ACC:
93.3%, SEN: 83.3%, SPE: 100%, while
∆SUVNmax can differentiate (RCBIII)
from other response groups yielding
AUC: 0.77, p = 0.119, SEN: -, SPE: -.
The linear predictive score achieved
AUC: 0.94, p < 0.001, SEN: -, SPE: - to
differentiate RCB (0 & I) from RCB
(II & III).
They preliminary found a potential
utility of FLT PET in predicting &
monitoring response to NACT.
However, these results need to be
validated on a large patient
population.

5. DCE-MRI

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) typically ne-
cessitates the administration of a contrast agent (CA) for delivering functional (dynamic)
insights into the tissues. It offers the ability to reveal details about tumor vascularity by non-
invasively gauging fluctuations in contrast to agent uptake [91,92]. Additionally, DCE-MRI
furnishes information about tumor morphology encompassing size, shape features, and
textural heterogeneity. This imaging technique finds utility in screening high-risk women,
diagnosing breast cancer, staging breast tumors, evaluating treatment efficacy, and predict-
ing early response to NACT [91,93]. Table 4 presents a compilation of studies employing
DCE-MRI data to forecast NACT response based on quantitative or semi-quantitative
parameters.

NACT Prediction using DCE-MRI Radiomics: Several studies employed statistical
methods, such as the t-test, Mann–Whitney test, or Kruskal–Wallis test, to assess the
effectiveness of textural features in early response prediction based on pre-treatment DCE-
MRI images. Ahmed et al. [94] and Teruel et al. [95] extracted 16 Gray-Level Co-occurrence
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Matrix (GLCM) texture features and examined their significance in distinguishing various
response groups using statistical techniques. Ahmed et al. [94] observed that contrast
and difference variance yielded p-values ranging from 0.039 to 0.048, demonstrating a
significant distinction between two response groups (partial responders & non-responders)
using images captured at 1 and 2 minutes after contrast administration. Furthermore,
they noted elevated contrast and difference variance values in the non-responders group,
suggesting that tumors with heightened heterogeneity might exhibit reduced responses to
chemotherapy.

In a similar vein, Teruel et al. [95] employed the same 16 GLCM features to differentiate
between stable disease, partial response, and complete response. They identified that sum
variance, entropy, and difference variance displayed statistical significance in distinguishing
response groups at the 2-minute post-contrast mark, achieving p-values of 0.044, 0.042, and
0.033, respectively. Additionally, they compared textural features between stable disease
and complete response groups, finding that 8 features achieved p-values below 0.05. The
most noteworthy features were entropy, sum variance, and angular second moment. Using
these features for predicting stable disease, ROC analysis produced AUCs of 0.77, 0.742,
and 0.742, respectively.

Furthermore, sum variance, sum entropy, entropy, and difference variance exhibited
significant differences between the pathological minimal residual disease group and the
pathological non-responder group. Sum variance and sum entropy yielded AUCs of 0.689
and 0.686 for predicting non-responders. While Ahmed et al. [94] and Teruel et al. [95]
employed the same 16 GLCM features, disparities in study design and response group
definitions rendered their results incomparable. Nevertheless, they concurred that the
optimal time point for response prediction was 2 min post-contrast, and these texture
features could aid physicians in pre-treatment prediction of patient responses.

Machine learning algorithms have also been employed for predicting patients’ re-
sponses based on radiomics features, specifically GLCM or Gray-Level Run Length Matrix
(GLRLM) features extracted from DCE-MRI images, as demonstrated by Giannini et al. [96],
Fan et al. [97], and Cain et al. [98].

Giannini et al. [96] developed a Computer-Aided Diagnosis (CAD) system that auto-
mates tumor segmentation, extracts GLCM and GLRLM textural features from baseline
images, and subsequently predicts pathological responses. They conducted predictions
at both breast levels, including pCR and non-pCR cases, and breast and axillary levels
encompassing pathologic complete response with or without residual metastatic lymph
nodes (pCRN and non-pCRN, respectively). Logistic regression and Bayesian classifiers
were employed for predicting pCR and pCRN. The logistic regression model achieved
an AUC of 0.795 for pCR prediction (SEN: 80%, SPE: 69%). In contrast, the same model
achieved an AUC of 0.764 for pCRN prediction (SEN: 46%, SPE: 100%). Conversely, the
Bayesian classifier yielded an accuracy, sensitivity, and specificity of 70%, 67%, and 72%,
respectively, for pCR prediction, and 64%, 69%, and 61%, respectively, for pCRN prediction.

Fan et al. [97] employed an evolutionary algorithm to select optimal features from
pre-treatment images, encompassing morphological, dynamic, textural (GLCM), first-order
statistical, and background parenchymal (BPE) attributes. Their retrospective study encom-
passed two patient cohorts: the main group (n = 57) and the reproducibility group (n = 46).
Utilizing logistic regression, they predicted treatment response and conducted leave-one-
out cross-validation (LOOCV) on the main cohort, yielding an AUC of 0.910, sensitivity of
87.2%, and specificity of 90.0%. Conversely, the reproducibility cohort exhibited an AUC of
0.874, sensitivity of 78.4%, and specificity of 88.9%. Moreover, validating the main cohort
features on the reproducibility cohort produced an AUC of 0.713, while reproducibility
cohort features on the main cohort resulted in an AUC of 0.683. BPE features were identified
as performance-enhancing, with combined lesion and BPE features outperforming their
individual counterparts.

Similarly, Cain et al. [98] introduced logistic regression and SVM models for predicting
pCR to NAT. Encompassing 529 radiomics features, these models incorporated tumor and
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surrounding tissue attributes, with 12 features selected via stepwise multilinear regression.
Significant features included the tumor-based attribute “change_in_variance_of_uptake”
and volumetric Fibroglandular Tissue (FGT) enhancement. Models were trained on all NAT
recipients and subsequently applied to sub-populations: NACT recipients and (TN/HER2+)
NAT recipients. AUC values for (TN/HER2+) patients were 0.707 and 0.705 using logistic
regression and SVM, respectively. Other sub-cohorts exhibited lower prediction perfor-
mance, with AUCs below 0.658. The study underscored the potential of DCE-MRI images
preceding NAT initiation in early pCR prediction, particularly for (triple negative/HER2+)
patients undergoing NAT.

Eom et al. [99] employed statistical methods to assess the correlation between DCE-
MRI and clinicopathological features with pCR. Their findings indicated that the tumor
enhancement pattern (extracted from pre-NACT images) and the shrinkage pattern (ex-
tracted from post-NACT images) exhibited associations with pCR, with corresponding
p-values of 0.017 and 0.015. Furthermore, individuals achieving pCR were more inclined to
display homogeneous enhancement and a concentric tumor shrinkage pattern compared to
non-pCR patients, with odds ratios of 14.66 and 8.63, respectively.

Further, Li et al. [100] investigated the correlation between pCR and four quantitative
features mentioned in Table 4 through logistic regression analysis. Their analysis encom-
passed the entire patient cohort, revealing individual feature AUCs that did not surpass
0.79; however, a fusion of these features resulted in an enhanced AUC of 0.81. Furthermore,
the researchers categorized the data into four subgroups based on tumor subtype, classified
by HR/HER2 status. The researchers concluded that the integration of the four features
substantially enhanced the predictive capacity for pCR across all subtypes and the entire
dataset.

Several studies have employed both DCE-MRI quantitative parameters (Ktrans, Kep,
Ve, Vp, and τi) and semi-quantitative parameters (such as wash-in, wash-out, peak en-
hancement, etc.) to predict treatment response. Li et al. [101], Tudorica et al. [102], and
Drisis [103] utilized statistical methods for response prediction. In one study, Li et al. [101]
assessed both quantitative and semi-quantitative DCE parameters to identify response
predictors and distinguish between responders and non-responders. The semi-quantitative
parameter, signal enhancement ratio washout volume, exhibited significant differences
between the two response groups with an AUC of 0.75 and a p-value of 0.03. Regarding
quantitative parameters, Kep (estimated by three models: Tofts-Kety, extended Tofts-Kety
model, and fast exchange regime model) achieved AUCs of 0.78, 0.76, and 0.73, respectively.
The authors proposed Kep and signal enhancement ratio washout volume as potential
response predictors, but emphasized the need for confirmation through further prospective
studies.

In another study, Tudorica et al. [102] employed univariate logistic regression and C
statistics to predict early pCR and non-pCR. They evaluated pharmacokinetic parameters
using both the Tofts model (TM) and the Shutter speed model (SSM), along with the longest
tumor diameter. The percentage change in Ktrans (TM), Ktrans (SSM), kep (TM), and τi
after one cycle of NACT yielded C values exceeding 0.9, indicating excellent predictive
capability. Moreover, ve (TM) and ve (SSM), estimated after one cycle or at the midpoint,
demonstrated C values between 0.8 and 0.9, indicating good predictive potential. However,
the percentage changes in the longest diameter after one cycle and at the midpoint exhibited
poor prediction with C values below 0.7.

Additionally, Drisis et al. [103] statistically assessed the predictive potential of max-
imum tumor diameter, Ktrans and Ve for early identification of responders and non-
responders. The dataset was stratified into three subgroups based on tumor subtype.
Using the pre-treatment scan, Ktrans achieved AUCs of 0.66 (p = 0.03) and 0.78 (p = 0.03)
for the entire population and the triple-negative subgroup, respectively. Additionally,
the baseline maximum diameter exhibited higher values in the non-response group and
achieved an AUC of 0.8 for the entire dataset. For the second scan after 2 or 3 NACT cycles,
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Ktrans achieved AUCs of 0.79, 0.90, and 0.81 for the entire population, TN, and HER2+
groups, respectively.

On the other hand, Thibault et al. [104] extracted 1043 textural features from each of
the 13 parametric maps. They employed a ridge regression model to predict RCB index
values based on each map-feature pair (where RCB=0 indicates pCR, while any other RCB
index indicates non-pCR). Their results revealed that distinguishing between pCR and
non-pCR using the Ktrans (SM) map with RLM and the Gray-level non-uniformity feature
achieved a sensitivity and specificity of 100% (with an AUC of 1). Discrimination based
on the Ve(SSM) map with Haralick and contrast features yielded a sensitivity of 100% and
specificity of 96.7%. While validation on a larger cohort is necessary, these findings suggest
that analyzing tumor heterogeneity through textural analysis of DCE parametric maps can
aid in the early prediction of treatment response.

Furthermore, Lee’s group [105] assessed baseline perfusion parameters (Ktrans, Kep,
and Ve) for both the tumor and contralateral breast’s background parenchyma (BPCL). They
also performed 3D histogram analysis (including skewness, mean, kurtosis, 25th, 50th,
and 75th percentiles) for each perfusion parameter using logistic regression. Although
individual perfusion parameters exhibited limited predictive capacity for pCR, with AUCs
ranging from 0.449 to 0.683, combining these parameters enhanced prediction performance.
Notably, combining the skewness of tumor Ktrans and background parenchyma Ktrans

yielded an AUC of 0.760 (p-value = 0.003). The most robust prediction performance
emerged from combining the skewness and 50th percentile of tumor Ve with Ve of BPCL,
achieving an AUC of 0.807 (p = 0.002).

Aside from employing statistical methods, researchers also employed ML algorithms
for predicting treatment response based on images acquired either before treatment or
after the first cycle of NACT. Ashraf et al. [106], Braman et al. [107], Caballo et al. [108],
and Drukker et al. [109] conducted their studies using pre-treatment images, whereas
Machireddy et al. [110] utilized images acquired after the initial cycle of NACT along with
baseline images.

Ashraf et al. [106] employed logistic regression with leave-one-out cross-validation
(LOOCV) to differentiate between pCR and non-pCR cases, based on pre-treatment images
from 15 patients in the I-SPY-1 trial dataset. They incorporated morphological, kinetic fea-
tures, and kinetic statistic features, comparing their outcomes with commonly used features.
The proposed kinetic statistic features achieved an AUC of 0.84, while conventional features
such as longest diameter, size-to-energy ratio (SER), maximum peak enhancement (MPE),
and features derived from the characteristic kinetic curve achieved AUCs of 0.54, 0.64, 0.66,
and 0.71, respectively. Their findings suggest that heterogeneity in kinetic statistics could
enhance the predictive performance for treatment response using baseline images.

Furthermore, Machireddy and colleagues [110] employed a support vector machine
(SVM) classifier to distinguish between pCR and non-pCR cases based on data acquired
before and after the initial treatment cycle. They evaluated the predictive performance of
GLCM, GLRLM, single-resolution, and multi-resolution fractal features from Ktrans, Kep,
Ve, and τi parametric maps. They observed that GLCM and GLRLM features tended to
overfit the data, yielding markedly lower AUCs in the test set and higher AUCs in the
training set. Moreover, they found that multi-resolution fractal features outperformed other
features, achieving AUCs of 0.63, 0.70, 0.74, 0.80, and 0.78 for Kep, τi, Ve, Ktrans, and the
concatenation of all parametric maps, respectively.

Conversely, Braman et al. [107] and Caballo et al. [108] utilized intratumoral and
peritumoral features extracted from pre-treatment images to predict pCR and non-pCR
cases. In their study, Braman et al. [107] included 117 patients (78 in the training set and 39
in the test set) and employed five different ML classifiers to distinguish pCR cases.

The optimal AUCs for SVM, LDA, Diagonal Linear Discriminant Analysis (DLDA),
Naive Bayes (NB), and Quadratic Discriminant Analysis (QDA) were 0.72, 0.69, 0.74,
0.72, and 0.74, respectively. Furthermore, an additional experiment was conducted where
patients were categorized into subgroups based on hormone receptor type: (HR+/HER2-)
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and (TN/HER2+). The AUCs of the classifiers are outlined in Table 4. In this second
experiment, a 3-fold cross-validation approach was adopted due to the limited sample size
in the two subgroups. The authors discovered that kinetic features displayed no significant
disparity between the two response groups in all experiments. Intriguingly, peritumoral
features, obtained from the region adjacent to the tumor, could be amalgamated with
intratumoral features to enhance response prediction.

Conversely, Caballo et al. [108] devised logistic regression ML models to differentiate
between pCR and non-pCR cases, utilizing baseline intra-tumoral and peri-tumoral fea-
tures. The multivariate analysis achieved an AUC of 0.707 when predicting pCR using the
complete dataset. Additionally, upon stratifying the dataset according to tumor molecular
subtype, the model demonstrated promising outcomes with AUCs of 0.824, 0.823, 0.844,
and 0.803 for luminal A, luminal B, HER2-enriched, and TN tumors, respectively. The study
revealed that enhancement kinetics heterogeneity and time-dependent texture (4D texture)
features held predictive value. Moreover, features extracted from both the tumor core and
peritumoral region exhibited significance in predicting pCR, with predictive features from
the tumor core contributing to 65% and peritumoral features to 35% of the prediction.

Furthermore, Drukker et al. [109] employed baseline radiomics features to predict
pCR and lymph node status (LN status) following NACT in LN-positive patients. Linear
discriminant analysis was employed to assess the classification performance of each feature
individually, distinguishing between responders and non-responders. In contrast to most
studies, they unveiled that features extracted from the primary tumor lacked meaningful
predictive capability. Intriguingly, the features derived from LNs, especially statistics,
demonstrated robust predictive performance, with an AUC of up to 0.82 for pCR prediction
and up to 0.72 for LN status prediction following NACT.

In contrast to conducting a comprehensive investigation of the entire tumor for re-
sponse prediction, certain researchers, such as Wu et al. [111] and El Adoui et al. [112],
have adopted a strategy of partitioning the tumor into distinct subregions based on their
respective response characteristics. Wu and colleagues [111] employed K-means clustering
to segment the tumor into subregions using eigenmaps derived from principal compo-
nent analysis (PCA). This process yielded three clusters or subregions within the tumor,
identified by patterns of contrast agent washin and washout. Within each subregion, they
extracted four Haralick texture features and leveraged the variations in these features
between the baseline scan and the scan conducted after one treatment cycle to predict the
tumor’s response. Their analysis encompassed textural features from enhancement maps,
as well as eigenmaps both of the entire tumor and of individual subregions. Notably, their
findings indicated that the most effective prediction performance was achieved by utilizing
radiomics predictors derived from eigenmaps of distinct tumor subregions, resulting in an
impressive AUC of 0.79, a sensitivity of 75%, and a specificity of 78%.

On a related note, El Adoui et al. [112] introduced a parametric response map (PRM)
as a visual representation, employing a color map to delineate subregions of the tumor
in accordance with their respective response types. This method involved a comparative
analysis of tumor volumes and intensities before and after the initial NCAT cycle.

The classification of patients as positive responders under the PRM paradigm hinged
on the percentage of positive responses exceeding that of negative responses, and vice versa
for negative responders. Notably, their analysis demonstrated a correspondence between
the proposed PRM approach and the ground truth, substantiated by p-values of 0.19 for
positive responses and 0.45 for negative responses, as well as impressive AUC values of
0.97 and 0.96, respectively, underscoring the effectiveness of their method.

El Adoui et al. [113] constructed a CNN model trained using baseline images and
the images acquired after the initial NACT cycle, along with a fusion of these images to
differentiate responders and non-responders to NACT. The experiments were replicated
twice: once using images without tumor segmentation, and once using images with
tumor segmentation by the U-Net DL architecture. When utilizing segmented tumor
images, the AUC values were 0.71 for baseline images, 0.69 for images after the first
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cycle, and an improved 0.74 for their combination. In contrast, the unsegmented tumor
images demonstrated higher AUCs of 0.79, 0.77, and notably elevated performance of
0.91 for baseline, post-first cycle, and combined images, respectively. They revealed that
the utilization of unsegmented images outperformed segmented images, suggesting the
potential utility of peritumoral areas in enhancing response prediction.

In a separate study, Khanna et al. [114] explored the role of transfer learning in
response prediction. Their approach involved integrating pre-trained CNNs with ML
techniques for prediction tasks. Feature extraction employed ResNet-18 and ResNet-50,
while classification utilized ML methods like Decision Trees, Naïve Bayesian, KNN, and
SVM. The dataset was divided using two strategies: 10-fold cross-validation and a hold-out
validation, with a 70% training to 30% testing ratio. The authors highlighted the efficacy of
integrating Fine KNN (with K = 1) and ResNet-18, employing Mann–Whitney U test for
feature selection. This combination yielded outstanding predictive performance, achieving
an AUC of 1, a sensitivity of 100%, a specificity of 99.3%, and an accuracy of 99.8% when
using the hold-out validation technique.

NACT Prediction using DCE-MRI Radiomics and Pathological Markers: Researchers
also explored the combination of pathological markers and radiomics markers to predict
response, either before neoadjuvant chemotherapy (pre-NACT) or at an early stage. Jimenez
et al. [115] studied the role of integrating radiomics features extracted from pretreatment
scans with a pathological marker which is tumor-infiltrating lymphocyte (TIL) in predicting
pCR cases. They suggested that patients who achieved high levels of TIL (more than 20%)
and a radiomics signature value < 0.33 were considered to be pCR. Their model achieved
an AUC of 0.752, an accuracy of 83.3%, a sensitivity of 55.6%, and a specificity of 97.2%.
They found that this combination of features outperformed using either radiomics features
or pathological features alone.

Conversely, Golden et al. [116] performed textural analysis on kinetic maps extracted
from pre and post-NACT scans. Also, morphological and pathological features were
utilized. The logistic regression model’s AUC values for predicting pCR, residual lymph
nodes (LNs), and residual tumor and lymph nodes, using pre-NACT radiomics features,
were 0.68, 0.84, and 0.83, respectively. However, the use of pathological markers alone
exhibited limited predictive power, with AUCs below 0.6 for pCR and residual tumor and
LNs. Conversely, it demonstrated moderate predictive power (AUC = 0.7) for predicting
residual LN metastases. Moreover, patterns of tumor response did not exhibit significant
predictive power in any model (AUC < 0.6).

Jahani’s group [117] extracted two distinct categories of features from the registered
DCE scans, obtained before and after the initial cycle of NACT. The first category en-
compassed voxel-wise tumor deformation features, which elucidate alterations in tumor
size, orientation, and shape (specifically, Jacobian (which is the ratio of the volume after
the first cycle of NACT to the baseline volume), Anisotropic Deformation Index (ADI),
and Slab-Rod Index (SRI)). The second category comprised voxel-wise changes in kinetic
features (PE, WIS, WOS, and SER). These radiomics features achieved an AUC of 0.74
when employed in a logistic regression model to predict pCR. Additionally, an exploration
into demographic and pathological markers’ potential for predicting pCR and RFS was
conducted. The combination of age, race, hormone receptor status, and FTV resulted in
an AUC of 0.71 for predicting pCR and incorporating demographic, pathological, and
voxel-wise features raised the AUC to 0.78. The authors proceeded to compare the predic-
tive efficacy of voxel-wise features with that of aggregate features (representing mean or
average value changes across the entire tumor). The aggregate features exhibited an AUC
of 0.71, leading to the author’s conclusion that, for predicting pCR, voxel-wise features
outperformed aggregate features.

Conversely, Sutton et al. [118] utilized a random forest classifier to evaluate and
categorize pCR based on radiomics features extracted from both pre and post-NACT
images, in conjunction with the tumor molecular subtype. Three models were constructed;
the first model, utilizing solely radiomics features, yielded an AUC of 0.83, a sensitivity
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of 0.77, and a specificity of 0.69. Subsequent integration of the tumor molecular subtype
with radiomics features marginally improved performance, resulting in an AUC of 0.78, a
sensitivity of 0.79, and a specificity of 0.69. The third model, based on radiomics features
excluding DCE-MRI intensity features, demonstrated similar performance to the first
model (AUC: 0.78, SEN: 0.79, SPE: 0.69), underscoring the value of textural and edge-based
radiomics analysis in pCR classification.

In a separate study, Fan and colleagues [119] scrutinized tumor heterogeneity changes
via morphological, first-order statistical, and textural analysis of images obtained before
and after two cycles of NACT. A Support Vector Machine (SVM) classifier was employed
to predict responders and non-responders. The prediction performance of baseline images
and the Jacobian map proved subpar, with AUCs of 0.568 and 0.63, respectively. Conversely,
using images from the second cycle of NACT yielded an AUC of 0.767. Furthermore, a
model based on feature changes between images taken during and prior to treatment
resulted in an AUC of 0.726. Notably, combining features from all aforementioned images
with the molecular subtype produced the most robust prediction performance, boasting an
AUC of 0.809, a sensitivity of 82.6%, and a specificity of 80%.

Hussain et al. [120] integrated molecular subtyping and the Ki-67 index with radiomics
features, subsequently comparing the predictive capabilities of five ML classifiers (SVM,
Naive Bayes, KNN, Decision Tree, and Ensemble RUSBoosted Tree) in determining pCR
patients, utilizing data from the I-SPY-1 TRIAL dataset. Employing the Ensemble RUS-
Boosted Tree model, when considering solely the molecular subtype, they achieved an
AUC of 0.82 alongside an accuracy of 84%. Conducting a textural analysis on MRI images
acquired at baseline, after the first cycle, and at mid-treatment resulted in AUCs of 0.88,
0.72, and 0.78, and corresponding accuracies of 86%, 82%, and 76%, respectively. Notably,
merging the textural analysis results from the two time points (before and after the first
cycle) yielded an impressive AUC of 0.96 (with accuracy at 84%). However, the integration
of the molecular subtype further enhanced prediction performance, elevating the AUC to
0.98 (with accuracy reaching 94%).

Parametric response maps have been utilized to investigate regions of increased
and decreased intensity within tumors at an early stage of treatment, aiding in response
prediction. This approach has been adopted by Cho et al. [121] and Drisis et al. [122]. In
the study by Cho et al. [121], a t-test was employed to compare the predictive performance
of traditional pharmacokinetic parameters (specifically Ktrans, Kep, and Ve) with PRM
analysis. The PRM analysis involved a voxel-wise comparison between baseline images
and those acquired after the first cycle of NACT. Voxels with increased intensity (>10%)
were labeled as PRMSI+, while those with decreased signal intensity were labeled as PRMSI-.
Contrary to the conclusions drawn by many studies, the authors found no significant
difference between pCR and non-pCR groups in terms of pharmacokinetic (PK) parameters
and tumor volume change. Cho and colleagues demonstrated that voxels with increased
signal intensity (PRMSI+) achieved an AUC of 0.77, a sensitivity of 100%, and a specificity
of 71% at a cut-off of 20.8%. Additionally, they examined the potential of pathological
markers using the Fisher exact test and observed no significant distinction between pCR
and non-pCR groups.

Drisis et al. [122], on the other hand, generated parametric response maps (PRMs)
through an affine registration method, involving the subtraction of images acquired at
baseline (reference image) and after the start of NACT (transformed image). Regions where
voxel values showed an increase of more than 10% were classified as non-responding
regions (PRMdce+) while responding regions (PRMdce-) exhibited a decrease of more than
10% in their voxel values post-therapy initiation. Voxels not falling within these subregions
were categorized as (PRMstable). The study explored the potential of both pathological
markers and PRMs in predicting non-pCR. The authors determined that pathological
markers and PRMs achieved AUCs of 0.71 and 0.88, respectively. They also identified
PRMdce+ and grade (II) tumors as significant factors for non-pCR prediction, yielding an
AUC of 0.94 with a p-value below 0.01.
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Table 4. DCE-MRI.

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Ahmed et al. [94]

To evaluate the efficacy of
textural features extracted
from DCE-MRI in predicting
response to chemotherapy.

100 patients
Study type: retrospective
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: Texture features

(GLCM)

Texture features that showed a
significant difference between partial
responders and non-responders were
contrasting (p-value: 0.042) and
showed differences in variance
(p-value: 0.043). They concluded that
texture features showed significant
differences between the two response
groups at 1–2 min post-contrast time
points, while pre-contrast time points
did not.

Teruel et al. [95]

To examine the potential of
texture analysis to predict the
clinical and pathological
response prior to NACT in
LABC patients.

58 LABC patients
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics:

Two-dimensional GLCM
texture features.

Eight features showed a significant
difference between stable disease and
complete response groups
(p-values < 0.05). The most 3 significant
features for predicting stable disease
were: entropy (AUC: 0.77, SEN: 0.842,
SPE: 0.684), sum variance (AUC: 0.742,
SEN: 0.842, SPE: 0.684), and angular
second moment (AUC: 0.742, SEN:
0.895, SPE: 0.632). They found that
textural analysis can assist clinicians in
the response prediction prior to
therapy.

Giannini et al. [96]

To construct a CAD system
that performs fully automatic
segmentation of the tumor
and extracts its’ textural
features, in addition to the
prediction of pCR & pCRN to
NACT prior to treatment.
(pCRN: is pCR with the
absence of residual metastatic
lymph nodes)

44 patients
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: gray-level

co-occurrence matrixes
(GLCM) & gray-level run
length method (GLRLM)
features.

Mono-parametic model
Seven individual features correlated
with pCR: AUCs from 0.674 to 0.722,
SENs from 46.7% to 93.3%, and SPEs
from 51.7% to 93.1%.
Four features were correlated with
pCRN: AUCs from 0.685 to 0.747, SENs
from 84.6% to 100%, SPEs from 41.9%
to 61.3%.

Logistic regression model
for predicting pCR: AUC: 0.795, SEN:
80%, SPE: 69%
for predicting pCRN: AUC: 0.764, SEN:
46%, SPE: 100%

Bayesian model
for predicting pCR: ACC: 70%, SEN:
67%, SPE: 72%
for predicting pCRN: ACC: 64%, SEN:
69%, SPE: 61%.
They found that paients’ responses can
be predicted using a CAD system that
automatically segments the tumor and
extracts texture features, and their
results need to be validated on a larger
population.

Fan et al. [97]

Using quantitative analysis of
pretreatment DCE-MRI
images to enhance the
prediction of NACT response.

main cohort (n = 57),
independent validation
cohort (n = 46)
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: morphologic,

dynamic, textural,
first-order statistical, and
background parenchymal
enhancement features
(BPE).

The prediction performance using
multivariate logistic regression model
and LOOCV based on:

Main cohort: AUC: 0.910, SEN: 87.2%,
SPE: 90.0%.

Independent cohort: AUC: 0.874, SEN:
78.4%, SPE: 88.9%
The selected features (based on the
main cohort) achieved an AUC of 0.713
when tested on the independent cohort
(SEN: -, SPE: -).
Their results suggest that BPE features
can be used as response predictors
combined with lesion features.
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Table 4. Cont.

Reference Study Aim Number of Patients &
Study Type Markers Results & Findings

Cain et al. [98]

To assess the utility of
multivariate ML models in
predicting pCR to NAT based
on radiomics features
extracted from DCE-MRI
breast images.

288 patients divided
equally into training and
test.
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: size, shape,

enhancement, and texture
of tumors and the
surrounding tissue or FGT.

Pediction AUCs using

logistic regression model range from
0.589 to 0.707 (SEN: -, SPE: -), while
using

SVM model range from 0.593 to 0.705
(SEN: -, SPE: -).
They found that pre-treatment breast
MRI can be used in pCR prediction,
especially in TN/HER2+ patients who
had neoadjuvant therapy.

Eom et al. [99]

To evaluate the association
between tumor pathological
response and DCE-MRI
features in addition to
clinicopathologic factors in
TNBC patients.

73 patients
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics:

pre-NACT: maximal size,
shape, presentation of the
tumor (mass or non-mass),
margin, internal
enhancement pattern
(internal enhancement:
heteroge-
neous/homogeneous/rim
enhancement), and kinetics
Post-NACT: tumor
shrinkage pattern
(concentric or dendritic)

The p-values of factors associated with
pCR according to univariate analysis
were 0.025, 0.037, & 0.009 for tumor
shape, homogeneous enhancement, &
concentric shrinkage pattern,
respectively.
The p-values of factors associated with
pCR according to multivariate analysis
were 0.017 and 0.015 for the
enhancement pattern and shrinkage
pattern, respectively.
They concluded that homogeneous
enhancement & concentric tumor
shrinkage patterns are associated with
pCR.

Li et al. [100]

To evaluate the performance
of the predictive model
combining multiple MRI
features.

384 patients with LABC
who enrolled in the
I-SPY-2 trial. Patients
were stratified into 4
subgroups according to
tumor subtype
Study type: retrospective
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: functional

tumor volume (FTV),
longest diameter (LD),
sphericity (SPH), and
contralateral background
parenchymal enhancement
(BPE).

Using all patients: the AUCs of FTV,
BPE, SPH, & LD were 0.77, 0.69, 0.69, &
0.79, respectively, (SEN: -, SPE: -);
however, combining all features
yielded an AUC of 0.81 (SEN: -, SPE: -).
Moreover, combining all features while
dividing patients into subgroups
achieved AUCs of 0.83, 0.88, 0.83, &
0.82 for (HR+/HER2-), (HR+/HER2+),
(HR-/HER2+), & (HR-/HER2-),
respectively, (SEN: -, SPE: -). They
concluded that combining the four
features outperformed using each
feature alone.

Li et al. [101]

To determine whether early
changes in quantitative and
semiquantitative DCE-MRI
parameters acquired after the
first cycle of NACT can
differentiate between
responders and
non-responders, in addition
to the possibility of using
them as a prognostic
indicator of patients’
responses to NACT.

28 patients
Study type: single-center
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics:

Quantitative parameters
(Ktrans, Ve, Kep, Vp, and τi).
Semiquantitative
parameters (longest
dimension, tumor volume,
initial area under the curve,
and signal enhancement
ratio related
parameters(SER)).

The AUC of SER washout volume was
0.75 and p-value = 0.03 (SEN: -, SPE: -)
The AUCs of Kep estimated by three
models (Tofts-Kety, extended
Tofts-Kety model, and fast exchange
regime model) were 0.78, 0.76, and 0.73,
and the p-values were 0.01, 0.02, and
0.048, respectively, (SEN: -, SPE: -).
They found that the SER washout
volume and Kep can be used in the
response prediction after one cycle of
NACT.

Tudorica et al. [102]

To compare the efficacy of
quantitative DCE-MRI
parameters and tumor size in
the early prediction of
patients’ response to NACT.

28 patients
Study type: N/A

• Clinical: N/A
• Pathological: N/A
• Radiomics: Tumor longest

diameter (LD), the
percentage changes of Ktrans,
Kep, Ve, and τi after the first
cycle, at the midpoint, and
after NACT.
PK parameters were
derived by both Tofets
model (TM) and the
Shutter-Speed model (SSM)

Univariate logistic regression C
statistics values for:
Percentage changes in Ktrans, Kep, Ve,
and τi after one cycle range from 0.804
to 0.967
Changes in LD after 1st cycle and at
midpoint were 0.609 and 0.673,
respectively. Predicting pCR at SEN:
100% achieved SPEs: 92% & 17% using
the change in Ktrans(TM) and LD,
respectively.
Their results suggested that LD
changes were poor predictors, whereas
PK parameters derived by either TM or
SSM analyses were effective response
predictors
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Drisis et al. [103]

To determine whether
pharmacokinetic (PK)
parameters obtained from
DCE-MRI images acquired
before and after the second or
third cycle of chemotherapy
can predict pCR for different
breast cancer subgroups.

84 LABC patients
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: Maximum

diameter (DMax) and
pharmacokinetic
parameters: Ktrans, and Ve

At baseline: Ktrans achieved AUC: 0.66,
SEN: 68%, SPE: 66% using the whole
population, while it achieved AUC:
0.78, SEN: 85%, SPE: 70% using TN
subgroup.

At the early stage of NACT: Ktrans

achieved AUC: 0.79, SEN: 69%, SPE:
87% for the Whole population. For TN
subgroup it achieved AUC: 0.9, SEN:
86%, SPE: 88%, while in HER2+
subgroup AUC: 0.81, SEN: 67%, SPE:
91%. Moreover, Ve achieved AUC: 0.74,
SEN: 87%, SPE: 59% for the entire
dataset, and AUC: 0.83, SEN: 86%, SPE:
69% for TN subgroup.

They found that DCE-MRI parameters
showed a significant prediction
performance, especially in TN tumors.

Thibault at al. [104]

To investigate the capability
of texture features generated
from parametric maps of
quantitative and
semi-quantitative
pharmacokinetic metrics
acquired from DCE-MRI
images at baseline and after
the first cycle to early predict
patients’ pathological
response to NACT.

38 patients with LABC
Study type: N/A

• Clinical: N/A
• Pathological: N/A
• Radiomics: Texture features

(GLCM or Haralick,
GLRLM, GLSZM, LBP,
pattern spectrum
morphological operations,
and basic moments) of
Ktrans, Ve, τi, Kep, dKtrans

from shutter-speed model
(SSM) and standard Tofts
model (SM), in addition to
semi-quantitative metrics
(washin, washout, SER,
washin slope, and AUC).

The ridge regression model can
differentiate between pCR & non-pCR
using Ktrans(SM)+ GLRLM+ Gray-level
nonuniformity and achieved AUC: 1,
SEN: 100%, & SPE: 100%.
Using Ve(SSM)+ Haralick+ contrast
feature achieved
SEN: 100% and SPE: 96.7%
The authors found that SSM
parametric maps were more predictive
than the SM parameters or the
semi-quantitative metrics

Lee et al. [105]

To evaluate the utility of
imaging parameters extracted
from pretreatment DCE-MRI
in the prediction of pCR to
NACT.

74 patients
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: perfusion

parameters (Ktrans, Kep, and
Ve) for both the tumor and
the background
parenchyma of contralateral
breasts (BPCL). The 25th,
50th, and 75th percentile,
skewness, mean, and
kurtosis (3D histogram
analysis) of each tumor
perfusion parameter were
obtained.

Each perfusion parameter for both
tumor and BPCL did not show high
predictive ability for pCR (AUCs: 0.449
to 0.683, SENs: 15.4% to 100%, SPEs:
18% to 96.7%).
Combination of Ve (BPCL) with 50th
percentile and skewness of Ve in tumor
had the highest predictive value (AUC:
0.807, p = 0.002, SEN: -, SPE: -). They
revealed that the combination of
perfusion parameters of tumor and
BPCL showed higher predictive ability
for pCR than every individual
parameter.

Ashraf et al. [106]

To assess the role of
heterogenity-based kinetic
features derived from
DCE-MRI in predicting
treatment pathological
response.

15 patients from I-SPY-1
trial
(leave-one-out
cross-validation)
Study type: single-center
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: Morphological

(ellipticity, circularity,
perimeter, and area), kinetic
features (TTP, PE, WIS, and
WOS), and kinetic statistics
(mean and variance of
kinetic features maps).

Logistic regression model based on the
proposed features (kinetic statistics)
yielded an AUC of 0.84 (SEN: -, SPE: -).
Most individual kinetic statistics
features obtained AUCs ranging from
0.73 to 0.81 (SEN: -, SPE: -).
They concluded that: Morphological
features showed poor prediction
performance. Moreover, the
heterogeneity-based kinetic statistics
outperformed the individual
conventional kinetic features & their
combinations, and they can be used as
NACT response predictors.
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Machireddy et al.
[110]

To evaluate the capability of
multiresolution fractal
analysis of voxel-based
DCE-MRI parametric maps
extracted before and after the
first cycle of NACT for early
prediction of pCR.

55 patients
Training
(n = 40)
Test (n = 15)
Study type: single-center
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: GLCM, GLRLM,

single resolution, and
multiresolution (wavelet
and Fourier
transformations) fractal
analysis of four parametric
maps (Ktrans, Ve, Kep, τi).

The AUCs of multiresolution fractal
features extracted from Ktrans, Kep, Ve,
τi, and all parametric maps were 0.80,
0.63, 0.74, 0.70, and 0.78, respectively.

At SEN: 60%, their SPEs: 89.3%, 70.7%,
80.7%, 68.7%, and 82.7%.

At SEN: 80%, their SPEs: 68.7%, 49.3%,
62%, 62%, and 62%, respectively.

They revealed that multiresolution
fractal features generally have better
predictive performances than those
extracted with conventional methods.
Moreover, concatenated features from
all DCE-MRI parameters improve the
prediction performance rather than
individual parametric maps.

Braman et al. [107]

To assess the ability of
pretreatment intratumoral
and peritumoral textural
radiomics in predicting pCR
to NACT.

117 patients Training
(n = 78),
Test (n = 39)
Study type: retrospective
study

• Clinical: N/A
• Pathological: N/A
• Radiomics:

pharmacokinetic
parameters (PK): Ktrans, Kep,
and Ve. In addition to Laws
energy measures, Gabor,
Haralick, and CoLlAGe
features. CoLlAGe:
Co-occurrence of Local
Anisotropic Gradient
Orientations

The AUCs of LDA, DLDA, SVM, NB,
and QDA classifiers (LDA: linear
discriminant analysis, DLDA: diagonal
linear discriminant analysis, NB: Naive
Bayes, QDA: quadratic discriminant
analysis), respectively, using:

All patients: 0.69, 0.74, 0.72, 0.72, and
0.74 (ACC: 0.59, 0.67, 0.72, 0.64, & 0.64).

(HR+,HER2-)cohort: 0.8, 0.83, 0.82,
0.81, and 0.81 (ACC: 0.77, 0.79, 0.87,
0.78, and 0.88).

(TN/HER2+) cohort: 0.87, 0.89, 0.89,
0.93, and 0.85 (ACC: 0.81, 0.83, 0.82,
0.84, and 0.81).

They found that intratumoral &
peritumoral features can robustly
predict pCR across multiple classifiers.
However, PK showed no difference
between pCR and non-pCR tumors.

Caballo et al. [108]

To use the spatio-temporal
radiomic analysis of
pretreatment DCE-MRI
images in identifying patients
who achieve pCR.

251 patients
(leave-one-out cross
validation)
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: morphology,

texture temporal variation
(run length, co-occurrence,
& histogram-based), and
enhancement kinetic
heterogeneity. Features
were extracted from
tumoral and peritumoral
regions.

Using univariate ML analysis: some
individual features can be used as pCR
predictors and AUCs range from 0.60
to 0.83 (SEN: -, SPE: -).

Using multivariate ML logistic
regression models: the AUCs of the
models were 0.707, 0.824, 0.823, 0.844,
& 0.803 using all patients, Luminal A,
Luminal B, HER2 enriched & TN
groups, respectively, (SEN: -, SPE: -).

These results suggested that changes in
enhancement kinetics heterogeneity
and texture features over time (4D
features) were significant predictors.

Drukker et al. [109]

To predict the pCR to NACT
using pretreatment MRI
radiomics in patients with
invasive lymph node (LN
positive), in addition to
predicting LN status after
NACT.

158 patients
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: size,

shape/geometry,
margin/morphology,
enhancement texture,
kinetics, variance kinetics,
and statistics/ gray-level
histogram-based features.
(These features were
extracted from tumor and
axillary LNs)

Pre-NACT lymph node features
showed significance in predicting pCR
and LN status after NACT with AUCs
up to 0.82 and 0.72, respectively, using
the LDA classifier (SEN: -, SPE: -).
They concluded that tumor features
did not show significance in predicting
post-NACT pCR or LN status, on the
other hand, features extracted from LN
did.
Note: Analysis was performed using
individual features, not a combination
of them.
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Wu et al. [111]

Using quantitative image
features extracted from
different tumor sub-regions
to predict pathological
response to NACT.

35 patients
(leave-one-out cross
validation)
Study type: retrospictive
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: Haralick texture

features based on GLCM (
contrast, correlation, energy,
and homogeneity) in three
groups of predictors:
enhancement map (WIS &
WOS maps), eigenmaps of
entire tumor region, and
eigenmaps of tumor
subregions.

The response prediction accuracies
based on texture features extracted
from the three groups of predictors
were:
enhancement maps: AUC: 0.67, SEN:
58%, SPE: 70%
eigenmaps of the whole tumor: AUC:
0.65, SEN: 58%, SPE: 70%
eigenmaps of the tumor’s subregions:
AUC: 0.79, SEN: 75%, SPE: 78%.
They found that eigenmaps of tumor
subregions with elevated washout rate
had a superior prediction performance.

El Adoui et al. [112]

To provide an algorithm
based on parametric response
map (PRM) which depends
on the intra-tumor changes
between MRI images
acquired before & after the
first cycle of treatment to
predict patients’ response
after the first cycle.

40 patients
Study type: retrospective
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: PRM creates a

color map with the
percentages of positive,
negative, and stable tumor
response after the first cycle
of chemotherapy, and
identifies each region with
its response rate.

The AUCs were 0.97 and 0.96 for the
positive response and the negative
response, and the p-values were 0.19
and 0.45, respectively. (SEN: -, SPE: -)
These results indicate the absence of a
significant difference between the
suggested method and the ground
truth.

El Adoui et al. [113]

To conduct a CNN
architecture used in
predicting patients’
pathological response to
NACT based on multiple
DCE-MRI inputs (pre-NACT,
after the first cycle of
chemotherapy, and their
combination).

42 LABC patients in
addition to 14 external
independent validation
cases.
Study type: retrospective
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: features

extracted from pre-NACT,
after the first cycle of
chemotherapy, and the
combination of both scans.
The model was trained
using these scans with
tumor segmentation and
without tumor
segmentation.

The performance of the model based
on the following scans
1. With tumor segmentation:
• pre-NACT: AUC: 0.71, ACC:

69%, SEN: 81.5%, SPE: 66.2%
• post the first NACT cycle: AUC:

0.69, ACC: 68%, SEN: 80.3%,
SPE: 66.4%

• both scans: AUC: 0.74, ACC:
70%, SEN: 82.4%, SPE: 68.7%

2. Without tumor segmentation:

• pre-NACT: AUC: 0.79, ACC:
80%, SEN: 82.1%, SPE: 67.8%

• post the first NACT cycle:
AUC: 0.77, ACC: 80%, SEN:
81.6%, SPE: 67.1%

• both scans: AUC: 0.91, ACC:
88%, SEN: 92.2%, SPE: 79.1%

These results underscored the
superiority of combining pre- and
post-NACT images in comparison to
using each image type independently.

Khanna et al. [114]

To integrate pre-trained CNN
with ML techniques to predict
pCR to NACT using
DCE-MRI images acquired
prior to the initiation of
treatment.

64 patients
Study type: retrospective
study

• Clinical: N/A
• Pathological: N/A
• Radiomics: features were

extracted using two
pre-trained models
(ResNet-18 and ResNet-50).

The best prediction performance was
attained when integrating ResNet-18
(the feature extractor) with KNN (the
classifier)

Using hold-out validation (70:30) AUC:
1, ACC: 99.8%, SEN: 1, SPE: 99.3%

Using 10-fold cross-validation AUC:
0.99, ACC: 99.1%, SEN: 99.4%, SPE:
99.1%
They found that Fine KNN (K = 1)
showed a superior prediction
performance than other classifiers.

Jimenez et al. [115]

To predict pCR in TNBC
patients who underwent
neoadjuvant systemic therapy
based on baseline DCE-MRI
scans and tumor-infiltrating
lymphocyte (TIL) levels.

80 TNBC patients (5-fold
cross-validation for
radiomics & radiomics+
pathological features
models)
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: TIL levels
• Radiomics: the selected

features were volume,
homogeneity, peak
timepoint variance,
uniformity, and variance.

Pathological model (TIL model): AUC:
0.632, ACC: 70%, SEN: 57.6%, SPE:
78.7%, PPV: 65.5%, NPV: 72.6%

Radiomics model: AUC: 0.712, ACC:
72.5%, SEN: 85.1%, SPE: 54.6%, PPV:
72.7%, NPV: 72%

Radiomics + pathological features:
AUC: 0.752, ACC: 83.3%, SEN: 55.6%,
SPE: 97.2%, PPV: 90.9%, NPV: 81.4%

They suggested that integrating
radiomics features with a pathological
marker (TIL) could be utilized in
predicting pCR before the initiation of
the therapy.
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Golden et al. [116]

To predict the patients’
response to NACT using
quantitative measurements of
spatial heterogeneity
extracted from DCE-MRI
kinetic maps.

60 patients with
triple-negative
early-stage breast cancer.
Study type: multi-center
prospective study

• Clinical: N/A
• Demographic: Age
• Pathological: clinical stage,

tumor grade (1, 2,and 3), ER,
PR, HER2, Ki-67 index,
BRCA1 status, BRCA2
status, and number of
treatment cycles

• Radiomics: morphological
features (patterns of tumor
response ( such as
progression, no change,
regression with
fragmentation, regression
without fragmentation and
resolution), and descriptors
from BI-RADs lexicon
features (such as tumor
shape and margins)) and
quantitative texture features
(GLCM).

The AUCs of the logistic regression
model using pre-NACT imaging
features for predicting pCR, residual
LN metastases, and residual tumor
with LN metastases were 0.68, 0.84,
and 0.83, respectively, (SEN: -, SPE: -).
They found that pathological markers
and patterns of tumor response were
not significant for the prediction.
Otherwise, pre-NACT radomics
features yielded showed a good
prediction performance.

Jahani et al. [117]

To assess changes in the
intratumoral heterogeneity
measured by voxel-wise
image registration to perform
early prediction of pCR and
RFS in LABC patients.

132 LABC patients from
the I-SPY-1 trial (five-fold
cross-validation was
performed).
Study type: multi-center
study

• Clinical: N/A
• Demographic: age & race.
• Pathological: hormone

receptor (HR) status
• Radiomics: functional

tumor volume (FTV),
voxel-wise measures of
tumor deformation
(Jacobian, ADI, SRI), and
voxel-wise changes of
parametric response maps
of kinetic features (PE, WIS,
WOS, SER).

The AUCs of predicting pCR using the
following features were:
Baseline features: (age, race, HR status,
and FTV): 0.71
Voxel-wise+baseline features: 0.78
Voxel-wise features only: 0.74
Aggregate measures: (∆PE, ∆WIS,
∆WOS, ∆SER, FTV2/FTV1): 0.71 For
all features: (SEN: -, SPE: -)
They found that HR status showed a
significant association with pCR.
Moreover, voxel-wise features showed
an association with pCR, whereas the
aggregate measures did not improve
the model performance.

Sutton et al. [118]

To develop a classifier that
assesses and classifies pCR
using molecular subtypes and
features extracted from
pre-NACT and post-NACT
scans.

273 patients
278 cancers (n = 5
bilateral)
Training (n = 222 cancers)
Test (n = 56 cancers)
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: Molecular

subtype
• Radiomics: first-order

histogram, second-order
Haralick texture, features
from Gabor edge maps,
Haralick texture measures
computed from Gabor edge
maps, and intra-tumor
cluster entropy measure

The performance of the 3 RF
classification models:

Model (1): (radiomics only) AUC: 0.83,
SEN: 0.77, SPE: 0.69

Model (2): (radiomics and molecular
subtype)
AUC: 0.78, SEN: 0.79, SPE: 0.69

Model (3): (radiomics without intensity
metrics)
AUC: 0.78, SEN: 0.79, SPE: 0.69

They suggested that radiomics features
extracted before and after NACT could
help in assessing pCR.

Fan et al. [119]

To demonstrate how the
heterogeneity changes in
DCE-MRI images at baseline
& after the second cycle of
NACT could affect the
prediction accuracy.

114 patients
Training (n = 61)
Test (n = 53)
Study type: retrospective
study

• Clinical: N/A
• Pathological: Molecular

subtype.
• Radiomics: Shape,

first-order statistics, GLCM,
GLRLM, GLSZM, and
GLDM features.
(deltaRAD: means
differences between pre and
early NACT images).

The AUCs of the model based on:
Pre-NACT radiomics: 0.568
Early-NACT radiomics: 0.767
Jacobian maps: 0.630
deltaRAD: 0.726
Combination of features: 0.771
Fusing molecular subtype with the
combination of features: 0.809
The SENs of the model using the same
features: 91.3%, 56.5%, 60.9%, 91.3%,
52.2%, & 82.6%, respectively, while
SPEs: 36.7%, 90%, 70%, 53.3%, 96.7%, &
80%.
They found that the reduction in tumor
heterogeneity (indicated by texture
feature) is higher among responders
than non-responders.
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Hussain et al. [120]

Using multiple ML classifiers
to predict pCR to NACT
based on molecular subtype
and texture features extracted
from MR images of tumor
and peri-tumoral region at
different treatment time
points.

166 patients from I-SPY-1
trial
Study type: multi-center
retrospective study

• Clinical: N/A
• Pathological: molecular

subtype and Ki67 index
• Radiomics: Second-order

texture features (extracted
from GLCM of images
acquired pre-, early-, and
mid-treatment). In addition
to peritumoral features
(acquired from 3, 5, and
7-pixel morphological
dilation).

The prediction performance using
Ensemble Random Undersampling
Boosting (RUSBoosted) classifier Tree
based on:

Molecular subtype
AUC: 0.82, ACC: 84%, SEN: 86.48%,
SPE: 76.92%

Radiomics extracted from pre, early, &
mid-NACT images
AUCs: 0.88, 0.72, & 0.78
ACCs: 86%, 82%, & 76%
SENs: 86.48%, 97.3%, & 92.85%
SPEs: 84.62%, 38.46%, & 30%

Combining pre and early-NACT
images with molecular subtype
AUC: 0.98, ACC: 94%, SEN: 94.59%,
SPE: 92.31%

They concluded that combining
molecular subtype with radiomics
extracted at pre- and early-NACT
(with 3–5 pixels of the peritumoral
region) had the best performance.

Cho et al. [121]

To compare the performance
of the parametric response
map (PRM) acquired from
DCE-MRI with the
pharmacokinetic parameters
(PK) in the early prediction of
pathological response to
NACT.

48 patients
Study type: prospective
study

• Clinical: N/A
• Demographic: Age
• Pathological: clinical stage,

expression of ER, PR, HER2,
and Ki-67,
immunohistochemical
regimen, and type of
surgery.

• Radiomics: tumor size and
volume, Parametric
Response Map (PRM), and
pharmacokinetic
parameters (Ktrans, Kep, and
Ve).

The prediction performance of voxels
with increased signal intensity
(PRMSI+) in predicting pCR vs.
non-pCR cutoff: 20.8%, AUC: 0.77,
SEN: 100%, SPE: 71% They revealed
that PRM analysis could enable the
early prediction of response (after the
first cycle), whereas tumor size,
volume, and PK parameters do not.
Moreover, pathological markers
showed no differences between the
pCR and non-pCR.

Drisis et al. [122]

To determine whether the
parametric response mapping
(PRM) can be used in the
prediction of early
morphological response
(EMR) & pCR within 72 h
after the initiation of
chemotherapy.

39 patients
Study type: single-center
retrospective study

• Clinical: N/A
• Demographic: Age
• Pathological: nodal status,

tumor grade, and
immunohistochemical type.

• Radiomics: tumor size, and
Parametric Response
Mapping (PRM).

Logistic regression analysis using
demographic and pathological markers
only obtained an AUC of 0.71, SEN: -,
SPE: -

PRM obtained an AUC of 0.88 for the
prediction of non-pCR (SEN: -, SPE: -).

Integrating the demographic and
pathological markers with PRM
achieved an AUC of 0.94
(SEN: -, SPE: -).

They found that grade II tumors
(pathological marker) and PRMdce+
(PRMdce+: voxels that showed an
increment in their value of more than
10%(non-responding regions)) were
significant for the prediction of
non-pCR.

Comes et al. [123]

To conduct a transfer learning
approach based on
pre-treatment and
early-treatment DCE-MRI
scans to predict patients’
pathological response to
NACT.

134 patients
Fine-tuning (n = 108)
Test (n = 26)
Study type: worked on a
subset of public dataset
(I-SPY-1 trial)

• Clinical: N/A
• Pathological: ER, PR, HER2,

and molecular subtype.
• Radiomics: low-level

features extracted by a
pre-trained CNN from
pre-and early-treatment
images. Low-level features
refer to local details (edges,
lines, & points in the image)

Pathological features only:
ACC: 69.2%, SEN: 42.9%, 78.9%

Combining pathological & radiomics
features: AUC: 0.90, ACC: 92.3%, SEN:
85.7%, SPE: 94.7%

They concluded that low-level CNN
features extracted from pre-and-early
treatment images have a significant
role in the early prediction of pCR.
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Peng et al. [124]

To use the pretreatment
DCE-MRI in comparing the
prediction performances of
radiomics models with DL
models.

356 patients
Study type: single-center
retrospective study

• Clinical: N/A
• Pathological: (molecular)

ER, PR, HER2, and Ki67.
• Radiomics: Kinetics: (ktrans,

Kep, and MaxSlope)
for LDA models: shape,
wavelet, texture, and
intensity statistical features
(handcrafted features).
for DL models: it can
automatically learn
discriminative features
directly from images using
ResNeXt50.

• The accuracies of LDA models
using:
Molecular only: AUC: 0.744,
ACC: 67.3%, SEN: 81.4%, SPE:
63.2%
Kinetic only: AUC: 0.682, 63.8%,
SEN: 68.1%, SPE: 62.5%
Radiomics only:
all metrics < 61%
Combining all of them: AUC:
0.78, ACC: 73.1%, SEN: 79.5%,
SPE: 71.2%

• The accuracies of DL models
using:
Molecular only: AUC: 0.752,
ACC: 66.3%, SEN: 80.9%, SPE:
61.9%
Kinetic only: AUC: 0.652, ACC:
65%, SEN: 60.8%, SPE: 66.3%
Radiomics only: all metrics < 0.6
Combining all of them: AUC:
0.832, ACC: 77.2%, SEN: 78.1%,
SPE: 76.9%

They found that (molecular-only)
models had a better prediction
performance than (kinetic-only) and
(radiomics-only) models. Moreover,
using the DL model and combining the
three feature groups outperformed the
other models.

Li et al. [125]

To construct a nomogram to
predict the probability of pCR
in TNBC patients based on
pretreatment DCE-MRI &
clinicopathological features.

108 TNBC patients
Training
(n = 87)
Validation
(n = 21)
Study type: single-center
retrospective study

• Clinical: serum CA 15-3,
CA125, family history of BC,
body mass index (BMI),
carcinoembryonic antigen
(CEA) levels.

• Pathological: ER, PR, HER2
status, Ki67,
Lymphovascular invasion
(LVI), and AR.

• Radiomics: TTP, tumor
volume, and maximum
tumor diameter.

The nomogram achieved an AUC of
0.79 in the validation cohort (SEN: -,
SPE: -).
They concluded that a nomogram
incorporating 3 pretreatment factors
(tumor volume, TTP, and AR status)
had a good ability to predict pCR.
Moreover, higher TTP is associated
with a lower probability of achieving
pCR.

Deep Learning approaches have demonstrated promising potential in predicting
responses based on imaging and pathological features. Comes et al. [123], a pre-trained
Convolutional Neural Network (CNN) was employed to automatically extract low-level
features from images obtained before and after the initial cycle of NACT, replacing the
need for manual feature extraction. The study also investigated the predictive capability of
pathological features. Subsequently, the most optimal features were selected and utilized
to construct an SVM classifier. The model relying on pathological features achieved an
accuracy of 69.2%, a sensitivity of 42.9%, and a specificity of 78.9%. By incorporating
pathological features with pre- and early-treatment radiomics features, an impressive AUC
of 0.9 was achieved, along with an accuracy of 92.3%, a sensitivity of 85.7%, and a specificity
of 94.7% on the independent test set.

In a study by Peng et al. [124], a comparison was made between DL and conven-
tional ML approaches in predicting response based on baseline pathological, kinetic, and
radiomics features. Conventional ML involved handcrafted radiomics feature extraction
and LASSO regression for optimal feature selection, with LDA emerging as the most
robust classifier among the five ML models tested. In contrast, the DL approach em-
ployed a ResNeXt50 CNN for radiomics feature extraction and a Multilayer Perceptron
Neural Network (MLP) for constructing models based on pathological and kinetic fea-
tures. AUC values for models utilizing radiomics, kinetics, or pathological features alone,
whether through LDA or DL, did not exceed 0.752. A modest enhancement in prediction
performance was observed upon combining these features. However, the DL approach,
incorporating all features, notably outperformed other models with an AUC of 0.832 and
an accuracy of 77.2%.
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Another noteworthy contribution by Li et al. [125] involved the creation of a nomogram
to predict pCR in TNBC patients. This nomogram integrated logistic regression to identify
independent response predictors from a collection of pathological, clinical, and radiomics
markers extracted from baseline images. Notably, the nomogram was built upon three key
predictors: AR status, tumor volume, and time to peak (TTP). The predictive performance
of the nomogram was impressive, achieving an AUC of 0.79 in the validation cohort. The
study further highlighted that tumors exhibiting a TTP of 2 min, large volumes, and positive
androgen receptor expression had a lower probability of achieving pCR.

6. NACT Prediction Using Multi-Modal Radiomics

Liang et al. [126] employed statistical methods, including the t-test and Mann–Whitney
U test, to examine the efficacy of DCE-MRI parameters and ADC values acquired at baseline
and after the second cycle for the early prediction of pCR. They observed that the pre-
treatment parameters did not exhibit a significant difference between pCR and non-pCR,
with the individual parameters’ AUCs not exceeding 0.6. Nevertheless, all parameters
displayed robust predictive performance after the second NACT cycle, except Ve and
washout. Furthermore, a combination of wash-in, TTP, and ADC yielded the highest AUC
of 0.886, accompanied by a sensitivity of 87.5% and a specificity of 82.11%.

On another note, Li et al. [127] explored the potential of DCE and DWI parameters
obtained before and after the initial NACT cycle, alongside the percentage change in
values between the two scans, to predict the response. Through ROC curve analysis, they
evaluated the predictive ability of each parameter and the derived parameter (Kep/ADC).
The researchers uncovered that the (Kep/ADC) parameter, calculated after one NACT cycle,
outperformed all other individual parameters, achieving an AUC of 0.88, a sensitivity of
92%, and a specificity of 78% at a threshold value of 3.32 mm−2 [127].

O’Flynn et al. [128] investigated the predictive ability of MRI parameters acquired
before and after the second cycle of neoadjuvant chemotherapy (NACT), along with their
percentage changes, to anticipate treatment response. The most significant predictors
were determined using LDA. Their findings indicated that a decrease in the enhancement
fraction and tumor volume signified a pCR. The enhancement fraction exhibited an AUC of
0.76, a sensitivity of 63.2%, and a specificity of 76.9% at a threshold of −7%. In comparison,
the reduction in tumor volume (with a threshold of −71%) achieved an AUC, sensitivity,
and specificity of 0.77, 71.4%, and 76.9%, respectively.

On the contrary, Zhao et al. [129] utilized multivariate logistic regression to explore
independent predictors of pCR from radiomic features extracted from Diffusion-Weighted
Imaging (DWI) and DCE-MRI scans conducted before and after the second NACT cycle.
Significant pCR-independent predictors included the Apparent Diffusion Coefficient (ADC)
values after 2 cycles and the percentage decrease in both the early enhanced ratio E90 and
tumor size. The corresponding odds ratios (ORs) were calculated as 1.041 (p = 0.037), 0.927
(p = 0.004), and 0.948 (p = 0.011), respectively. Their prediction model yielded an impressive
AUC of 0.944, a sensitivity of 100%, and a specificity of 86.7% in the validation cohort. A
nomogram based on this model was subsequently established. The study also revealed
that baseline MRI features, age, molecular subtype, and other pathological markers did not
exhibit significant differences between the pCR and non-pCR groups.

Bian et al. [130] developed a nomogram to forecast both NACT sensitivity and pCR.
They assessed the predictive capabilities of two logistic regression models based on ra-
diomic features (as detailed in Table 5) extracted from a combination of DCE, T2WI, and
DWI. Model (1) achieved AUC values of 0.56 and 0.64 for predicting NACT sensitivity and
pCR, respectively. However, model (2) exhibited superior performance, achieving an AUC
of 0.91, an accuracy of 81.8%, a sensitivity of 100%, and a specificity of 75% in predicting
NACT sensitivity. Similarly, it achieved an AUC, accuracy, sensitivity, and specificity of
0.91, 88.9%, 88.2%, and 90.9%, respectively, in predicting pCR. The authors developed
a nomogram that integrated radiomic features from both models, revealing comparable
discriminative power between model (2) and the nomogram.
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Some studies, such as Tahmassebi et al. [131] and Eun et al. [132], have assessed the
effectiveness of radiomics features in predicting treatment response through the application
of ML classifiers. In their study, Tahmassebi et al. [131] employed both qualitative and
quantitative features extracted from multi-sequence MRI scans before and after the initial
NACT cycle. The authors employed eight classifiers, namely LR, SVM, SGD (stochastic
gradient descent), LDA, RF, DT, adaptive boosting (AdaBoost), and extreme gradient boost-
ing (XGBoost), to predict DSS, RFS, and RCB—an indicator of whether patients achieved
pCR. The results revealed XGBoost’s superior performance in terms of high accuracy and
stability, with AUCs ranging from 0.8577 to 0.9430 for RCB prediction. Notably, response
predictors included peritumoral edema (on T2WI), minimum ADC (on DWI), complete
shrinkage pattern, changes in tumor size, and mean transit time (on DCE). Eun et al. [132]
explored the potential of textural features extracted from pre- and mid-treatment images, as
well as the differences between them, using contrast-enhanced T1-weighted, ADC mapping,
DWI, and T2-weighted MRI. Employing seven ML classifiers, they determined that random
forest surpassed other classifiers. Furthermore, mid-treatment scans demonstrated optimal
prediction performance for T1 contrast-enhanced-weighted, DWI, and ADC mapping,
yielding AUCs of 0.82, 0.73, and 0.69, respectively. In contrast, the difference between pre-
and mid-treatment features excelled exclusively in the T2-weighted sequence, attaining an
AUC of 0.67. Notably, pre-treatment feature AUCs across all sequences did not surpass
0.57.

Other researchers, including Liu et al. [133], Syed et al. [134], Chen et al. [135], Chen et
al. [136], and Xiong et al. [137], explored the fusion of pathological markers with pretreat-
ment multi-sequence MRI radiomics features to enhance the prediction of patient responses
to NACT.

In a study conducted by Liu et al. [133], radiomics features were extracted from
T2WI, DWI, T1+C sequences, and their combinations. Furthermore, the study assessed the
predictive capacity of pathological markers. The proposed SVM models were validated
across three independent cohorts (n = 99, 107, & 80). The radiomics features from individual
MRI sequences yielded AUCs not exceeding 0.64 in any validation cohort. In contrast, the
multi-sequence radiomics model achieved AUCs of 0.70, 0.68, and 0.79 across the respective
validation cohorts. The integration of pathological markers (ER, PR, and HER2) with
multi-parametric MRI radiomics enhanced performance, resulting in AUCs of 0.79, 0.71,
and 0.80.

Similarly, Syed et al. [134] combined non-imaging features (pathological markers) with
GLCM features to predict treatment response. However, radiomics features were extracted
from DWI and DCE sequences at three distinct time points (pre-treatment, early treatment
at 3 weeks, and mid-treatment at 12 weeks of NACT). Utilizing an XGBoost ML classifier
with 5-fold cross-validation on publicly available data, the author’s predicted response. The
mean AUCs of prediction models based on ADC, DWI, DCE, the combination of DWI and
DCE, and all MRI features combined were 0.85, 0.871, 0.903, 0.916, and 0.933, respectively.
Additionally, non-imaging features achieved an AUC of 0.919. The amalgamation of all MRI
features with non-imaging attributes yielded optimal prediction performance, resulting in
an AUC of 0.951, precision of 0.815, and recall of 0.926. The study concluded that XGBoost
holds promise for early patient response prediction based on GLCM and pathological
features.

Chen et al. [135] extracted a total of 984 radiomics features from pre-treatment DCE,
T2WI, and DWI images. Among these, six features were selected—three from T2WI and
three from DCE—to construct the radiomics signature using a random forest approach.
The resulting radiomics signatures demonstrated notable performance metrics in the test
set, including an AUC of 0.834, a sensitivity of 80%, and a specificity of 73.21%. The
study also explored the relationship between pathological markers and pCR, revealing
that ER and PR statuses could serve as independent predictors of pCR. Furthermore, a
predictive nomogram was developed by incorporating ER, PR, and the radiomics signature,
yielding an improved AUC of 0.879, a sensitivity of 83.57%, and a specificity of 82.19%. The
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combined use of DWI and T2WI, along with ER and PR status, exhibited strong predictive
capabilities.

In a related work, Chen et al. [136] constructed a novel nomogram that integrated base-
line radiomics features from DCE and ADC maps with pathological markers to distinguish
between pCR (grade 5) and pPR (grades 1–4 on the Miller-Payne grading system). The
authors employed logistic regression to establish prediction models based on ADC maps
alone, DCE images alone, and a combination of ADC maps and DCE. The corresponding
AUCs were measured at 0.639, 0.789, and 0.68, respectively. Additionally, an exploration of
the predictive capacity of pathological markers resulted in an AUC of 0.793. Notably, the
study concluded that the most effective predictive performance was achieved by combining
ER and PR statuses with radiomics features from both ADC maps and DCE images. This
combined approach outperformed the use of individual feature sets, achieving an AUC of
0.837, an accuracy of 0.893, a sensitivity of 0.714, and a specificity of 0.952.

Xiong et al. [137] assessed the role of T2WI, DCE, and DWI sequences in predicting
the response of NACT-insensitive breast cancers prior to treatment (specifically, grade
1 & 2 cases in the Miller-Payne grading system). They constructed a prediction model
that integrated four radiomics markers with two independent pathological factors (HER2
status and Ki-67 index), identified through multivariable logistic regression. This composite
model achieved an AUC of 0.935 and an accuracy of 93.55%, surpassing both radiomics-only
models (AUC: 0.83) and pathological marker-based models (AUC: 0.792) during validation.
These findings suggest the efficacy of a nomogram based on radiomics extracted from
pre-treatment multi-sequence MRI scans, along with HER2 status and Ki-67 index, in
effectively predicting NACT-insensitive cases.

Joo et al. [138] developed a multimodal DL model for predicting pCR based on
pre-treatment T2WI and DCE-T1WI subtraction images, along with clinico-pathological
markers. They constructed two 3D ResNet-50-based CNNs to extract radiomics features
from the entire bilateral MRI images. The AUCs for the models using T2WI images,
DCE-T1WI subtraction images, and clinico-pathological markers were 0.663, 0.725, and
0.827, respectively. Combining T2W and DCE-T1W subtraction images produced an AUC
of 0.745 and an accuracy of 73.6% (sensitivity: 48.6%, specificity: 85.3%). Furthermore,
They found that the optimal prediction performance emerged from the integration of
clinicopathological markers, T2W, and DCE-T1W subtraction images, yielding an AUC of
0.888, accuracy of 85%, sensitivity of 66.7%, and specificity of 93.2%.

Yoon et al. [139] utilized multiple logistic regression to assess the value of textural
features extracted from baseline PET/CT and DWI scans in distinguishing responders from
non-responders. The ranges of p-values for the selected texture features are presented in
Table 5. They concluded that textural features hold predictive potential, offering insights
into tumor heterogeneity.

On the other hand, Umutlu et al. [140] examined the potential of radiomics features
to predict treatment response using baseline PET/MRI scans. Employing SVM with 5-
fold cross-validation, they predicted pCR across the entire patient cohort and within two
molecular subtype subgroups ((HR+/HER2-) and (TN/HER2+)). The combined application
of all MRI sequences and PET yielded the most robust predictive performance for the entire
cohort, resulting in an AUC of 0.8, an accuracy of 77.4%, a sensitivity of 81%, a specificity
of 73.8%, a PPV of 75.6%, and NPV of 79.5%. Within the (HR+/HER2-) subgroup, the same
imaging dataset achieved superior AUC and accuracy values (0.94 and 85.2%, respectively),
accompanied by an 85.2% sensitivity and specificity. The authors’ conclusion emphasized
the capacity of PET/MRI to offer an accurate radiomics analysis for early pCR prediction,
particularly in HR+/HER2- patients.

A comparison was made by Choi and colleagues [141] between an Alexnet-based CNN
model and conventional methods, to predict responders and non-responders to NACT
based on PET/CT and DWI scans. The proposed CNN model demonstrated AUCs of 0.886,
0.98, 0.602, and 0.701, along with accuracies of 97%, 95%, 85%, and 88% for PET0, PET1,
MRI0, and MRI1, respectively, (where 0 represents baseline scans and 1 represents scans
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after the first NACT cycle). Conversely, the AUCs of conventional parameters including
SUV, TLG, MTV, and ADC remained below 0.7 in both baseline and follow-up scans, with
accuracies falling short of 84%. Furthermore, improvements were observed in AUC values
(0.805, 0.737, 0.758, and 0.752) for differences in these parameters between the two scans,
denoted as ∆SUVmax, ∆MTV, ∆TLG, and ∆ADC.

Montemezzi et al. [142] integrated pathological and radiomics features obtained from
pre-NACT PET/CT and DCE-MRI scans to predict pCR.They employed three classifiers
(Random Forest, Support Vector Machine Regression (SVR), and Logistic Regression)
in conjunction with leave-one-out and leave-two-out cross-validation techniques. The
evaluation encompassed five feature groups (mentioned underneath Table 5). They found
that the incorporation of both radiomics and pathological markers resulted in elevated
AUC values of 0.96 and 0.98. The study demonstrated that the fusion of DCE-MRI and
PET/CT radiomics with pathological markers led to enhanced predictive performance.

Table 5. Multi-modal Imaging.

Reference Study Aim Number of Patients
& Study Type Markers Results & Findings

Liang et al. [126]

To investigate the
usefulness of combining
DCE-MRI parameters with
ADC values for the early
prediction of pCR to NACT.

119 patients
Study type:
single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: Ktrans, Kep, Ve,

the initial area under the
curve (IAUC), washin,
washout, TTP, and ADC
values before and after the
second cycle of NACT.

The AUCs of ADC, TTP, Kep, Ktrans,
IAUC, and washing after the 2nd cycle
were 0.721, 0.725, 0.805, 0.825, 0.824,
and 0.866, respectively, while it did not
exceed 0.57 for Ve and washout. The
SENs were 87.5%, 100%, 62.5%, 83.33%,
83.33%, 83.33%, 45.83%, and 62.5%. The
SPEs were 56.84%, 42.11%, 92.63%,
75.79%, 78.95%, 84.21%, 71.58%, and
58.95%.
Combining ADC, TTP, & washing
achieved AUC: 0.886, SEN: 87.5%, SPE:
82.11%.
They found that baseline features did
not show a significant difference
between pCR & non-pCR; however,
they showed good predictive
performance after two cycles.

Li et al. [127]

To evaluate the utility of
multiparametric MRI
parameters acquired from
DCE-MRI and DWI
acquired before and after
the first cycle of NACT in
predicting pCR in patients
with breast cancer.

42 patients
(data after the first
cycle of NACT was
available for only 36
patients) Study type:
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: longest

dimension (LD), Ktrans,
Kep, Ve,Vp, ADC, and the
derived parameter
Kep/ADC. They were
acquired before and after
the first cycle.

The AUCs (after the first cycle of
NACT) for LD, Ve, Vp, Ktrans, Kep,
ADC, and Kep/ADC were 0.57, 0.54,
0.61, 0.68, 0.76, 0.82, and 0.88,
respectively. Moreover, the SENs were
0.83, 0.67, 0.5, 0.67, 0.83, 0.83, and 0.92.
The SPEs were 0.42, 0.48, 0.78, 0.74, 0.65,
0.67, and 0.78, respectively.
They revealed that combining DWI &
DCE parameters (i.e., Kep/ADC)
yielded a superior performance than
using each of them alone. In addition,
the mean parameters after one cycle of
therapy outperformed the baseline
parameters and the percentage change
between the two scans.

O’Flynn et al. [128]

To determine whether
individual functional MRI
parameters can predict pCR
to NACT in breast cancer
patients after two treatment
cycles.

32 patients
Study type:
single-center
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: tumor volume,

Ktrans, Kep, Ve, IAUGC
(IAUGC: initial area under
the gadolinium curve),
enhancement fraction (EF),
ADC, R2* values, and their
percentage changes after
the second cycle of NACT.

The AUCs of the percentage change in
EF, tumor volume, IAUGC, Ktrans, Kep,
Ve, ADC, & R2* were 0.76, 0.77, 0.64, 0.6,
0.68, 0.58, 0.69, & 0.41, respectively.
SENs: 63.2%, 71.4%, 73.7%, 63.2%,
63.2%, 57.9%, 78.9%, & 63.2%. SPEs:
76.9%, 76.9%, 61.5%, 53.8%, 69.2%,
53.8%, 69.2%, & 30.8%. They found that
the reduction in ER & tumor volume
was significantly greater in patients
achieving pCR, and they can be used as
early response predictors.
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Table 5. Cont.

Reference Study Aim Number of Patients
& Study Type Markers Results & Findings

Zhao et al. [129]

To investigate the ability of
DWI combined DCE-MRI
in the prediction of pCR
after the second cycle of
NACT by developing a
nomogram based on MRI
features.

87 patients
Training (n = 66)
Validation (n = 21)
Study type:
single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: tumor longest

diameter, ADC values,
type of TIC (time signal
intensity curve type:
persistent, plateau, and
washout), maximal
enhanced ratio (Emax),
early enhanced ratio (E90),
and percentage change in
these parameters.

Multivariate logistic regression showed
that the following features were
independent pCR predictors:

• ADC value after 2 cycles
(OR: 1.041, p = 0.037)

• The percentage decrease in:
E90 (OR: 0.927, p = 0.002) &
tumor size (OR: 0.948,

p = 0.011)
The prediction model yielded AUC:
0.94, SEN: 100%, SPE: 86.7%
They found no significant difference in
pathological markers, age, and baseline
radiomics features between the pCR
and non-pCR groups. Moreover, the
nomogram & the predictive model
showed strong predictive value.

Bian et al. [130]

To evaluate the ability of
radiomics signatures to
predict the efficacy of
NACT and the probability
of pCR based on
pretreatment T2WI, DWI,
and DCE MRI scans.

152 patients Training
(n = 107) Validation
(n = 45)
Study type:
single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics:

Model(1) tumor size and
morphology, number of
tumors, the diameter of
LN, and time-intensity
curve. Model(2) textural
features (GLCM and
GRLM) extracted from
pre-treatment scans.

• For predicting NACT sensitivity
Model(1) AUC: 0.56, SEN: -, SPE:
-
Model(2) AUC: 0.91, ACC: 81.8%,
SEN: 100%, SPE: 75%
Nomogram AUC: 0.93, ACC:
81.8%, SEN: 100%, SPE: 75%

• For predicting pCR to NACT
Model(1) AUC: 0.64, SEN: -, SPE:
-
Model(2) AUC: 0.91, ACC: 88.9%,
SEN: 88.2%, SPE: 90.9%
Nomogram AUC: 0.91, ACC:
88.9%, SEN: 88.2%, SPE: 90.9%

The authors identified the LN
minimum diameter, speculated tumor
margin, and tumor maximum diameter
as independent predictors of response
(model 1). They also revealed that
model 2 and the nomogram (combining
features used in model 1 and model 2)
achieved similar discrimination power.

Tahmassebi
et al. [131]

To assess the utility of ML
algorithms in the early
prediction of survival
outcomes and pCR to
NACT using
multi-parametric MRI scans
acquired before and after
two cycles of NACT.

38 patients (4-fold
cross-validation)
Study type:
single-center
prospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: tumor size,

shrinkage pattern,
[DCE: shape, margins,
symmetry, internal
enhancement
characteristics, mean
plasma flow, mean transit
time (MTT), volume
distribution],
[T2WI: signal intensity,
peritumoral edema],
[DWI: max, min, & mean
ADC].

The best AUCs in predicting RCB using
8 ML classifiers (LR, SVM, SGD, LDA,
RF, DT, AdaBoost, and XGBoost) were
0.868, 0.88, 0.83, 0.75, 0.89, 0.81, 0.85,
and 0.94, respectively, (SEN: -, SPE: -).
They concluded that the XGBoost
outperformed other classifiers as it
achieved higher accuracy and more
stable performance. Moreover,
peritumoral edema, min ADC,
complete shrinkage pattern, changes in
tumor size, and MTT can be used as
RCB predictors.

Eun et al. [132]

To determine whether
texture features from
different MRI sequences at
pre- and mid-treatment are
associated with pCR to
NACT.

136 patients (5-fold
cross-validation)
Study type:
single-center
retrospictive study

• Clinical: N/A
• Pathological: N/A
• Radiomics: histogram

texture features (standard
deviation, mean pixel
intensity, mean proportion
of positive pixels, entropy,
skewness, & kurtosis).

Texture features at mid-treatment
contrast-enhanced-T1WI showed the
best performance compared to other
MRI sequences, the prediction model
based on random forest classifier
achieved:
AUC: 0.82, ACC: 83.1%,
SEN: 62.5%, SPE: 91.7%.
They revealed that the RF model had
better performance showing the
association between texture features
and pCR compared with the other six
ML classifiers.
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Table 5. Cont.

Reference Study Aim Number of Patients
& Study Type Markers Results & Findings

Liu et al. [133]

To investigate the efficacy
of radiomics analysis of
pretreatment
multi-parametric MRI
(T2WI, DWI, and T1 + C)
scans in the prediction of
pCR to NACT.

414 patients Training
(n = 128)
Three independent
validation cohorts
(n = 99, 107, & 80)
Study type:
multi-center
retrospective study

• Clinical: N/A
• Demographic: age
• Pathological: ER, PR,

HER2, tumor stage and
Ki67 index

• Radiomics: shape-and-size
features, textural,
first-order statistical, and
wavelet features
(Gabor-bank & Law’s
filters).

The AUCs of the three validation
cohorts using:

• Pathological model:
0.76, 0.60, & 0.79 (SEN: -, SPE: -)

• Radiomics of multi-sequence
MRI: 0.70, 0.68, & 0.79 (SEN: -,
SPE: -)

• Incorporating multi-sequence
radiomics & pathological
markers: 0.79, 0.71, & 0.80 (SEN: -,
SPE: -)

They found that integrating
pathological markers with radiomics
extracted from multi-sequence MRI
outperformed all the single-sequence
radiomics and could be helpful for the
pretreatment prediction of pCR.
Moreover, multi-parametric MRI can
provide concurrent insights into tumor
morphology, micro-vascular
permeability, water diffusion properties,
and cellularity.

Syed et al. [134]

To integrate radiomics
features extracted from
DWI and DCE MRI scans
with non-imaging features
to predict pCR to NACT
using XGBoost ML
classifier.
Radiomics features were
extracted from pre-, early-,
& mid-treatment scans

117 patients from the
Breast
Multi-parametric
MRI for prediction of
NAC Response-2
competition dataset
(BMMR2) (a subset
of I-SPY-2 TRIAL)
competition dataset
(5-fold
cross-validation)
Study type:
retrospective study
based on
multi-center dataset

• Clinical: N/A
• Demographic: age & race
• Pathological: lesion type,

HR, HER2, and Scarff-
Bloom-Richardson grade
(SBR grade).

• Radiomics: ADC values
and GLCM textural
features of DWI and DCE
(energy, correlation,
homogeneity, dissimilarity,
contrast, dissimilarity, and
Angular Second Moment
(ASM).

Below, the mean AUCs, SENs, SPEs, &
precisions of the XGBoost prediction
models based on:
ADC: 0.85, 0.827, -, & 0.752.
DWI: 0.871, 0.926, -, & 0.779.
DCE: 0.903, 0.939, -, & 0.856.
DWI + DCE: 0.916, 0.915, -, & 0.779.
all MRI sequences:
0.933, 0.889, -, & 0.824.
pathological markers:
0.919, 0.914, -, & 0.762.
combining pathological markers with
all MRI sequences: 0.951, 0.926, -, &
0.815.
They found that XGBoost can
accurately predict response based on
non-imaging and GLCM features.

Chen et al. [135]

Predicting the efficacy of
NACT by constructing a
nomogram based on
pathological factors and
multi-sequence MRI (T2WI,
DWI, and DCE).

158 patients
Training (n = 110)
Test (n = 48)
Study type:
single-center
retrospective study

• Clinical: N/A
• Demographic: age &

gender
• Pathological: ER, PR,

HER2, Ki67, & clinical
stage.

• Radiomics: histogram
parameters, GLCM,
GLRLM, and form factor
parameters (which are
descriptors of the 3D size
and shape features of the
tumor).

The prediction performance of:

Radiomics signature
AUC: 0.834, SEN: 80%, SPE: 73.21%

The nomogram (integrating radiomics
signature with PR and ER status) AUC:
0.879, SEN: 83.57%, SPE: 82.19 %

They revealed that ER and PR status
showed significant differences between
the two response groups while the
other pathological markers did not.
Moreover, DWI & T2WI could predict
response effectively.

Chen et al. [136]

To develop a radiomics
nomogram combining
pre-treatment DCE-MRI
and ADC maps with
pathological risk factors to
predict pCR to NACT.

91 patients Training
(n = 63)
Test (n = 28)
Study type:
single-center
retrospective study

• Clinical: N/A
• Demographic: age
• Pathological: Ki67, ER, PR,

and HER2 status.
• Radiomics: histogram

parameters, morphological
features, GLCM, GLRLM,
and GLSZM features
extracted from ADC maps
and DCE images at
pre-treatment stage.

Multivariate logistic regression model
yielded the following AUCs, ACCs,
SENs, & SPEs in the test set when using:
DCE features alone: 0.789, 78.6%, 71.4%,
& 81%
ADC features alone: 0.639, 53.6%, 100%,
& 38.1%
Combining DCE & ADC: 0.68, 78.6%,
71.4%, & 81%
Pathological markers: 0.793, 75%, 57.1%,
& 81%
Combining pathological with radiomics
(DCE+ADC): 0.837, 89.3%, 71.4%, &
95.2%
They concluded that ER & PR showed a
significant difference between pCR &
pPR groups (p < 0.05). Moreover,
combining radiomics from DCE-MRI &
ADC maps with pathological data can
be potential response predictors.
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& Study Type Markers Results & Findings

Xiong et al. [137]

To assess the value of
multi-parametric MRI
(T2WI, DCE, and DWI) in
the prediction of
NACT-insensitive breast
cancers based on
pretreatment scans.

125 patients Training
(n = 63) Validation
(n = 62)
Study type:
single-center
retrospective study

• Clinical: N/A
• Demographic: age
• Pathological: ER, PR,

HER2, tumor stage and
Ki67 index

• Radiomics: shape,
first-order statistic, GLCM,
GLRLM, NGTDM, GLSZM,
and wavelet features.

The prediction model based on
pathological markers achieved AUC:
0.792, ACC: 87.1%, SEN: -, SPE: -
The model based on radiomics markers
attained AUC: 0.83, ACC: -, SEN: -, SPE:
-
Combining radiomics with pathological
markers achieved AUC: 0.935, ACC:
93.55%, SEN: -, SPE: -
They suggested that a nomogram built
based on HER2 status, Ki-67 index, and
radiomics features extracted from
pretreatment multi-parametric MRI can
predict NACT-insensitive effectively.

Joo et al. [138]

To conduct a multimodal
DL model that combines
clinicopathological
information with MR
images acquired before the
initiation of NACT to help
in the prediction of pCR.

536 patients Training
(n = 429) Validation
(n = 107)
Study type:
single-center
retrospective study

• Clinical: CA 15-3
• Demographic: age
• Pathological: body mass

index (BMI), menopausal
status, histologic subtypes,
T stage, N stage, ER, PR,
HER2, Ki-67, and NACT
regimen.

• Radiomics: features were
extracted from T2W and
DCE-T1W subtraction
images by two 3D CNNs
based on 3D-ResNet-50.

The models based on T1W, T2W images,
and clinicopathological markers
individually achieved AUCs: 0.725,
0.663, and 0.827, respectively. ACCs:
71.8%, 70.9%, & 78.5%. SENs: 31.4%,
45.7%, & 84.8%. SPEs: 90.7%, 82.4%, &
75.7%.
Integrating the aforementioned markers
achieved AUC: 0.888, ACC: 85%, SEN:
66.7%, SPE: 93.2%
They concluded that the best prediction
performance was attained by
combining baseline MRI images with
clinical and pathological markers.

Yoon et al. [139]

To evaluate the efficacy of
textural features extracted
from pretreatment F-18
FDG PET/CT and DWI
scans to predict the LABC
patients’ pathological
response to NACT and
progression-free survival
(PFS).

83 patients with
locally advanced
breast cancer
(LABC).
Study type:
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics:

From PET/CT:
TLG, MTV, SUVmax,
first-order histogram
analysis of SUV, and
second-order textural
features (CM, NIDM, VAM,
NGLCM, ISZM, NGLDM,
and TSM) ([CM:
co-occurrence matrix,
NIDM: neighborhood
intensity difference matrix,
VAM: voxel-alignment
matrix, NGLCM:
normalized gray-level
co-occurrence matrix,
ISZM: intensity size-zone
matrix, NGLDM:
neighborhood gray-level
dependence matrix, and
TSM: texture spectrum
matrix]).
From DWI:
ADC, histogram analysis,
and second-order texture
features.

-The range of p-values of the selected
PET features:
CM: 0.008–0.02, VAM: 0.008–0.047
NIDM: 0.012–0.024, ISZM: 0.005–0.032
NGLCM: 0.045, TSM: 0.009 NGLDM:
0.009–0.019 (SEN: -,SPE: -).
-The range of p-values of the selected
ADC features:
histogram analysis (entropy): 0.024
NGLCM: 0.033–0.025 (SEN: -,SPE: -).
They found that tumor texture features
are useful for the prediction of NACT
response in as they indicate tumor
heterogeneity.

Umutlu et al. [140]

To evaluate the potential of
radiomics analysis of
multi-parametric 18F-FDG
PET/MRI pre-treatment
images to predict pCR to
NACT.

73 patients (5-fold
cross-validation)
Study type:
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics: first-order

statistics, GLCM, GLRLM,
GLSZM, GLDM, and
NGTDM extracted from
pretreatment PET, ADC,
DCE-MRI, and T2WI scans.

Combining the PET data with all MRI
sequences achieved the following
results using:

• Whole patients cohort
AUC: 0.8, ACC: 77.4%, SEN: 81%,
SPE: 73.8%, PPV: 75.6%, NPV:
79.5%.

• HR+/HER2- subgroup
AUC: 0.94, ACC: 85.2%, SEN:
85.2%, SPE: 85.2%, PPV: 85.2%,
NPV: 85.2%.

• TN/HER2+ subgroup
AUC: 0.92, ACC: 87.5%, SEN:
88.2%, SPE: 86.7%, PPV: 88.2%,
NPV: 86.7%

They revealed that PET/MRI has a
promising role in predicting pCR prior
to treatment, especially for
(HR+/HER2-) tumors.
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Table 5. Cont.

Reference Study Aim Number of Patients
& Study Type Markers Results & Findings

Choi et al. [141]

To assess the value of
PET/CT and DWI
parameters in predicting
pathological response to
NACT using CNNs and
compare their performance
with conventional imaging
parameters.

56 patients (3-fold
cross-validation)
Study type:
single-center
retrospective study

• Clinical: N/A
• Pathological: N/A
• Radiomics:

- Conventional parameters:
SUVmax, MTV, TLG, ADC,
and their differences (∆)
between pre-NACT and
after the first cycle scans.
- CNN model: based on
(Alexnet) and the inputs
were images acquired
before (PET0, MRI0) and
after the first cycle (PET1,
MRI1).

• Using conventional parameters:
The AUCs of SUV, TLG, MTV,
and ADC parameters did not
exceed 0.7 in baseline and
follow-up scans.
The AUCs for ∆SUVmax, ∆MTV,
∆TLG, & ∆ADC were 0.805, 0.737,
0.758, & 0.752, respectively.
SENs: 83%, 67%, 67%, & 83%.
SPEs: 68%, 80%, 80%, & 72%.

• Using CNN model: PET0, PET1,
MRI0, & MRI1, respectively,
achieved AUCs of 0.886, 0.98,
0.602, & 0.701.
ACCs: 97%, 95%, 85%, & 88%.
SENs: 79%, 72%, 18%, & 14%.
SPEs: 94%, 96%, 90%, & 90%.

They found that ∆SUVmax achieved the
highest prediction performance. Using
CNNs instead of conventional methods
improved the prediction performance
for all parameters except ADC.

Montemezzi
et al. [142]

To study the effect of
combining DCE-MRI
radiomics with histological
and radiological
information (PET/CT) on
the performance of the
prediction model of pCR to
NACT.

60 patients
(leave one out &
leave two out
cross-validation
60-fold and 30-fold
cross-validation).
Study type:
single-center
retrospective study

• Clinical: N/A
• Demographic: Age
• Pathological: tumor type

and grade, ER, PR, HER2,
and Ki-67.

• Radiomics: tumor shape,
margin, internal
enhancement, type of
enhancement curve, zero
(geometric), first, and
higher order (textural
features).In addition to
ADC (from DWI) and
SUVmax(from PET/CT).

LR, SVR, and RF were used with
different combinations of markers (5
groups of features (The five groups of
features were: (1) tumor characteristics
such as shape, type, grade, margin,
internal enhancement, curve type,
SUVmax, ADC, and patient age; (2) the
selected radiomics features; (3)
pathological features; (4) a combination
of features from groups 1 and 2; and (5)
an amalgamation of features from
groups 1, 2, and 3.)) , and the AUCs
were as follows: (SENs: -, SPEs: -)
Group 1: 0.7–0.75
Group 3 (pathological): 0.8–0.85
Group 4: 0.85–0.9
Group 5: 0.96–0.98 (using LR)
They found that the introduction of
DCE-MRI radiomics showed significant
improvement in predictive power. The
selected radiomics were dependence
variance, sphericity, kurtosis, and
LRHGLE (LRHGLE: long run high
gray-level emphasis).

7. Discussion

This comprehensive review article has delved into the intricate challenge of the vari-
able responses observed in NACT. The central thrust of this discourse lies in the exploration
and development of predictive models capable of stratifying patients based on their prob-
able response to NACT. A nuanced emphasis has been placed on the evolution of the
predictive landscape, specifically the integration of radiomic and pathological markers. The
objectives sought to uncover resilient radiomic markers that exhibit correlations with NACT
response, while concurrently probing the potential amplification of predictive precision
through the amalgamation of radiomic markers derived from radiological images and
classical pathological markers.

The endeavor to unravel the complexities of NACT response prediction has invoked
diverse avenues of research. Extensive investigations have been conducted, traversing the
terrain of the tumor core and its margins (peritumoral regions), as evident in [58,98,107].
A pivotal narrative echoed by [46,108,113,120] accentuates the merits of encompassing a
broader spatial context within feature extraction strategies.

Our review has shown that the predictive landscape of NACT responses has un-
dergone considerable evolution, especially with the incorporation of both radiomic and
pathological markers. Emphasis on the evolution of this landscape becomes apparent
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when noting that 96% of articles published in the last 15 years employ radiomic markers
derived from radiological images. Furthermore, 92% of these articles have documented
a statistically significant correlation between at least one radiomic feature and NACT
response.

Diverse imaging modalities have been harnessed to navigate the objective of NACT
outcomes prediction. Mammography,traditionally seen as the cornerstone of breast tumor
detection, has undergone a transformative phase with artificial intelligence integrations.
Various features have been extracted from mammogram images to predict the outcome of
NACT. Shape features, textural features, and the percentage of gray value change between
scans have been utilized as predictive indicators. Shin et al. [35] and Skarping et al. [36],
for instance, have effectively used AI to derive insights from mammogram images, with
Skarping et al. distinguishing between pCR and non-pCR, recording a specificity of 90%
and sensitivity of 46%. Moreover, CESM, as demonstrated by Xing et al. [44], has struck a
balanced performance with a specificity of 72.15% in the CC view and 75% sensitivity. The
research landscape, marked by studies like those from Wang et al. [45] and Mao et al. [46],
is hinting toward the increasing importance of radiomics, with sensitivities and specificities
touching the ranges of 57.7% and 90.9% respectively.

A parallel trajectory unfolds in studies utilizing ultrasound, where QUS parameters
(SS, SI, MBF, ASD, AAC, ACE, and SAS) have been scrutinized extensively, often integrated
with textural analyses. The exploration of elastography variants, namely strain elastography
and shear-wave elastography, has also unveiled pivotal features such as strain ratio, tumor
stiffness, and elasticity. Noteworthy is the DL radiomics nomogram by Jiang et al. [50],
which registers a sensitivity of 89.33%, and a specificity of 81.37%.

The scope broadens further, encapsulating PET/CT investigations, where ∆SUVmax
represents the maximum standardized uptake value change between baseline and follow-
up scans. Augmenting this are MTV, TLG, SUVpeak, SUVmean, and an array of textural
features, contributing collectively to the predictive tapestry. Research spearheaded by
Buchbender et al. [80], Andrade et al. [75], and Groheux et al. [82,83] have established
∆SUVmax’s promise, with sensitivities ranging from 75% to 85.7%. Moreover, merging
∆SUVmax with textural features, as demonstrated by Cheng et al. [86], holds promise in
enhancing predictive accuracy through a multi-faceted approach.

However, amidst all imaging modalities, DCE-MRI emerges as the undeniable fron-
trunner. Its omnipresence in the literature and the stellar results linked with it accentuate
its unparalleled value. The domain of DCE-MRI has proven equally intricate, unfurling
a plethora of features. These encompass quantitative parameters like Ktrans, Kep, Ve, Vp,
and τi. Semi-quantitative parameters like wash-in, wash-out, and peak enhancement inter-
twine with morphological, statistical, and textural features such as GLCM and GLRLM.
Moreover, the convergence of DCE-MRI with DWI holds promise, prominently featuring
ADC maps and values (maximum, minimum, and mean) as pivotal predictors. The ver-
satility of DCE-MRI allows for the integration of data from digital breast tomosynthesis.
Further, its adeptness in synthesizing molecular subtypes, clinical markers, and radiomic
features, has a capability that appears challenging for other modalities to rival. For instance,
Comes et al. [123]’s combined strategy (incorporating pathological features with radiomics
features) achieved an impressive AUC of 0.9 was achieved, along with an accuracy of
92.3%, a sensitivity of 85.7%, and a specificity of 94.7%. Additionally, Hussain et al. [120]
reached an AUC of 0.98 and an accuracy of 94%, emphasizing the potential of DCE-MRI’s
radiomics when integrated with the molecular subtype. Nevertheless, it’s imperative to
emphasize that while DCE-MRI seems superior, the best modality or marker may still
oscillate depending on the clinical scenario, resource allocation, and individualized patient
parameters.

Shining brightly on the horizon is the concept of multi-modal imaging that truly
provides insights into the potential of integrating predictive markers from various imaging
modalities. As this approach beckons exploration, it potentially paves the way for even
more refined and accurate predictions in the near future. Across the evaluated imaging
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modalities, certain markers stood out as robust indicators of treatment response. Notably, in
MRI studies, texture features from contrast-enhanced T1-weighted images at mid-treatment
consistently exhibited strong predictive power. Noteworthy PET parameters, such as TLG
and ∆SUVmax, also showed substantial promise in prognosticating pCR. Variables such
as hormone receptor status (ER/PR), HER2 expression, and Ki-67 proliferation index
were frequently linked to treatment outcomes. Integrating these factors with multi-modal
imaging data, such as radiomics extracted from PET/CT or MRI, markedly improved
predictive accuracy. Joo et al. [138], a prime example, showcased a multimodal DL model
that combined clinicopathological information with pre-treatment MRI images, attaining a
high specificity of 93.2%, an accuracy of 95% and an AUC of 0.89 for post-first-cycle PET
images. Similarly, Umutlu et al. [140] leveraged multiparametric PET/MRI to predict pCR
with promising results (average AUC = 0.93, 86.4% accuracy, 86.7% sensitivity, and 86%
specificity). The fusion of pathological markers with radiomics features has demonstrated
varying impacts on prediction models. In most cases, integrating pathological markers has
led to improved prediction capabilities. However, exceptions like [45,46,56,64,65,82,116]
highlight instances where pathological factors did not significantly correlate with response
or failed to enhance model performance.

These clinical implications of accurate NACT response prediction are profound, offer-
ing the potential to revolutionize personalized treatment strategies and improve patient
outcomes. By identifying patients who would benefit from NACT and sparing others
from potentially ineffective treatment, predictive models align with the broader goals of
precision medicine.

8. Limitations and Future Perspectives

Despite these promises of NACT response predictive models, there are clear limita-
tions and challenges to be addressed. Differences and variations in therapeutic regimens,
tumor molecular subtypes, scan timings, imaging protocols, and sample sizes have led to
inconsistencies in the results across studies.

Notably, when the same predictors were employed, different studies yielded conflict-
ing outcomes. For instance, SUVmax showed a correlation with pathological response in
TNBC patients as indicated by Groheux et al. [83]. However, contrasting findings were
presented by Luo et al. [85] and Groheux et al. [82], showing no significant correlation for
LABC and HER2+ patients, respectively. Additionally, Koolen et al. [81] highlighted that
∆SUVmax might be a significant predictor after two weeks of NACT for TNBC patients.
Yet, this predictor was not found significant in a study for HER2+ patients by Groheux
et al. [82].

Regarding PK parameters extracted from DCE-MRI at baseline scans, disagreements
were observed across studies. While Drisis et al. [103] found Ktrans could differentiate
responders from non-responders, Braman et al. [107] argued that PK parameters did not
show any significant difference between pCR and non-pCR. Lee et al. [105] also asserted
that individual perfusion parameters lacked high predictive capability. Tudorica et al. [102]
and Li et al. [101] presented percentage changes in PK parameters after one NACT cycle as
effective predictors, a finding that was contradicted by Cho et al. [121]. Additionally, the
predictive performance evaluation results of the models trained by Fan et al. [97] on two
independent patient sample groups showed some differences.

Apart from the aforementioned inconsistencies, another pertinent limitation is the
largely retrospective nature of many studies, often encompassing only a small cohort of
patients. These studies that might need further validation include those conducted by
Sadeghi-Naini et al. [48], Tadayyon et al. [52,56], Antunovic et al. [87], Giannini et al. [96],
Li et al. [101], and Crippa et al. [90]. The absence of a standardized protocol further com-
plicates matters, with each study employing unique methodologies, features, CNN layers,
and classifiers. The use of multiple software applications for radiomics feature extraction
only adds to the lack of uniformity. Moreover, the high cost and complexity associated with
AI applications in routine imaging require specialized software and personnel expertise.
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From a forward-looking perspective, future research should aim to bridge the re-
maining gaps in the field. While our understanding of tumor biology deepens and AI
technologies advance, the promise of informed NACT strategies to transform patient care
becomes increasingly tangible. The domain is broad and rich, extending from the ex-
ploration of diverse imaging modalities to the integration of clinical and molecular data.
This should be built upon a strong foundation of prospective clinical trials and expansive,
balanced multi-institutional datasets. As the field evolves, advanced models can also
be refined to contend with dataset limitations, yielding robust, validated, and clinically
impactful predictive models.

It is crucial to prioritize the development of standardized protocols, including imaging
techniques, feature extraction methodologies, and analysis frameworks. Harmonizing
these protocols can reduce variations and facilitate more comparable and reproducible
research outcomes. These initiatives can bolster the validity of study findings and enhance
the generalizability of predictive models. Moreover, fostering collaborations across research
institutions can lead to a broader consensus on predictors and their efficacies, potentially
ironing out the inconsistencies that currently plague the field.

In addition to addressing inconsistencies, it’s also imperative to focus on the integra-
tion of AI technologies with traditional radiomic analyses. While the potential of AI in
enhancing NACT prediction is immense, its adoption is currently hindered by several fac-
tors, including the complexities of AI software and a lack of familiarity among radiologists.
Efforts should be made to demystify AI technologies and promote their wider acceptance
and integration into clinical practice. Workshops, training programs, and interdisciplinary
collaborations can bridge the knowledge gap and ensure that the full potential of AI-driven
models is realized in the realm of breast cancer treatment. While the trajectory of breast
cancer treatment is poised for transformation, the path forward requires concerted efforts
to address present challenges. By resolving inconsistencies, standardizing protocols, and
embracing AI advancements, we can aspire for a future where NACT response predictions
are both reliable and integral to personalized breast cancer management.

9. Conclusions

Breast cancer remains a global challenge necessitating innovative treatments. Neoad-
juvant chemotherapy (NACT) holds promise in improving outcomes by diminishing tumor
sizes and facilitating less invasive surgeries. However, the diverse patient responses under-
score the need for accurate predictive models. This review extensively examines NACT
response prediction by integrating radiomic and pathological markers from various imag-
ing modalities. Valuable radiomic features are identified, particularly when considering
markers from both tumor core and peritumoral margins. While each imaging modality has
its merits, DCE-MRI stands out when combined with pathological markers and clinical
data, a sentiment echoed across various studies. Despite challenges like limited data,
collaborative efforts can build robust AI models that aid evidence-based clinical decisions.
Accurate NACT response prediction has profound clinical significance, optimizing out-
comes and reducing unnecessary interventions. With the advancement of AI technologies
and collaboration paving the way for personalized care, the synergy between radiomic
and pathological markers and the potential of informed NACT strategies can revolutionize
breast cancer treatment.
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Abbreviations
The following abbreviations are used in this manuscript:

CESM Contrast Enhanced Spectral Mammography
NACT Neoadjuvant Chemotherapy
NAT Neoadjuvant Therapy
pCR pathological complete response
pPR pathological partial response
ML Machine Learning
DL Deep Learning
AUC Area Under Curve (ROC)
SEN Sensitivity
SPE Specifecity
HER-2 Human Epidermal Growth Factor Receptor-2
ER Estrogen Receptor
PR Progesterone Receptor
BPE Background Parenchymal Enhancement
DCE-MRI dynamic contrast-enhanced magnetic resonance imaging
FGT Fibroglandular Tissue
TN Triple Negative
NGTDM Neighborhood Gray Tone Difference Matrix based features
GLCM Gray Level Co-occurrence Matrix
GLRLM Grey Level Run Length Matrix
GLSZM Grey Level Size Zone Matrix
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