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Simple Summary: The long-term benefits of lenvatinib on the treatment of advanced hepatocellular
carcinoma (HCC) are still unsatisfactory. The search for a new drug to promote lenvatinib’s anti-
cancer effect is an urgent issue. Whether the response of HCC to lenvatinib is dose-dependent also
still needs to be clarified. The aims of this study were to investigate the dose-dependent anti-cancer
effect of lenvatinib on HCC cells and the potential benefit of combined colchicine therapy. Four
primary cultured HCC cell lines were applied for experiments. Combined analysis of the results of
differential expressions of the genes (11 lenvatinib target genes and NANOG) and the anti-proliferative
effect indicated that the anti-cancer effect of lenvatinib on HCC was not dose dependent. Combined
clinically achievable plasma colchicine concentration with lenvatinib can promote the total anti-cancer
effects on HCC.

Abstract: Purpose: The dose-dependent anti-cancer effect of lenvatinib on hepatocellular carcinoma
(HCC) cells and the potential benefit of combined colchicine therapy were investigated. Methods:
Four primary cultured HCC (S103, S143, S160, S176) cell lines were investigated by differential
expressions of genes (11 lenvatinib target genes and NANOG) and anti-proliferative effect using
clinically achievable plasma lenvatinib (250, 350 ng/mL) and colchicine (4 ng/mL) concentrations.
Results: Colchicine showed an anti-proliferative effect on all cell lines. Lenvatinib at 250 ng/mL
inhibited proliferation in all cell lines, but 350 ng/mL inhibited only three cell lines. For lenvatinib
target genes, colchicine down-regulated more genes and up-regulated less genes than lenvatinib
did in three cell lines. Lenvatinib up-regulated NANOG in all cell lines. Colchicine down-regulated
NANOG in three cell lines but up-regulated NANOG with less magnitude than lenvatinib did in
S103. Overall, combined colchicine and 250 ng/mL lenvatinib had the best anti-cancer effects in S143,
with similar effects with combined colchicine and 350 ng/mL lenvatinib in S176 but less effects than
combined colchicine and 350 ng/mL lenvatinib in S103 and S160. Conclusions: Lenvatinib does not
show a dose-dependent anti-cancer effect on HCC. Combined colchicine and lenvatinib can promote
the total anti-cancer effects on HCC.
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1. Introduction

Lenvatinib is an approved first-line oral multikinase molecular inhibitor for the treat-
ment of advanced hepatocellular carcinoma (HCC) [1]. The anti-cancer mechanisms of
lenvatinib include suppression of vascular endothelial growth factor receptor (VEGFR)
1–3, fibroblast growth factor receptor (FGFR) 1–4, platelet-derived growth factor receptor
(PDGFR) α, as well as proto-oncogenes RET and KIT expressions [2–4]. In comparison with
sorafenib, lenvatinib was shown to be non-inferior to sorafenib in overall survival and even
showed much better median progression-free survival and a higher objective response rate
than sorafenib [5–8]. However, the long-term benefits of lenvatinib on the treatment of
advanced HCC are still unsatisfactory. Combined lenvatinib with an immunotherapeutic
agent might have the possibility to obtain better anti-cancer activity than lenvatinib or
immunotherapeutic agent alone, but the overall toxicities and the cost-effect still need to
be considered [9]. Therefore, the search for a new drug to enhance the lenvatinib effects
on HCC is a clinically urgent issue. On the other hand, increasing lenvatinib plasma
concentration usually increases its side effects [10–12]. Whether the response of HCC to
lenvatinib is dose-dependent still needs to be clarified.

Colchicine is a widely applied and very cheap tricyclic alkaloid which has been shown
to have dose-dependent anti-cancer effect within its clinically achievable plasma concen-
trations on primary cultured HCC cells and cancer-associated fibroblasts [13]. This drug
has been shown to have the potential for the palliative treatment of advanced HCC [14].
The purpose of this study was to investigate the dose-dependent anti-cancer effect of
lenvatinib on HCC and the potential benefit of colchicine in combined therapy evaluated
by differential expressions of target genes and an anti-proliferative assay. NANOG is a
cancer stem cell marker which has been shown as a hazard factor to predict poor prog-
nosis in patients with HCC [15]. Our previous experiments using two other multikinase
molecular inhibitors including sorafenib and regorafenib in primary cultured HCC cells
showed that these drugs could up-regulate NANOG within their therapeutic ranges [16].
Therefore, NANOG was selected as one of the target genes. Eleven genes including FGFR1,
FGFR2, FGFR3, FGFR4, FLT1 (VEGFR1), FLT4 (VEGFR3), KDR (VEGFR2), KIT, PDGFRA,
PDGFRB, RET were selected as lenvatinib target genes based on the previous reports [2–4].
For the best possibility to represent the situation in patients, clinically feasible colchicine
(4 ng/mL [17–19] and lenvatinib 250 ng/mL and 350 ng/mL, representing low and high
therapeutic concentrations) [20] concentrations were selected for the experiments. More-
over, primary cultured HCC cells at their 4th–6th passage were applied for the investigation
to maintain the characters of heterogenicity of the cancer cells within the tumor. Gene
names were based on the official symbols from the HUGO Gene Nomenclature Committee.

2. Materials and Methods
2.1. Cell Lines and Drugs

Four primary cultured HCC cell lines (S103, S143, S160, S176) established by our
institution were applied [13,16]. All patients had chronic hepatitis B and liver cirrhosis.
The TNM tumor staging [21] for four patients was stage IIIB in two (S103, S143), stage IVA
in one (S160), and stage IVB in the remaining one (S176). The serum alpha-fetoprotein
levels in three patients (S103, S160, S176) were larger than 1400 ng/mL, and the remaining
one (S143) was 24.45 ng/mL (normal range < 20 ng/mL). Cells were cultured with 10%
fetal bovine serum, 90% DME/HIGH glucose, supplemented with 20 mM of L-glutamine,
100 units/mL of penicillin, and 100 µg/mL of streptomycin (HyClone, Logan, UT, USA) in
37 ◦C and a humidified atmosphere of 5% CO2 and 95% air. Lenvatinib purchased from
MedChem Express (Monmouth Junction, NJ, USA) was dissolved in dimethyl sulfoxide
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(DMSO) to give 250 ng/mL or 350 ng/mL with a DMSO concentration of 1% (v/v) in the
culture. Colchicine was purchased from Sigma Aldrich (St. Louis, MO, USA). DMSO was
added to the colchicine alone group and control group with a final DMSO concentration
of 1% (v/v) in the culture. This study was approved by the Institutional Review Board
(Kaohsiung Medical University Chung-Ho Memorial Hospital Institutional Review Board-
I, KMUHIRB-GI-20180036). Informed consents were obtained from all patients for the
collection of cancer cells for primary cultures.

2.2. Anti-Proliferative Experiments

Cancer cells were incubated in 96-well culture plates with a serum-containing medium
for 48 h. The culture medium was changed to a serum-free medium with 4 ng/mL of
colchicine, 250 ng/mL of lenvatinib, 350 ng/mL of lenvatinib, 4 ng/mL of colchicine +
250 ng/mL of lenvatinib, and 4 ng/mL of colchicine + 350 ng/mL of lenvatinib or without
any drug. The proliferation assay was performed after incubation for a further 72 h using
the premixed WST-1 cell proliferation reagent (Clontech Laboratories, Inc., A Takara Bio
Company, Mountain View, CA, USA) detected using an automated microplate reader
(Synergy H1 hybrid multi-mode reader with Gen5 software, BioTek Instruments, Inc.,
Winooski, VT, USA) with an absorbance of 450 nm wavelength (reference wavelength
630 nm). The results from 16 replicated wells were applied for statistical calculation.

2.3. Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) Experiments

Cancer cells were seeded in 25 cm2 plastic flasks with a serum-containing medium.
When the growth of the cells was over 80% of the total growth area, the medium was
changed to a serum-free medium with 4 ng/mL of colchicine, 250 ng/mL of lenvatinib,
350 ng/mL of lenvatinib, 4 ng/mL of colchicine + 250 ng/mL lenvatinib, and 4 ng/mL
of colchicine + 350 ng/mL of lenvatinib or without any drug for a further 24 h for the
qRT-PCR experiments. The procedures for qRT-PCR were the same as with previous stud-
ies [13,16]. The mean of triple qRT-PCR determinations for each gene was calculated for
analysis. The up-regulation of genes was defined as a gene expression fold change >1.3,
and the down-regulation of genes was defined as a gene expression fold change <0.7 [13,16].
Eleven lenvatinib target genes and NANOG were studied. The reference gene was the
housekeeping gene TBP (TATA box binding protein). The PCR primers used were 5′-
AGAATATCATCAACCTGCTGGG-3′ sense primer and 5′-TTGGAGGCATACTCCACGAT-
3′ anti-sense primer for FGFR1, 5′-CAGAATGGATAAGCCAGCCA-3′ sense primer and 5′-
GCTTGAACGTTGGTCTCTGG-3′ anti-sense primer for FGFR2, 5′-GCCTCCTCGGAGTCC
TTG-3′ sense primer and 5′-AAGACCAACTGCTCCTGCTG-3′ anti-sense primer for FGFR3,
5′-GCTGCTTTGGCCAGGTAGTA-3′ sense primer and 5′-AGGTCCTTGTCAGAGGCGTT-
3′ anti-sense primer for FGFR4, 5′-AATGCCACCTCCATGTTTGA-3′ sense primer and 5′-
GGTTTGCTGTCAGTCCAGGT-3′ anti-sense primer for FLT1, 5′-CCACGCACCAGACGCT
TG-3′ sense primer and 5′-GGACGACGAAGATGACCTTATACG-3′ anti-sense primer for
FLT4, 5′-TCTTGCCTCAGAAGAGCTGAA-3′ sense primer and 5′-GCCTTCAGATGCCAC
AGACT-3′ anti-sense primer for KDR, 5′-GCAGATTTCAGAGAGCACCAA-3′ sense primer
and 5′-ATTGATCCGCACAGAATGGT-3′ anti-sense primer for KIT, 5′-TCTCGTATTTG
CTGCATCGT-3′ sense primer and 5′-CACTCGGTGAAATCAGGGTAA-3′ anti-sense primer
for NANOG, 5′-GACATTGACCCTGTCCCTGA-3′ sense primer and 5′-AACCCGTCTCAAT
GGCACT-3′ anti-sense primer for PDGFRA, 5′-CCTTACCACATCCGCTCCATC-3′ sense
primer and 5′-TCACACTCTCCGTCACATTGC-3′ anti-sense primer for PDGFRB, 5′-CACC
GCTGGTGGACTGTAAT-3′ sense primer and 5′-GGACTCTCTCCAGGCCAGTT-3′ anti-
sense primer for RET, and 5′-CAATTTAGTAGTTATGAGCCAGAG-3′ sense primer and
5′-TTCTGCTCTGACTTTAGCAC-3′ anti-sense primer for TBP.

2.4. Statistical Analysis

An unpaired two-tailed t-test was applied for calculating the significant difference
between the two means. The p value < 0.05 was defined as statistically significant.
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3. Results
3.1. Anti-Proliferative Experiments

Figure 1 showed the effects of colchicine and lenvatinib on proliferation. Colchicine
had significant anti-proliferative effects on all cell lines. For lenvatinib, 250 ng/mL had anti-
proliferative effects on all cell lines, but 350 ng/mL only showed anti-proliferative effects
on three (S103, S143, S160) out of four cell lines. Lenvatinib at a concentration of 250 ng/mL
showed similar anti-proliferative effect with 350 ng/mL in S103, which was a stronger
anti-proliferative effect than 350 ng/mL in S143 but a weaker anti-proliferative effect than
350 ng/mL in S160. Adding colchicine to 250 ng/mL of lenvatinib showed similar anti-
proliferative effects with 250 ng/mL of lenvatinib alone in S103 and S143, which was a
stronger anti-proliferative effect than 250 ng/mL of lenvatinib alone in S160 but a weaker
anti-proliferative effect than 250 ng/mL of lenvatinib alone in S176. Adding colchicine
to 350 ng/mL of lenvatinib showed stronger anti-proliferative effects than 350 ng/mL
lenvatinib alone in S103, S143, and S160. Although 350 ng/mL of lenvatinib showed
no effect on S176 proliferation, combined 350 ng/mL of lenvatinib and colchicine could
significantly inhibit proliferation.
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Figure 1. Anti-proliferative effects of colchicine, Lenvatinib, or their combinations on four primary 
cultured hepatocellular carcinoma cells. The results from 16 replicated wells were calculated to ob-
tain the mean and standard deviation (SD) for unpaired two-tailed t-test analysis. Significant differ-
ence between two means were marked with the same lowercase letters. Bars indicate SD. (A) S103 
cells, p values: a, e, h < 0.0001; b = 0.0004; c = 0.0005; d = 0.042; f = 0.0174; g = 0.0233; i = 0.0011, (B) 
S143 cells, p values: a, b, c, d, e, f, g, h, i < 0.0001; j = 0.0003; k = 0.0044; l = 0.0006, (C) S160 cells, p 
values: a, c, d, e, f, g, h, i, j, k, l, m < 0.0001; b = 0.0004; n = 0.0348, (D) S176 cells, p values: a = 0.0263; 
b, d, e, f, g, h, i, l < 0.0001; c = 0.0009; j = 0.0033; k = 0.0262. 
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The results are shown in Tables 1 and 2. In comparison with the effects of 250 ng/mL 
and 350 ng/mL of lenvatinib, colchicine induced more down-regulated genes and a 
smaller number of up-regulated genes in three cell lines (S103, S143, S160). For S176, 
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the mean and standard deviation (SD) for unpaired two-tailed t-test analysis. Significant difference
between two means were marked with the same lowercase letters. Bars indicate SD. (A) S103 cells,
p values: a, e, h < 0.0001; b = 0.0004; c = 0.0005; d = 0.042; f = 0.0174; g = 0.0233; i = 0.0011, (B) S143 cells,
p values: a, b, c, d, e, f, g, h, i < 0.0001; j = 0.0003; k = 0.0044; l = 0.0006, (C) S160 cells, p values: a, c, d,
e, f, g, h, i, j, k, l, m < 0.0001; b = 0.0004; n = 0.0348, (D) S176 cells, p values: a = 0.0263; b, d, e, f, g, h, i,
l < 0.0001; c = 0.0009; j = 0.0033; k = 0.0262.

3.2. qRT-PCR Experiments
3.2.1. Influence on Expressions of Lenvatinib Target Genes

The results are shown in Tables 1 and 2. In comparison with the effects of 250 ng/mL
and 350 ng/mL of lenvatinib, colchicine induced more down-regulated genes and a smaller
number of up-regulated genes in three cell lines (S103, S143, S160). For S176, colchicine
induced more up-regulated genes than either 250 ng/mL or 350 ng/mL of lenvatinib
did. Lenvatinib at a concentration of 350 ng/mL induced fewer up-regulated genes than
250 ng/mL did in S143 but one more up-regulated gene than 250 ng/mL did in S103.
Although 350 ng/mL lenvatinib induced more down-regulated genes than 250 ng/mL
did in S143 and S160, this concentration reversely reduced two down-regulated genes in
comparison with 250 ng/mL in S176. Combined colchicine and 250 ng/mL of lenvatinib
induced more down-regulated genes with a smaller number of up-regulated genes than
250 ng/mL of lenvatinib did in S103, S143, and S160. For S176, this combination caused
two more up-regulated genes than 250 ng/mL of lenvatinib did. Combined colchicine
and 350 ng/mL of lenvatinib induced more down-regulated genes than 350 ng/mL of
lenvatinib did in all cell lines. Although this combination induced a smaller number of
up-regulated genes than 350 ng/mL of lenvatinib did in S103 and S160, it reversely induced
more up-regulated genes in comparison with 350 ng/mL of lenvatinib in S143 and S176.

Table 1. The effects of colchicine, lenvatinib, or their combinations on differential expressions of
tested genes.

Experimental Drug
Concentrations Col 4 ng/mL L 250 ng/mL L350 ng/mL L250 ng/mL + Col

4 ng/mL
L350 ng/mL + Col

4 ng/mL

S103

Up-regulation NANOG (2.91)

FGFR1 (1.54), FGFR3
(2.98), FLT4 (2.7),
KDR (2.51), KIT

(1.88), NANOG (3.94),
PDGFRB (1.86)

FGFR1 (1.61), FGFR3
(1.84), FLT4 (2.24),

KDR (2.3), KIT (1.9),
NANOG (3.82),
PDGFRA (1.42),
PDGFRB (1.74)

FGFR1 (1.8), FGFR3
(2.41), FLT4 (2.23),

KIT (1.59), NANOG
(1.88)

FGFR1 (1.59), FGFR3
(1.48), FLT4 (1.63),

KIT (1.75),
NANOG (1.8)

Down-regulation FLT1 (0.64), KIT
(0.62), PDGFRA (0.67)

FGFR4 (0.28), FLT1
(0.08)

FGFR4 (0.27), FLT1
(0.03)

FGFR2 (0.47), FGFR4
(0.16), FLT1 (0.05),

RET (0.41)

FGFR2 (0.47), FGFR4
(0.14), FLT1 (0.01),

PDGFRA (0.45),
RET (0.2)

S143

Up-regulation FGFR1 (1,39)

FGFR1 (1.53), FGFR2
(1.74), FGFR3 (13.52),
FGFR4 (2.53), FLT4
(3.06), KIT (1.71),
NANOG (1.34),
PDGFRA (1.47),
PDGFRB (8.36)

FGFR3 (5.71),
NANOG (2.0),

PDGFRB (2.22)

FGFR1 (1.47), FGFR3
(1.73),

FGFR1 (1.82), FGFR3
(4.75), FGFR4 (2.01),
FLT4 (1.39), NANOG
(1.47), PDGFRB (1.79)

Down-regulation

KDR (0.41), NANOG
(0.65), PDGFRA

(0.33), PDGFRB (0.69),
RET (0.61)

RET (0.59) FLT1 (0.46),
RET (0.17)

FLT1 (0.5), FLT4
(0.58), KDR (0.32),

PDGFRA (0.28)

FLT1 (0.25), KDR
(0.33), PDGFRA (0.28)
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Table 1. Cont.

Experimental Drug
Concentrations Col 4 ng/mL L 250 ng/mL L350 ng/mL L250 ng/mL + Col

4 ng/mL
L350 ng/mL + Col

4 ng/mL

S160

Up-regulation FLT4 (1.32),
NANOG (1.37)

FGFR3 (2.88),
NANOG (1.47)

Down-regulation

FLT1 (0.45), FLT4
(0.63), FGFR2 (0.4),

FGFR3 (0.29), FGFR4
(0.47), KDR (0.67),

KIT (0.03), NANOG
(0.5), PDGFRA (0.11),

PDGFRB (0.43),
RET (0.2)

FGFR1 (0.65), FGFR2
(0.48), FLT1 (0.55),

KIT (0.07), PDGFRA
(0.18)

FGFR1 (0.66), FGFR2
(0.31), FLT1 (0.46),

KIT (0.15), PDGFRA
(0.09), RET (0.08)

FGFR2 (0.35), FGFR3
(0.61), FGFR4 (0.48),

KDR (0.61), KIT
(0.14), PDGFRA

(0.02), PDGFRB (0.28),
RET (0.08)

FGFR2 (0.35), FGFR3
(0.54), FGFR4 (0.51),

FLT1 (0.67), KDR
(0.39), KIT (0.08),
NANOG (0.50),
PDGFRA (0.02),
PDGFRB (0.43),

RET (0.41)

S176 *

Up-regulation FGFR1 (2.49), KIT
(2.61) NANOG (1.79) FGFR4 (1.49) FGFR1 (2.58), KIT

(2.31)
FGFR1 (2.94), KIT

(2.65)

Down-regulation

FGFR3 (0.27),
FGFR4 (0.55),

NANOG (0.46),
PDGFRA (0.42),
PDGFRB (0.67),

RET (0.57)

FLT1 (0.54), KIT
(0.54), PDGFRA

(0.43), RET (0.62)

FLT1 (0.59), RET
(0.52)

FGFR3 (0.58), FGFR4
(0.48), NANOG (0.29),

PDGFRA (0.34),
PDGFRB (0.59),

RET (0.45)

FGFR2 (0.76), FGFR3
(0.65), FGFR4 (0.62),

NANOG (0.15),
PDGFRA (0.23),
PDGFRB (0.33),

RET (0.56)

Eleven lenvatinib target genes (FGFR1, FGFR2, FGFR3, FGFR4, FLT1, FLT4, KDR, KIT, PDGFRA, PDGFRB, RET)
and one gene (NANOG) of a cancer stem cell marker were included for investigation. Each gene received triple
quantitative reverse transcriptase-polymerase chain reactions to obtain the mean value. The mean magnitude
of either up-regulated or down-regulated gene expression fold change was shown within the parentheses. Up-
regulation of gene was defined as gene expression fold change > 1.3 and down-regulation of gene was defined as
gene expression fold change < 0.7. *: S176 did not show detectable expressions of FLT4 and KDR. Col: colchicine;
L: lenvatinib.

Table 2. The number of lenvatinib target genes with significantly differential expressions caused by
colchicine, Lenvatinib, or their combinations.

Drug Concentrations Col 4 ng/mL L 250 ng/mL L350 ng/mL L250 ng/mL + Col
4 ng/mL

L350 ng/mL + Col
4 ng/mL

S103
Up-regulation 0 6 7 4 4

Down-regulation 3 2 2 4 5
S143

Up-regulation 1 8 2 2 5
Down-regulation 4 1 2 4 3

S160
Up-regulation 0 1 1 0 0

Down-regulation 10 5 6 8 9
S176

Up-regulation 2 0 1 2 2
Down-regulation 5 4 2 5 6

Eleven lenvatinib target genes (FGFR1, FGFR2, FGFR3, FGFR4, FLT1, FLT4, KDR, KIT, PDGFRA, PDGFRB, RET)
were studied with quantitative reverse transcriptase-polymerase chain reaction. Col: colchicine; L: lenvatinib.

3.2.2. Influence on Expression of NANOG

The results are shown in Table 1. Colchicine induced down-regulation of NANOG
in S143, S160, and S176 but up-regulation of NANOG in S103. The magnitude of up-
regulated NANOG induced by colchicine in S103 was smaller than either 250 ng/mL or
350 ng/mL of lenvatinib. Lenvatinib at a concentration of either 250 ng/mL or 350 ng/mL
induced up-regulation of NANOG in S103, S143, and S160. Lenvatinib at a concentration
of 250 ng/mL also induced up-regulation of NANOG in S176. Combined colchicine with
250 ng/mL or 350 ng/mL of lenvatinib induced a smaller magnitude of up-regulated
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NANOG in comparison with both lenvatinib and colchicine alone in S103. Combined
colchicine and 250 ng/mL of lenvatinib could obliterate the up-regulated NANOG in S143
and reverse the up-regulated NANOG in S160 and S176 to down-regulated as compared
with 250 ng/mL of lenvatinib alone. In comparison with 350 ng/mL of lenvatinib alone,
combined colchicine and 350 ng/mL of lenvatinib could decrease the magnitude of up-
regulated NANOG in S143, reverse NANOG from up-regulation to down-regulation in S160,
and cause down-regulation of NANOG in S176.

3.3. Combined Analysis the Results of Anti-Proliferative Effects and qRT-PCR Experiments

Table 3 shows the summary of the total experimental results. Combined colchicine
with 350 ng/mL of lenvatinib had the best anti-cancer effects followed by combined
colchicine with 250 ng/mL of lenvatinib in S103 and S160. For S143, combined colchicine
and 250 ng/mL of lenvatinib showed the best anti-cancer effects. Combined colchicine and
250 ng/mL or 350 ng/mL of lenvatinib showed similar anti-cancer effects on S176.

Table 3. Summary of the anti-cancer effects of colchicine, lenvatinib, and their combinations on
primary cultured hepatocellular carcinoma cell lines.

Cell Lines S103 S143 S160 S176 *

(a) Strength of
significant

anti-proliferative effect

L350 + Col > (Col, L250,
L250 + Col, L350)

(L250, L250 + Col, L350
+ Col) > L350 > Col

L350 + Col > L350 >
(Col, L250 + Col) >

L250

L250 > L350 + Col >
(Col, L250 + Col)

(b) Number of
lenvatinib target genes

Up-regulation L350 > L250 > (L250 +
Col, L350 + Col)

L250 > L350 + Col >
(L250 + Col, L350) >

Col
(L250, L350) (L250 + Col, L350 + Col,

Col) > L350

Down-regulation L350 + Col > L250 + Col
> Col > (L250, L350)

(Col, L250 + Col) >
L350 + Col > L350 >

L250

Col > L350 + Col > L250
+ Col > L350 > L250

L350 + Col > (L250 +
Col, Col) > L250 > L350

(c) Magnitude of
NANOG expression

Up-regulation
L250 > L350 > Col >
(L250 + Col, L350 +

Col)

L350 > L350 + Col >
L250 L350 > L250 L250

Down-regulation Col (L350 + Col, Col) L350 + Col > L250 +
Col > Col

Parentheses indicate similar effects. *: There was no significant anti-proliferative effect caused by L350 as compared
with control in S176. Col: colchicine 4 ng/mL, L250: 250 ng/mL lenvatinib, L350: 350 ng/mL lenvatinib.

4. Discussion

The dose-dependent anti-cancer effect is a well-known concept to describe that the
efficiency of an anti-cancer drug will increase with an increased dose within its therapeutic
range. This concept is widely adopted in the clinical prescription of cytotoxic agents or in
the experiment for searching for a new agent with direct cytotoxicity. However, the present
results showed that lenvatinib were not consistent with this concept. The explanation was
that targeting of particular genes related to angiogenesis and proliferation rather than direct
cytotoxicity were the major anti-cancer mechanisms for multikinase molecular inhibitors.
High lenvatinib concentration (350 ng/mL) caused more up-regulated lenvatinib target
genes in S103 and S176 and a larger degree of up-regulated NANOG in S143 and S160
than low lenvatinib concentration (250 ng/mL). Moreover, 350 ng/mL of lenvatinib had
no anti-proliferative effect on S176. These findings were in accordance with our previous
studies on two other multikinase molecular inhibitors (sorafenib and regorafenib) [16]. On
the other hand, the composition of tumors in HCC is heterogeneity containing cancer stem
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cells and cancer cells of different characteristics [22–25]. Since the intra-cellular interaction
of genes and signaling pathways are determined by the characteristics of the cancer cells,
the anti-cancer effects through targeting on particular genes can, thus, be quite variable
among different cancer cells. On the other hand, the present study also demonstrated that
lenvatinib could up-regulate NANOG in S103, S143, and S160 at a concentration of either
250 ng/mL or 350 ng/mL and in S176 at a concentration of 250 ng/mL. These results were in
consistent with the effects of sorafenib and regorafenib on these cell lines [16]. Cancer cells
with NANOG expression are considered cancer stem cells, also known as tumor-initiating
cells or cancer cells with stem cell-like properties. These cells exhibit an enhanced ability of
self-renewal, clonogenicity, initiation of tumors, and resistance to therapeutic agents [26–28].
Meta-analysis also showed that patients with a positive NANOG expression of cancer cells
in an HCC tumor had poor 3-year and 5-year overall survival and disease-free survival
rate [15]. The above results in combination with a previous report [16] indicate the essential
therapeutic limitation for multikinase inhibitors in the treatment of HCC. Moreover, these
drugs may also have the possibility to up-regulate genes favored for tumor progression
particularly for the NANOG. Therefore, combined multikinase inhibitors with other drugs
with different anti-cancer mechanisms is a reasonable choice in the treatment of patients
with advanced HCC.

Tubulin protein plays an essential role in cell division and intracellular transportation.
The inhibition of microtubule formation by targeting the tubulin protein can induce cell
death by apoptosis. An efficient cytotoxic tubulin inhibitor is a credible solution for treating
many species of cancers [29]. Colchicine is a microtubule destabilizer which has very strong
binding capacity to tubulin to perturb the assembly dynamics of microtubules [30,31]
and also can increase cellular-free tubulin to limit mitochondrial metabolism in cancer
cells [32]. Differences in the characteristics of cancer cells have no remarkable influence
on the anti-proliferative effect of colchicine [13]. Besides the direct cytotoxic effect, the
present results also show that colchicine could down-regulated more lenvatinib target
genes and decrease the number of up-regulated target genes as compared with lenvatinib
in three cell lines. Colchicine also caused down-regulation of NANOG in three cell lines and
reduced the degree of up-regulated NANOG caused by either 250 ng/mL or 350 ng/mL
of lenvatinib in the remaining one cell line (S103). Combined colchicine with lenvatinib
demonstrated better anti-cancer effects than either colchicine or lenvatinib alone in view of
an anti-proliferative effect and the expressions of NANOG and lenvatinib target genes. Since
colchicine is very cheap and the side effects using our novel colchicine dosage schedule
were clinically acceptable [14], this drug can be considered to be applied in combination
with lenvatinib for the palliative treatment of advanced HCC.

The limitation for the present study was that the qRT-PCR results did not receive
further confirmation by an immunoblotting assay. Since different characteristics of cancer
cells determine the interaction of genes and signaling pathways and the composition of
HCC tumor is heterogeneity, the actual clinical significance for those up-regulated genes
induced by colchicine, Lenvatinib, or their combinations still need to be further investigated.
On the other hand, the present study was unable to elucidate the definite relation between
cellular characteristics and lenvatinib effects on HCC due to only four cell lines being
studied. Further large-scale, extensive experiments are required to clarify this important
topic. Nevertheless, the present results can provide new insight for understanding the
effects of lenvatinib on HCC and the potential role of colchicine on combined therapy.
Animal experimentation was not considered in the present study. The key reason was that
no proven lenvatinib doses and treatment durations could be applied in animal experiments
to actually reflect human response and, thus, could be misleading in the interpretation of
the results.

5. Conclusions

Lenvatinib does not show a dose-dependent anti-cancer effect on HCC. With the
combined consideration of lenvatinib side effects and our results, starting from low rather
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than high therapeutic doses and gradually increasing the dose in case of no obvious
evidence of anti-cancer effects might be a suitable way to prescribe this drug. Combined
colchicine with lenvatinib can promote the total anti-cancer effects on HCC.
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