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Simple Summary: Cancer results from aberrant cellular signaling caused by somatic genomic
alterations (SGAs). However, inferring how SGAs cause aberrations in cellular signaling and lead to
cancer remains challenging. We designed an interpretable deep learning model to encode the impact
of SGAs on cellular signaling systems (represented by hidden nodes in the model) and eventually on
tumor gene expression. The transparent deep learning architecture enabled the model to discover
drivers affecting common signaling pathways and partially resolve the causal structure of signaling
proteins. This is an early attempt to use transparent deep learning model, in contrast to conventional
"black box" approach, to learn interpretable insights into cancer cell signaling systems. A better
representation of signaling system of a cancer cell sheds light on the disease mechanisms of the cancer

and can guide precision medicine.

Abstract: Cancer is a disease of aberrant cellular signaling resulting from somatic genomic alterations
(SGAs). Heterogeneous SGA events in tumors lead to tumor-specific signaling system aberrations.
We interpret the cancer signaling system as a causal graphical model, where SGAs affect signaling
proteins, propagate their effects through signal transduction, and ultimately change gene expression.
To represent such a system, we developed a deep learning model called redundant-input neural
network (RINN) with a transparent redundant-input architecture. Our findings demonstrate that
by utilizing SGAs as inputs, the RINN can encode their impact on the signaling system and predict
gene expression accurately when measured as the area under ROC curves. Moreover, the RINN
can discover the shared functional impact (similar embeddings) of SGAs that perturb a common
signaling pathway (e.g., PI3K, Nrf2, and TGF). Furthermore, the RINN exhibits the ability to discover
known relationships in cellular signaling systems.

Keywords: somatic genomic alterations; gene expression; pathway; deep learning

1. Introduction

The cellular mechanisms leading to cancer in an individual are heterogeneous, nu-
anced, and not well understood. It is well appreciated that cancer is a disease of aberrant
signaling, and the state of a cancer cell can be described in terms of abnormally functioning
cellular signaling pathways. Precision oncology depends on the ability to identify the
abnormal cellular signaling pathways causing a patient’s cancer, so that patient-specific
effective treatments can be prescribed—including targeting multiple abnormal pathways
during a treatment regime. Aberrant signaling in cancer cells usually results from somatic
genomic alterations (SGAs) that perturb the function of signaling proteins. Although large-
scale cancer genomic data are available, such as those from The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium (ICGC), it remains a very dif-
ficult and unsolved task to reliably infer how the SGAs in a cancer cell cause aberrations
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in cellular signaling pathways based on the genomic data of a tumor. One challenge is
that the majority of the genomic alterations observed in a tumor are non-consequential
(passenger genomic alterations) with respect to cancer development and only a few are
driver genomic alterations, i.e., genomic alterations that cause cancer. Furthermore, even if
the driver genomic alterations of a tumor are known, it remains challenging to infer how
aberrant signals of perturbed proteins affect the cellular system of cancer cells, because
the states of signaling proteins (or pathways) in the signaling system are not measured
(latent). This requires one to study the causal relationships among latent (i.e., hidden or
unobserved) variables, which represent the state of individual signaling proteins, protein
complexes, or certain biological processes within a cell, in addition to the observed variables
in order to understand the disease mechanisms of an individual tumor and identify drug
targets. Most causal discovery algorithms have been developed to find the causal struc-
ture and the parameterization of the causal structure relative to the observed variables of a
dataset [1-6]. Only a small number of causal discovery algorithms also find the latent causal
structure [7-11]. Interestingly, Xie et al. [11] and Huang et al. [10] developed algorithms
to learn hierarchical structures among latent variables based on compositional statistical
structures. However, due to the large search space, these algorithms are not suitable for
handling high-dimension data, which we deal with in our study.

Deep learning represents a group of machine learning strategies, based on neural
networks, that learn a function mapping inputs to outputs. The signals of input vari-
ables are processed and transformed with many hidden layers of latent variables (i.e.,
hidden nodes) [12-14]. These hidden layers learn hierarchical or compositional statistical
structures, meaning that different hidden layers capture structures of different degrees of
complexity [9,15-17]. Researchers have previously shown that deep learning models can
represent the hierarchical organization of signaling molecules in a cell [18-22], with latent
variables as natural representations of unobserved activation states of signaling molecules
(e.g., membrane receptors or transcription factors). However, deep learning models have
not been broadly used as tools to infer causal relationships in a computational biology setting,
partly due to deep learning’s “black box” nature.

Relevant to the work presented in this paper, here, we briefly describe some of the
studies that used neural-network-based approaches to discover gene regulatory networks
(GRNSs). A study published in 1999 by Weaver and Stormo [23] modeled the relationships in
gene regulatory networks as coefficients in weight matrices (using the familiar concepts of
weighted sums and an activation function in their model). However, they only tested their
algorithm on simulated time-series data, as large gene expression datasets were not yet
available and performing these calculations on large numbers of data was quite challenging
at the time. Similarly, Vohradsky [24] and Keedwell et al. [25] also interpreted the weights
of a quasi-recurrent neural network as relationships in gene regulatory networks. Again,
simulated time-series data were used in these studies with reasonable results. A more
recent study published in 2015 [26] used a linear classifier with one input “layer” and one
output “layer” (which they called a neural network) to infer regulatory relationships (as
represented by the weights of the weight matrix in the linear classifier) among genes in
lung adenocarcinoma gene expression data. However, they did not evaluate their learned
regulatory network, did not use DNA mutation data (as we do in this work), and did not
use neural networks. There have also been studies that used genetic algorithms (evolving
a weight matrix of regulatory pathways) to infer gene regulatory networks [27]. Like
the studies above, this work was ahead of its time, and they were only able to test their
algorithm on simulated expression data. Improving upon Ando and Iba [27], Keedwell
and Narayanan [28] used the weights representing a single-layer artificial neural network
(ANN) (trained with gradient descent) to represent regulatory relationships among genes
in gene expression data. Interestingly, they also used a genetic algorithm for a type of
feature selection to make the task more tractable. They achieved good results on simulated
temporal data and also tested their method on real temporal expression data (112 genes
over nine time points) but did not have ground truth for comparison. In another study,
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Narayanan et al. [29] used single-layer ANNSs to evaluate real, non-temporal gene expres-
sion data in a classification setting (i.e., they did not recover GRNs). However, the high
dimensionality of the problem was again a major limiting factor.

Many of the studies discussed above used the weights of a neural network to repre-
sent relationships in gene regulatory networks. However, it does not appear that these
studies attempted to use a neural network to identify latent causal structures at different
hierarchical levels (i.e., cellular signaling system), as we do in this work. In general, the
above studies used very basic versions of neural network (without regularization limiting
the magnitude of the weights and thereby the complexity of the learned function) and,
due to computing constraints and the absence of large genomic datasets, were unable to
train their networks on high-dimension data. Also, most of the methods above require
temporal data, as opposed to the static genomic data that we utilize here. Overall, none
of the studies discussed above used a deep neural network (DNN) to predict expression
data from genomic alteration data and then recover causal relationships in the weights of a
DNN, as we do in this paper.

More recent work from our group used deep learning to simulate cellular signaling
systems that were shared by human and rat cells [18] and to recover components of
the yeast cellular signaling system, including transcription factors [19]. These studies
utilized unsupervised learning methods, in contrast to the supervised methods used in this
study. Also, the previous studies by our group did not attempt to find causal relationships
representing the cellular signaling system.

In a recent work [9], we developed a deep learning algorithm, named redundant-
input neural network (RINN), to learn causal relationships among latent variables from
data inspired by cellular signaling pathways. The RINN solves the problem where a
set of input variables cause the change in another set of output variables, and this causal
interaction is mediated by a set of an unknown number of latent variables. The constraint of
inputs causing outputs is necessary to interpret the latent structure as causal relationships
(see [9] for more details regarding the causal assumptions of the RINN). A key innovation
of the RINN model is that it is a partially transparent model, allowing input variables
to directly interact with all latent variables in its hierarchy. This allows the RINN to
constrain (in conjunction with L; regularization) an input variable to be connected to a set
of latent variables that can sufficiently encode the impact of the input variable on the output
variables. In Young et al. [9], we showed that the RINN outperformed other algorithms,
including neural-network-based algorithms and a causal discovery algorithm known as
DM (Detect MIMIC (Multiple Indicators, Multiple Input Causes)), in identifying latent
causal structures in various types of simulated data.

In the current study, we took advantage of the partially transparent nature of the
RINN model and used the model to learn a representation of the cancer cellular signaling
system. In this setting, we interpreted the cellular signaling system as a hierarchical causal
model of interactions among the activation states of proteins or protein complexes within a
cell. Based on the assumption that the somatic genome alterations (SGAs) that drive the
development of a cancer often influence gene expression, we trained the RINN on a large
number of tumors from TCGA using tumor SGAs as inputs to predict cancer differentially
expressed genes (DEGs) (outputs). We then evaluated the latent structure learned with
the hidden layers of the RINN in an attempt to learn components of the cancer cellular
signaling system. We show that the model is capable of detecting the shared functional
impact of SGAs affecting members of a common pathway. We also show that the RINN can
capture cancer signaling pathway relationships within its hidden variables.

2. Results
2.1. Overview of the RINN Model
An RINN shares similarities with a regular supervised feed-forward deep neural

network but incorporates a modified architecture. Unlike a conventional network, an RINN
not only establishes a fully connected link between the input and the first hidden layer
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but also includes connections from the input to every subsequent hidden layer (Figure 1).
This unique design enables the RINN to acquire knowledge about direct causal connections
between an input SGA and any hidden node within the network.

Figure 1. Redundant-input neural network (RINN) for TCGA data. An RINN with eight hidden
layers (h(l), . h(8>, each with n nodes), m inputs (sgay, ..., sgam at the bottom), p outputs (deg, ...,
degp), and seven sets of redundant inputs (sgay, ..., sga, on the right side). Each node represents a
scalar value, and each edge represents a scalar weight. The weights between layers are collected in
weight matrices Wy, ..., Wy. Blue edges represent the weights used to create SGA weight signatures.
The red box encloses the hidden nodes of the deep neural network.

2.2. Model Selection

We trained approximately 23,000 RINN and 23,000 DNN models on the TCGA training
dataset with distinct sets of hyperparameters (e.g., number of hidden nodes, activation
function, regularization rate, etc.). We evaluated each trained model on multiple validation
datasets to evaluate how well it performed. We hypothesized that the models with the most
parsimonious weight structure, while still maintaining the ability to accurately capture the
statistical relationship between SGAs and DEGs, likely learned optimal representations of
the impact of SGAs on cancer cells. To reflect the balance between these two objectives, we
visualized the performance of all models on a scatter plot with the validation set error and
the sum of the absolute value of all weights as axes (Figure 2). Each blue dot in this figure
represents a neural network trained on a unique set of hyperparameters. We ranked models
based on their Euclidean distance from the origin (dy), and models with the shortest d
were selected as the models with the best balance between sparsity and validation set error.

The ten best RINN models (i.e., models with the lowest d,) are shown in Table 1.
Among the multiple activation functions studied, the softplus activation function over-
whelmingly provided the best results. This was also seen with the best DNN models.
Overall, the number of hidden nodes in each hidden layer for the RINNs were relatively
small (~100) compared with the dimensionality of output space (5259). Despite being
initialized with eight hidden layers, the best RINN models utilized only three or four of
the eight hidden layers, indicating that the model could automatically trim hidden layers
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(assigning 0 values to hidden nodes) due to regularization. All top ten DNN models had
two hidden layers, with sizes ranging from 50 to 644 hidden nodes.
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Figure 2. Model selection results. (A) RINN. (B) DNN.

Table 1. Best RINN hyperparameters.

Rank TE;?:}IE Higi‘ziei:;‘ers LR RR BS Activation  CEL A
1 303 50 1x1073 5x 107 135 softplus 0.5073 4248
2 144 100 1x1073 6 x 1076 45 softplus 0.5081 3874
3 738 319 1.64 x 1074 6.37 x 107° 30 softplus 0.5089 3373
4 428 326 2.37 x 107* 5.59 x 10~° 30 softplus 0.5079 4042
5 136 50 1x1073 6 x 1076 30 softplus 0.5082 4021
6 311 50 1x1073 6 x 1076 135 softplus 0.5090 3596
7 713 148 1.1 x 1074 5.17 x 10~° 30 softplus 0.5083 4038
8 326 100 1x1073 6 x 1076 170 softplus 0.5088 3726
9 149 101 523 x 10~* 449 x 107° 30 softplus 0.5057 5030
10 345 180 3.02 x 10* 5.66 x 10° 30 softplus 0.5085 3925

Hyperparameters for the ten RINN models with the lowest Euclidean distance from the origin. Each row in the
table represents the set of hyperparameters that was used to fully train an RINN model. Also included are the
cross-entropy errors and sum of the absolute values of the weights. (W; is a weight matrix between hidden layers.
LR: learning rate; RR: regularization rate; BS: batch size; CEL: cross-entropy loss.)

2.3. Predicting DEG Status with Given SGAs

We examined how well deep learning models could predict DEGs with SGAs given
as inputs using different metrics, including cross-entropy loss, AUROC, and AUPR. Cross-
validation model selection metrics for RINNs and DNNs are compared in Table 2. Table 2
shows the mean and standard deviation of the metrics on all 5259 DEGs. In general, RINNs
and DNN’s performed similarly across all metrics. RINNs and DNNs performed significantly
better than k-nearest neighbors or random controls. The best RINN and DNN models according
to the shortest d, (meaning the most regularized) performed similarly but slightly worse than
the much less regularized RINNs and DNNs. Y"5|W;| is a surrogate measure of the density of a
neural network, with higher values indicating higher density of edges, in general.

To obtain a better idea of how well the models performed in predicting individual
DEGs from SGAs, we plotted DEG AUROC histograms for individual models and relevant
control models (Figure 3). Figure 3 shows the AUROC values for all 5259 DEGs in the
best RINNs and DNNs. RINNs and DNNs vastly outperformed the control models with
much higher AUROC values. Interestingly, for many DEGs, the models could achieve
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AUROC values greater than 0.8. Again, DNNs and RINNs performed similarly when
compared to each other. Importantly, there was not a large difference in the AUROC curves
among RINN (and DNN) models selected according to the lowest CEL (cross-entropy loss)
and those selected using the shortest ED (Euclidean distance), despite the models selected
according to shortest ED being much more regularized.

Table 2. Cross-validation model selection results.

Description CEL AUROC AUPR 25 Wil

RINN 1 Lowest CEL 0.5032 £0.0048 0.7316 +0.0051 0.5678 +0.0039 18,899 £250
RINN 2 Second-lowest CEL 0.5032 -£0.0047 0.7317 £0.0048 0.5677 -£0.0036 16,971 £53
DNN 1 Lowest CEL 0.5033 £0.0052 0.7318 0.0058 0.5676 :0.0041 24,503 +£124
DNN 2 Second-lowest CEL 0.5033 £0.0049 0.7307 +0.0056 0.5663 £0.0032 12,739 £75
RINN ED 1 Shortest ED 0.5073 % 0.0054 0.7258 £0.0054 0.5607 £0.0040 4248 +18
RINNED2  Second-shortest ED 0.5081 + 0.0058 0.7231 0.0057 0.5569 £0.0038 3874 +48
DNN ED 1 Shortest ED 0.5075 £0.0055 0.7238 £0.0057 0.5570 -£0.0029 3491 +18
DNN ED 2 Second-shortest ED 0.5073 £0.0054 0.7240 £0.0054 0.5576 0.0031 3704 +45
k-NN k = 21, Euclidean 9.6289 +0.1889 0.5599 +0.0034 0.5396 £0.0022 NA
k-NN k = 45, Jaccard 9.0740 £0.1579 0.5799 0.0028 0.5719 £0.0027 NA
Random Preds~L(0,1) 0.9994 £0.0003 0.5003 :0.0003 0.3257 £0.0052 NA

Comparison of the two RINN and DNN models with the lowest mean cross-entropy validation set loss and
shortest Euclidean distance from the origin after evaluating ~23,000 different sets of hyperparameters. Values
represent the means across three validation sets. The four best models for each metric are in bold. (W; is a weight
matrix between hidden layers. CEL: cross-entropy loss; ED: Euclidean distance.)

DNN, lowest CEL
RINN, lowest CEL
DNN, shortest ED
RINN, shortest ED
kNN, Euclidean
kNN, Jaccard
Random

4004

goonoo

30014
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Figure 3. AUROC values for RINNs and DNNs. The AUROC values for predicting individual DEGs
with different models are shown as histograms.

2.4. Learning Shared Functional Impacts of SGAs Using RINNs

An RINN allows an SGA to interact with all hidden nodes in the latent hierarchy. After
training with regularization, the majority of the weights from SGAs to hidden nodes were set
close to 0.0; thus, the remaining weights reflected how the impact of the SGAs was propagated
through the latent variables and eventually influenced gene expression. In other words, these
remaining weights (edges) between the SGAs and hidden nodes served as signatures (or
vector embeddings) representing an SGA'’s functional impact. We set out to assess whether the
weight signatures learned by the RINNSs truly reflected the functional impact of SGAs. Here,
one can measure the closeness of the functional impacts of two SGAs by using cosine-angle
similarity. We hypothesized that if the RINN correctly captures the functional impact of
SGAs, then the weight signature of a gene (SGA) should be more similar to genes belonging
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to a common pathway than to genes from other pathways. To this end, we used the well-
documented cancer pathways recently reported by the TCGA pan-cancer analysis project [30]
(Figure S1) to determine which genes shared a common pathway:.

For each of the 35 driver SGAs that are in the known pathways from the TCGA pan-
cancer study [30] (and that are also in our SGA dataset), we calculated the cosine similarity of
its weight signature with respect to all other SGA weight signatures and listed the three most
similar SGAs in Table 3. Clearly, many of the SGAs that had high cosine similarity relative to
the query SGA were in the same pathway as the query SGA according to [30]. Most of the
SGAs in the PI3K pathway had high cosine similarity to the other SGAs in the PI3K pathway.
KEAP1 and NFE2L2 (the only members of the Nrf2 pathway in our SGA dataset) were both
found to be each other’s SGA with the highest cosine similarity (i.e., each other’s closest
neighbor). Also, SMAD4 and ACVR2A (only members of the TGFf pathway in the SGA
dataset) were also found to be each other’s SGA with the highest cosine similarity. Additional
cosine-similarity relationships were found between members of the same pathway for the
remaining pathways, but these relationships were less frequent than the results for PI3K, Nrf2,
and TGFf3 mentioned above. These cosine-similarity results suggest that the hidden nodes
in our trained RINNs may represent biological entities or components of a cellular signaling
system involved in propagating signals of SGA events, indicating that the connectivity found

in our trained RINN:Ss is related to cellular signaling pathways.

Table 3. RINN top three SGA weight-signature cosine-similarity (CS) results.

X

Highest CS (Mean =+ SD)

Second-Highest CS

Third-Highest CS

PTEN PIK3R1 (0.8 + 0.02) PDGFRA (0.4+0.01)  PIK3CA (0.4 + 0.05)
PIK3CA PIK3R1 (0.6 = 0.04) AKT1 (0.4 + 0.06) PTEN (0.5 + 0.05)
PIK3R1 PTEN (0.8 + 0.02) PIK3CA (0.6+0.04)  CTNNBI (0.4 + 0.05)
AKT1 PIK3CA (0.4 = 0.06) FGFR2 (0.4 = 0.03) DCHS2 (0.3 + 0.09)
STK11 KEAPI (0.5 + 0.05) FGFR1 (0.5 + 0.05) NFE2L2 (0.4 + 0.10)
KEAP1 NFE2L2 (0.6 = 0.09) STK11 (0.5 + 0.05) KRAS (0.4 + 0.08)
NFE2L2 KEAP1 (0.6 + 0.09) STK11 (0.4 + 0.10) FGFR1 (0.3 +0.11)
ACVR2A SMADA4 (0.5 4 0.04) RNF43 (0.4 & 0.20) APC (0.2 + 0.10)
SMAD4 ACVR2A (0.5 + 0.04) APC (0.4 + 0.06) DCHS2 (0.4 + 0.02)
CDKN2A NOTCHI (0.7 & 0.09) HRAS (0.5 & 0.07) FAT1 (0.4 £ 0.10)
CDKN2B RB1 (0.4 + 0.14) EGFR (0.4 + 0.18) CDK4 (0.4 +0.18)
CCNE1 E2F3 (0.5 = 0.23) RB1 (0.3 £ 0.20) MDM4 (0.3 = 0.20)
CCND1 FGFR2 (0.7 + 0.05) DCHS2 (0.34+0.11)  FBXW?7 (0.3 +0.14)
CDK4 PDGFRA (0.5 = 0.10) EGFR (0.4 + 0.11) CDKN2B (0.4 +0.18)
RB1 FGFR3 (0.5 + 0.07) E2F3 (0.4 & 0.04) CDKN2B (0.4 +0.14)
E2F3 CCNE1 (0.5 + 0.23) FGFR3 (0.4 = 0.10) RB1 (0.4 £ 0.04)
EGFR PDGFRA (0.5 +0.10) CDK4 (0.4 +0.11) CDKN2B (0.4 + 0.18)
FGFR1 DCHS2 (0.6 + 0.11) STK11 (0.5 + 0.05) FBXW?7 (0.5 % 0.07)
ERBB2 EP300 (0.6 + 0.08) FGFR3 (0.5 + 0.21) RB1 (0.4 + 0.08)
FGFR2 CCND1 (0.7 £ 0.05) FBXW7 (0.4+0.09)  DCHS2 (0.4 +0.11)
FGFR3 RB1 (0.5 + 0.07) EP300 (0.5 + 0.02) ERBB2 (0.5 + 0.21)
PDGFRA CDK4 (0.5 + 0.10) EGEFR (0.5 + 0.10) PTEN (0.4 £ 0.10)
KRAS CTNNBI (0.5 + 0.06) KEAPI (0.4 + 0.08) RNF43 (0.3 + 0.15)
HRAS NOTCHI (0.7 & 0.05) FAT1 (0.6 = 0.05) CDKN2A (0.5 £ 0.07)
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Table 3. Cont.

x Highest CS (Mean =+ SD) Second-Highest CS Third-Highest CS
MDM4 PDGEFRA (0.3 +0.14) EGEFR (0.3 +0.16) CCNE1 (0.3 £0.10)
TP53 E2F3 (0.4 +0.03) RB1 (0.3 4+ 0.08) CCNE1 (0.3 £0.09)
RNF43 APC (0.4 £0.03) ACVR2A (044+0.20) KRAS (0.3+£0.15)
APC FBXW?7 (0.5 £ 0.06) DCHS2 (0.5 +0.04) SMAD4 (0.4 % 0.06)
CTNNB1 KRAS (0.5 +0.06) PIK3R1 (0.4 £ 0.08) FBXW?7 (0.4 £0.07)
DCHS2 FBXW?7 (0.8 £ 0.04) EP300 (0.6 = 0.04) FGFR1 (0.6 £0.11)
FAT1 NOTCH1 (0.8 +0.07) HRAS (0.6 £0.05) CDKN2A (0.4 £0.10)
NF2 EP300 (0.3 £ 0.16) FBXW?7 (0.3 +0.10) NOTCH]1 (0.3 £ 0.03)
FBXW7 DCHS2 (0.8 £ 0.04) EP300 (0.6 + 0.08) APC (0.5 £ 0.06)
NOTCH1 FAT1 (0.8 +0.07) HRAS (0.7 +0.05) CDKN2A (0.7 £ 0.09)
EP300 FBXW?7 (0.6 + 0.08) DCHS?2 (0.6 £ 0.04) ERBB2 (0.6 + 0.08)

SGAs from Figure S1 with the highest cosine similarity relative to SGA x (mean CS across three best models = st.
dev.). SGAs in bold are in the same pathway (according to [30]) as SGA x.

To compare the RINNs and DNNs, we also performed the same cosine-similarity
experiment of Table 3 but with weights from the best three DNN models (Table 4). For this
experiment, we only used weights from the input SGAs to the first hidden layer, as these
are the only weights in a DNN that are specific to individual SGAs. In Table 4, many of the
SGAs that had high cosine similarity relative to the query SGA were in the same pathway as
the query SGA according to [30]. Overall, there are 28 genes in bold in Table 3 (RINN) and
27 genes in bold in Table 4 (DNN). The DNNs performed marginally worse than the RINNs
in capturing the relationships in the pathways, mostly because the DNNs failed to robustly
capture as much of the shared function of the SGAs affecting the PI3K pathway as the
RINNs. However, the DNNs performed slightly better in capturing pathway relationships
in the RTK/RAS pathway (especially with cosine similarity relative to FGFR3). Just as
with the RINNs, KEAP1 and NFE2L2 were both found to be each other’s SGA with the
highest cosine similarity with the DNNs. SMAD4 and ACVR2A were also found to be
similar to one another but not as highly similar as with the RINNs. These results indicate
that when a DNN can accurately predict DEGs (outputs) from SGAs (inputs), the DNN
weight-signature cosine similarity can also capture the functional similarity of SGAs.

Table 4. DNN top three SGA weight-signature cosine-similarity (CS) results.

x Highest CS (Mean + SD) Second-Highest CS Third-Highest CS
PTEN PIK3R1 (0.7 % 0.06) FGFR2 (0.5 + 0.05) PDGFRA (0.4 + 0.03)
PIK3CA AKT1 (0.7 £ 0.06) FGFR2 (0.5 + 0.02) CCND1 (0.5 + 0.10)
PIK3R1 FGFR2 (0.7 + 0.07) PTEN (0.7 £ 0.06) CTNNBI (0.6 + 0.02)
AKT1 PIK3CA (0.7 + 0.06) FGFR2 (0.5 + 0.02) FGFR1 (0.4 + 0.14)
STK11 KEAP1 (0.6 & 0.02) FGFR1 (0.4 +0.12) NFE2L2 (0.4 + 0.01)
KEAP1 NFE2L2 (0.7 £ 0.03) STK11 (0.6 +0.02) KRAS (0.4 +0.03)
NFE2L2 KEAP1 (0.7 + 0.03) STK11 (0.4 £ 0.01) NOTCH1 (0.4 = 0.04)
ACVR2A RNF43 (0.6 +0.03) SMADA4 (0.5 £ 0.03) CCNE1 (0.4 £ 0.15)
SMAD4 APC (0.5 +0.04) FBXW? (0.5 = 0.02) ACVR2A (0.5 £ 0.03)
CDKN2A NOTCH1 (0.8 £ 0.06) CDK4 (0.7 £ 0.02) HRAS (0.6 £0.02)
CDKN2B CDK4 (0.6 + 0.04) RB1 (0.5 + 0.07) EGFR (0.4 = 0.03)
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Table 4. Cont.

x Highest CS (Mean + SD) Second-Highest CS Third-Highest CS
CCNE1 E2F3 (0.6 & 0.08) TP53 (0.4 £0.07) ACVR2A (0.4 £ 0.15)
CCND1 FGFR2 (0.6 £ 0.06) PIK3CA (0.5 £ 0.10) CTNNBI (0.5 £0.12)
CDK4 CDKN2A (0.7 £0.02) CDKN2B (0.6 £0.04) EGEFR (0.5+0.03)
RB1 FGFR3 (0.5 £ 0.05) TP53 (0.5 £ 0.02) CDKNZ2B (0.5 £ 0.07)
E2F3 CCNE1 (0.6 £ 0.08) FGFR3 (0.5 £ 0.06) RB1 (0.4 + 0.06)
EGFR PDGFRA (0.6 £ 0.05) CDK4 (0.5 £ 0.03) MDM4 (0.5 £ 0.06)
FGFR1 FBXW?7 (0.5 £ 0.10) DCHS2 (0.5 £0.18) STK11 (0.4 +0.12)
ERBB2 EP300 (0.6 £ 0.03) FGFR3 (0.5 £ 0.03) DCHS2 (0.5 £ 0.10)
FGFR2 PIK3R1 (0.7 £ 0.07) CCND1 (0.6 £0.06) CTNNBI (0.6 £ 0.04)
FGFR3 ERBB2 (0.5 £0.03) HRAS (0.5 £ 0.07) EP300 (0.5 % 0.08)
PDGFRA EGEFR (0.6 + 0.05) MDM4 (0.5 +0.14) PTEN (0.4 £ 0.03)
KRAS CTNNBI1 (0.6 £ 0.07) APC (0.5 £0.04) SMAD4 (0.5 %+ 0.02)
HRAS NOTCH]1 (0.7 +0.03) CDKN2A (0.6 £0.02) EP300 (0.6 £=0.10)
MDM4 PDGFRA (0.5+0.14) EGEFR (0.5 4 0.06) CDKNZ2B (0.3 £0.17)
TP53 RB1 (0.5+0.02) CCNET1 (0.4 £ 0.07) KRAS (0.4 +0.06)
RNF43 ACVR2A (0.6 £0.03) APC (0.4 +0.02) KRAS (0.3 +0.03)
APC FBXW?7 (0.6 £ 0.02) SMAD4 (0.5 + 0.04) KRAS (0.5+0.04)
CTNNB1 PIK3R1 (0.6 £ 0.02) FGFR?2 (0.6 £ 0.04) KRAS (0.6 +0.07)
DCHS2 FBXW?7 (0.7 £ 0.08) EP300 (0.6 = 0.06) FGFR1 (0.5 £0.18)
FAT1 NOTCH]1 (0.8 £ 0.04) CDKN2A (0.6 £0.09) HRAS (0.5+0.05)
NF2 EP300 (0.4 £ 0.05) FAT1 (0.4 £ 0.05) NOTCH1 (0.3 £ 0.04)
FBXW?7 DCHS2 (0.7 £ 0.08) EP300 (0.7 = 0.09) APC (0.6 +0.02)
NOTCH1 CDKN2A (0.8 £0.06) FAT1 (0.8 £0.04) HRAS (0.7 £0.03)
EP300 FBXW?7 (0.7 +0.09) ERBB2 (0.6 4 0.03) DCHS2 (0.6 £ 0.05)

SGAs from Figure S1 with the highest cosine similarity relative to SGA x (mean CS across three best models = st.
dev.). SGAs in bold are in the same pathway (according to [30]) as SGA x.

An alternative approach to illustrating the information provided by SGA weight
signatures is to visualize the highest cosine similarity between weight signatures as edges
in a graph and then apply a community discovery algorithm to identify closely related
SGAs (Figure 4). In Figure 4, the discovered communities are shown as nodes and edges
of the same color. In this figure, a directed edge connects an SGA (at the tail) to another
SGA (at the head) that has high cosine similarity relative to the SGA at the tail of the edge;
a bi-directed edge indicates that two SGAs are mutually highly similar; the thickness of an
edge represents the amount of cosine similarity; and the size of the SGA node represents
the degree of that node. Figure 4A is a visualization of the highest cosine similarity for
each SGA, and Figure 4B is a visualization of the three highest cosine-similarity results for
each SGA. The nodes and edges are colored according to the community after running a
community detection algorithm. Many of the communities that were discovered with this
procedure correspond to the pathways in Figure S1. For example, the green community
in Figure 4A captures the majority of the PI3K pathway; the dark-blue community and
brown community capture the TGF(3 and Nrf2 pathways, respectively; and the purple
community captures many of the genes (SGAs) in the Wnt, Hippo, and Notch pathways.
In Figure 4B, the majority of the PI3K pathway is part of the green community and a
blue community emerges with many members of the cell-cycle pathway. Many other
additional pathway relationships within the ground-truth pathways are seen in Figure 4,
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reinforcing the hypothesis that the latent structure of trained RINNSs contains cellular
signaling pathway relationships.

A CDKN2A N MDM4
AL /,M
; cTiive1
p
NOTCH1
EGFR
NF K@s
TP53
aclRon N y
ERBB2 . AKT1
SMBD4 "N‘@
R1 PI
Pik3R1

X o
A
RNF43 F
FaBR3 L & 1
\4

APC

C 1

Figure 4. Cosine similarity of SGA weight signatures and community detection. These edges do not
represent causal relationships but rather cosine-similarity (CS) relationships between SGAs, where
the head of an edge indicates an SGA with high CS relative to the SGA at the tail. (A) Edges represent
the highest cosine similarity for each SGA. (B) Edges represent the three highest cosine-similarity
results for each SGA.
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We also visualized the weights from SGAs to hidden nodes (i.e., weight signatures)
as a heatmap, where each column represents an SGA, each row represents a hidden node,
and the weight from an SGA to a hidden node is represented as an element in the color-
coded heatmap. We performed hierarchical clustering on the weight signatures derived
from a single RINN model (the RINN with the shortest d) as shown in Figure 5. Within
this clustering and the dendrogram, we observe many relationships that are present in
the ground-truth pathways. For example, the green cluster contains much of the PI3K
pathway; the orange cluster captures the TGF3 pathway; the purple cluster contains the
two members of the Nrf2 pathway; and the gray cluster contains the members of the Notch
pathway and two of the three members of the Hippo pathway.
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Figure 5. Hierarchical clustering of RINN with the shortest Euclidean distance. The heatmap shows
all SGA-to-hidden-node weight values for our best trained RINN model. The vertical axis represents
the hidden-node number (nodes are numbered in ascending order starting from hidden layer 1—the
closest one to SGAs) and has horizontal lines representing different hidden-layer boundaries. The
horizontal axis represents the 35 SGAs from Figure S1. The dendrogram and coloring at the top show
the clustering of the SGAs for one particular clustering cutoff.

In addition to the above clustering relationships, the heatmap also illustrates the ability
of the RINN to automatically determine the “optimal” number of hidden layers that were
needed to encode information from SGAs to DEGs. Here, the hidden layers are numbered
starting from the inputs (SGAs) to the outputs (DEGs). This heatmap shows that all the
weights before hidden layer 5 had a value of zero, and only one hidden node in layer
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5 had incoming weights with nonzero values. All of the top ten models (including this
one) utilized only three or four hidden layers, similar to what is seen in Figure 5. Hidden
layer 7 seemed to have the most nonzero incoming weights. Interestingly, many of the
most important cancer-related SGAs (e.g., EGFR, TP53, CDKN2A, APC, PIK3CA) had a
larger number of weights and more largely valued weights than other SGAs in Figure 5,
suggesting that this model captured relevant biological information.

2.5. Inferring Causal Relationships Using RINNs

One of the goals of this work was to discover latent causal structures relevant to
cancer cellular signaling pathways. We hypothesized that RINNs can reveal the causal
relationships among the proteins perturbed by SGAs. For example, if SGA (intervention)
i1 is connected to latent variable /; and another SGA, i, is connected to another latent
variable, hy, and if h; is connected directly upstream of hy with a nonzero-weighted edge
in the latent hierarchy, it would suggest that the signal of i; is upstream of that of i, and
that the protein affected by i; causally regulates the protein affected by i, in the cellular
system. To examine this type of relationship, we visualized the relationships among the
SGAs from four TCGA pathways via the latent nodes they were connected to, as a means
to search for causal structures revealed by the RINN models (Figure 6). Overall, the
learned causal graphs were more complex and denser than the graphs from the pan-cancer
TCGA analysis (Figure S1), in that an SGA in RINNs was often connected to multiple
latent variables (depending on the cutoff threshold). This suggests that there is still some
difficulty in directly interpreting the weights of an RINN as causal relationships with
the current version of the algorithm. It may also suggest that the ground truth we used
here is not detailed enough for our purposes, or may have some inaccuracies, and thus is
more of a “silver standard”. In general, the learned causal graphs had a large number of
false-positive edges (when compared with Figure S1) and multiple instances of redundant
causal edges—where a single SGA acted multiple times on the same path.

However, some true causal relationships could be seen within these graphs. For
example, both Models 0 and 1 had a directed path as follows: ixpap1 — h1 — ho < iNFE2I2,
where i represents an intervention (i.e., SGA). If we assume that &, is a representation of
the KEAP1 protein and h; is a representation of the NFE2L2 protein, then we can interpret
the above path as KEAP1 — NFE2L2,i.e., KEAP1 causes or changes the state of NFE2L2.
This is consistent with the Nrf2 pathway shown in Figure S1. Model 2 had the following
directed path: KEAPI — h; < NFE2L2; this has a more ambiguous interpretation but does
emphasize the correlation between these two SGAs. Also, it is plausible that if the weight
threshold were decreased slightly for Model 2, there would be an edge between the green
hidden node and the blue hidden node, meaning that all three models would then capture
the KEAP1 — NFE2L2 causal relationship. This emphasizes the importance of finding a
more robust means of thresholding in future work.

All the RINNSs represented in Figure 6 (and Figure 5) only utilized three or four hidden
layers to learn the function mapping SGAs to DEGs. Because we used L; regularization,
RINNS learned to only use the necessary number of hidden layers to perform well in the
prediction task. For example, if only three hidden layers were needed to perform well in
prediction, the regularized objective function would set all the weights before the last three
hidden layers to 0.0. We set the number of hidden layers to eight, as we hypothesized
that eight hidden layers was enough hierarchical complexity to capture cancer cellular
signaling pathways in a meaningful way. Figures 5 and 6 suggest that this was a correct
assumption in this setting for the data we used. As with other model selection techniques,
if our trained RINNSs had utilized all eight layers during model selection, we could have
easily increased the number of hidden layers to more than eight and perform another round
of model selection.
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Figure 6. Visualizing the weights of an RINN as causal graphs. Each graph represents the causal

relationships for only the SGAs on the left of the graph.
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2.6. Shared Hidden Nodes across Top Ten Models

As shown in Figure 6, SGAs perturbing members of a common pathway were closely
connected to a similar set of hidden variables, and often many SGAs were directly connected
to a common hidden node. This suggests that such hidden nodes encoded a common signal
that was shared by the SGAs. We hypothesized that if SGAs from a pathway were connected
to a similar set of shared hidden nodes in multiple, different RINN models, this would have
indicated that the RINNs could repeatedly detect the common impact of the SGAs and thus
use a common set of hidden nodes to encode their impact with respect to DEGs. In other
words, an RINN consistently encodes the shared functional impact of SGAs perturbing
a common pathway, and the function of these hidden nodes in a specific RINN model
becomes partially transparent. We labeled hidden nodes based on their SGA ancestors
(see the Visualizing an RINN as a Causal Graph section) and then examined whether
such hidden nodes were conserved across models (Table 5). Indeed, many hidden nodes
were conserved across the top ten models. More specifically, Table 5 shows the number of
models that shared the labeling of a specific hidden-node and whether or not this would
be expected by chance. For example, a hidden-node mapping to all five members of the
PI3K pathway, { AKT1, PIK3CA, PIK3R1, PTEN,STK11}, was found in all of our top ten
models. Given five random SGAs, the expected number of the top 10 models to share a
hidden node mapped to all five random SGAs was 0.0 models. This means that in our
30 replicates of random controls with five random SGAs, none of the top ten models ever
shared a hidden node mapped to all five random SGAs. This also means that the above
result for all five members of the PI3K pathway is a very strong result and a definite
pathway relationship was discovered with the RINN setup in this work. Many of the
four-SGA and three-SGA labeled hidden nodes were also found in many more models
than the corresponding random control, such as the { AKT1, PIK3CA, PTEN, STK11},
{PIK3CA, PIK3R1,PTEN,STK11}, {AKT1, PIK3CA,STK11}, {PIK3R1, PTEN,STK11},
and {PIK3CA, PIK3R1, PTEN} labeled hidden nodes that were found.

Table 5. Cancer pathway hidden nodes shared across top ten models.

Models (Out of 10; Numbered 0 Expected Number of Models

Pathway Mapping of Hidden Node x to 9) That Shared Hidden that Shared an n-SGA Hidden
Node x Node Given m Random SGAs
AKT1, PIK3CA, PIK3R1, PTEN, STK11 0,1,2,3,4,5,6,7,8,9 0.0£0.0(n=5m=5)
AKT1, PIK3CA, PTEN, STK11 0,2,56,7,9 04+14(n=4,m=5)
PIK3CA, PIK3R1, PTEN, STK11 0,4,5,7,8 04+14(n=4,m=5)
AKT1, PIK3CA, PIK3R1, PTEN 1,3,6 04+14(n=4,m=5)
AKT1, PIK3R1, PTEN, STK11 2,3 04+14(n=4,m=>5)
AKT1, PIK3CA, STK11 1,2,3,56,8 1.0+14n=3,m=>5)
PIK3R1, PTEN, STK11 2,3,6,7,8,9 1.0+£14(n=3,m=5)
PIK3CA, PIK3R1, PTEN 0,2,6,7,9 1.0+14n=3,m=>5)
AKT1, PIK3R1, PTEN 3,9 10+£14(n=3,m=5)
PI3K AKT1, PTEN, STK11 2,3 1.0+14n=3,m=>5)
PTEN, STK11 0,2,3,56,7,8 34+20(Mn=2,m=5)
PIK3R1, PTEN 0,2,3,6,8,9 34£20n=2,m=5)
AKT1, PIK3CA 0,3,4,6,8 34+£20n=2,m=5)
PIK3CA, STK11 0,1,2,4,8 34+20n=2,m=>5)
AKT1, STK11 1,2,3,4,5 34+£20n=2,m=5)
PIK3CA, PTEN 5,6,8,9 34+20n=2,m=>5)
AKT1, PIK3R1 2,5 34+£20n=2,m=5)
PIK3R1, STK11 3,9 34+20n=2,m=>5)
AKT1, PTEN 5,9 34+£20n=2,m=5)
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Table 5. Cont.

Models (Out of 10; Numbered 0 Expected Number of Models

Pathway Mapping of Hidden Node x to 9) That Shared Hidden that Shared an n-SGA Hidden
Node x Node Given m Random SGAs
Nrf2 KEAP1, NFE2L2 0,1,23,4,5,6,7,8,9 07£12n=2,m=2)
TGFp ACVR2A, SMAD4 0,1,23,4,56,7,8,9 07+£12(n=2,m=2)
EP300, FBXW7, NOTCH1 0,1,2,3,4,5,6,7,9 02+06((Mn=3m=3)
Notch FBXW7, NOTCH1 0,236,789 21+£22n=2,m=3)
EP300, FBXW7 0,2,34,6 21+£22m=2,m=3)

Mapping of Hidden Node x represents SGAs that directly acted on hidden node x or were ancestors of hidden node
x. Models are numbered 0 to 9. (n: number of SGAs mapping to a hidden node; m: number of SGAs in a pathway.)

A hidden node mapped to both members of the Nrf2 and TGF{3 pathways was also
found in all ten models, which was much higher than the number of models expected given
two random SGAs. Given random SGAs, only 0.7 & 1.2 models of the top 10 were expected
to share the same two-SGA labeled hidden node. Also, a hidden node mapped to all three
members of the Notch pathway was shared by nine of the top ten models, which was also
well beyond the number of models expected given random SGAs.

3. Discussion

In this study, we show that deep learning models, RINNs and DNN, can capture the
statistical relationships between genomic alterations and transcriptomic events in tumor
cells with reasonably high accuracy, despite the small number of training cases relative
to the high dimensionality of the data. Our findings further indicate that a regularized
deep learning model with redundant inputs (i.e., RINN) can capture cancer signaling
pathway relationships within its hidden variables and weights. The RINN models correctly
captured much of the functional similarity among SGAs that perturb a common signaling
pathway, as reflected by the SGAs’ similar interactions with the hidden nodes of the RINN
models (i.e., cosine similarity of SGA weight signatures). This shows that SGAs in the
same pathway share similar interactions (in terms of connection and weights) with a set of
latent variables. These are very encouraging results for eventually using a future version
of the RINN to find signaling pathways robustly. Many of the most well-known cancer
driver genes (EGFR, TP53, CDKN2A, APC, and PIK3CA) were found to have dense SGA
weight signatures and weights with larger values relative to the other genes we analyzed,
reinforcing the importance of these genes in driving cancer gene expression and the validity
of our models. Our results indicate that an RINN consistently employs certain hidden nodes
to represent the shared functional impact of SGAs perturbing a common pathway, although
different instantiations of the RINN could use totally different hidden nodes. The ability
of an RINN to explicitly connect SGAs and hidden nodes throughout the latent hierarchy
essentially makes the RINN a partially transparent deep learning model, so that one can
interpret which hidden nodes encode and transmit the signals (i.e., functional impact) of
SGAs in cancer cells. Finally, we show that RINNs are capable of capturing some causal
relationships (given our interpretation of the hidden nodes) among the signaling proteins
perturbed by SGAs. All these results indicate that by allowing SGAs to directly interact with
hidden nodes in a deep learning model, the RINN model provides constraints, information,
and flexibility to enable certain hidden nodes to encode the impact of specific SGAs.

Overall, both RINNs and DNNs are capable of capturing statistical relationships
between SGAs and DEGs. However, latent variables in a DNN model (except those directly
connected to SGAs) are less interpretable because the latent variable information deeper
in the network is more convoluted. In a DNN model, all SGAs have to interact with
the first layer of hidden variables, and their information is then propagated through the
whole hierarchy of the model. In such a model, it is difficult to pinpoint how the signal
of each SGA is propagated. Hidden layers in a DNN are alternate representations of all
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the information in the input necessary to calculate the output, whereas each hidden layer
of an RINN does not need to capture all the information in the input necessary to predict
the output because there are multiple chances to learn what is needed from the input (i.e.,
redundant inputs). This difference gives RINNs more freedom in how to choose to use
the information in the input. The redundant inputs of an RINN represent an attempt to
deconvolute the signal of each SGA by giving the model more freedom to take advantage
of the hierarchical structure and choose latent variables at the right level of granularity
to encode the signal of an SGA, e.g., early in the network in the first hidden layer or in
later layers in the network. This approach is biologically sensible because different SGAs
do affect proteins at different levels in the hierarchy of the cellular signaling system. It is
expected that an SGA perturbing a transcription factor (e.g., STAT3) impacts a relatively
small number of genes in comparison to an SGA that perturbs at a high level in the signaling
system (e.g., EGFR). Refined granularity enables RINNs to search for the "optimal” structure
in order to encode the signaling between SGAs and DEGs while satisfying our sparsity
constraints, leading to RINNs with three to four relatively sparsely connected layers of
hidden variables; whereas DNNs tend to use two layers of relatively densely connected
latent variables.

A DNN cannot capture the same causal relationships that an RINN can. By nature of
its architecture and design, a DNN can only capture direct causal relationships (i.e., edges
starting from an observed variable) between the input and the first hidden layer—DNNs
cannot capture direct causal relationships between the input and any other hidden layers.
This means that a DNN cannot be used to generate causal graphs like the ones shown in
Figure 6. In addition, a DNN cannot capture causal relationships among input SGAs as
described in the Inferring Causal Relationships Using RINNs section, meaning that one
cannot infer the causal relationships among SGAs with a DNN. This is because DNNs do
not have edges between hidden nodes in the same layer (or redundant inputs). Let us
consider pathggap1 and pathnrearo as the paths, with KEAPT and NFE2L2 as the source
nodes, respectively, in a DNN. In a DNN, to determine that there is a dependency between
KEAP1 and NFE2L2, eventually, these two paths would need to collide on a hidden node.
When these two paths collide on a hidden node, the number of edges in each path will
be the same, meaning that the direction of the causal relationship is ambiguous. This
limitation of DNNs can be remedied by adding redundant inputs (i.e., RINN). Using the
RINN architecture allows us to infer order to the causal relationships among SGAs; this
design difference and the extension of causal interpretability are what sets RINNs apart
from DNNSs.

It is intriguing to further examine whether the hierarchy of hidden nodes can cap-
ture causal relationships among the signals encoded by SGA-affected proteins. We have
shown that many of the pathway relationships and some known causal relationships were
present in the hierarchy reflected by the weight matrices of our trained models. However,
we also noticed that in our RINN models, an SGA was often connected to a large num-
ber of hidden nodes, which were in turn connected to a large number of other hidden
nodes—meaning that the current RINN model learns relatively dense causal graphs. While
one can infer the relationships between the signal perturbed by distinct SGAs of a pathway,
our current model cannot directly output a causal network that looks like those commonly
shown in the literature. We plan to develop the RINN into an algorithm that is able to
find more easily interpretable cellular signaling pathways when trained on SGA and DEG
data. The following algorithm modifications will potentially lead to better results in the
future: (1) incorporating differential regularization of the weights, (2) using constrained
and parallelized versions of evolutionary algorithms to optimize the weights and avoid
the need to threshold weights, and (3) training an autoencoder with a bottleneck layer to
encourage hidden nodes to more easily represent biological entities and then using these
weights (and architecture) to initialize an RINN.

In order to interpret the weights of a neural network as causal relationships among
biological entities, we assume that the causal relationships among biological entities can
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be approximated with a linear function combined with a simple nonlinear function (e.g.,
activation(wx + b)), where all variables have scalar values and activation represents a
simple nonlinear function such as ReLU or softplus. This is a necessary assumption in
order to interpret all nonzero hidden nodes as biological entities; however, it could also be
the case that some hidden nodes are not biological entities but rather some intermediate
calculation required to compute a relationship among biological entities that cannot be
modeled with activation(wx + b). Given the high density of the models learned with TCGA
data, it is possible that the relationships among some biological entities cannot be modeled
with activation(wx + b), suggesting that more complex activation functions are needed or
that biological entities may be present in every other hidden layer. It would be interesting
to explore using more complex activation functions and specifically using an unregularized
one in a hidden-layer neural network as an activation function for each hidden node in an
RINN. This setup would account for even quite complex relationships among biological
entities captured as latent variables. See [9] for additional discussion of this topic.

A cellular signaling system is a complex information-encoding /-processing machine
that processes signals arising from extrinsic environmental changes or perturbations (ge-
netic or pharmacological) affecting the intrinsic state of a cell. The relationships of cellular
signals are hierarchical and nonlinear by nature, and deep learning models are particularly
suitable for modeling such a system [18-22]. However, conventional deep learning models
behave like “black boxes”, such that it is almost impossible to determine what signal a
hidden node encodes, with few exceptions in image analysis, where human-interpretable
image patterns can be represented with hidden nodes [15-17]. Here, we took advantage of
our knowledge of cancer biology that SGAs causally influence the transcriptomic programs
of cells, and we adopted a new approach that allows SGAs to directly interact with hidden
nodes in an RINN. We conjecture that this approach forces hidden nodes to explicitly
and thus more effectively encode the impact of SGAs on transcriptomic systems. This
hypothesis is supported by the discoveries of this paper that SGAs in a common pathway
share similar connection patterns to hidden nodes and that there are hidden nodes that are
connected to multiple members of a pathway in different instances of the model. Essentially,
our approach also allows certain hidden nodes to be “labeled” and “partially interpretable”.
An interpretable deep learning model provides a unique opportunity to study how cel-
lular signals are encoded and perturbed under pathological conditions. Understanding
and representing the state of a cellular system further opens directions for translational
applications of such information, such as predicting the drug sensitivity of cancer cells
based on the states of their signaling systems. To our knowledge, this is the first time that
a partially interpretable deep learning model has been developed and applied to study
cancer signaling, and we anticipate this approach laying a foundation for developing future
explainable deep learning models in this domain.

4. Experimental Procedures
4.1. Data

The data used in this paper were originally downloaded from TCGA [31,32]. RNA
Seq, mutation, and copy number variation (CNV) data over multiple cancer types were
used to generate two binary datasets. A binary differentially expressed gene (DEG) dataset
was created by comparing the expression value of a gene in a tumor against the distribution
of the expression values of the gene across normal samples from the same tissue of origin.
A gene was deemed a DEG in a tumor if its value was outside the 2.5% percentile on either
side of the normal sample distribution; then, that gene’s value was set to 1. Otherwise, the
gene’s value was set to 0. A somatic genome alteration (SGA) dataset was created using
mutation and CNV data. A gene was deemed to be perturbed by an SGA event if it hosted
a non-synonymous mutation, small insert/deletion, or somatic copy number alteration
(deletion or amplification). If perturbed, the value in the tumor for that gene was set to 1,
otherwise the value was set to 0.
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We applied the tumor-specific causal inference (TCI) algorithm [32,33] to these two
matrices to identify the SGAs that causally influence gene expression in tumors and the
union of their target DEGs. TCI is an algorithm that finds causal relationships between
SGAs and DEGs in each individual tumor, without determining how the signal from the
SGA is propagated in the cellular signaling system [32,33]. We identified 372 SGAs that
were deemed driver SGAs, as well as 5259 DEGs that were deemed target DEGs of the
372 SGAs using TCI. Overall, combining data from 5097 tumors led to two data matrices
(with dimensions of 5097 x 372 and 5097 x 5259) as inputs and outputs for the RINN,
where SGAs (inputs) were used to predict DEGs (outputs).

4.2. Deep Learning Strategies: RINN and DNN

In this study, we used two deep learning strategies: RINN and DNN. A DNN is a
conventional supervised feed-forward deep neural network. A DNN learns a function
mapping inputs (x) to outputs (y) according to

f(x) =¢(p(@(x-Wq) - Wa)...- Wy) = § )

where W; represent the weight matrices between layers of a neural network, ¢ is some
nonlinear function (i.e., an activation function such as ReLU, softplus, or sigmoid), -
represents vector-matrix multiplication, and # is the predicted output. This function
represents our predicted value for y and, in other words, represents a vector-matrix
multiplication followed by the application of a nonlinear function repeated multiple times.
An iterative procedure (stochastic gradient descent) is used to slowly change the values of
all W; to bring i closer and closer to y (hopefully). The left side of Figure 1, without the
redundant-input nodes and corresponding redundant-input weights, represents a DNN.
DNN:s also have bias vectors added to each layer (i.e., to each h;_1W;, where h;_1 is the
previous layer’s output), which are omitted in the above equation for clarity. For a more
detailed explanation of DNNSs, please see [13].

We introduced the RINN for latent causal structure discovery in [9]. An RINN is
similar to a DNN with a modification of the architecture. An RINN not only has the input
fully connected to the first hidden layer but also has copies of the input fully connected to
each additional hidden layer (Figure 1). This structure allows an RINN to learn direct causal
relationships between an input SGA and any hidden node in the RINN. Forward propagation
with an RINN is performed as it is with a DNN with multiple vector-matrix multiplications
and nonlinear functions, except that an RINN has hidden layers concatenated to copies of
the input (Figure 1). Each hidden layer of an RINN with redundant inputs is calculated
according to

B = p(([nY, 2] - W;) + by) 2)

where (1) represents the previous layer’s output vector, x is the vector input to the
neural network, [h(’;l), x| represents concatenation into a single vector, W; represent the
weight matrix between hidden and redundant nodes in layer i — 1 and hidden layer i, ¢ is a
nonlinear function (e.g., ReLU), - represents vector—-matrix multiplication, and b; represents
the bias vector for layer i. In contrast to an RINN, a plain DNN calculates each hidden
layer as

h = () W;) +b;) 3)

The backpropagation of errors and stochastic gradient descent with RINNSs are the
same as with DNNs but with additional weights to be optimized. For much more detailed
information about the RINN, we recommend that you see our paper where we introduce
it [9]. In addition to the architecture modification, all RINNSs in this study importantly
included L; regularization of the weights as part of the objective function. The other
component of the objective function was the binary cross-entropy error. All DNNs also
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used L; regularization of weights plus binary cross-entropy error as the objective function
to be optimized. All RINNs used in this study had eight hidden layers (with varying sizes
of the hidden layers), as we hypothesized that cancer cellular signaling pathways do not
have more than eight levels of hierarchy. However, this assumption can be easily updated
if found to be false.

4.3. Model Selection

We hypothesized that since the RINN mimics the signaling processes through which
the SGAs of a tumor exert their impact on gene expression (DEGs), the better an RINN
model captures the relationships between SGAs and DEGs, the more closely the RINN
can represent the signaling processes of cancer cells, i.e., the causal network connecting
SGAs and DEGs. We performed an extensive amount of model selection to search for the
structures and parameterization that best balanced loss and sparsity oz, in other words,
the models that fitted the data well. To this end, we performed model selection over
23,000 different sets of hyperparameters (23,000 for RINNs and 23,000 for DNNS).

Model selection was performed using 3 folds of 10-fold cross-validation. Using
3 folds of 10-fold cross-validation gave us multiple validation datasets so we avoided
chance overfitting, which can occur with a single validation set. This setup also allowed
us to train the models on 90% of the data (and validate them on 10%) for each split of
the data, which is important, considering the small number of instances relative to the
number of output DEGs that we were trying predict. Importantly, using 3 folds of 10-fold
cross-validation takes significantly less time than training on all 10 folds. The running time
was especially important in this study because of the large number of hyperparameter sets
to be evaluated. All metrics recorded in this study (i.e., AUROC, cross-entropy error, etc.)
represented the mean across the three validation sets.

The hyperparameters used in this study included learning rate, regularization rate,
number of training epochs, activation function, size of hidden layers, number of hidden
layers (DNN only; in RINNS, it was set to eight), and batch size. We used a combined
random and grid search approach [34,35] to find the best sets of hyperparameters with the
main objective of finding the optimal balance between sparsity and cross-entropy error, as
explained in the next section and in [9].

4.4. Ranking Models Based on Balance between Sparsity and Prediction Error

The model selection in this study was more complex than standard DNN model
selection, as we needed to find a balance between the sparsity of the model (i.e., sets of
weight matrices for each trained network) and prediction error. In contrast, many DNNs are
trained by simply finding the model with the lowest prediction error on a hold-out dataset.
As was shown in previous work by our group [9], RINN models trained on simulated data
with relatively high sparsity and low cross-entropy error were able to recover much of the
latent causal structure contained within the data. We followed the same procedure as in
our previous work [9] for selecting the best models (i.e., the models with the highest chance
of containing correct causal structures). In brief, we plotted prediction error versus sparsity
and measured the Euclidean distance from the origin to a set of hyperparameters, i.e., a
unique, trained neural network (blue circles in the model selection figure). This distance
was measured according to

m ti G . 2
dy — <22 Dw](.j,2|> +12 4)
i=1j=1k=1

where L is the validation set’s cross-entropy loss for neural network x; m is the number
of weight matrices in neural network x; r; and c; are the numbers of rows and columns in
matrix i, respectively; and w is a scalar weight. The sets of hyperparameters were ranked
according to the shortest distance from the origin (the smallest dy); then, we retrained the
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models on all data for further analysis of the learned weights. Please see [9] for a more
detailed explanation.

4.5. AUROC and Other Metrics

Area under the receiver operating characteristics (AUROC) values were calculated for
each DEG and then averaged over the three validation sets, leading to 5259 AUROC values
for each classifier when plotted as a histogram of AUROC values. k-Nearest neighbors
(kKNN) was performed using sklearn’s KNeighborsClassifier [36]). Both Euclidean and
Jaccard distance metrics were evaluated, and the best k values were 21 and 45, respectively.
Other distance metrics were evaluated with results worse than those obtained using the
Jaccard distance metric. For random control, we sampled predictions from a uniform
distribution over the interval [0,1) for each of the validation sets. Then, we used these
predictions to calculate the AUROC values for each validation set. As with the other
AUROC calculations, we took the mean over the three validation sets.

When displaying a single value for a classifier’'s AUROC, the AUROC values were
calculated as described above; then, the mean over all DEGs was calculated. The same
procedure was followed for calculating cross-entropy error, area under the precision-recall
(AUPR) curve, and the sum of the absolute values of all weights. The same random
predictions described above were also used to calculate cross-entropy error and AUPR.

4.6. Evaluation of Learned Relationships among SGAs

Throughout this work, the results from [30] were used as ground truth for compar-
ison purposes. Specifically, Figures S1 and 2 were used as ground-truth causal relation-
ships that we hypothesized the RINN may have been able to find. Figure S1 is repro-
duced in Supporting Information, with a minor formatting modification for convenience
(Figure S1). Of the 372 genes in our SGA dataset, there were 35 genes that overlapped with
the genes in Figure S1. Therefore, the causal relationships that we could find were limited
to the relationships among these 35 genes (Table 6).

Table 6. Genes in SGA dataset that overlap with [30].

Pathway from Figure S1 Genes in SGA Dataset and Figure S1

RTK/RAS EGFR, FGFR1, ERBB2, FGFR2, FGFR3, PDGFRA, KRAS, HRAS
Nrf2 KEAP1, NFE2L2

TGFp ACVR2A, SMAD4

PI3K PTEN, PIK3CA, PIK3R1, AKT1, STK11

p53 MDM2, CDKN2A, TP53

Cell cycle CDKN2A, CDKN2B, CCNE1, CCND1, CDK4, RB1, E2F3
Notch NOTCH1, FBXW7, EP300

Hippo DCHS2, FAT1, NF2

Wnt RNF43, APC, CTNNB1

4.7. SGA Weight Signature

To better understand how an RINN learns to connect SGAs to hidden nodes, we only
analyzed the weights going from SGA nodes to hidden nodes. To accomplish this, we
generated an “SGA weight signature” for each SGA, which is the concatenation, into a
single vector, of all weights for a single SGA going from that SGA to all hidden nodes
in all hidden layers. This can be visualized as the concatenation of the blue weights in
Figure 1 into one long vector for each SGA. The end result was an SGA weight-signature
matrix of SGAs by hidden nodes. The weight signatures for a DNN were generated using
only a single weight matrix, the weight matrix between the inputs and the first hidden
layer (i.e., Wy), as these are the only weights in a DNN that are specific to individual
SGAs. Cosine similarity between SGA weight signatures was measured using the sklearn
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function cosine_similarity [36]. Hierarchical clustering using cosine similarity and average
linkage was performed on the SGA weight signatures using the seaborn python module
function clustermap.

Cosine-similarity community detection figures were generated using Gephi [37] and
the cosine similarity between SGA weight signatures. Edges represented the highest or
three highest cosine similarity for a given SGA. After generating a graph where nodes were
SGAs and edges were the highest cosine similarity values, we ran the Modularity function
in Gephi to perform community detection. Modularity runs an algorithm based on [38,39].
Next, we partitioned and colored the graph based on the community.

4.8. Visualizing an RINN as a Causal Graph

Let G;; = (V,E), where G; ; is a causal directed acyclic graph with vertices V and
edges E for neural network i and set of SGAs j. For this work, V represents SGAs and
hidden nodes, and E represents directed weighted edges with weight values corresponding
to the weights of an RINN. The edges are directed from SGAs (input) to DEGs (output), as
we know from biology that SGAs cause changes in expression. Please see [9] for further
explanation of interpreting an RINN in a causal framework. If we simply interpreted any
nonzero weight in a trained RINN as an edge in Gl-,]-, there would be hundreds of thousands
to millions of edges in the causal graph (depending on the size of the hidden layers), as L,
regularization encourages weight values toward zero, but weights are often not actually
zero. This means that some thresholding of the weights is required [9].

Even after selecting models based on the best balance between sparsity and error
(the smallest dy), our weight matrices were still very dense in terms of what could be
readily visually interpreted (even after rounding weights to zero decimals). Therefore, a
threshold weight value was needed to limit weight visualizations to only the largest (and,
we suspect, most causally important) weights. To accomplish this, we first limited the
weights to be visualized to only those that were descendants (i.e., downstream) of any of
the 35 SGAs from Figure S1. Next, for each of the top ten RINN models (the ten shortest d),
we found the absolute-value weight threshold, which led to 300 edges in total, including
all SGA-to-hidden and hidden-to-hidden edges. This threshold varied slightly from model
to model, ranging from 0.55 to 0.71. This threshold was chosen as it seemed to give a
biologically reasonable density of edges, allowed us to recover some of the relationships in
Figure S1, and was low enough to allow at least some of the causal paths to proceed from
the input all the way to the output.

After finding a threshold for each model, any weight whose absolute value was greater
than the threshold was added as an edge to causal graph G; ; for that model. The causal
graphs were then plotted as modified bipartite graphs with SGAs on one side and all
hidden nodes on the other. Hidden-to-hidden edges were included as arcing edges on the
outside of the bipartite graph. We labeled the hidden nodes using a recursive algorithm
that found all ancestor or upstream SGAs (i.e., on a path to that hidden node) for a given
hidden node and graph G; ;.

4.9. Finding Hidden Nodes Encoding Similar Information with Respect to SGAs

To determine if hidden nodes with similar connectivity patterns with respect to the
input SGAs were shared across the best models, we needed a method to map the hidden
nodes to some meaningful label. To accomplish this, we used the same recursive algorithm
(described at the end of the previous section) to map each hidden node in causal graph
G; to the set of SGAs that were ancestors of that hidden node. For this mapping, only
the SGAs in set j could be used to label a hidden node, as these were the only SGAs in
G;,j. We performed this mapping using graphs generated with set j to only the SGAs in the
individual pathways from Figure S1 (e.g., j = { AKT1, PIK3CA, PIK3R1, PTEN, STK11}
for the PI3K pathway). For each model in the best ten models and each pathway in Figure
51, we mapped hidden nodes to a set of SGAs. Next, we compared the labeled hidden
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nodes across models and determined the number of models that shared identically labeled
hidden nodes.

We compared the number of models that shared specific hidden nodes with random
controls. Random controls were performed in the same way as described above for the
experimental results, except that j was not set to the SGAs in one of the pathways in
Figure S1—rather j was randomly selected from the set of SGAs including all 372 SGAs
minus the 35 SGAs in Figure S1. Then, ten G; j, one for each of the top ten RINN models,
were generated using the random SGAs. The number of models with shared hidden nodes
was recorded. This procedure was repeated 30 times for each possible number of SGAs in
j. For example, the PI3K pathway (in Figure S1) has five SGAs in it that were also in our
SGA dataset. To perform random control for PI3K, we performed 30 replicates of randomly
selecting five SGAs (from the set of SGAs described above) and then recorded the mean
number of models sharing an n-SGA labeled hidden node, where # is the number of SGAs
that a hidden node was mapped to using our recursive algorithm for finding ancestors.

5. Conclusions

In summary, RINN could capture the statistical relationships between genomic al-
terations and transcriptomic events in tumor cells. It also exhibits the ability to identify
functional similarities among genes that impact the same pathways. Furthermore, RINN
has the capability to uncover known relationships within cellular signaling systems and
can infer hierarchical relationships of cellular signals affected by distinct SGAs.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/cancers15153857/s1, Figure S1: Genes in SGA Dataset
that Overlap with [30].
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