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Simple Summary: Endometrial cancer (EC) is one of the most common gynecologic cancers. How-
ever, its clinical therapy remains unsatisfying due to the lack of effective treatment screening ap-
proaches. The primary treatment of EC is surgery, supplemented with radiotherapy and chemother-
apy. In addition, immunotherapy as a promising therapeutic strategy has been gradually applied in
clinical treatment. However, not all patients can benefit from such kind of clinical treatment, because
EC is a heterogeneous disease and exhibits distinct patterns of molecular alterations, biological
functions, as well as clinical outcomes. Thus, there is an urgent need to develop an effective model
to help optimize treatment strategies and improve their therapeutic effects. Therefore, we aimed to
construct a risk score model which could be used to predict the prognosis, immunotherapy response
and chemotherapy sensitivity of EC. Our study provides insights into new personalized therapies
and benefits EC treatment screening.

Abstract: Endometrial cancer (EC) is the most common gynecologic cancer. The overall survival
remains unsatisfying due to the lack of effective treatment screening approaches. Immunotherapy as a
promising therapy has been applied for EC treatment, but still fails in many cases. Therefore, there is
a strong need to optimize the screening approach for clinical treatment. In this study, we employed
co-expression network (GCN) analysis to mine immune-related GCN modules and key genes and
further constructed an immune-related risk score model (IRSM). The IRSM was proved effective as an
independent predictor of poor prognosis. The roles of IRSM-related genes in EC were confirmed by
IHC. The molecular basis, tumor immune microenvironment and clinical characteristics of the IRSM
were revealed. Moreover, the IRSM effectiveness was associated with immunotherapy and chemother-
apy. Patients in the low-risk group were more sensitive to immunotherapy and chemotherapy than
those in the high-risk group. Interestingly, the patients responding to immunotherapy were also
more sensitive to chemotherapy. Overall, we developed an IRSM which could be used to predict the
prognosis, immunotherapy response and chemotherapy sensitivity of EC patients. Our analysis not
only improves the treatment of EC but also offers targets for personalized therapeutic interventions.
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1. Introduction

Endometrial cancer (EC) is the second most common gynecological cancer, with in-
creasing incidence and mortality [1,2]. According to the global cancer statistics 2022, the inci-
dence and mortality rate of EC are 3.44% (0.6595/19.18 million) and 2.06% (12,550/609,360),
respectively [1]. In China, EC is also the most common gynecologic malignancy. The
five-year survival rate of EC varies dramatically according to the Federation of Gynecology
and Obstetrics (FIGO) stage at diagnosis. For EC patients with early- (FIGO stage I) and
advanced-stage (FIGO stage IV) EC, the five-year survival rates are 90% and 15%, respec-
tively [3,4]. Over the past decade, the overall survival of EC patients has improved but
still remains unsatisfying due to the heterogeneity of EC and the lack of effective screening
techniques. Therefore, to optimize treatment selection and improve patient outcomes, it is
necessary to explore new effective strategies.

The main treatments of EC are surgery, neoadjuvant chemotherapy or radiotherapy
and targeted therapy [5]. In addition, immunotherapy as a promising therapeutic strategy
has been gradually applied in clinical treatment. However, only a proportion of patients
receive clinical benefit from immunotherapy due to the fact that EC is a heterogeneous
disease [6–8]. Thus, there is an urgent need to develop an effective model to optimize
the treatment screening approach of EC. To date, numerous studies have been conducted
to identify patients who might benefit from immunotherapy and chemotherapy [9–14].
Although remarkable achievements have been made, further studies are still required.

Gene co-expression network (GCN) analysis has been proven as an effective ap-
proach to elucidate the mechanisms and identify the drivers or drug targets of complex
diseases [15,16]. Through GCN analysis, groups of genes presenting consistent expression
patterns across specific disease conditions were mined, and these genes were often linked
with specific biological functions. Currently, GCN analysis has been successfully applied to
reveal the molecular basis as well as the drivers of various diseases [17–19].

In this study, we aimed to develop a reliable model to predict the survival of EC
patients as well as their response to immunotherapy and chemotherapy. The workflow of
this study is shown in Figure 1. Firstly, we applied the WGCNA algorithm to construct GCN
modules and further mined the immune-related GCN modules. The yellow module which
presented the closest correlation with the immune score was identified, and key genes of
the yellow module were further obtained. Secondly, based on the above-identified immune-
related key genes, we constructed an immune-related risk score model (IRSM) using the
Lasso regression algorithm. The IRSM was found to be an independent poor prognosis
predictor. Thirdly, we explored the molecular basis, tumor immune microenvironment
and clinical characteristics of the IRSM. Meanwhile, we estimated the roles of key genes
within the IRSM by IHC. We hypothesized that the IRSM effectiveness might be related
to immunotherapy. Lastly, we further examined the relationship between the IRSM and
immunotherapy and chemotherapy and highlighted the prediction ability of the IRSM
for immunotherapy and chemotherapy. Meanwhile, we observed that immunotherapy
coupled with chemotherapy could enhance the treatment effect. Overall, we established an
immune-based risk score (IRSM) model which could be used to predict patient prognosis
and response to immunotherapy and chemotherapy.
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Figure 1. Study workflow. Firstly, we applied weighted gene co-expression network analysis
(WGCNA) to construct a gene co-expression network and further mined the immune-related module.
Functional enrichment analysis was performed, and immune-related key genes were obtained from
the immune-related module. Secondly, we selected immune-related prognosis genes by univariate
Cox regression and then constructed an immune-related risk score model (IRSM) using the Lasso
regression in the training dataset. Thirdly, we estimated the performance of the IRSM in prognosis
prediction. Meanwhile, the roles of the IRSM genes in EC development were validated by immunohis-
tochemistry. Fourthly, we evaluated the relationship between the IRSM and EC molecular and clinical
characteristics. Fifthly, we assessed the relationships between the IRSM and both immunotherapy
response and chemotherapy sensitivity.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

Two endometrial cancer (EC) datasets including the TCGA-UCEC dataset and The
First Affiliated Hospital of Chongqing Medical University dataset were used in our analysis.
For the former (TCGA-UCEC) dataset, matched gene expression data (counts data), somatic
mutation data and clinical data were used in this analysis. Both gene expression data and
mutation data were obtained from the GDC TCGA Data Portal (https://portal.gdc.cancer.
gov/, accessed on 13 January 2022). As for the clinical data, they were downloaded
from the GDC TCGA Data Portal and the “TCGABiolinks” R package [20]. For the gene
expression data, only mRNAs were extracted according to the Gencode GTF annotation
file, and log2(count + 1) transformations were performed [21]. Then, the median absolute
deviation (MAD) for each gene was calculated, and the top 5000 most variable genes were
chosen for further analysis. For the clinical data, patients with missing overall survival
information were excluded. For the latter (The First Affiliated Hospital of Chongqing
Medical University) dataset, 20 EC tissues and 7 matched normal tissues were used for
immunohistochemical (IHC) analysis. The demographic and clinical characteristics of the
patients are described in Table 1.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Table 1. Demographic and clinical characteristics.

Characteristics Sample Size

Patient No. 541
Pathological subtype No.

Endometrioid adenocarcinoma subtype 400
Serous subtype 138

undifferentiated carcinoma subtype 2
Clear subtype 1

FIGO Stage
Stage I 338
Stage II 51
Stage III 123
Stage IV 29

FIGO Grade
G1 98
G2 120
G3 312

High grade 11
Age (years) *

Range 31~90
Median 64

Follow-up (days)
Range 0~6859

Median 902
Status
Alive 450
Dead 91
MSI

MSI-H 157
MSI-L 43
MSS 297
TMB

High-TMB 105
Low-TMB 419

* Some information is missing for certain patients.

2.2. Construction of the Weighted Gene Co-Expression Network

To identify gene co-expression network (GCN) modules, we applied the weighted
gene co-expression network analysis (WGCNA) tool to mine the GCN modules [15]. Firstly,
we clustered the samples to check whether there were outlier samples based on hierarchical
clustering analysis. We applied the goodSamplesGenes function to check if there were
genes and samples with too many missing values. We observed that all the genes and
samples passed the examination. After that, we performed hierarchical clustering of the
samples by the hclust function to detect if there were any obvious outliers. A clustering
dendrogram of the samples based on Euclidean distance was constructed, and no outlier
samples were generated (Figure S1). Secondly, we screened the most optimal soft threshold
β to construct a scale-free network. Thirdly, we constructed an adjacency matrix based on
the Pearson correlation coefficient (r), which was subsequently converted into a topological
overlap matrix (TOM). Fourthly, we mined the GCN modules using the Dynamic Branch
Cut method. Especially, the minimal module size and the cutting height for module
merging were set to 30 and 0.25, respectively. Finally, we calculated the module eigengenes
(MEs) for each module, which was the first principal component of the GCN module and
could represent the overall expression level of the module.

2.3. Identification of Immune-Related Key Genes

To identify immune-related key genes, we first explored the immune-related GCN
modules. For each GCN module, the correlation between the MEs and the immune
characteristics (immune score calculated by the ESTIMATE algorithm) was quantified
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based on the Pearson correlation coefficient (r), and the most correlated GCN module was
defined as the immune-related GCN module [22].

Next, we explored the key genes of the immune-related GCN module. Gene signifi-
cance (GS) and module membership (MM) were initially adopted to assess the relationship
between the module genes and the immune characteristics. GS represents the association of
module genes with the immune score. MM represents the association of module eigengenes
(MEs) with module genes. The potential hub genes were initially screened with GS > 0.8
and MM > 0.8. Meanwhile, we also screened the potential hub genes with Protein–Protein
Interaction (PPI) Network analysis [23], and the top 50 genes with a high node degree were
considered. The genes at the intersection of the above two kinds of potential hub genes
were considered immune-related key genes and used for further analysis.

2.4. Estimation of the Immune Score

The ESTIMATE algorithm is a powerful unsupervised approach to explore the tumor
microenvironment [22]. It consists of three core modules including the immune score
module, the stromal score module and the ESTIMATE score module. Based on the immune
score module, the relative abundance of infiltrating immune cells in tumor tissue could
be measured according to the gene expression profile. Particularly, the immune score has
been considered as an effective biomarker to estimate the intratumoral immune status and
predict the patient survival and response to immunotherapy.

2.5. Functional Enrichment Analysis

To explore the biological function of the immune-related module, we performed Gene
Ontology (GO) enrichment analysis based on the module genes with the “clusterProfiler”
R package [24]. The hypergeometric test was used to calculate the p-value for gene set
enrichment, and the false discovery rate (BH FDR, Benjamini–Hochberg False Discovery
Rate) was used to calculate the q value for multiple test compensation. Only biological
processes with a q-value less than 0.05 were considered significantly enriched, and the top
10 enriched biological processes were displayed using the “Graphics” R package [25].

2.6. Construction and Validation of the Risk Score Model

To construct a risk score model, for each previously identified key gene, we first
applied univariate Cox regression analysis to evaluate the relationship with patient sur-
vival outcome by the “survival” R package [26]. Genes with p values less than 0.05 were
considered as immune-related prognosis features and were used to construct the model.
Next, we randomly divided the patients into training and validation datasets (7:3). To make
a more practical model, we normalized the mRNA data and adopted the Lasso regression
algorithm by the “glmnet” R package [27] to select the most immune-related prognosis
genes. Then, we constructed an immune-related risk score model (IRSM) with the above
selected genes in the training dataset. For this IRSM:

Risk score = Σ(coef (G) × EXP(G))

G: immune-related prognosis gene signature; coef: Lasso cox regression coefficient;
EXP(G): expression value of the gene signatures.

Based on the IRSM, each patient was assigned a risk score, and the risk score was
the weighted combination of the Lasso Cox regression coefficients and the corresponding
expression value of the gene signature. Using the median risk score as the cutoff, we
divided the patients within the training dataset into high- and low-risk groups. Then, we
used the Kaplan–Meier estimator [28] to estimate the survival time, and the log-rank test
was applied to compare the survival difference between the high- and the low-risk groups.
Using a similar method, we tested the prognosis prediction performance of the IRSM in the
validation dataset and the whole dataset separately.
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2.7. Validation of the Risk Score Model by Immunohistochemistry

To validate the efficacy of the IRSM for EC tumorigenesis and development, we
applied immunohistochemistry (IHC) staining to study the five genes in the risk score
model. Twenty EC tissues and seven normal tissues collected from The First Affiliated
Hospital of Chongqing Medical University were included, and protein expression from
each gene was compared. The main steps for IHC are listed below: (1) all tissues were
fixed with 4% neutral formaldehyde, embedded in paraffin wax and then cut into 4 µm
thick sections; (2) the sections were baked at 60 ◦C for 1 h and then dewaxed using xylene
(twice, 10 min each time) and rehydrated through a gradient alcohol series; (3) after being
washed, the sections were immersed in a hydrogen peroxide solution for 8 min and in a
PBS solution thrice (5 min each time). Subsequently, the sections were boiled in a dilute
sodium citrate antigen retrieval solution for 5 min for antigen retrieval; (4) the sections were
incubated with the primary antibodies overnight at 4 ◦C and with the secondary antibodies
for 30 min at 37 ◦C. The primary antibodies were: anti-CD3D primary antibody (1:100;
SAB, Johannesburg, South Africa; 38225), anti-CD3E primary antibody (1:100; ABClonal,
Woburn, MA, USA; A19017), anti-CXCR3 primary antibody (1:100; BOSTER, Pleasanton,
CA, USA; PB9079), anti-CCL5 primary antibody (1:100; Abbkine, Wuhan, China; ABP56130)
and anti-IL-2RG primary antibody (1:500; Abcam, Shanghai, China; AB273023); (5) after
DAB staining and washing, hematoxylin was used to counterstain the samples, and a
hydrochloric acid solution was used to dissociate the samples; (6) lithium carbonate in
saturated aqueous solution was employed to promote blue color development; (7) the
expression level of each protein was estimated by microscopy, and representative images
were captured.

2.8. The Molecular Basis of the Risk Score Model

To explore the molecular basis of the IRSM, we compared the expression pattern of
IRSM-related genes as well as yellow module genes in the high- and low-risk groups by
the Wilcoxon test (p < 0.05 indicated significant differences).

2.9. Relationship of the Risk Score Model with Clinical and Molecular Characteristics

To assess the relationship between the IRSM with clinical as well as molecular char-
acteristics, we first performed multivariate Cox analysis to assess whether the IRSM was
independent of age, FIGO grade, FIGO stage and pathological subtype.

Considering the important roles of clinical and molecular characteristics such as
microsatellite instability (MSI), POLE and TP53 mutation, mismatch repair gene (MMR,
including MLH1, MSH2, MSH6 and PMS2), immune checkpoint genes (CD274, CTLA4,
HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT and TNFRSF18) and human leukocyte antigen
(HLA) genes (HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-
DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-
DRB1, HLA-DRB5, HLA-E, HLA-F and HLA-G) in EC tumorigenesis and development,
we also compared these clinical and molecular characteristics in patients in the high- and
low-risk groups. The Fisher exact test was used to compare the MSI-H status, the mutation
frequency of MMR, TP53 and POLE between high- and low-risk groups (p < 0.05 was
considered to indicate a significant difference). The visualization of mutations in the above
genes was performed by the “maftools” R package [29]. In addition, the Wilcoxon test
was used to compare the expression patterns of immune checkpoint genes and HLA genes
between the high- and the low-risk groups (p < 0.05 was considered to indicate a significant
difference).

The Tumor Mutational Burden (TMB) is considered a promising biomarker for im-
munotherapy and is associated with a better immunotherapy response [30–32]. To better
assess the relationship between the IRSM and immunotherapy, we firstly calculated the
TMB for each patient by the “maftools” R package [29]. A relatively strict and widely used
cutoff of TMB (top 20% of TMB) was adopted to estimate the TMB status [30,33]. A high
TMB (TMB-H) indicated that the TMB was above the cutoff, while a low TMB (TMB-L)
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indicated that the TMB was below the cutoff. The Fisher exact test was then applied to
compare the differences between the two groups (p < 0.05 was considered to indicate a
significant difference).

2.10. Estimation of Immune Infiltrating Cell Contents

To estimate the immune infiltrating cell contents within the tumor environment, we
first evaluated the immune cell proportion in each patient by calculating the immune
score with the ESTIMATE algorithm [22], which was also used to identify the immune-
related GCN modules. Moreover, we also measured the relative distribution of 22 types of
infiltrating immune cells with the CIBERSORT algorithm [34,35]. The abundance of the
22 types of infiltrating immune cells was subsequently compared in the high- and low-risk
groups using the Wilcoxon test (p < 0.05 was considered to indicate a significant difference).

2.11. Relationship between the Risk Score Model and Immunotherapy

Tumor immune dysfunction and exclusion (TIDE) is a computational method developed
by X. Shirley Liu et al. to predict the immune checkpoint blockade (ICB) response [36,37].
Currently, this approach has been successfully applied to multiple cancer studies including
non-small cell lung cancer and melanoma to predict the ICB response [38–40]. Thus, the
TIDE is considered a powerful tool to predict the ICB response. To evaluate the relationship
between the IRSM and immunotherapy, we first predicted the ICB response according to the
TIDE website (http://tide.dfci.harvard.edu, accessed on 14 April 2022) [36,37]. The TIDE
score for each patient was obtained. A high TIDE score indicates a high potential of tumor
immune evasion, which means the patient is less likely to benefit from an anti-PDL1/CTLA4
treatment. Next, we compared the TIDE scores of the patients in the high- and low-risk groups
using the Wilcoxon test (p < 0.05 was considered to indicate a significant difference).

2.12. Relationship between the Risk Score Model and Chemotherapy

To evaluate the relationship between the IRSM and chemotherapy, we first computed
the half-maximal inhibitory concentration (IC50) of 7 commonly used chemotherapeutic
drugs (Cisplatin, Cyclophosphamide, Docetaxel, Fluorouracil, Paclitaxel, Tamoxifen and
Topotecan) using the “oncoPredict” R package [41]. The IC50 is widely used as a mea-
sure of drug effectiveness, and patients with a high IC50 value are less sensitive to the
corresponding drug. Next, we compared the IC50 of the patients in the high- and low-risk
groups with the Wilcoxon test (p < 0.05 was considered to indicate a significant difference).

2.13. Statistical Analysis Software

Except where noted above, all statistical analyses were performed in R version 4.1.2.

3. Results
3.1. Screening of Immune-Related Key Genes

Gene co-expression network (GCN) analysis has been proven as an effective approach
for mining potential drivers or drug targets. We performed GCN analysis with the weighted
gene co-expression network analysis (WGCNA) algorithm to identify immune-related
modules. After pre-processing the gene expression data, 5000 genes with the most variable
expression values across the samples were used to construct GCN modules. Particularly, the
optimal soft-thresholding β = 4 (scale-free R2 = 0.9) was employed to construct a scale-free
network (Figure 2A), Pearson correlation coefficient (r) was used to construct an adjacency
matrix, and the dynamic tree cut algorithm was adopted to generate the GCN modules. As
a result, eight consensus GCN modules were obtained for EC (Figure 2B). Meanwhile, for
each module, the module eigengenes (MEs) which could represent the whole expression
level of the modules were also calculated.

http://tide.dfci.harvard.edu
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Figure 2. Identification of the immune-related module and key genes for EC. (A) The screening of
soft-thresholding power (β). (B) Cluster dendrogram of the co-expression network modules (1-TOM).
(C) Heatmap of the correlation of consensus modules with immune traits. The row represents
the module eigengenes (MEs), and the column represents the immune score. Pearson correlation
coefficient (r) as well as p-value are shown in the cells. (D) Scatter plot analysis of the yellow
module. The key genes were screened out in the upper-right area, where GS > 0.8 and MM > 0.8
(TOM, topological overlap matrix. GS, gene significance. MM, module membership). (E) The top 10
significantly enriched biological processes of the yellow module.

To mine immune-related GCN modules, we adopted the Pearson correlation coefficient
(r) to estimate the relationship of previously identified GCN modules with immune traits.
Here, the immune score calculated from the ESTIMATE algorithm was used to represent the
immune traits of each patient. Specifically, the yellow module (377 genes) which exhibited
the strongest positive correlation (r = 0.78, p-value = 5 × 10−118) with the immune score
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stood out (Figure 2C). In addition, we performed GO enrichment analysis to explore the
biological processes of the yellow module. We observed that immune-related biological
processes such as T cell activation (q-value = 3.129329 × 10−53) and regulation of T cell
activation (q-value = 8.881909 × 10−43) were significantly enriched (Figure 2E), indicating
that the yellow module was indeed immune-related.

To further mine immune-related key genes, we explored the potential hub genes of
the yellow module with two algorithms. Firstly, after screening with Gene Significance
(GS) for module genes with immune score GS > 0.8 and module membership (MM) in the
yellow module with MM > 0.8, 11 potential hub genes of the yellow module were identified
(Figure 2D). Next, Protein–Protein Interaction (PPI) Network analysis of the yellow module
was performed, and the top 50 genes with a high node degree were considered as potential
hub genes (Figure S2). Subsequently, the potential hub genes obtained from the above
methods were intersected, and seven immune-related key genes (CXCR3, CD3D, CD2,
CCL5, CD3E, IL2RG and ITGAL) were identified. Taken together, seven immune-related
key genes were mined with the WGCNA algorithm.

3.2. Construction of the IRSM Based on Immune-Related Key Genes

Given the weakening of the immune function during cancer progression, we firstly
estimated whether the immune-related key genes held clinical survival information. For
each immune-related key gene, univariate Cox regression analysis was applied to estimate
its relationship with the survival outcome. We observed that all these immune-related
key genes were survival-associated (p-value < 0.05), and the high expression of these
genes was linked to good prognosis (Figure S3A). Then, all the TCGA-UCEC patients were
randomized into a training and a testing group in the ratio of 7:3. For the training dataset,
we constructed an immune-related risk score model (IRSM) using the Lasso regression
algorithm (Figure S3B,C). For the IRSM, five key genes (CXCR3, CD3D, CCL5, CD3E
and IL2RG) were identified using a weighted combination of the Lasso cox regression
coefficients and their corresponding expression value. In this IRSM:

Risk score = (−0.2) × Expression (CXCR3) + (0.3) × Expression (CD3D) + (0.3) × Expression (CCL5) + (−0.01) ×
Expression (CD3E) + (0.1) × Expression (IL2RG)

3.3. The IRSM Could Serve as a Prognosis Predictor of EC

According to the IRSM, each patient was assigned a risk score. To estimate the
relationship of the IRSM with each patient’s clinical outcome, all the patients in the training
dataset were categorized into two groups (high- and low-risk groups) based on the median
risk score. Compared with the low-risk group, the patients in the high-risk group had a
shorter survival time (log-rank p-value = 0.0017, Figure 3A), suggesting that the IRSM is
associated with poor prognosis.

To test whether the use of the IRSM as an EC survival predictor over-fitted the data,
similar analyses were conducted on the validation dataset and the whole dataset to estimate
the predictive performance of the IRSM. We observed that in both the validation dataset and
the whole dataset, the patients in the high-risk group had a significantly shorter survival
time than the patients in the low-risk group (Figure 3B,C). This phenomenon was consistent
with the training dataset and confirmed the robustness of the IRSM for prognosis prediction.
In short, the IRSM could serve as a poor-prognosis predictor for EC patients.
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patients based on the IRSM. (A) The OS for the training dataset. (B) The OS for the validation dataset.
(C) The OS for the whole dataset.

3.4. IHC Confirmed the Effect of IRSM-Related Genes on EC

To validate the role of the genes associated with the IRSM in EC development and
progression, 20 EC tissues and 7 normal tissues were used, and immunohistochemistry
(IHC) was applied to compare the corresponding protein expression levels. IHC staining
showed stronger expression of CD3D, CD3E, CXCR3 and IL2RG in tumor tissue compared
to normal tissue. As for CCL5, strong or moderate staining in tumor tissue and negative
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staining in normal tissue were noticed (Figure 4). All of these results confirmed the
important roles of the IRSM-related genes in EC.
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3.5. The Molecular Basis of the IRSM

To reveal the molecular basis of the IRSM, we first compared the gene expression
profiles of the IRSM-related genes. We observed that all of them showed lower expression
in high-risk vs. low-risk cases (Figure 5A). In addition, we examined the expression
profiles of genes within the yellow module. We found that 89.92% (339/377) of the yellow
module genes displayed reduced expression patterns in the high-risk group compared
to the low-risk group (Figure 5B, Wilcoxon test p < 0.05). All these results suggested
that distinctive molecular patterns existed between the different-risk-score groups, and
the lower expression of key genes induced the expression of downstream genes and
subsequently promoted EC tumorigenesis and development.
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3.6. Clinical and Molecular Characteristics of Different IRSM Groups

To explore the relationship between the IRSM and clinical characteristics, we first
evaluated whether the IRSM could serve as an independent predictor for EC patient
survival. Multivariate Cox regression analysis was applied to estimate the relationship
between the IRSM and clinical characteristics such as age, FIGO grade, FIGO stage and
pathological subtype. The results showed that the IRSM was an independent predictor of
overall survival (Figure 6A). Meanwhile, patients in the low-risk group presented fewer
deaths or a less severe illness status (Figure 5B), which is consistent with the previous result
that patients in the low-risk group had better clinical outcomes.

Considering that Microsatellite Instability (MSI) and Tumor Mutation Burden (TMB)
play vital roles in EC, we compared the MSI-H status and TMB between the high- and the
low-risk groups. We found that the patients in the low-risk group presented significantly
higher MSI-H status (p-value = 0.001855) and TMB (p-value = 7.6 × 10−10) than the patients
in the high-risk group (Figure 6B and Table 2). Subsequently, we further compared the
mutation frequency of mismatch repair (MMR) genes between the two groups. A higher
mutation rate of MMR genes was observed for patients in the low-risk group than for
those in the high-risk group (Figure 6C,D and Table 2). All these results indicated that the
low-risk group was associated with an immune-hot phenotype, and the patients in this
group might benefit from immunotherapy.

Table 2. The comparison of clinical and molecular characteristics in the high- and low-risk groups.

Groups Statistical Method p-Value

MSI in high- and low-risk Chi-square test 0.001855
TMB in high- and low-risk Chi-square test 1.012 × 10−6

TIDE in high- and low-risk Chi-square test <2.2 × 10−16

TP53 in high- and low-risk Chi-square test 2.195 × 10−5

POLE in high- and low-risk Chi-square test 0.0006069
MSH6 in high- and low-risk Chi-square test 0.0006415
MSH2 in high- and low-risk Chi-square test 0.03334
MLH1 in high- and low-risk Chi-square test 0.002758
PMS2 in high- and low-risk Chi-square test 0.3518

Next, we further compared several important molecular characteristics such as POLE
and TP53 mutation and the expression patterns of immune checkpoint genes as well as hu-
man leukocyte antigen (HLA) genes. A higher mutation rate of POLE (p-value = 0.0006069)
and a lower mutation rate (p-value = 2.195 × 10−5) of TP53 were observed in the low-risk
group (Table 2), indicating the low-risk group had a favorable prognosis. In addition,
over-expression patterns of immune checkpoint genes and HLA genes were observed in
the low-risk group (Figure 6E,F), suggesting that the patients in the low-risk group were
more likely to benefit from immunotherapy.

3.7. TME Immune Infiltration Characteristics of the Different IRSM Groups

Since the IRSM was constructed based on immune-related key genes, we further
compared the tumor immune microenvironment between the two groups. Particularly, we
dissected the relative abundance of 22 types of immune cells by the CIBERSORT algorithm.
We observed that 59.09% (13/22) of immune cell types showed significant differences in
cell infiltration in the high- and low-risk groups. Particularly, the relative proportions of
resting dendritic cells, M1 macrophages, resting mast cells, plasma cells, activated CD4
memory T cells, CD8 T cell, T follicular helper cells and regulatory T cells were higher in the
low-risk group, while the relative proportions of activated dendritic cells, M0 macrophages,
activated mast cells, resting CD4 memory T cells, CD4 naïve T cells were higher in the
high-risk group (Figure 7).
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Figure 6. Clinical and molecular characteristics of different IRSM groups. (A) Multivariate Cox
regression analysis. (B) Box plot comparing the TMB in the high- and low-risk groups. (C) Mutation
visualization of TP53, POLE and MMR genes in the high-risk group. (D) Mutation visualization of TP53,
POLE and MMR genes in the low-risk group. (E) Box plot comparing the expression pattern of immune
checkpoint genes between the high-risk and the low-risk groups. (F) Box plot comparing the expression
pattern of HLA genes in the high-risk and the low-risk groups. (Notes: * indicates p-value < 0.05;
** indicates p-value < 0.01; ***: p-value < 0.001; ****: p-value < 0.0001).
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3.8. The IRSM Is Associated with Immunotherapy Response in EC Patients

To check the relationship of the IRSM with immunotherapy, we predicted the response
to immunotherapy using the Tumor Immune Dysfunction and Exclusion (TIDE) tool
which has been widely used as an indicator of immunotherapy response. Meanwhile, we
calculated the TIDE score of each patient; patients with lower TIDE scores might benefit
from an anti-PDL1/CTLA4 treatment. After examining the response to immunotherapy,
we noticed that 91.25% (73/80) of the patients who responded to immunotherapy were
primarily in the low-risk group (Figure 5B). Then, we compared the TIDE scores of the high-
and low-risk groups. The TIDE score of the low-risk group was significantly lower than
that of the high-risk group (p-value = 2.2 × 10−16, Figure 8A), indicating that the patients
in the low-risk group were more likely to respond to immunotherapy. In short, our results
highlighted that the IRSM has a good capability to stratify patients, identifying those who
might benefit from immunotherapy.

3.9. The IRSM Is Associated with Chemotherapy Response in EC Patients

To check the relationship of the IRSM with chemotherapy, we computed the half-
maximal inhibitory concentration (IC50) of seven commonly used chemotherapeutic drugs
(Cisplatin, Cyclophosphamide, Docetaxel, Fluorouracil, Paclitaxel, Tamoxifen and Topote-
can). The therapy responses to the above-mentioned chemotherapeutic drugs in the low-
risk group were significantly better than those in the high-risk group (Figure 8B), suggesting
that patients in the low-risk group were more sensitive to chemotherapy.

3.10. Combining Immunotherapy with Chemotherapy Could Enhance the Treatment Effects

Given the fact that chemotherapy combined with immunotherapy shows better efficacy
than either treatment alone, we further investigated the relationships of the IRSM with
combined immunotherapy and chemotherapy. According to previous predictions, most
patients responding to immunotherapy were concentrated in the low-risk group. Thus,
we focused our further analysis on the low-risk group. We sub-grouped the patients in
the low-risk group into an immunotherapy-responsive group and an immunotherapy-
nonresponsive group. Subsequently, we compared the sensitivity to the above-mentioned
chemotherapeutic drugs of the two groups. For each chemotherapeutic drug, the patients
in the immunotherapy-responsive group had a better chemotherapy response than the
patients in the immunotherapy-nonresponsive group (Figure 8C). This result indicated that
immunotherapy coupled with chemotherapy could enhance the treatment effect in patients.
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Figure 8. The relationship of the risk score model with immunotherapy and chemotherapy.
(A) Box plot comparing the TIDE score of immunotherapy response between the high-risk and
the low-risk groups. (B) Box plot comparing the IC50 values of seven commonly used chemotherapy
drugs between the high-risk and the low-risk groups. (C) Box plot comparing the IC50 values of seven
commonly used chemotherapy drugs for patients in the low-risk group with or without immunother-
apy response. (Notes: * indicates p-value < 0.05; ** indicates p-value < 0.01; ***: p-value < 0.001;
****: p-value < 0.0001; ns: not significantly).

4. Discussion

Endometrial cancer (EC) is the most common gynecologic cancer worldwide. The
overall survival of EC patients has improved over the past decade but remains unsatisfying
due to a lack of reliable screening. In addition, even though immunotherapy has been used
in the clinic, the screening of patients responding to immunotherapy remains challenging.
Therefore, there is a strong need to develop an effective approach to optimize the treatment
screening and improve patient survival.
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In this study, we applied the WGCNA algorithm to mine immune-related modules
and key genes. We found that the yellow module showed the closest relationship with
immune cell infiltration. Meanwhile, the Go enrichment analysis confirmed that the yellow
module was an immune-related module. In addition, seven key genes of the yellow module
were identified, and five of them (CXCR3, CD3D, CCL5, CD3E and IL2RG) were screened
to construct an immune-related risk score model (IRSM). CXCR3 codes for a chemokine
receptor and is primarily expressed in CD4+ and CD8+ T cells. CXCR3 plays an important
role in T cell trafficking during inflammation [42,43]. CD3D and CD3E are involved in
the encoding of the T cell receptor/CD3 complex (TCR/CD3 complex), which is a cell
surface structure and plays a crucial role in antigen recognition and T cell activation [44,45].
CCL5 is a member of the C–C chemokine family, and its overexpression was linked with
CD8+ T cell infiltration in solid tumors [46]. Meanwhile, CCL5 promotes the recruiting of
various leukocytes into inflammatory sites [47,48]. IL2RG encodes the cytokine receptor γ
chain and is an important component of many interleukin receptors such as IL-2, IL-4, IL-7,
IL-9, IL-15 and IL-21 [49]. All these pieces of evidence supported the conclusion that the
IRSM-related key genes are immune-related genes and play critical roles in tumorigenesis
and development.

The immune-related risk score model (IRSM), a novel screening approach for EC treat-
ment selection was established. Particularly, the IRSM was found to be an independent
predictor of poor prognosis. All IRSM-related genes were more highly expressed in the
low-risk group. Univariate Cox regression analysis also indicated that the IRSM-related genes
were associated with good prognosis. This was consistent with the expression pattern of
these genes within the two groups. In addition, the Human Protein Atlas proved that the
IRSM-related genes were highly associated with good prognosis [50,51]. Their analysis not
only confirmed our results but also highlighted the important roles of these five genes in
cancer progression. Next, we further examined the expression level of the yellow module
genes within the two groups. Most of the yellow module genes presented over-expression in
the low-risk group. Therefore, we suggest that alterations of immune-related key genes affect
the expression pattern of downstream co-expressed genes and further influence EC prognosis.

Considering that microsatellite instability/deficient mismatch repair (MSI-H/dMMR),
tumor mutation burden (TMB), POLE and TP53 mutation play vital roles in EC, their rela-
tionships with IRSM were investigated. We observed that the MSI-H status, the mutation
rate of MMR genes as well as of POLE and TMB were significantly higher in the low-risk
group than in the high-risk group. Alicia et al. highlighted that higher MSI-H/dMMR
could produce a better clinical response (improve the OS) [52–54]. In addition, a large
number of clinical studies have demonstrated that MSI-H/dMMR serves as an effective
indication for cancer immunotherapy [55–57], and patients with high MSI-H/dMMR are
more likely to benefit from immunotherapy. Robert M. et al. stated that a high value of
TMB is associated good prognosis [30–32]. Meanwhile, TMB also serves as a biomarker of
immunotherapy, and a higher TMB is linked to a better immune response. Melissa K. et al.
observed that patients with POLE mutations usually have a good prognosis [58–60]. The
POLE mutational status is one of the most important prognostic biomarkers in EC. Patients
with somatic POLE mutations present a favorable prognosis. Furthermore, POLE mutation
could regulate the immune response and ha been treated as a biomarker for immunother-
apy response [61]. As for TP53 mutations, we observed that the low-risk group presented
a lower mutation frequency than the high-risk group. Definitely, the TP53 status was
proven as an independent prognostic biomarker for EC patients. Several studies [62–67]
demonstrated that TP53 mutation is associated with poor clinical outcomes. All these
pieces of evidence are consistent with our analysis, proving the prognosis prediction ability
of the IRSM and its important role in cancer immunotherapy. Specially, considering the
molecular classification of EC is based on the POLE and TP53 gene status and microsatellite
status, we regard that the IRSM may be related to EC molecular classification.

Since immune checkpoint blockade therapy has become a crucial weapon in the fight
against cancer, the relationship between the IRSM with immunotherapy was estimated.
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We first predicted the immunotherapy response of each patient and then compared the
responses in the high- and low-risk groups. We noticed that most of the patients responding
to immunotherapy were concentrated in the low-risk group. We further compared the
expression patterns of immune checkpoint genes (ICGs) between the two groups and
observed over-expression patterns of ICGs in the low- vs. the high-risk group. High
expression of PD-L1 is associated with an effective response to anti-PD-1/anti-PD-L1
therapy [68,69]. In addition, we also compared the expression profiles of HLA genes
between the high- and the low-risk groups. Increased expression of HLA genes was noticed
in the low-risk group. Evelien Schaafsma et al. [70] proved that HLA gene expression
is positively related to a patient’s immune checkpoint blockade response. The immune
infiltrating cell contents in the high- and the low-risk groups were compared, and a more
immunologically active TME (also called immune-hot TME) was observed in the low-
risk group. We also examined the expression pattern of the IRSM genes (CXCR3, CD3D,
CCL5, CD3E and IL2RG) within the two groups. All IRSM-related genes presented higher
expression in the low-risk group. Chheda et al. demonstrated that the induction of CXCR3
enhanced the migration of T cells to tumors and promoted the therapeutic effect of anti-
PDL1 therapy [71]. CD3E and CD3D play important roles in the positive regulation of T-cell
activation and leukocyte cell–cell adhesion and are considered to be the main determinants
of tumor immunotherapy efficacy [45,72]. High expression of CD3E is associated with
anti-PD1 immunotherapy efficacy [73]. CD3D has been reported as a potential biomarker
for immunotherapy [74–76]. CCL5 could promote an anti-tumor response by recruiting anti-
tumor immune cells to the TME, which enhance the immunotherapy response [46,77–80].
IL2RG is an important component of the γ c family of cytokines, including IL-2. IL-2 was
proven to be an effective immunotherapy by the FDA [81–84]. Taken together, all the above
observations confirmed the close relationship of the IRSM with immunotherapy.

The relationship of the risk score model with chemotherapy was evaluated. We
observed that patients in the low-risk group were more sensitive to chemotherapeutic
drugs. In addition, we also noted that patients responsive to immunotherapy were also
more sensitive to chemotherapy. Previous studies pointed out that patients who responded
to immunotherapy were more sensitive to chemotherapy, implying that immunotherapy
could enhance the sensitivity of tumor cells to chemotherapeutic drugs [85,86]. In short, all
the above observations confirmed the close relationship of the IRSM with chemotherapy
and proved the enhancement immunotherapy efficacy when combined with chemotherapy
in the treatment of EC.

Despite the extensive observations and consistent results generated by our analysis,
some limitations of this study should be noticed. Firstly, even though the performance of
the IRSM in prognostic prediction was verified, to facilitate the widespread clinical appli-
cation of the IRSM, its ability to predict patient survival still needs to be confirmed using
additional independent datasets. Secondly, since the patients’ response to immunotherapy
or chemotherapy was predicted based on bioinformatics tools, analysis of patients receiving
immunotherapy or chemotherapy is still needed to verify the relationship of the IRSM
with immunotherapy and chemotherapy. Thirdly, despite evaluating the relationship of
the IRSM with immune infiltration, how immune infiltration works in tumor microenvi-
ronments remains unclear, and the corresponding mechanisms need to be experimentally
verified in the future. Last but not least, while the molecular basis as well as the biological
properties of these immune-related key genes were inferred, their mechanisms of action
remain elusive, and further experimental validations are still needed.

5. Conclusions

In conclusion, we constructed an immune-related risk score model (IRSM) for endome-
trial cancer. The IRSM was associated with poor prognosis and could serve as an independent
survival predictor. The IRSM also showed a high predictive value for immunotherapy and
chemotherapy response. Meanwhile, the clinical and molecular characteristics confirmed
the predictive effect of the IRSM for prognosis and the response to immunotherapy and
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chemotherapy. Moreover, patients responding to immunotherapy were also more sensitive
to chemotherapy. Our analysis not only will help optimize personalized treatments but also
provides a deeper understanding of endometrial cancer progression.
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(A) Univariate Cox regression analysis of immune-related key genes. (B) Lasso regression coefficient.
(C) The selection of lambda for Lasso regression.
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