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Abstract: Semiconductor chips on a substrate have a wide range of applications in electronic devices.
However, environmental temperature changes may cause mechanical buckling of the chips, resulting
in an urgent demand to develop analytical models to study this issue with high efficiency and
accuracy such that safety designs can be sought. In this paper, the thermal buckling of chips on
a substrate is considered as that of plates on a Winkler elastic foundation and is studied by the
symplectic superposition method (SSM) within the symplectic space-based Hamiltonian system.
The solution procedure starts by converting the original problem into two subproblems, which are
solved by using the separation of variables and the symplectic eigenvector expansion. Through the
equivalence between the original problem and the superposition of subproblems, the final analytical
thermal buckling solutions are obtained. The SSM does not require any assumptions of solution forms,
which is a distinctive advantage compared with traditional analytical methods. Comprehensive
numerical results by the SSM for both buckling temperatures and mode shapes are presented and are
well validated through comparison with those using the finite element method. With the solutions
obtained, the effects of the moduli of elastic foundations and geometric parameters on critical buckling
temperatures and buckling mode shapes are investigated.

Keywords: thermal buckling; semiconductor chip; symplectic superposition; analytical solution

1. Introduction

Semiconductor chips have garnered significant scholarly attention due to their in-
dispensable engineering applications in stretchable electronics [1], flexible devices [2],
microelectromechanical systems [3], etc. It is imperative to carefully consider the mechani-
cal properties of such devices for better structural designs since semiconductor chips may
undergo buckling under a temperature rise in service [4,5], which may cause structural
instabilities and failures. Recent advancements have emerged in the field of semiconductor
chips to address the issue of thermally deduced buckling, among which thermoelectric
coolers [6], microprocessors [7], light-emitting diodes [8], and microchannel heat sinks [9]
have gained popularity.

Figure 1a illustrates a commonly encountered configuration in semiconductor chip
applications, where the chip is bonded to a circuit board. The corresponding physical
model is illustrated in Figure 1b and constitutes a challenging three-dimensional problem
to solve. To analyze the mechanical behavior of such a structure, an effective way is to
consider the chip as a thin plate and the substrate as an elastic foundation, as illustrated
in Figure 1c. The heat released by the chip can be equivalent to a uniform temperature
field. To better describe the chip bonded to the substrate, the boundary conditions (BCs) are
equivalent to fully clamped BCs, which are typically non-Lévy-type. Among various elastic
foundation models, the Winkler foundation model stands out [10,11]. In this case, the
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problem can be modeled as the thermal buckling of a thin plate on a Winkler foundation,
which is reduced to solving the higher-order partial differential equations with prescribed
BCs. Details appear in Section 2.
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Figure 1. (a) Semiconductor chips on a circuit board. (b) Schematic diagram of the physical model
corresponding to (a). (c) Equivalent thermal buckling problem of a plate on a Winkler foundation.

A variety of numerical and approximate methods can be employed to address the
above issue. Raju and Rao [12] investigated the thermal post-buckling behavior of thick
functionally graded microplates attached to elastic foundations using the finite element
method (FEM). They evaluated the influence of the foundation stiffness on this problem and
concluded that increased foundation stiffness reduces the nonlinearity effect. Shen [13] ana-
lyzed the thermal post-buckling behavior of simply supported orthotropic plates attached to
elastic foundations by a two-step perturbation technique, and the simulation results clearly
demonstrated the significant influence of small-scale parameters on compressive buckling.
Noroozi and Jiang [14] utilized the finite difference method to investigate the buckling of
functionally graded material semiconductor chips resting on Winkler foundations. The
results indicate that the accumulation of wrinkles near the system’s weaker areas displays
a notable level of sensitivity due to their lower stiffness. Srinivasan et al. [15] employed an
incremental spectral method for solving the buckling of plates on nonlinear foundations
under cyclic loading, with the effects of different foundation models discussed in detail.
Zhang et al. [16] studied the post-buckling behavior of graphene sheets films on Pasternak-
type foundations in a thermal environment using the element-free kp-Ritz method. The
results highlight the significant influence of the BCs, graphene sheet film geometry, and
elastic foundation on the thermal buckling behavior. Mansouri and Shariyat [17] conducted
a buckling analysis of general quadrilateral orthotropic auxetic functionally graded ma-
terial plates on Winkler–Pasternak elastic foundations in a thermal environment via the
differential quadrature method, followed by a comprehensive discussion of the effects of
plate parameters and foundation stiffness. Shahrestani et al. [18] applied the isoparametric
spline finite strip method to conduct elastic buckling analysis of thin functionally graded
material plates, with simulation results indicating that the presence of an elastic foundation
leads to an increase in the critical buckling load of the plates. Zenkour and Sobhy [19]
presented the trigonometric solutions for the thermal buckling analysis of simply sup-
ported functionally graded material plates subjected to different types of temperature
loads on Winkler–Pasternak foundations. Zenkour and Radwan [20] presented a quasi-3D
model for hygrothermal and mechanical buckling analysis of functionally graded plates
resting on two-parameter Pasternak foundations, investigating the influence of foundation
parameters and concluding that the presence of the foundations results in an increase in
the critical buckling temperature. Zhang and Zhou [21] used the multi-term Ritz method
for the mechanical and thermal post-buckling of functionally graded material plates with
two opposite supported edges on nonlinear elastic foundations based on higher-order
shear deformation theory, followed by a noteworthy conclusion that the nonlinear elastic
foundation has a limited impact during the pre-buckling and initial post-buckling state, but
its significance increases as deflection escalates in the deep post-buckling state. Shen [22]
developed a deflection-type perturbation technique for thermal post-buckling analysis of
a shear-deformable plate on a two-parameter elastic foundation based on the Reissner–
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Mindlin plate theory, with the accuracy of results verified through the comparison with
the previous literature. Kiani et al. [23] presented three distinct approximate methods
for the thermal buckling analysis of fully clamped thin plates attached to two-parameter
Pasternak elastic foundations to obtain closed-form solutions and discussed the effects of
geometric parameters and foundation parameters in detail. Cong et al. [24] analyzed the
nonlinear thermomechanical buckling and post-buckling problems of porous functionally
graded plates with simply supported boundaries using the Galerkin method based on
higher-order shear deformation theory. The simulation results revealed that the impact
of geometrical parameters and elastic foundations on buckling loads is clearly evident.
Duc and Cong [25] utilized the Galerkin method for the analysis of nonlinear thermal
post-buckling of imperfect eccentrically stiffened functionally graded plates with simply
supported boundaries on a Pasternak elastic foundation and discussed how the buckling
and post-buckling loading capacities are affected by the geometric properties, temperature,
and elastic foundation. Dung and Nga [26] used the Galerkin method to analyze the non-
linear buckling and post-buckling behavior of eccentrically stiffened functionally graded
material plates with simply supported boundaries resting on Pasternak elastic foundations,
with the influence of the thermal element, geometric parameters, and foundation stiffness
for the thermal buckling and post-buckling problems being evaluated. It was concluded
that the effect of the nonlinearity is decreased with the increase in foundation stiffness.
Gunda [27] analyzed the thermal post-buckling of a homogeneous, isotropic, square plate
attached to a Winkler-type elastic foundation by using the Rayleigh–Ritz method, and
verified the accuracy and robustness of the results through a comparison with nonlinear
finite element formulation outcomes acquired via an equilibrium path approach.

Although numerical methods can effectively solve a variety of engineering problems
within an acceptable margin of error, analytical methods are still vital since they not only
provide benchmark solutions but also are helpful for rapid parameter analysis. Bouazza
et al. [28] conducted a thermal buckling analysis of nanoplates on a Winkler–Pasternak
elastic foundation via the Navier method. Their closed-form solution demonstrated excel-
lent agreement with previously reported solutions in the literature, and it revealed that an
increase in the nonlocal parameter coefficient and nonlinear temperature rise leads to a
growth of the critical thermal buckling load. Dong et al. [29] investigated the buckling of
an infinitely long laminated composite plate on a tensionless elastic foundation based on a
one-dimensional analytical method and presented the validity and accuracy of the numeri-
cal results compared with the FEM. Naderi and Saidi [30] presented an analytical solution
for the buckling of a simply supported functionally graded annular sector plate on an
elastic foundation using the energy method. Comprehensive results with different BCs and
foundation parameters were presented, and the effects were discussed using the simulation
results. Zhang et al. [31] applied the finite integral transform approach for the analytical
thermal buckling of plates with simply supported and clamped boundaries and found
that the analytical solutions agree well with the solutions obtained by the finite element
method. This suggests that the approach has a wide prospect for providing better design
for orthotropic plates and other complex structures. Akavci [32] presented Navier-type
solutions for the thermal buckling analysis of rigidly fixed simply supported functionally
graded plates based on a higher-order hyperbolic shear deformation theory and concluded
that with an increase in the aspect ratio or an increase in the thickness-to-length ratio of
the plates, the critical buckling temperatures increase. The effects of foundation parame-
ters were also investigated. Yaghoobi and Torabi [33] presented Lévy-type solutions for
the buckling analysis of functionally graded material plates on two-parameter Pasternak
foundations under uniform, linear, and nonlinear temperature distributions using the
power of the series Frobenius method and gave various numerical solutions of different
types of thermal loads, geometric parameters, BCs, and foundation parameters. Kiani and
Eslami [34] presented an exact analytical solution to study the thermal buckling behavior
of heated functionally graded material plates with various boundaries on Winkler elastic
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foundations, with the effects of both the elastic foundation coefficient and the thermal
loading type on the critical buckling temperature of plates being explored.

It is noted that most existing analytical methods are limited to yield only Lévy-type
(including Navier-type) solutions for plates with simply supported BCs, leading to an
urgent demand for the exploration of new analytical solutions for non-Lévy-type plates. The
symplectic superposition method (SSM), incorporating the symplectic approach pioneered
by Yao et al. [35] and the superposition technique, has been developed by Li et al. [36–41].
The SSM is implemented within the Hamiltonian system instead of the Lagrangian system,
which enables the application of mathematical techniques like the separation of variables
and symplectic eigenvector expansion within the symplectic framework. With the primary
idea of converting the original problem into several subproblems, the solution procedure is
carried out without any assumptions of solution forms. The SSM has been applied to solve
bending [37,38], free vibration [36,40], and buckling [39,41] problems of non-Lévy-type
plates and shells; however, no previous studies have reported on the thermal buckling
solutions of plates on elastic foundations using the same method due to the complex
mathematical scenario.

In this paper, with the SSM, the thermal buckling of a semiconductor chip on a
substrate, which is treated as a thin plate on a Winkler foundation, is studied. The rest of the
paper is organized as follows: The governing equation for the thermal buckling of the thin
plate in the Hamiltonian system is introduced in Section 2. The analytical thermal buckling
solutions of the plate are deduced in Section 3. In Section 4, the convergence study as well
as comprehensive numerical and graphic results are presented. The analytical solutions
obtained by the SSM are compared with the FEM numerical solutions via ABAQUS software
Version 6.13 to verify the accuracy of the former. The effects of the foundation modulus and
geometric parameters on the critical buckling temperature and buckling mode shape are
also investigated. Conclusions are shown in Section 5. The work presented in this paper
contributes to enhancing our understanding of the impact of geometric and environmental
conditions on critical buckling temperatures and the buckling modes of semiconductor
chips on substrates. Moreover, the analytical solutions obtained can be effectively utilized
to facilitate the structural optimization designs for next-generation chip devices.

2. Governing Equations for Thermal Buckling of a Thin Plate on a Winkler
Foundation within the Hamiltonian Framework

As shown in Figure 1c, a fully clamped plate on a Winkler foundation in the thermal
environment is considered. The schematic diagram of the thermal buckling problem is
shown in Figure 2a, where the fully clamped rectangular plate has length a along the Ox
axis, width b along the Oy axis, and thickness h perpendicular to the xOy plane. The origin
of the coordinate system is located at a corner of the plate. Applying the abbreviation “S”
for simply supported and “C” for clamped, the plates under specific BCs will be denoted
using a counterclockwise four-letter nomenclature, beginning from the edge at y = b,
referring to the coordinate system in Figure 2a.
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The governing equations for the thermal buckling of the thin plate are

∂Mx
∂x +

∂Mxy
∂y −Qx = 0

∂My
∂y +

∂Mxy
∂x −Qy = 0

∂Qx
∂x +

∂Qy
∂y + Nx

∂2w
∂x2 + Ny

∂2w
∂y2 + 2Nxy

∂2w
∂x∂y − kw = 0

(1)

where the internal forces are

Mx = −D
(

∂2w
∂x2 + v ∂2w

∂y2

)
+ MT

My = −D
(

∂2w
∂y2 + v ∂2w

∂x2

)
+ MT

Mxy = −D(1− v) ∂2w
∂x∂y

Qx = −D ∂
∂x∇

2w
Qy = −D ∂

∂y∇
2w

(2)

and the equivalent shearing forces are

Vx = Qx +
∂Mxy

∂y + Nx
∂w
∂x

Vy = Qy +
∂Mxy

∂x + Ny
∂w
∂y

(3)

where Mx and My are the bending moments about the Oy axis and Ox axis, respectively;
Mxy is the twisting moment; Qx and Qy are the transverse shear forces perpendicular to the
Ox axis and Oy axis, respectively; Nx = Ny = −Eα∆Th/(1− ν) are the thermally induced

membrane forces; MT = −
∫ h/2
−h/2 Eα∆T/(1− ν)zdz is the thermally induced resultant

moments; w is the modal displacement; h is the thickness of the plate; k is the Winkler
foundation modulus; D = Eh3/

[
12
(
1− ν2)] is the flexural stiffness; E is the Young’s

modulus; and ν is the Poisson’s ratio. It is noted that Nxy comes to be zero for special
plane-stress-reduced stiffness coefficients, and MT comes to be zero due to the uniform
temperature distribution.

By introducing the thermal buckling problem of the plate into the Hamiltonian system,
the governing equation is obtained as [41]

∂Z
∂y

= HZ (4)

where H=
[

F G
Q −FT

]
, F =

[
0 1

−ν∂2/∂x2 0

]
, G =

[
0 0
0 −1/D

]
,

Q =

[
−D

(
1− ν2)∂4/∂x4 + Nx∂2/∂x2 − k 0

0 2D(1− ν)∂2/∂x2 − Ny

]
, and Z =

[
w, θy, Ty, My

]T. It

is found that Ty = −Vy. The Hamiltonian operator matrix H satisfies HT=JHJ, where

J=
(

0 I2
−I2 0

)
is a symplectic matrix in which I2 is a 2 × 2 identity matrix. Therefore,

Equation (4) is confirmed as the Hamiltonian system-based governing equation.

3. Analytical Thermal Buckling Solutions of CCCC Plates by the SSM

In this section, the thermal buckling problem of a fully clamped rectangular thin
plate is explained in detail. Firstly, the original problem is divided into two fundamental
subproblems, each of which is based on a plate with simply supported BCs. Secondly, each
subproblem is deduced without any assumptions of the solution forms by the techniques of
separating variables and symplectic eigenvector expansion. Finally, the analytical solution
of the original problem is obtained through the superposition of subproblems’ solutions.

The original problem (Figure 2a) is divided into two subproblems by the SSM, as
shown in Figure 2b,c. In Figure 2b, the plate is simply supported at x = 0, x = a, y = 0,
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and y = b with the non-zero bending moment My
∣∣
y=0 and My

∣∣
y=b at y = 0 and y = b,

respectively. In Figure 2c, the plate of the same size is simply supported at x = 0, x = a,
y = 0, and y = b with the non-zero bending moment Mx|x=0 at x = 0 and the non-zero
bending moment Mx|x=a at x = a.

For the first subproblem, the separation of variables is implemented in the symplectic
space such that

Z(x, y) = X(x)Y(y) (5)

where the vector X(x) =
[
w(x), θy(x), Ty(x), My(x)

]T and the function Y(y) depend only
on x and y, respectively.

Substituting Equation (5) into Equation (4) we obtain the eigenvalue problem

HX(x) = µX(x) (6)

and an ordinary differential equation

dY(y)
dy

= µY(y) (7)

where µ is the eigenvalue.
The eigenvalue problem is solved according to the BCs in the x-direction:

w|x=0 = 0, Mx|x=0 = 0, w|x=a = 0, Mx|x=a = 0 (8)

The eigenvalues are

µn1 = −µn2 =

√
Ny
2D − α2

n −
√
−4Dk+N2

y+4DNxα2
n−4DNyα2

n

2D

µn3 = −µn4 =

√
Ny
2D − α2

n +

√
−4Dk+N2

y+4DNxα2
n−4DNyα2

n

2D

(9)

where αn = nπ/a(n = 1, 2, 3, · · ·). The eigenvectors corresponding to the eigenvalues are

Xni(x) = sin(αnx)
[
1, µni,−µni

(
Ny + D(2− v)αn

2 − Dµ2
ni

)
, D
(

ναn
2 − µ2

ni

)]T
(10)

According to the symplectic eigenvector expansion [35], the state vector Z can be
expanded as

Z =
∞

∑
n=1

4

∑
i=1

CniXni(x)eµniy (11)

where Cni(i = 1, 2, 3, 4; n = 1, 2, 3, · · ·) are the constants determined by the BCs in the y-
direction:

w|y=0 = 0, My
∣∣
y=0 =

∞

∑
n=1

En sin(αnx), w|y=b = 0, My
∣∣
y=b =

∞

∑
n=1

Fn sin(αnx) (12)

The final solution of the governing equations expressed in terms of the undetermined
coefficients En and Fn for the first subproblem is

w1(x, y) =
∞
∑

n=1,2,3,···

sin(αnx)
D(µ2

n1−µ2
n3)

×{{csch(bµn1)sh[(b− y)µn3]− csch(bµn1)sh[(b− y)µn1]}En
+[csch(bµn3)sh(yµn3)− csch(bµn1)sh(yµn1)]Fn}

(13)
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For the second subproblem, the coordinate transformation is used to replace x(y),
a(b), and Nx

(
Ny
)

with y(x), b(a), and Ny(Nx), respectively. The non-zero bending mo-

ments Mx|x=0 and Mx|x=a are expanded as
∞
∑

n=1
Gn sin(nπy/b) and

∞
∑

n=1
Hn sin(nπy/b),

respectively. The solution of the second subproblem is

w2(x, y) =
∞
∑

n=1,2,3,···

sin(βny)
D(µ̂2

n1−µ̂2
n3)

×{{−csch(aµ̂n1)sh[(a− x)µ̂n1] + csch(aµ̂n3)sh[(a− x)µ̂n3]}Gn
+[−csch(aµ̂n1)sh(xµ̂n1) + csch(aµ̂n3)sh(xµ̂n3)]Hn}

(14)

where βn = nπ/b, µ̂n1 =

√
Nx/2D− β2

n −
√
−4Dk + N2

x + 4DNyβ2
n − 4DNxβ2

n/2D, and

µ̂n3 =

√
Nx/2D− β2

n +
√
−4Dk + N2

x + 4DNyβ2
n − 4DNxβ2

n/2D.

To make the superposition of the two subproblems equivalent to the original problem,
the superposition of the subproblems’ solutions must fulfill the actual BCs. For the original
problem, the BCs are

2
∑

i=1

∂wi
∂x

∣∣∣
x=0,a

= 0

2
∑

i=1

∂wi
∂y

∣∣∣
y=0,b

= 0
(15)

For y = 0, we have

µn1coth(bµn1)−µn3coth(bµn3)

D(µ2
n1−µ2

n3)
En +

−µn1csch(bµn1)+µn3csch(bµn3)

D(µ2
n1−µ2

n3)
Fn

+
∞
∑

m=1

2a2mnπ2

bD(n2π2+a2µ̂2
n1)(n2π2+a2µ̂2

n3)
[Gm − Hm cos(nπ)] = 0

(16)

for n = 1, 2, 3, · · · . For y = b, we have

µn1csch(bµn1)−µn3csch(bµn3)

D(µ2
n1−µ2

n3)
En +

−µn1coth(bµn1)+µn3coth(bµn3)

D(µ2
n1−µ2

n3)
Fn

+
∞
∑

m=1
cos(mπ) 2a2mnπ2

bD(n2π2+a2µ̂2
n1)(n2π2+a2µ̂2

n3)
[Gm − Hm cos(nπ)] = 0

(17)

for n = 1, 2, 3, · · · . For x = 0, we have

µ̂n1coth(aµ̂n1)−µ̂n3coth(aµ̂n3)

D(µ̂2
n1−µ̂2

n3)
Gn +

−µ̂n1csch(aµ̂n1)+µ̂n3csch(aµ̂n3)

D(µ̂2
n1−µ̂2

n3)
Hn

+
∞
∑

m=1

2b2mnπ2

aD(n2π2+b2µ2
n1)(n2π2+b2µ2

n3)
[Em − Fm cos(nπ)] = 0

(18)

for n = 1, 2, 3, · · · . For x = a, we have

µ̂n1csch(aµ̂n1)−µ̂n3csch(aµ̂n3)

Dµ̂2
n1−Dµ̂2

n3
Gn +

−µ̂n1coth(aµ̂n1)+µ̂n3coth(aµ̂n3)

Dµ̂2
n1−Dµ̂2

n3
Hn

+
∞
∑

m=1
cos(mπ) 2b2mnπ2

aD(n2π2+b2µ2
n1)(n2π2+b2µ2

n3)
[Em − Fm cos(nπ)] = 0

(19)

for n = 1, 2, 3, · · · .
Therefore, we obtain an infinite system of linear equations regarding the coefficients En,

Fn, Gm, and Hm(n = 1, 2, 3, · · · ; m = 1, 2, 3, · · ·). The fundamental solutions are obtained
by the zero determinant of the coefficient matrix. Subsequently, the thermal buckling
mode shape solutions can be finally obtained by the superposition of two non-trivial
fundamental solutions.
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4. Comprehensive Benchmark Results

To ensure accurate and reliable benchmarks for subsequent structural designs, the
analytical thermal buckling results of semiconductor chips are presented using the SSM
and verified with the FEM. All the present numerical and graphical results based on the
SSM were achieved through programming in the Mathematica software Version 12.0, and
the FEM-based numerical solutions were obtained via the ABAQUS software [42] where
the shell element S4R of mesh size b/200 was used for comparison. In the numerical
examples, Poisson’s ratio ν = 0.33, Young’s modulus E = 20 GPa, and the coefficient of
thermal expansion α = 1.5× 10−5/◦C are taken, and the thickness-to-width ratio of the
plate h/b = 0.01 is given.

Firstly, the convergence study for the buckling temperatures of the plates with different
aspect ratios, a/b = 1 and 4, on a Winkler foundation with kb4/D = 1000 was conducted.
The benchmark results followed by the FEM are tabulated in Table 1, in which the bold
numbers indicate convergent results. Table 1 shows that all numerical results achieve the
accuracy of five significant figures when the number of series terms is increased to 20.
Therefore, the number of series terms is taken to be 20 to guarantee the accuracy of five
significant digits for all results obtained by the SSM.

Table 1. Convergence of the first five buckling temperatures (◦C) of CCCC plates on a Winkler
foundation with kb4/D = 1000.

a/b Number of Series
Terms

Modes

1st 2nd 3rd 4th 5th

1 5 37.412 45.358 45.358 57.946 68.008
10 37.412 45.362 45.362 57.991 68.008
15 37.412 45.362 45.362 57.991 68.008
20 37.412 45.362 45.362 57.991 68.008

4 5 27.251 28.276 30.980 31.831 33.547
10 31.225 31.305 32.943 33.323 35.675
15 31.227 31.307 32.977 33.329 35.709
20 31.227 31.307 32.977 33.329 35.710
25 31.227 31.307 32.977 33.329 35.710

Note: the bold numbers indicate convergent results.

Additionally, the first five buckling temperatures of CCCC plates with aspect ratios
a/b = 1, 2, 3, and 4 on elastic foundations with different foundation parameters kb4/D = 0,
1000, and 10,000 are given, as shown in Table 2. The maximum relative difference between
the results of the current method and the FEM does not exceed 0.50%. Figure 3 plots the first
five thermal buckling mode shapes of the CCCC square plate on the Winkler foundation
with kb4/D = 1000. As shown in Table 2 and Figure 3, the present results are in good
agreement with those from the FEM, providing strong evidence for the validity of the SSM.

Table 2. First five buckling temperatures (◦C) of the CCCC plates with h/b = 0.01.

ka4/D a/b Method Modes

1st 2nd 3rd 4th 5th

0 1 Present 21.865 38.481 38.481 53.555 64.380
FEM 21.828 38.369 38.369 53.327 64.080

Difference 0.17% 0.29% 0.29% 0.43% 0.47%
2 Present 16.175 17.772 22.840 30.733 34.373

FEM 16.156 17.747 22.798 30.662 34.290
Difference 0.12% 0.14% 0.18% 0.23% 0.24%



Micromachines 2023, 14, 2025 9 of 13

Table 2. Cont.

ka4/D a/b Method Modes

1st 2nd 3rd 4th 5th

3 Present 15.916 16.042 17.057 19.484 23.340
FEM 15.896 16.024 17.034 19.453 23.296

Difference 0.12% 0.11% 0.14% 0.16% 0.19%
4 Present 15.774 15.785 16.297 16.682 18.207

FEM 15.755 15.765 16.279 16.659 18.179
Difference 0.12% 0.13% 0.11% 0.14% 0.15%

1000 1 Present 37.412 45.362 45.362 57.991 68.008
FEM 37.371 45.252 45.252 57.766 67.710

Difference 0.11% 0.24% 0.24% 0.39% 0.44%
2 Present 32.992 33.357 39.222 40.327 42.446

FEM 32.953 33.324 39.156 40.283 42.364
Difference 0.12% 0.10% 0.17% 0.11% 0.19%

3 Present 31.646 31.898 34.618 35.471 38.988
FEM 31.614 31.863 34.583 35.422 38.946

Difference 0.10% 0.11% 0.10% 0.14% 0.11%
4 Present 31.227 31.307 32.977 33.329 35.710

FEM 31.196 31.277 32.939 33.295 35.663
Difference 0.10% 0.10% 0.12% 0.10% 0.13%

10,000 1 Present 96.233 96.885 98.492 98.492 99.973
FEM 95.995 96.627 98.251 98.251 99.672

Difference 0.25% 0.27% 0.25% 0.25% 0.30%
2 Present 88.350 88.463 91.694 91.937 96.532

FEM 88.181 88.311 91.500 91.725 96.267
Difference 0.19% 0.17% 0.21% 0.23% 0.27%

3 Present 86.486 86.511 90.664 90.751 90.819
FEM 86.337 86.371 90.467 90.559 90.624

Difference 0.17% 0.16% 0.22% 0.21% 0.21%
4 Present 85.824 85.833 88.327 88.426 90.295

FEM 85.679 85.694 88.157 88.272 90.103
Difference 0.17% 0.16% 0.19% 0.17% 0.21%
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Figure 3. First five thermal buckling mode shapes of a CCCC plate with a/b = 1 on a Winkler
foundation with kb4/D = 1000. The colors of the rainbow spectrum shift from blue to red, indicating
a continuous variation in modal displacement values along the axis perpendicular to the xOy plane,
moving from bottom to top.

With the analytical solutions, the effects of the moduli of the Winkler foundation and
geometric parameters on the critical buckling temperature Tcr are investigated, as shown in
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Figures 4 and 5. The results in Figure 4 illustrate the effects of foundation parameters kb4/D
ranging from 1000 to 100,000 on the critical buckling temperature. It is observed that as
the Winkler foundation’s modulus increases, the critical buckling temperature and the half
wave number of thermal buckling mode shape increase concomitantly, resulting in more
complex buckling modes. The results in Figure 5 illustrate the effects of aspect ratio a/b
ranging from 1 to 4 on the critical buckling temperature. It is observed that as the aspect
ratio increases, the critical buckling temperatures of plates on foundations with different
moduli show a continuous decline, gradually transitioning to a smoother downward trend.
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5. Conclusions

This study gives an analytical model to solve the problem of thermal buckling of
semiconductor chips on a substrate within the framework of the Hamiltonian system. The
SSM is used to transform the original problem into two subproblems, and the separation
of variables and symplectic eigenvector expansion are utilized to solve each subproblem.
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The buckling temperatures and corresponding mode shapes are determined by the re-
quirement of the equivalence between the original problem and the superposition of the
two subproblems. After the fast convergence of the method is verified, comprehensive
numerical examples are provided, which can serve as benchmarks. With the analytical
solutions, the effects of the moduli of the Winkler foundations and geometric parameters
are quantitatively studied. Specifically, it is observed that with the increase in the foun-
dation parameter, both the critical buckling temperature and the half wave number of
thermal buckling mode shape increase. Additionally, the critical buckling temperatures
of plates continuously decline with an increase in aspect ratio. From the perspective of
ensuring safety, a larger foundation modulus is favored and the shape of the semiconductor
chips is recommended to be square to protect semiconductor chips from thermal buckling.
While recognizing the inherent merits of the current approach in terms of its versatility
and accuracy, it is important to acknowledge that, like any other solution method, it has
certain limitations. The SSM is primarily tailored for addressing linear partial differential
equation problems, posing limitations when encountering nonlinear partial differential
equations. To tackle complex issues involving plastic behavior or substantial deformations,
it becomes necessary to complement the method with perturbation techniques to effectively
linearize the nonlinear equations and subsequently address them as a combination of linear
equations. Although this paper focuses on thermal buckling problems of plates on elastic
foundations, it is also necessary to mention that the SSM holds the potential for broader
applications in the analysis of bending, vibration, and buckling problems associated with
similar structures.
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