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Abstract: The geometric accuracy of a hemispherical shell resonator (HSR) affects the assembly
accuracy and final performance of a hemispherical resonant gyroscope in many ways. During
the precision grinding of a resonator, the tool-setting error and wear error affect the form and
positional accuracy of the inner and outer spherical surfaces. In this study, a compensation method
for generating grinding of the HSR is proposed to address this problem. The geometric errors of
the inner and outer spherical surfaces are systemically analyzed and a geometric model of the tool
setting and wheel wear is established for generating grinding of the HSR. According to this model, a
mapping relationship between the wheel pose and size, form, and positional error of the HSR was
proposed. Experiments regarding machining, on-machine measurements, and error compensation
were performed using the mapping relationship. The results demonstrate that the proposed method
can reduce the radius error of the inner and outer spherical surfaces from 10 µm to 1 µm, sphericity
from 5 µm to 1.5 µm, and concentricity from 15 µm to 3 µm following grinding. The form and
positional errors are simultaneously improved, verifying the effectiveness of the proposed method.

Keywords: hemispherical shell resonator; generating grinding; tool setting; tool wear; error compensation

1. Introduction

The hemispherical resonant gyroscope is one of the most accurate, stable, and reliable
inertial sensors with the longest lifetime. The gyroscope has broad application prospects
for navigation in aerospace, aviation, vehicles, and ships [1,2]. The hemispherical shell
resonator (HSR) anchored by the central rod is the core of the hemispherical resonant
gyroscope. The form and positional accuracy of the inner and outer spherical surfaces of
the HSR affect the assembly accuracy and frequency characteristics of the gyroscopes in
many ways, thereby affecting the sensitivity accuracy of the angular velocity or angular
displacement of the gyroscope [3,4].

The HSR is commonly composed of fused silica and is shaped as a hemispherical
thin-walled shell with a central support rod, as shown in Figure 1; the diameter of the
hemisphere is typically 15–40 mm and the wall thickness is 1–2 mm. Its relatively small
size, complex structure, and it being significantly hard and brittle make it difficult to
manufacture. Generating grinding with a cup wheel is a common high-efficiency, high-
precision, spherical forming method [5,6], by which the one-time formation of the HSR
single spherical surface, support rod, and chamfer can be completed with a single-direction
feeding and tool posture [7]. Studies regarding the application of this method to HSR
machining are limited. According to the existing applications, for example, microlens [8]
and graphite ball [9] processing, it can be inferred that the method not only ensures the
form and positional accuracy of these structures, but also simplifies the complexity of
the machine tool to improve its dynamic stiffness. However, tool wear that develops
during the grinding process may affect the inner and outer spherical dimensions and
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concentricity. Moreover, the tool setting and dimensions of the grinding wheel for spherical
surface grinding by the generation method affect the dimensions, form, and position of the
spherical surface.
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Figure 1. Structure of a hemispherical shell resonator.

Wheel wear causes geometric errors that develop as the grinding progresses. Wear is
often reduced by the arc envelope grinding method (AEGM) [10], a method that applies
multiple points on the grinding wheel in an arc to participate in the entire grinding process.
In this manner, the wheel wear is dispersed to different parts of the front end of the wheel,
while remaining to deviate the shape of the machined surface. An on-machine dressing
method restores the geometric accuracy lost owing to the wheel wear by the electrical
discharge machining of the grinding wheels [11]. In high-steep aspheric surface grinding
with an arc envelope, a model and prediction of the wear distribution of the grinding wheel
are proposed to change the tool path to provide compensation [12]. A form-truing error
compensation approach is proposed using an approached wheel-arc profile to replace the
previously designed ideal profile. The objective is to directly compensate for the wheel
arc profile errors [13]. These methods are based on the point-contact grinding of the
AEGM. The contact points on the grinding wheel profile change with different workpiece
machining parts. For an HSR with small, complex structures, point contact grinding
requires multidimensional machine tool motion to ensure the accuracy of the HSR spherical
surface [14,15], and the grinding wheel wears quickly, requiring frequent monitoring and
adjustment in the mid-process to ensure the certainty of the contact point [16]. Spherical
grinding often utilizes a specific ring line of the cup wheel to simultaneously grind a wide
range of spherical surfaces, effectively ensuring the rotational symmetry of the spherical
surface around the workpiece axis and increasing the grinding efficiency [6,17].

The installation and reinstallation of the wheel causes tool-setting errors. A truing and
dressing technique of the cup wheel using loose abrasives was introduced to compensate
for the dimensions of the workpieces caused by the tool setting [7]. A numerical simulation
method was used to establish the relationship between the wheel-setting error and grinding
error. The method uses an approximate parameter model to fit the error to improve the
grinding accuracy [18]. However, there are coupling terms in the parameter identification
of this model, and the tool setting error cannot be completely solved. Therefore, the method
cannot be applied to HSR, a workpiece that requires not only form, but also positional accu-
racy. Currently, the compensation of the tool setting error in spherical generation grinding
is either a single object, or the method is complicated or limited, which is insufficient for
simultaneously meeting the requirements of size, form, and positional accuracy.

Therefore, we reported a wheel adjustment compensation method by establishing the
mapping relationship between the wheel pose and size, form, and positional error of the
HSR. First, we theoretically analyzed the errors caused by the tool setting and wear in
generating spherical grinding with a cup wheel. Moreover, we simplified the compensation
strategy for the size, form, and positional error. Finally, experiments regarding the inner and
outer spherical machining, on-machine measurement, and compensation were conducted
to verify the compensation accuracy and effect.
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2. Method
2.1. Analysis of Tool Setting Error on HSR Machining

The geometric model of the tool and workpiece during HSR grinding is shown in
Figure 2, where XYZ denotes the machine tool coordinate system, C denotes the workpiece
rotation axis, and A denotes the wheel rotation axis. The rotations of the two spindle and
X/Z axis feed motions can complete the one-time formation of the outer/inner spherical
surface, support rod, and chamfer. According to the characteristics of generating spherical
grinding with a cup wheel, the relative position between the wheel and the workpiece
axis directly determines the formation accuracy of the spherical surface, provided that the
motion errors of the two rotating axes are neglected.
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Figure 2. Tool-workpiece junction geometric model of HSR grinding: (a) external spherical grinding,
(b) internal spherical grinding.

Theorem 1. The wheel rotating axis and workpiece rotating axis must spatially intersect for the
cup wheel to theoretically generate an ideal spherical surface.

Proof of Theorem 1. The geometric model of the wheel involved in grinding is indicated
by the torus, as shown in Figure 3. Considering the geometric center as the origin and the
axis of rotational symmetry as the Zw axis, the coordinates of any point (x2, y2, z2) on the
torus can be expressed as follows:

(
√

x2
2 + y2

2 − R)
2
+ z2

2
= r2 (1)

The corresponding domain function is as follows:

Rt − r ≤
√

x2
2 + y2

2 ≤ Rt + r (2)

where Rt is the mean diameter of the torus and r is the radius of the arc of the torus end.
The range represented by Equation (1) can be divided into the following two parts:

0 ≤
√

x2
2 + y2

2 ≤ Rt − r (3)

Rt − r ≤
√

x2
2 + y2

2 ≤ 0 (4)



Micromachines 2022, 13, 1535 4 of 15
Micromachines 2022, 13, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 3. Schematic diagram of the torus. 

  
Figure 4. Tool-workpiece junction geometric model of HSR grinding: (a) external spherical grind-
ing, (b) internal spherical grinding. 

According to the aforementioned analysis, when there is no wheel error, the radius 
of the HSR can be expressed by the parameters of the grinding wheel as follows: 

2 2
g tR d R r= + ±  (9)

where the ‘+’ of ‘±’ indicates the outer spherical surface and ‘-’ indicates the inner spherical 
surface. 

The contact line between the wheel and spherical surface is a complete arc. The pro-
jection on the XwZw plane is shown in Figure 5. The contact line is the chord of the work-
piece circle on the XwZw plane, and its length is Lc. The intersection of the mid-vertical line 
of the contact chord and the workpiece axis is the position of the center of the sphere Ow, 
and the distance of the chord center from the workpiece origin is dc. The relationship be-
tween the radius of the sphere to be processed and the parameters of the contact line is: 

2
2

2
c

g c
LR d = + 

   
(10)

Equation (10) demonstrates that the radius and position of the contact chord ulti-
mately determine the dimensions of the spherical surface, which provides a basis for the 
subsequent tool adjustment. 
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Figure 3. Schematic diagram of the torus.

When the wheel axis space intersects the workpiece axis, as shown in Figure 4, the
pose and position of the wheel have five degrees of freedom: (z, α, ϕ, d, θ), where z is the
distance translated along the Z-axis, α is the rotation around the Y-axis, ϕ is the rotation
around the Z-axis, and d is the distance from the center point of the grinding wheel to the
axis of the workpiece along the axis of the grinding wheel. The pose and position of the
wheel relative to the workpiece axis can be considered as five transformations in that order.
The sphere is formed by the envelope of the rotation of two axes; therefore, δz, ϕ, and θ do
not affect the form of the processed spherical surface. Namely, two degrees of freedom, α
and d, affect the form accuracy of the spherical surface.
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First, we prove Theorem 1 when α = 90◦. The torus has a translation d along the Z axis
and a pose transformation of the rotation α = 90◦ around the Y-axis. Under this condition,
the equation for the torus can be obtained as follows:

(
√
(y2

1 + z2
1)− R)

2
+ (x1 − d)2 = r2 (5)
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Let F =
(√

y2
1 + z2

1 − R
)2

+ (x1 − d)2 − r2. The normal equation of any point (x0, y0, z0)

on the torus can be expressed as follows:

x− x0

Fx(x0, y0, z0)
=

y− y0

Fy(x0, y0, z0)
=

z− z0

Fz(x0, y0, z0)
(6)

Substituting (0, 0, 0) into Equation (6), and in conjunction with Equation (5), the points on
the torus whose normal intersects the origin (0, 0, 0) can be expressed as follows:

√
y2

0 + z2
0 = Rt ± Rtr√

R2
t +d2

x0 = d± dr√
R2

t +d2

(7)

These points apparently satisfy the following:

√
x2

0 + y2
0 + z2

0 =

(√
R2

t + d2 ± r
)2

(8)

where the ‘+’ of ‘±’ indicates the largest tangent sphere, and the ‘-’ indicates the smallest
tangent sphere. The surface enveloped by the torus is apparently a sphere. Along with
Figure 4, we can infer that the surface enveloped by the torus when α 6= 90◦ is a different
part of the spherical surface with the same radius as that when α = 90◦. Therefore, among
the wheel parameters, the envelope radius is only related to the parameters d, Rt, and r.�

According to the aforementioned analysis, when there is no wheel error, the radius of
the HSR can be expressed by the parameters of the grinding wheel as follows:

Rg =
√

d2 + R2
t ± r (9)

where the ‘+’ of ‘±’ indicates the outer spherical surface and ‘-’ indicates the inner spherical surface.
The contact line between the wheel and spherical surface is a complete arc. The

projection on the XwZw plane is shown in Figure 5. The contact line is the chord of the
workpiece circle on the XwZw plane, and its length is Lc. The intersection of the mid-vertical
line of the contact chord and the workpiece axis is the position of the center of the sphere
Ow, and the distance of the chord center from the workpiece origin is dc. The relationship
between the radius of the sphere to be processed and the parameters of the contact line is:

Rg =

√(
Lc

2

)2
+ d2

c (10)

Equation (10) demonstrates that the radius and position of the contact chord ulti-
mately determine the dimensions of the spherical surface, which provides a basis for the
subsequent tool adjustment.

The aforementioned indicates the geometric principles of the HSR grinding tool under
ideal conditions. However, in actual processing, the rotation accuracy of the grinding
wheel axis and spindle, straightness and positioning accuracy of the feed axis, and tool
setting error of the wheel lead to the failure of these principles. As shown in Figure 5, we
first establish the workpiece XwYwZw coordinate system: the workpiece rotation axis is
indicated by the Zw direction, the Yw direction is determined according to the common
vertical line OwOt of the tool rotation axis and workpiece rotation axis, the pedal on the Zw
axis is the workpiece coordinate origin Ow, and the direction of the Xw axis is determined
according to the right-hand rule. XmYmZm is the coordinate system of the machine tool. It
is advisable to make the XmYmZm origin coincide with Ow, the Zm axis coincides with the
workpiece rotation axis, and the angle between the Xm axis and Xw is ϕ.
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Figure 5. Geometrical model for HSR grinding in the presence of tool setting errors.

The machining experiment was conducted on an XZCB four-axis ultra-precision
machine tool, as shown in Figure 6. The radial rotation accuracy of the workpiece spindle
was less than 0.015 µm, the radial rotation accuracy of the grinding spindle was less than
1 µm, and the B-axis resolution was used to control the α angle of the grinding axis to be
less than 0.005 arcseconds. The positioning resolution of the grinding spindle along the
X-and Z-axis was less than 1 nm. Under this condition, we can ignore the error of the
machine tool body and the rotation error of the wheel spindle. The main error sources are
as follows: (1) the radius error of the grinding wheel, namely, the radius error of the wheel
torus δr and the pitch radius error δRt; and (2) the four-term tool pose and positional errors
of the grinding wheel (δo, δα, δd, δz), as shown in Figure 5, where the vertical distance error
δO is caused by the non-intersection of the grinding wheel spindle Zt and the workpiece
spindle Zw, the angle error δα of the two axes, the distance error δd between the center
point of the grinding wheel torus and Ow, and the positional error ensuring the inner and
outer sphere concentric δz of Zm. When the values of the four errors are fixed, the wheel
still has the following two degrees of freedom (and does not affect the spherical shape): the
rotation of the wheel and the angle ϕ between the workpiece coordinate system and the
machine tool coordinate system. When ϕ = 0, the workpiece coordinate system XwYwZw
and machine tool coordinate system XmYmZm coincide. As shown in Figure 3, ϕ represents
the revolution angle of the tool spindle around the workpiece spindle, which has the same
effect as the workpiece rotation; therefore, the value of ϕ does not affect the machining error
of the HSR. Note, the value of ϕ may affect the parallelism between the tool spindle and
the XwZw plane. According to the calculation formula of the angle between the tool spindle
Zt axis and the XwZw plane, the relationship between the two can be obtained as follows:

sin ∆β = sin ϕ· sin α (11)

where ∆β is the angle between the Zt axis and XwZw plane. To make the actual tool
adjustment effective, it is necessary to ensure that the overlapping of the machine tool
coordinate system and workpiece coordinate system is maximized; that is, ϕ must be
sufficiently small. Because |∆β| < 0.005◦ can easily be guaranteed in the actual assembly
process, and usually α > 15◦ during HSR processing, that is, |sinα| > 0.26, thus ϕ < 0.02◦

can be obtained according to Equation (11). The coincidence of the coordinate systems
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XmYmZm and XwYwZw can be guaranteed, the direction of δO can be assumed to coincide
with the Ym axis, and d and α are on the XmZm plane. We usually adjust the wheel in the
machine tool coordinate system in practical machining; therefore, the coincidence of the
coordinate systems XmYmZm and XwYwZw is necessary. Under this condition, δO can be
regarded as the Ym-directional height alignment error of the wheel on the machine tool.
According to the analysis in Section 2.1, the angle error δα, which does not affect the radius
and shape of the sphere, is not discussed herein.
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Figure 6. Hemispherical shell resonator grinding and on-machine measurement machine.

According to the aforementioned analysis and Theorem 1, among the main error
sources, the error that affects the spherical shape is the height error δO produced by the non-
intersection between Zt and Zw. There is a functional relationship between the deviation
of the machined surface shape, spherical surface, and δO. We can use a homogeneous
coordinate transformation to transform the points of the wheel torus from the XtYtZt
coordinate system to XmYmZm, and the translation matrix is as follows:

T = T1·T1 =


1

1
1 d

1




1 δO
1

1
1

 (12)

where T1 and T2 represent translational transformations along the X and Y axes, respectively.
The rotational matrix is:

R =


1

cos α − sin α
sin α cos α

1

 (13)

The coordinates of any point of the wheel torus in the XmYmZm coordinate system are (x, y,
z), and the coordinates of this point in the grinding wheel coordinate system are (x1, y1, z1).
From Equations (12) and (13), we obtain the following:

x
y
z
1

 = R·T


x1
y1
z1
1

 =


x1 + δO

y1· cos α− z1· sin α
y1· sin α + z1· cos α + d

1

 (14)
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Substituting Equation (14) into Equation (1) yields the torus in the coordinate system
XmYmZm as follows:(√

(x + δO) + (y· cos α− z· cos α)− Rt

)2
+ (y· cos α + z· cos α + d)2 = r2

t (15)

According to Equation (2), we can obtain the domain

Rt − r ≤
√
(x− δO)

2 + (y· cos α + z· sin α− d· sin α)2 ≤ Rt + r (16)

According to the principle of the wheel envelope, the envelope surface is rotationally
symmetrical about the Zw axis. For any point (x3, y3, z3) on the envelope surface, the
distance L to the Zw axis satisfies the following:

L2
z,max = max

(
x2 + y2

)∣∣∣
z=z3

(17)

or
L2

z,min = min
(

x2 + y2
)∣∣∣

z=z3
(18)

where Lz, max indicates the distance between the point on the outer sphere and the Zw
axis, and Lz, min indicates the distance between the point on the inner sphere and the Zw
axis. There is a question of whether spherical contour in the presence of a height error
δo is equivalent to an optimization problem such as Equation (17) or Equation (18) under
nonlinear constraints, indicated by Equations (15) and (16). The contour point coordinates
(z3, Lz, θ) were obtained in the cylindrical coordinate system, which were converted to the
Cartesian coordinate system (x3, y3, z3) via Equation (19) as follows:

x3 = Lz· cos θ
y3 = Lz· cos θ
z3 = z3

(19)

We can fit the contour points (x3, y3, z3) under δo to the spherical surface using the least
squares method and calculate the corresponding sphericity error.

Considering the inner spherical surface as an example, the nominal radius of the inner
spherical surface is 10.000 mm, and without the loss of generality, the corresponding wheel
parameters are as follows: d = 5.196 mm, α = 35.264◦, r = 1.000 mm, and Rt = 7.350 mm. The
actual sphere is an incomplete hemisphere, and the height error δO causes the theoretical
sphericity to vary for different hemisphere ranges. Considering the lip of the HSR as the
zero point in the Z direction, as shown in Figure 3, the sphericity error results of various
spherical ranges in the Z direction were simulated as shown Figure 8. Under the same
height error δO, the larger the calculated spherical range, the larger the sphericity. Under
the same calculated spherical range, the sphericity error was nearly linear with the height
error δO, and the linearity error was less than 1%. Therefore, the height error δO can be
reversed according to the measured sphericity of the processed inner spherical surface,
allowing the height adjustment of the wheel to align with the Zw axis. Note, the range
of the measured spherical surface needs to be consistent with the range of the simulated
spherical surface.

The main errors that affect the spherical form and positional accuracy were as follows:
(1) the shape error of the grinding wheel; namely, the radius error of the wheel torus δr and
the pitch radius error δRt, and (2) the grinding wheel pose and positional errors (δo, δd, δz).
The radius of the sphere is affected by the δr, δRt, and δd. The sphericity is affected by the
δo. The position of the sphere affects δz. All these errors reflected on the workpiece by the
wheel can be compensated by on-machine measurements.
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2.2. Analysis of Tool Wear on HSR Machining

According to the geometric analysis of generating spherical grinding with a cup
wheel as indicated in Section 2.1, the entire spherical surface of the HSR simultaneously
participates in grinding; therefore, the geometric effect of the wheel wear is reflected on
the entire spherical surface. Figure 7 presents the XwZw plane view of the geometric
inner-grinding model. The dotted circle indicates the nominal spherical surface processed
without wear, and the solid-lined circle indicates the spherical surface processed with wear.
Wheel wear causes the geometrical contact line AB to change to the contact torus A1A2-B1B2.
According to the characteristics of the two rotary axes enveloping a sphere with wheel
wear, for any chord AiBi selected on the section of the contact torus A1A2-B1B2, the chord
length AiBi and the distance di from the chord center point Ei to Ow both determine the
unique spherical radius Rg. Without loss of generality, we consider the contact line as A1A2
with wheel wear. Namely, the wear causes contact line AB to become contact line A1A2; Lc
and dc have changed in Equation (8), which causes the spherical radius error. By obtaining
the derivative of dc on the right-hand side of Equation (10), we obtain the following:

∂Rg

∂dc
=

1√(
Lc
2dc

)2
+ 1

(20)Micromachines 2022, 13, x FOR PEER REVIEW 10 of 15 
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Equation (20) demonstrates that dc is approximately proportional to the radius of the
sphere in a small range of dc. The changes in Lc and dc caused by wear are significantly small;
thus, we can substitute the theoretical values into the right-hand side of Equation (20). In
this condition, the spherical radius can be controlled by adjusting the dc value according to
the coefficient calculated by using Equation (20).

The wear of the inner spherical machining causes the actual feed in the workpiece axis
to become smaller, thereby causing an error in the spherical center in the workpiece axis, as
shown in Figure 7a. The wear of the outer spherical machining causes a change in the feed
of the wheel along the wheel axis and does not change the position of the spherical center
in the workpiece axis.

Namely, grinding wheel wear causes the spherical radius and positional errors by
affecting the actual feed, Lc, and dc during wheel processing. If these spherical surface
errors can be measured on-machine, we can compensate for the errors in the wheel wear.
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2.3. Compensation Strategy and Process

According to the analysis in Sections 2.1 and 2.2, the adjustment of the wheel in the
machine tool coordinate system can be divided into the following three steps:

1. Adjust δo to make the surface shape an approximate sphere.
2. Adjust the feed Fz of the wheel in the Zm direction to ensure the concentricity of the

inner and outer spherical surfaces.
3. Adjust the wheel position parameter d to make the machining spherical radius meet

the requirements.

The adjustment of the inner and outer spherical processing consists of these three steps.
The initial installation error of the wheel spindle in the machine tool is adjusted in Step 1;
the form of the sphere affects the radius of the spherical surface and the position of the
center of the sphere. To ensure the rigidity of the inner spherical surface, it is first processed
before the outer spherical surface. Inner sphere machining ensures the concentricity of
the two spheres. Based on the analysis in Section 2.2, the wear of the outer sphere wheel
does not affect the position of the center of the sphere. Therefore, compensating for the
concentricity error occurs prior to the radius error.

We developed an on-machine measurement system for HSR grinding that measures
the sphericity, concentricity, and radius of the inner and outer spheres of the HSR, as
shown in Figure 6. After each machining, the B-axis is rotated; thus, the probe changes to a
fixed measurement position to perform on-machine measurements of the inner and outer
spherical surfaces of the HSR. The positioning accuracy of the B-axis is 0.005 arcsec, We use
an inductive lever probe for on-machine measurements, and the single-point measurement
repeatability of the measurement system is within 0.04 µm. The spherical sphericity
measurement accuracy of the measurement system after calibration with standard balls
is within 0.2 µm. The measurement accuracy of the inner and outer spherical radius was
0.5 µm, the sphericity was 1 µm, and the concentricity was 2 µm. Thus, the parameter
values δo and δz can be obtained for compensation, as reflected by the measurement results
of the form and positional errors of the workpiece.

3. Results and Discussion
3.1. Compensation of Height Error δo

According to the compensation sequence summarized in Section 2.3, it is first neces-
sary to compensate for the height error δo of the wheel to minimize the sphericity of the
hemisphere. We measured the sphericity errors of the hemisphere before and after com-
pensation to determine the compensation effect using on-machine measurements (OMM).
Then, we adjusted the height of the wheel using an adjustment stage with a resolution of
1 µm and measured the increments of the adjustment height with an inductive probe.

According to the simulation results shown in Figure 8, the larger the measurement
range, the more significantly the sphericity reflects on the height error. The measurement
trajectory of the spherical surface is shown in Figure 9. Owing to the limitation of the
spatial interference of the HSR support rod, the spherical range in the Zw direction was
obtained as 7 mm. The spherical generation method has inherent advantages for the
rotational symmetry of HSR, and the measurement result of the spherical circumferential
roundness is within 0.3 µm. Therefore, we chose to decrease the sampling density in the
spherical circumferential direction to improve the measurement efficiency. We measured
three meridians at the average C-axis angle and 30 points for each meridian. Finally, these
points were fitted to evaluate the sphericity. The radial runout error of the electric spindle
is less than one micron. The grinding wheel rotates at 8000 rpm, the workpiece rotates
at 79 rpm, and the workpiece material is fused silica. The mesh number of the roughing
grinding wheel is #370, and the mesh number of the finishing grinding wheel is #2000. The
model and configuration of the spindle of the two wheels used for processing the inner
and outer spherical surfaces were the same. therefore, there was no difference between
the adjustment methods of the two grinding wheels. We did not distinguish between the
compensation results of the two spindles.



Micromachines 2022, 13, 1535 11 of 15

Micromachines 2022, 13, x FOR PEER REVIEW 11 of 15 
 

 

According to the simulation results shown in Figure 8, the larger the measurement 
range, the more significantly the sphericity reflects on the height error. The measurement 
trajectory of the spherical surface is shown in Figure 9. Owing to the limitation of the 
spatial interference of the HSR support rod, the spherical range in the Zw direction was 
obtained as 7 mm. The spherical generation method has inherent advantages for the rota-
tional symmetry of HSR, and the measurement result of the spherical circumferential 
roundness is within 0.3 μm. Therefore, we chose to decrease the sampling density in the 
spherical circumferential direction to improve the measurement efficiency. We measured 
three meridians at the average C-axis angle and 30 points for each meridian. Finally, these 
points were fitted to evaluate the sphericity. The radial runout error of the electric spindle 
is less than one micron. The grinding wheel rotates at 8000 rpm, the workpiece rotates at 
79 rpm, and the workpiece material is fused silica. The mesh number of the roughing 
grinding wheel is #370, and the mesh number of the finishing grinding wheel is #2000. 
The model and configuration of the spindle of the two wheels used for processing the 
inner and outer spherical surfaces were the same. therefore, there was no difference be-
tween the adjustment methods of the two grinding wheels. We did not distinguish be-
tween the compensation results of the two spindles. 

 
Figure 8. Sphericity error of different ranges of the hemisphere caused by height error. 

Table 1 demonstrates the five selected results of the sphericity measurement and the 
height error prediction before and after compensating for the height error of the wheel. 
The differential thread of the tool holder provides height adjustment, and the inductive 
probe provided the indication of the adjusted value. The adjustment resolution is 0.1μm. 
Ten experiments were conducted. After each compensation experiment, the height of the 
wheel was adjusted to a larger height error without the loss of generality of the compen-
sation method. The sphericity errors within approximately 20 μm were reduced to less 
than 2 μm by one compensation. According to the on-machine measurement results, the 
sphericity error after compensation was controlled within 1.5 μm, and the corresponding 
height error was controlled within 2 μm. 

The experiment verified that the sphericity can accurately reflect the height error 
level of the wheel, and after compensation processing, the sphericity can be controlled 
within 2 μm. The measurement results demonstrate that the meridians of different C-axis 
angles are similar; therefore, without loss of generality, we chose the form error of one of 
the meridians to observe the change reflecting the sphericity error, as shown in Figure 10. 
The overall shapes of the meridian errors before and after compensation were similar, 
indicating that a height error remained. Based on the results, the sphericity does not sig-
nificantly improve after the second compensation. From the compensated results shown 
in Figure 10b, a regular error fluctuation was observed, which is dominant in the compen-
sated error, and it affects the final compensation. In addition, we observed the 0.3 μm tool 
pattern in the circumferential direction of the spherical surface using the Talor Hobson’s 

Figure 8. Sphericity error of different ranges of the hemisphere caused by height error.

Micromachines 2022, 13, x FOR PEER REVIEW 12 of 15 
 

 

roundness meter, as shown in Figure 11. Therefore, the residual sphericity error of ap-
proximately 0.8 μm after compensation may be caused by the waviness of the spherical 
surface. Despite increasing the density of the measurement points, the unevenness of the 
surface cannot be ignored. 

 
Figure 9. Measurement track of the hemisphere. 

Table 1. Results before and after compensation of height error. 

Test No. 
Sphericity before  

Compensation/μm 
Corresponding δo 

/μm 
Sphericity after  

Compensation/μm 

Corresponding  
Residual δo 

/μm 
1 4.2 7.8 0.7 1.3 
2 6.3 11.5 0.9 1.6 
3 10.5 19.2 0.8 1.5 
4 14.9 27.2 1.2 2.0 
5 20.5 37.4 1.2 2.0 

 

  
Figure 10. Formation error of a meridian: (a) initial error, (b) residual error after compensation. 

 
Figure 11. Circumferential tool pattern of the workpiece. 

  

Figure 9. Measurement track of the hemisphere.

Table 1 demonstrates the five selected results of the sphericity measurement and the
height error prediction before and after compensating for the height error of the wheel. The
differential thread of the tool holder provides height adjustment, and the inductive probe
provided the indication of the adjusted value. The adjustment resolution is 0.1 µm. Ten
experiments were conducted. After each compensation experiment, the height of the wheel
was adjusted to a larger height error without the loss of generality of the compensation
method. The sphericity errors within approximately 20 µm were reduced to less than 2 µm
by one compensation. According to the on-machine measurement results, the sphericity
error after compensation was controlled within 1.5 µm, and the corresponding height error
was controlled within 2 µm.

Table 1. Results before and after compensation of height error.

Test No. Sphericity before
Compensation/µm

Corresponding δo
/µm

Sphericity after
Compensation/µm

Corresponding
Residual δo

/µm

1 4.2 7.8 0.7 1.3

2 6.3 11.5 0.9 1.6

3 10.5 19.2 0.8 1.5

4 14.9 27.2 1.2 2.0

5 20.5 37.4 1.2 2.0

The experiment verified that the sphericity can accurately reflect the height error level
of the wheel, and after compensation processing, the sphericity can be controlled within
2 µm. The measurement results demonstrate that the meridians of different C-axis angles
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are similar; therefore, without loss of generality, we chose the form error of one of the
meridians to observe the change reflecting the sphericity error, as shown in Figure 10. The
overall shapes of the meridian errors before and after compensation were similar, indicating
that a height error remained. Based on the results, the sphericity does not significantly
improve after the second compensation. From the compensated results shown in Figure 10b,
a regular error fluctuation was observed, which is dominant in the compensated error,
and it affects the final compensation. In addition, we observed the 0.3 µm tool pattern in
the circumferential direction of the spherical surface using the Talor Hobson’s roundness
meter, as shown in Figure 11. Therefore, the residual sphericity error of approximately
0.8 µm after compensation may be caused by the waviness of the spherical surface. Despite
increasing the density of the measurement points, the unevenness of the surface cannot
be ignored.
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3.2. Compensation of Inner and Outer Spherical Radius and Concentricity Error

We compensated for the radius and concentricity errors of the inner and outer spherical
surfaces after compensating for the sphericity. Table 2 lists the measurement results before
and after compensation for the inner and outer spherical radii and concentricity errors. The
nominal radii of the inner and outer spheres were 10 mm and 10.7 mm, respectively. The
experimental results demonstrate that following the OMM and compensation, the radius
error within 70 µm can be controlled within 4 µm, and the concentricity can be controlled
within 3 µm. If the radius error before compensation is within 20 µm, the radius error after
compensation can be controlled within 1 µm.
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Table 2. Results before and after compensation of radius and concentricity errors.

Test No.
Radius of Inner Sphere/mm Radius of Outer Sphere/mm Concentricity/µm

Before After Before After Before After

1 9.9903 9.9997 10.7338 10.7010 14.7 0.6
2 9.9883 9.9992 10.7582 10.7019 62.5 1.6
3 9.9765 9.9990 10.7321 10.7009 52.6 1.7
4 9.9558 9.9978 10.7142 10.7006 38.5 0.8
5 9.9386 9.9958 10.7685 10.7022 76.2 2.4

The experiment verified the compensation effect of the radius error and the concen-
tricity of the inner and outer spherical surfaces. Following compensation, we found that
the radius of the inner spherical surface was almost always smaller than the nominal value,
whereas the radius of the outer spherical surface was almost always larger than the nominal
value. The larger the radius error before compensation, the larger the residual error after
compensation. This indicates that the wheel was worn during the compensation process.
The significant residual error caused by wear can be improved by secondary compensation,
or it can be solved by including the statistical value of wear during the compensation pro-
cess in the next compensation process. The compensation effect of concentricity is nearly
unrelated to the concentricity error before compensation, which confirms our inference
from the analysis presented in Section 2.2. The concentricity is compensated by adjusting
the position of the wheel on the Zw axis (Figure 5); thus, the wear of the external spherical
grinding wheel does not affect the position of the wheel on the Zw axis.

4. Conclusions

By analyzing the influence of the tool setting and wear on the radius and formation
error of the HSR, a compensation strategy was proposed to reduce the grinding error of the
inner and outer spherical surfaces of hemispherical shell resonators (HSR). The following
can be concluded based on the analysis: (1) Sphericity can be entirely compensated for by
adjusting the height error of the wheel. (2) The wheel wear of the spherical-generating
grinding only affects the radius, but not the coaxiality and sphericity of the HSR. (3) There
is a deterministic relationship between the wheel pose and size, form, and positional errors
of the HSR. Therefore, following the on-machine measurement of the errors, we compen-
sate for these errors by adjusting the wheel pose with a deterministic relationship. The
experimental results demonstrate that the compensation method can control the spheric-
ity of the HSR to 1.5 µm, radius error to 1 µm, and concentricity to 3 µm. This method
saves time in the following polishing process. The experimental results indicate that the
unevenness of the spherical surface, such as the tool pattern, affects the compensation effect
of the sphericity. This unevenness requires the average of several measurement points,
which reduces the measurement efficiency. We will improve this unevenness by adjusting
the process parameters, and the wear caused by the compensation process will also be
considered in the future.
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Nomenclature

X, Y, Z, C Four axes of the machine
Xw, Yw, Zw Three axes of the workpieces
α The rotation angle around the Y-axis of wheel
ϕ The rotation angle around the Z-axis of wheel
θ The spin angle around the Zw-axis of wheel
d the distance from the workpiece axis to the wheel axis
x2, y2, z2 Coordinates of any point on the initial torus
x1, y1, z1 Coordinates of any point on the final torus
x0, y0, z0 Normal equation of any point on the torus
Rt Mean radius of the torus
r Arc radius of the torus end
Rg Radius of the spherical surface
Ow Center point of the sphere
dc Distance of the chord center from the Ow
Lc Chord of the workpiece circle on the XwZw plane
Ot Pedal on the Zt axis
δr, δRt Error corresponding to r, Rt
δα, δd, δz Error corresponding to α, d, z
δO Error of the non-intersection between the Zt and Zw
∆β Angle between Zt axis and XwZw plane
Lz Distance between the point on the sphere and Zw axis
x3, y3, z3 Contour points of the sphere
AB Contact line between wheel and workpiece
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