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Abstract: In this paper, a mixed sources dimension reduction Multiple Signal Classification (MUSIC)
localization algorithm suitable for Micro-Electro-Mechanical System (MEMS) vector hydrophone
linear arrays is proposed, which reduces the two-dimensional search to one-dimensional local search.
Firstly, the Lagrangian function is constructed by quadratic optimization idea to obtain the estimates
of azimuth angles. Secondly, the least square method is utilized for optimal match to obtain the
direction-of-arrivals (DOAs) and ranges, and the range parameters are judged in Fresnel zone to
obtain the azimuth information of all near-field sources. Finally, find the common DOAs and achieve
high-resolution separation of far-field and near-field sources. Simulation and field experiments prove
that the proposed algorithm only needs a small number of elements can solve the problem of port
and starboard ambiguity, does not need to construct high-order cumulants or multi-dimensional
search while the parameters are automatically matched with low computational complexity. This
study provides an idea of the engineering application of vector hydrophone.

Keywords: mixed sources; MUSIC algorithm; MEMS vector hydrophone; dimension reduction; port
and starboard ambiguity

1. Introduction

The coexistence of far-field and near-field sources is an issue that cannot be ignored
in array signal processing of passive sonar systems [1,2]. There is a problem of port and
starboard ambiguity when scalar hydrophones are located. Vector hydrophone can solve
this problem by detecting the vibration-velocity and sound pressure signal simultaneously.
MEMS cilia vector hydrophone has better low-frequency detection characteristics and high-
sensitivity to sound signals, so it is suitable for underwater low-frequency acoustic target
detection and location [3,4]. There have been a large number of mature algorithms suitable
for far field sources localization, such as the maximum likelihood estimation algorithm [5],
the beam form algorithm [6], and the MUSIC algorithm [7]. In the near-field area of the
sound source, DOA and range parameters are taken into consideration simultaneously.
And some corresponding algorithms have been proposed, such as the two-dimensional
MUSIC method [8], two-stage MUSIC method [9], the higher-order Estimation of Signal
Parameters via Rotational Invariance Techniques method (ESPRIT) [10], and noncircular
sources [11]. Dakulagi proposed a new DOA estimation algorithm using Nystrom method,
which is suitable for far field source target estimation [12].

Numerous methods have been proposed to achieve the localization of mixed sources.
Tian et al., proposed the sparse representation algorithm using two cumulant vectors [13].
Liang et al., based on high-order statistics proposed a new two-stage MUSIC algorithm, but
the computation is relatively high [14]. Liu proposed the ESPRIT method can automatically
pair parameters [15]. Then He et al., presented an oblique-projection MUSIC algorithm
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with poor resolution due to large aperture loss [16]. Yang estimates the DOA and range
parameters successively using sparse recovery techniques [17].

Mixed sources estimate are implemented using nested arrays, and these nested ar-
ray algorithms require more computation [18–20]. Wang et al., presented the based on
sparse signal construction method [21,22]. Amir presented a fourth-order spatiotemporal
algorithm, which has high computational complexity because of the need to construct two
spatiotemporal cumulant matrix [23]. It can be observed that these algorithms are generally
applicable to scalar hydrophone array and the port and starboard ambiguity problem
has always existed. Huang proposed a localization algorithm based on Discrete Fourier
Transform (DFT) and Orthogonal Matching Pursuit (OMP) [24]. Molaei proposed a mixed
source estimation algorithm based on ESPRIT with high computational complexity [25].
However, there are few researches on mixed source identification using vector hydrophone
array. Shang et al., have studied the vector array rank reduction algorithm, which requires
multiple one-dimensional global searches, and the calculation complexity is high [26]. In
this paper, the vector hybrid source localization algorithm is further derived and applied.

In this paper, in order to further reduce the computational complexity, we proposed
a mixed sources dimension reduction parameter estimation method for MEMS vector
hydrophone array. Firstly, the Lagrangian function is constructed by quadratic optimization
idea to obtain the estimates of azimuth angles. Secondly, the least square method is utilized
for optimal match to obtain the direction-of-arrivals (DOAs) and ranges, and the range
parameters are judged in Fresnel zone to obtain the azimuth information of all near-
field sources. Finally, find the common DOAs and achieve high-resolution separation
of far-field and near-field sources. The two-dimensional search method is simplified to
one-dimensional local search. The algorithm makes efficient use of all information in the
vector array, does not need multi-dimensional search, does not need to construct high order
cumulant. The parameters are automatically matched, and it solves the problem of port
and starboard ambiguity.

Throughout the paper, superscripts T and H represent the transpose, conjugate trans-
pose, respectively. ⊗ represents the Kronecker-product operator, argmin{·} represents the
variable value when the objective function takes the minimum value. ||� ||F denotes the
Frobenius norm.

2. Mixed Far-Field and Near-Field Vector Model
2.1. The Work Principle of Composed MEMS Vector Hydrophone

The compound MEMS vector hydrophone is composed of a cilia bionic hydrophone
and an acoustic pressure hydrophone, which mimics the sound perception principle of fish
lateral line organs. MEMS cilia composed vector hydrophone can realize the simultaneous
detection of sound pressure and vibration velocity in the sound field [26]. The structural
assembly drawing of the composed vector hydrophone is shown in Figure 1.

The perception principle of fish lateral line organs to acoustic signals are that sound
waves through its lateral line holes promote the flow of internal mucus, and it will cause
the disturbance of movable cilium in its neural mound. So that the sensory cells around the
cilia can obtain stimulation and passed into the fish brain through the nerve tissue. The
vector module adopts the bionic principle design idea to imitate the sensing principle of
fish lateral line organs [27], and its core sensitive structures are cilia and cross beam. Cilia
deflect under the action of sound waves, which then causes the cantilever beam to bend
and deform. The resistance value on the beam is changed and then the voltage is output
through the Wheatstone bridge. The scalar sensitive unit uses a piezoelectric ceramic
tubes to measure the sound pressure signal. The bionic principle of the sensor vector
microstructure is shown in Figure 2. As a reference the specific manufacture processes
about MEMS chip was revealed in Xue’s paper [4].
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Figure 1. The assembly drawing of vector hydrophone. (a) four-beam and cilia microstructure;
(b) piezoelectric ceramic tube.

Figure 2. The bionic principles and micro-structural models.

2.2. The Received Signal Characteristics of Single Vector Hydrophone

In this paper, we consider the two-dimensional MEMS composed vector hydrophone
which consists of two vibration velocity channels and a sound pressure channel. P = p(t)
is sound pressure, vx = v(t)cosθ and vy = v(t)sinθ are mutually perpendicular vibration
velocity, θ is the incident angle of signal source, z = jkr/(1 + jkr)ρc is acoustic impedance
coefficient, k is wave number, ρ is medium density and c is the sound velocity.

Vector channel sensitivity and phase of the vector hydrophone are consistent. The
scalar channel has omnidirectional directivity, while the vibration velocity channel has a
cosine directivity of “8”. Using this vector directivity characteristic, the port and starboard
signal can be distinguished and the vector gain is 3 dB. The gain and beam directivity of
the vector hydrophone array are utilized to realize multi-target estimation. The horizontal
vector linear array has better gain and monopole directivity, which has guiding significance
for the research of location estimation. The relationship between vector linear array gain
and beam widths can be expressed as

G = 10× logM + 3 (dB) (1)
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wv =

 sin
(

M×π×d
λ × cos(θ)

)
M× sin

(
π×d

λ × cos(θ)
)
2

× v0(θ) (2)

where G is the gain of vector linear array, wv is the beam width of vector linear array, M
is the number of array elements. λ is the wavelength of the source, d is the array element
spacing, v0(θ) is the directivity of the vector channel. Therefore, we mainly consider using
vector linear array to achieve high precision target positioning.

2.3. Mixed Far-Field and Near-Field Signal Array Model

It is assumed that the horizontal uniform linear array of the composed vector hy-
drophone includes (M = 2N + 1) vector array elements. K narrow-band uncorrelated
signals are simultaneously incident on the array (including far-field and near-field signals).
There is not any amplitude and phase error in each array, and mutual coupling interference
between arrays is ignored. Where the array noise N(t) is zero mean Gaussian white noise.
The mixed sources model is shown in Figure 3.

Figure 3. Mixed sources signal model of vector hydrophone.

It is assumed that the vector matrix is uniformly and symmetrically distributed on the
x-axis of the rectangular coordinate system. If the 0-th hydrophone is the reference array
element, the received signal of the vector hydrophone linear array can be expressed as

X(t) = [av(θ1, r1), . . . , av(θK,rK)]s(t) + N(t) (3)

The direction vector of the i-th signal can be expressed as

av(θi, ri) = a(θi, ri)⊗ u(θi) (4)

where u(θi) =

[
1

1+ 1
jkri

ρc cosθi
1+ 1

jkri
ρc sinθi

]T

= u(αi) ≈ [1cosθisinθi]
T , assuming acoustic

impedance coefficient is ρc = 1, ignore the effects of orientation and choose the real part
information. The direction vector a(θi, ri) can be expressed as

(θi, ri) =
[
ei(−N)αi+(−N)2βi), · · · , eiω(Nαi+N2βi)

]T
(5)

αi =
−2πd

λ
cos(θi) (6)

βi =
πd2

λri
sin2(θi) (7)

where θi and ri are the DOA and range of the i-th source, respectively θi ∈ [0, 2π],

ri ∈
[

0.62
√

D3

λ ,+∞
)

. The array aperture is D = (M− 1) × d. When the i-th source
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is a far field source, the range is infinite, then the parameter βi tends to zero, and only the
DOA information needs to be considered.

In the rest of this article, we assume that the following three assumptions are true:

1. All target signals are independent and narrowband stationary and the noise is the
white Gaussian noises;

2. In order to avoid ambiguity estimation, make the array element spacing within a
quarter wavelength [28];

3. The number of sound sources must be less than the number of MEMS hydrophones.

3. Mixed Sources Reduced-Dimension Location Algorithm for Vector
Hydrophone Array

The signal subspace of the data is orthogonal to the noise subspace, that is, the
steering vector of the incident signal is orthogonal to the noise subspace [29]. According
to the orthogonal characteristics, the array covariance matrix of the received signal can be
decomposed into

R = E
(

X× XH
)
= US ×∑

S
UH

S + UN ×∑
N

UH
N (8)

where R is the array covariance matrix, ∑
S

and ∑
N

represent the diagonal matrices composed

of signal and noise eigenvalues, respectively.US represents the signal eigenmatrix corre-
sponding to K large eigenvalues, and UN represents the noise eigenmatrix corresponding
to (M− K) small eigenvalues.

Based on the vector rank reduction algorithm [11], further optimization processing
is carried out to reduce the computational complexity through the idea of quadratic opti-
mization and the least square method. Next, the optimization algorithm in this paper was
introduced in detail.

3.1. DOAs Estimate of All Far-Field and Near-Field Sources

Based on the symmetry of the array, Equation (5) can be further transformed and
decomposed into the form of the product of two matrices

a(θi, ri) =



ej(−N)αi+(−N)2βi)

...
1
...

ejNαi+N2βi)


=



ej(−N)αi · · · 0
...

. . .
...

0 · · · 1
...

...
ej(N)αi · · · 0




ej(−N)2βi

ej(−N+1)2βi

...
1

 = ζ(αi)η(βi) (9)

In Equation (9), ζ(αi) and η(βi) can be expressed as

ζ(αi) =



ej(−N)αi · · · 0
...

. . .
...

0 · · · 1
...

...
ej(N)αi · · · 0


(10)

η(βi) =


ej(−N)2βi

ej(−N+1)2βi

...
1

 (11)
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where ζ(αi) contains only the azimuth information of the sound source, η(βi) contains both
azimuth information and range information.

Then according to the kronecker product mixed product property we can find that

av(θi, ri) = av(αi, βi) = a(θi, ri)⊗ u(αi) = [ζ(αi)η(βi)]⊗ u(αi) = [ζ(αi)⊗ u(αi)]η(βi) = ν(αi)η(βi) (12)

So the spatial spectral function of Equation (10) can be expressed as

P(θ, r) =
1

ηH(βi)νH(αi)UNUN Hν(αi)η(βi)
=

1
ηH(βi)UU(αi)η(βi)

(13)

The above problem can be evolved to solve the quadratic optimization problem, the
implicit constraint is as in Equation (14).{

eHη(βi) = 1
e = [0, · · · , 0, 1]T ∈ R(N+1)×1 (14)

Construct the quadratic optimization problem function as follows:

f fmin = minηH(βi)UU(αi)η(βi)s.t.eHη(βi) = 1 (15)

Using the Lagrange operator method, the operator parameter λ is introduced to
construct the cost function of the quadratic optimization problem.

L(αi, βi) = ηH(βi)UU(αi)η(βi)− λ
(

eHη(βi)− 1
)

(16)

The partial derivative of L(αi, βi) versus η(βi) can expressed as

∂L(αi, βi)

∂η(βi)
= 2UU(αi)η(βi)− λe = 0 (17)

η(βi) = λ0UU−1(αi)e (18)

According to the Equations (14) and (18), we can obtain

λ0 =
1

eH ·UU−1(αi)·e
(19)

η(βi) =
UU−1(αi)·e

eH ·UU−1(αi)·e
(20)

From the above derivation, the estimated value of the intermediate parameter is

α̂i = argmin
1

eH ·UU−1(αi)·e
= argmaxeH ·UU−1(αi)·e (21)

Because αi is normalized to αi = cosθi, and one dimensional local search in the range of
[−1, 1] can obtain K peak points, which corresponds to K parameter values α̂i. All estimates
of azimuth parameters for far-field and near-field mixed sources are obtained [26].

θ̂i = arccos
(
−2πd

λαi

)
(22)

At the same time, we can notice that in real situations, some far-field sources have the
same DOA as near-field sources. That is, the estimated value K will not exceed the actual
number of sources K. When all the sound sources have different azimuth angles, we have
K = K.
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3.2. The Range Estimate of All Far-Field and Near-Field Sources

Next, we estimate the range parameters of mixed sources. The Equation (11) can be
converted to

η1(βi) =


1

ejβi

...
ej(−N)2βi

 (23)

Then the phase Angle can be expressed as

ϕ̂i = angle[η1(βi)] =


0
βi
...

(−N)2βi


(N+1)×1

=


0

(−1)2

...
(−N)2

βi = pβi (24)

Find the optimal function matching value by least square method

min||q∆i − ϕ̂i||2F (25)

where q = [1N+1, p] =


1
1
...
1

0
(−1)2

...
(−N)2


(N+1)×2

, ∆i =
[
∆i0, β̂i

]T ∈ R2×1, ∆i0 is the parameter

estimation error value.
Least squares function as the solution of ∆i can be expressed as

∆i =
(

qTq
)−1

qT ϕ̂i (26)

At the same time parameter α̂i and β̂i are automatic matching, then the range from
the source mentioned above can be parameter estimates

r̂i =
πd2

λβ̂i
sin2θ̂i (27)

By judging the range parameter in the near-field Fresnel zone, the range value corre-
sponding to the near-field azimuth is obtained.

r̂i ∈
(

0.62
√

D3

λ , 2D2

λ

)
, K2(nearsources)

r̂i ∈
(

2D2

λ , ∞
)

, K1( f arsources)
(28)

3.3. The Range Estimate of All Far-Field and Near-Field Sources

Suppose there are K3 = K− K common azimuths, and bring K2 near field azimuths
into the far field subspace spectral function. In general, the azimuth spectrum amplitude of
the far-field and near-fields will differ by more than an order of magnitude. Then when the
near field azimuth is brought into the Equation (29), the source with a higher spectral value
can be regarded as the common azimuth of the far-field and near-fields.

P(θ) =
1

νH(αi)UNUN Hν(αi)
(29)

In summary, all the far-field and near-field azimuth information can be obtained to
achieve accurate high-resolution estimation in the case of mixed sources.
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3.4. The Computational Complexity Analysis of Proposed Algorithm

The proposed algorithm shares many advantages, such as does not require multi-
dimensional search, does not need to construct high-order cumulants, and the parameters
are automatically matched. The dimension reduction transformation from two-dimensional
parameter estimation to one-dimensional parameter estimation is realized, and the cal-
culation amount is low. The computations major involve array eigen-decomposition,
covariance matrix, one-dimensional local search and common azimuth identification. The
total computational complexity can express as

O

{
(3M)2 J + (3M)3 + (3M + 1)(3M− K)K2

+nθ

[
(3M− K)(3N + 1)(3M + 3N + 1) + (3N + 1)3

] } (30)

where the number of snapshots is J, nθ is the number of DOA peaks searches in the
interval. While oblique projection MUSIC needs the overlapping sub-matrix and its eigen-
decomposition process, two-stage MUSIC and reduced rank MUSIC algorithm requires
multiple global searches. The proposed algorithm requires less computational complexity.
Table 1 lists the time complexity of other algorithms. K2 is the number of far sources.

Table 1. Computational complexity of different algorithms.

Algorithm Computational Complexity

RRM
O


(3M)2 J + (3M)3 + (3M + 1)(3M− K)K2

+nθ

[
(3M− K)(3N + 1)(3M + 3N + 1) + (3N + 1)3

]
+nr(3M− K)(3M + 1) + nrK2(3M− K)(3M + 1)


TSM O

{
(3M)2 J + (3M)3 + nθnr(3M− K)(3N + 1)(3M + 3N − 1)

}
Proposed O

{
(3M)2 J + (3M)3 + (3M + 1)(3M− K)K2

+nθ

[
(3M− K)(3N + 1)(3M + 3N + 1) + (3N + 1)3

] }

4. Simulation of Vector Dimension Reduction Localization Algorithm

In this part, we verify the performance of the proposed algorithm through simulation
and field experiment. Without loss of generality, suppose a 9-element vector hydrophone
linear array with an array spacing of 1/4 wavelength. It is presumed that all array ele-
ments have no amplitude and phase consistency errors and there is no mutual coupling
reaction. The symbol SNR represent the signal to noise ratio, NS represent the number of
snapshots and RMSE represent the root mean square error [30]. A total of 400 Monte Carlo
experiments were carried out, and the Cramer Rao-Bound (CRB) is the lower bound of
the azimuth estimate [17,31,32]. Comparing the calculation results of this paper with the
scalar algorithm, and the advantages of the vector algorithm are proved. The proposed
algorithm is compared with the reduced rank algorithm (RRM) and the two-stage MUSIC
(TSM) method, which shows the advantages of the proposed algorithm.

4.1. The Computational Complexity Analysis of Proposed Algorithm

In this simulation experiment, this algorithm is utilized to compare the difference
between scalar and vector array element structure. Supposing that there are three far-field
sources, and the DOAs are {θ1 = 10◦, θ2 = 25◦, θ3 = 60◦}. We assume NS and SNR are
2000 and 20 dB, respectively.

Figure 4 is the simulation comparison of scalar and vector array results, which clearly
shows that the proposed algorithm achieves accurate estimation of three targets; and
meanwhile the scalar algorithm has six target signals, three of which are real targets, and
the other three azimuth angles are false targets, they are the symmetrical angles of the three
real targets at the port and port positions. The simulation results prove that the vector
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algorithm resolves the problem of port and starboard ambiguity within the range of [0, 2π],
which is more advantageous than the scalar array algorithm.

Figure 4. The different of scalar and vector array localization algorithm.

4.2. The Mixed Far-Field and Near-Field Sources Estimation

This simulation is utilized to verify the performance of the algorithm under mixed
far-field and near-field sources. Assuming that two far-field sources and two near-field
source have the following characteristics, {θ1 = 10◦}, {θ2 = 25◦}, {θ3 = 25◦, λ3 = 5λ},
{θ4 = 60◦, λ4 = 3λ}. The far-field source and the near-field source have a common azimuth
angle of 25◦.

First, we assume the NS is 2000 and the SNR is 20 dB. Figure 5a show the calculation
results of DOA and range of the mixed source. Judging all the range parameters in the
Fresnel zone, we get a far-field DOA of 10◦ and two near-field DOAs of 25◦ and 60◦.
Then all the near-field DOAs are substituted into the Formula (31). The spatial spectrum
comparison graph is shown in Figure 5b, where the spectrum value corresponding to 25◦

azimuth is much larger than the spectrum value corresponding to 60◦ azimuth. So it can be
seen that an azimuth angle of 25◦ is the common source. Secondly, the NS is set to 2000 to
study the effect of SNR on positioning. And the SNR of the three signal sources is increased
from −15 dB to 20 dB according to the regularity of 5 dB interval. Figure 6a shows the
relationship between the DOA estimation accuracy and the SNR. And Figure 6b shows
the relationship between the DOA estimation accuracy and the NS. Third, assuming that
the SNR is 20 dB, we study the impact of the NS on positioning. And NS changes from
100 to 2000 in increments of 100. Figure 7a,b show the influence of SNR and NS on the
accuracy of range estimation. The comparison results of the rank reduction algorithm and
the second-order MUSIC algorithm and CRB are also shown in the figure.

As the SNR and NS increases, the RMSE of DOA estimation and range estimation
decreases. The proposed algorithm has better performance.
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Figure 5. (a) The scatter diagram of DOA and range estimation; (b) The spectral comparison graph
about common DOAs.

Figure 6. (a) The relationship between NS and the RMSE of the DOAs estimation; (b) The relationship
between the SNR and the RMSE of the DOAs estimation.

Figure 7. (a) The relationship between NS and the RMSE of the ranges estimation; (b) The relationship
between the SNR and the RMSE of the ranges estimation.
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4.3. The Field Experiment of Mixed Sources Estimation Algorithm

The field experiment was carried out in a reservoir with an average water depth of
30 m, which is a good field test environment. The test site is shown in Figure 8, where the
source and the hydrophone are placed 10 m underwater. The vector hydrophone linear
array is composed of 5-element array whose array spacing is a quarter of a wavelength,
and two fish-lip emitting transducers emit narrowband signals of 500 Hz and 800 Hz,
respectively. During the experiment, the hydrophone array was fixed on the floating dock,
the source No. 1 was hoisted from the floating dock, and the source No. 2 was hoisted
underwater by a tugboat at the center of the lake. The vector hydrophone array is placed in
the near-field of source No. 1 and the far-field of source No. 2. We use the NI acquisition
card to collect the signals received and estimate the orientation of multiple targets.

Figure 8. The field test map and hydrophone array distribution map.

Utilize the proposed algorithm to estimate the azimuth of the far-field and the near-
field sources. Figure 9 shows the estimated azimuth angles of all sources. Figure 10 shows
the azimuth and range diagrams of the far and near-field sound sources, and the red
asterisk represents the location of the target. The calculated results are consistent with
the real GPS data, as can be seen that the azimuth of the near-field sound source is (46◦,
2λ), and the DOA of far-field source is 284◦. The field experimental results verify the
performance of the mixed source algorithm, which has an important guiding role in the
engineering application of vector hydrophones.

Figure 9. The azimuth of all sound sources.
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Figure 10. The azimuth map of mixed sources (Red asterisk represents the location of the target).

5. Conclusions

In this paper, a mixed sources dimension reduction MUSIC algorithm suitable for
linear arrays of vector hydrophones is proposed, which reduces the two-dimensional search
method to one-dimensional local search. The signal direction vector is expressed as the
product of two parameter matrixes with independent azimuth and range parameters. The
Lagrangian function is constructed using the quadratic optimization idea to obtain all
azimuth angles; then the least square method is used to automatically match to obtain the
azimuth angles and ranges. The range parameters are judged in the Fresnel zone to obtain
the azimuth information of all near field sources; the common azimuth angle of the far-field
and near-fields is identified, and finally the high-resolution separation of all the far-field
and near-field sources is realized. The proposed algorithm solves the problem of port and
starboard ambiguity and it does not need multi-dimensional search or to construct high-
order cumulants while the parameters are automatically matched with low computational
complexity. The above shows that MEMS vector hydrophone has broad prospects in the
field of underwater acoustic detection.
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