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Abstract: Background: Several observational studies and clinical trials have shown that the gut micro-
biota is associated with urological cancers. However, the causal relationship between gut microbiota
and urological cancers remains to be elucidated due to many confounding factors. Methods: In this
study, we used two thresholds to identify gut microbiota GWAS from the MiBioGen consortium and
obtained data for five urological cancers from the UK biobank and Finngen consortium, respectively.
We then performed a two-sample Mendelian randomization (MR) analysis with Wald ratio or inverse
variance weighted as the main method. We also performed comprehensive sensitivity analyses to
verify the robustness of the results. In addition, we performed a reverse MR analysis to examine the
direction of causality. Results: Our study found that family Rikenellaceae, genus Allisonella, genus Lach-
nospiraceae UCG001, genus Oscillibacter, genus Eubacterium coprostanoligenes group, genus Eubacterium
ruminantium group, genus Ruminococcaceae UCG013, and genus Senegalimassilia were related to bladder
cancer; genus Ruminococcus torques group, genus Oscillibacter, genus Barnesiella, genus Butyricicoccus,
and genus Ruminococcaceae UCG005 were related to prostate cancer; class Alphaproteobacteria, class
Bacilli, family Family XI, genus Coprococcus2, genus Intestinimonas, genus Lachnoclostridium, genus
Lactococcus, genus Ruminococcus torques group, and genus Eubacterium brachy group were related to
renal cell cancer; family Clostridiaceae 1, family Christensenellaceae, genus Eubacterium coprostanoligenes
group, genus Clostridium sensu stricto 1, and genus Eubacterium eligens group were related to renal
pelvis cancer; family Peptostreptococcaceae, genus Romboutsia, and genus Subdoligranulum were related
to testicular cancer. Comprehensive sensitivity analyses proved that our results were reliable. Con-
clusions: Our study confirms the role of specific gut microbial taxa on urological cancers, explores
the mechanism of gut microbiota on urological cancers from a macroscopic level, provides potential
targets for the screening and treatment of urological cancers, and is dedicated to providing new ideas
for clinical research.

Keywords: gut microbiota; urological cancer; mendelian randomization; genetics

1. Introduction

With the proliferation of the populace and the escalation of societal senescence, the
incidence and prevalence of cancer have dramatically grown [1]. The data showed that
urological cancers accounted for 13.1% of new cancer cases and 7.9% of total cancer mor-
tality [2]. The prevalent urological cancers are bladder cancer, prostate cancer, renal cell
cancer, renal pelvis cancer, and testicular cancer [3]. Compared with 1990, the number
of patients with urological cancers has increased by 2.5 fold, and the number of deaths
has increased by 1.6 fold [4]. According to statistics, in the United States, there were
17,100 additional deaths from bladder cancer, 34,500 from prostate cancer, and 13,920 from
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renal cell and renal pelvis cancer in 2022 [2]. Testicular cancer remains relatively rare,
accounting for 0.4% of new cancer cases [5]. Compared to other cancers, urological cancers
develop slowly and can easily be cured by early detection and treatment [6]. However,
the early symptoms of urological cancers are not obvious, and cystoscopy, tissue biopsy,
and imaging examinations limit their use in large-scale screening due to invasiveness, cost,
and ionizing radiation [7]. Therefore, it is very important to find new targets suitable for
large-scale screening and prevention of urological cancers.

In recent years, with the discovery of the gut–kidney axis, gut–prostate axis, and
gut–testis axis, the association between gut microbiota and urological cancers has gained
significant attention [8–10]. The gut microbiota refers to the vast community of microorgan-
isms residing in the gastrointestinal tract, primarily composed of bacteria, fungi, viruses,
and other microbial species, 98% of which are bacteria [11]. The gut microbiota is a mutual-
istic symbiosis in humans that plays a crucial role in maintaining human health and has
a profound impact on various disease processes, including urological cancers [12–14]. To
date, several observational studies have shown differences between healthy individuals
and patients with urological cancers in the composition and diversity of the gut microbiota.
In a Chinese case–control study, He et al. observed a lower abundance of Prevotella in the
intestines of bladder cancer patients [15]. In an observational study in the United States,
Liss et al. found that Bacteroides and Streptococci were more abundant in the intestines of
prostate cancer patients [16]. Several animal model experiments have also reported the
involvement of the gut microbiota in the progression of urological cancers via intricate
signaling pathways [13,17].

The association between gut microbiota and urological cancers is a rapidly evolving
field of research. It holds great promise for the development of novel diagnostic, preventive,
and therapeutic strategies. Understanding the intricate relationships between the gut
microbiota and urological cancers could develop the microbiota-based therapies such as
microbiota transplantation, probiotic therapy, and dietary therapy, as well as novel targets
for urologic cancer screening [18]. Clinicians can help identify individuals at higher risk
based on their gut microbiota profiles and guide personalized interventions to mitigate
that risk, making personalized treatment for urologic cancers possible.

Unfortunately, the conclusions of most current observational studies predominantly
rely on the analysis of the composition and changes in gut microbiota in patients’ feces.
Traditional observational studies are limited by inherent flaws, including environmental
confounders, selection bias, and reverse causation [19]. The establishment of models in
animal experiments focuses on transplanting gut microbiota into mice and deriving results,
and the gut microbiota of these mice is susceptible to various influences, including factors
such as dietary patterns and antibiotic usage [20]. In conclusion, the relationship between
gut microbiota and urological cancers remains to be elucidated. Although randomized
controlled trials (RCTs) are the gold standard for verifying causality, the extremely large
number of gut microbial species and the long latency period from gut microbiota imbalance
to cancer development make RCT difficult to apply in a real clinical setting [21]. Therefore,
a new approach is needed to explore the causal relationship between gut microbiota and
urological cancers.

We use Mendelian randomization (MR) to explore the causal relationship between
the gut microbiota and urological cancers. In MR analysis, genetic variations are utilized
as instrumental variables (IVs) to explore the causal association between exposure and
outcome [22]. Since genetic variants originate from parents and are randomly assigned at
conception, properly conducted MR analysis can prevent reverse causality and lessen bias
caused by environmental variables [23].

In this study, we performed a bidirectional two-sample MR analysis to explore the
causal relationship between gut microbiota and five urological cancers, including bladder
cancer, prostate cancer, renal cell cancer, renal pelvis cancer, and testicular cancer. Based
on the results of the MR analysis, we tried to elucidate the role of the gut microbiota in
urological cancers, find new targets for cancer screening and prevention, and pave the way
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for the development of microbiota-based interventions, such as microbiota transplantation,
probiotic therapy, and dietary therapy [18].

2. Materials and Methods
2.1. Study Design

Gut microbiota was defined as exposure and five urological cancers as the outcome
(reverse MR analysis: urological cancer as exposure and gut microbiota as outcome). The
IVs were screened out with a series of quality control procedures and analyzed using MR
(Figure 1). Our MR analysis was based on three assumptions: (1) IVs were significantly
associated with exposure; (2) IVs were not associated with any confounding factors; (3) IVs
did not affect outcomes in any way other than exposure [24].
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2.2. Data Sources

Single-nucleotide polymorphisms (SNPs) associated with the gut microbiota were
obtained from the largest genome-wide association study (GWAS) summary data to
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date published by the MiBioGen consortium [25]. This is a large-scale multi-ethnic
GWAS involving 18,340 participants in 24 cohorts, 72.3% of whom had European ancestry
(n = 13,266). This study analyzed the microbial composition and classified microbiota using
direct taxonomic binning by targeting three distinct variable regions (V4, V3–V4, V1–V2) of
16S ribosomal RNA in participants. Genetic variants in microbiota hosts were identified
using microbiota quantitative trait loci mapping analysis. Kurilshikov A et al. also adjusted
for sex, age, technical covariates, and genetic principal components. GWAS finally included
211 taxa (131 genera, 35 families, 20 orders, 16 classes, and 9 phyla) [25].

We obtained GWAS summary data for five urological cancers from FinnGen Biobank
R8 and UK biobank, respectively [26,27]. Five urological cancers were diagnosed according
to ICD-O-3, controls excluding all cancers. More information on the above can be found in
the Supplementary Tables S1–S6.

2.3. Instrument Variable Selection

To ensure that the results of MR analysis are stable and reliable, we used the following
criteria to screen IVs: (1) SNPs that were statistically significantly associated with the
gut microbiome were chosen as IVs (p < 5 × 10−8). However, only a small amount of
SNPs were chosen as IVs. To explore more comprehensive results, we set a more lenient
threshold and used the filtered SNPs as the second IV set (p < 1 × 10−5). (2) To avoid linkage
disequilibrium (LD), we selected the independent SNPs (r2 < 0.01 and distance > 10,000 kb)
using the clumping procedure. (3) SNPs with minor allele frequencies (MAF) below 0.01
were excluded. (4) We removed duplicate SNPs and palindromic SNPs. (5) We searched
Phenoscanner (http://www.phenoscanner.medschl.cam.ac.uk/, accessed on 28 April 2023),
a database that can be used to find SNP-associated phenotypes, and removed SNPs directly
related (p = 5 × 10−8) to five urological cancers [28]. (6) We calculated F-statistics (F),

preventing the impact of weak IVs on the results, with the formula F = R2 × (N − 1 − K)
(1 − R2)×K ,

(R2 = 2 × beta2 × MAF × (1 − MAF), N = sample size, K = number of IVs). F > 10 was
generally considered a threshold for strong IVs [29]. Therefore, we excluded IVs with
F < 10 when performing MR analysis.

2.4. MR Analysis

We performed MR analysis to explore the causal relationship between the gut micro-
biota and five urological cancers. For taxa with only one IV, we performed the Wald ratio
for MR analysis [30]. For taxa with more than one IV, inverse variance-weighted (IVW) was
the main statistical method for MR analysis. Through meta-analysis, the IVW integrated
the impacts of individual IVs into a total weighted effect. Therefore, this method was
reliable when all IVs were valid [31]. In addition, we used weighted median, maximum
likelihood, weighted mode, and MR–Egger methods for complementary and alternative
analyses. When more than 50% of IVs were valid, the results of the weighted-median
method were reliable [32]. The maximum likelihood ratio measured the probability of
a distribution parameter [33]. Based on the similarity of causality, the weighted mode
method could divide SNPs into different subsets and assess the causal connection between
exposure and outcome using the subset with the highest number of SNPs [34]. Horizontal
pleiotropy could be calculated with MR egger. However, affected by the SNPs, the result
may not be accurate [32]. When the results of the five MR analysis methods were different,
we gave priority to the results of IVW.

To avoid increased Type 1 errors from multiple hypothesis testing, we corrected the
significance threshold using the false discovery rate (FDR) correction [35]. Considering
that the q-value (q) corrected with microbiota counts were too stringent, we used the
number of species of the MR analysis method for correction. Corrected threshold q < 0.05
was considered significant. When p < 0.05 but q > 0.05, gut microbiota were considered
associated with urological cancers.

http://www.phenoscanner.medschl.cam.ac.uk/
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2.5. Sensitivity Analyses

For taxa with more than 2 SNPs, we performed a series of sensitivity analyses. In
the MR–Egger regression, intercepts were used to test directional horizontal pleiotropic
effects [36]. We also used MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global
test for pleiotropy analysis and corrected estimates by removing outliers (outlier test) if
necessary [37]. In addition, we used Cochran’s Q statistic and funnel plot to examine the
heterogeneity of IVW and the MR–Egger regression methods. If there was heterogeneity
in the results (p < 0.05), MR analysis was performed using the random effects model IVW.
To determine if certain SNPs may affect on the results of the MR analysis, we used the
leave-one-out test.

2.6. Reverse MR Analysis

To explore whether urological cancer has a causal effect on the important gut microbial
taxa identified in the forward MR analysis, we performed a reverse MR analysis (five
urological cancers as exposures and important gut microbial taxa as outcomes). The analysis
process was consistent with the forward MR analysis. The MR Steiger directionality test
was used to examine whether there was a directional causality between exposure and
outcome [38].

The MR analyses were performed using “TwoSampleMR” (version 0.5.6), “Mendelian-
Randomization” (version 0.6.0), “MRPRESSO” (version 1.0), and “qvalue” (version 1.0)
packages in R (version 4.2.1). Statistical significance was assigned to a result with p < 0.05
(two-sided).

3. Results
3.1. SNPs Selection

After removing 15 unknown taxa, our study included 196 taxa (9 phyla, 16 classes,
20 orders, 33 families, and 119 genera) for MR analysis. According to the screening criteria
of IVs, we selected 22 SNPs (one SNP for phylum, one SNP for class, three SNPs for order,
five SNPs for family, and twelve SNPs for genus) at p < 5 × 10−8 level and 2238 SNPs
(108 SNPs for phylum, 194 SNP for class, 237 SNPs for order, 414 SNPs for family, and
1306 SNPs for genus) at p < 1 × 10−5. The F-statistics for all SNPs were all > 10 (27.8–106.6
at p < 5 × 10−8, 10.2–106.6 at p < 1 × 10−5) (Supplementary Tables S1–S6). The results
showed that all SNPs were effective strong IVs, and instrumental bias would not affect the
results of MR analysis.

3.2. Forward MR Analysis

For the taxa with only one SNP, q = p. For the taxa with more than 1 SNP, q = p × m
k .

M represented the number of MR analysis methods. Sorting the p-values from smallest to
largest, k represented the ranking of p-values.

3.3. Bladder Cancer

In MR analysis at the p < 5 × 10−8 level, we found that the genus Allisonella reduced
the risk of bladder cancer (odds ratio (OR) = 0.55, 95% confidence interval (CI) = 0.37–0.82,
p = 3.37 × 10−3, Wald ratio) and the genus Eubacterium coprostanoligenes group (OR = 4.27,
95% CI = 1.56–11.68, p = 4.72 × 10−3, Wald ratio) increased the risk of bladder cancer
(Table 1).

In MR analysis at the p < 1 × 10−5 level, we found that family Rikenellaceae (OR = 0.69,
95% CI = 0.53–0.90, q = 1.59 × 10−2, IVW), genus LachnospiraceaeUCG001 (OR = 0.74, 95%
CI = 0.58–0.94, q = 2.66 × 10−2, IVW), and genus Oscillibacter (OR = 0.66, 95% CI = 0.52–0.83,
q = 1.21 × 10−3, IVW) reduced the risk of bladder cancer; genus Eubacterium ruminantium
group (OR = 1.31, 95% CI = 1.09–1.56, q = 1.53 × 10−2, IVW), genus RuminococcaceaeUCG013
(OR = 1.67, 95% CI = 1.21–2.31, q = 8.76 × 10−3, IVW), and genus Senegalimassilia (OR = 1.61,
95% CI = 1.17–2.21, q = 1.32 × 10−2, IVW) increased the risk of bladder cancer (Table 2 and
Figure 2).
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Table 1. Mendelian randomization (MR) results of significant causal relationship between gut
microbiome and urological cancers (p < 5 × 10−8).

Exposure Outcome No. SNP Methods β SE OR 95% CI p-Value Causal
Direction Steiger p

genus Allisonella Bladder cancer 1 Wald ratio −0.594 0.202 0.55 0.37–0.82 3.40 × 10−3 TRUE 2.60 × 10−6

genus Ruminococcus
torques group Bladder cancer 1 Wald ratio 1.451 0.513 4.27 1.56–11.68 4.70 × 10−3 TRUE 1.54 × 10−6

genus Ruminococcus
torques group Prostate cancer 1 Wald ratio 0.671 0.258 1.96 1.18–3.25 9.20 × 10−3 TRUE 8.62 × 10−6

genus Ruminococcus
torques group

Renal cell
cancer 1 Wald ratio 1.414 0.573 4.11 1.34–12.67 1.40 × 10−2 TRUE 1.02 × 10−6

genus Eubacterium
coprostanoligenes

group

Renal pelvis
cancer 1 Wald ratio 4.989 2.204 146.89 1.95–11,058.66 2.40 × 10−2 TRUE 4.26 × 10−7

family
Peptostreptococcaceae

Testicular
cancer 1 Wald ratio 2.672 1.261 14.48 1.22–171.37 3.40 × 10−2 TRUE 2.88 × 10−6

genus Romboutsia Testicular
cancer 1 Wald ratio 2.646 1.248 14.10 1.22–162.84 3.40 × 10−2 TRUE 8.59 × 10−6

Table 2. Mendelian randomization (MR) results of significant causal relationship between gut
microbiome and urological cancers (p < 1 × 10−5).

Exposure Outcome No. SNP Methods β SE OR 95% CI p-Value Causal
Direction Steiger p

family Rikenellaceae Bladder cancer 18 IVW −0.372 0.136 0.69 0.53–0.90 6.40 × 10−3 TRUE 1.24 × 10−74

genus Eubacterium
ruminantium group Bladder cancer 18 IVW 0.267 0.090 1.31 1.09–1.56 3.10 × 10−3 TRUE 3.21 × 10−73

genus
Lachnospiraceae

UCG001
Bladder cancer 11 IVW −0.302 0.120 0.74 0.58–0.94 1.20 × 10−2 TRUE 3.65 × 10−46

genus Oscillibacte Bladder cancer 10 IVW −0.423 0.121 0.66 0.52–0.83 4.80 × 10−4 TRUE 2.40 × 10−40

genus
Ruminococcaceae

UCG013
Bladder cancer 11 IVW 0.514 0.164 1.67 1.21–2.31 1.80 × 10−3 TRUE 3.55 × 10−46

genus
Senegalimassilia Bladder cancer 4 IVW 0.473 0.162 1.61 1.17–2.21 3.50 × 10−3 TRUE 2.83 × 10−16

genus Barnesiella Prostate cancer 12 IVW −1.422 0.485 0.24 0.09–0.62 3.40 × 10−3 TRUE 4.18 × 10−48

genus Butyricicoccus Prostate cancer 3 IVW −1.725 0.649 0.18 0.05–0.64 7.90 × 10−3 TRUE 1.59 × 10−20

genus Oscillibacter Prostate cancer 13 IVW −0.154 0.057 0.86 0.77–0.96 7.20 × 10−3 TRUE 6.46 × 10−50

genus
Ruminococcaceae

UCG005
Prostate cancer 14 IVW 0.413 0.150 1.51 1.13–2.03 6.00 × 10−3 TRUE 7.84 × 10−57

class
Alphaproteobacteria

Renal cell
cancer 6 IVW 0.456 0.192 1.58 1.08–2.30 1.80 × 10−2 TRUE 3.89 × 10−26

class Bacilli Renal cell
cancer 18 IVW 0.342 0.151 1.41 1.05–1.90 2.40 × 10−2 TRUE 1.42 × 10−74

family FamilyXI Renal cell
cancer 8 IVW −0.273 0.098 0.76 0.63–0.92 5.60 × 10−3 TRUE 1.09 × 10−34

genus Coprococcus 2 Renal cell
cancer 9 IVW −0.468 0.179 0.63 0.44–0.89 9.10 × 10−3 TRUE 2.73 × 10−36

genus Eubacterium
brachy group

Renal cell
cancer 4 IVW 0.761 0.280 2.14 1.24–3.71 6.60 × 10−3 TRUE 6.49 × 10−18

genus Intestinimonas Renal cell
cancer 16 IVW −0.374 0.134 0.69 0.53–0.89 5.20 × 10−3 TRUE 4.54 × 10−68

genus
Lachnoclostridium

Renal cell
cancer 13 IVW −0.635 0.188 0.53 0.37–0.77 7.70 × 10−4 TRUE 5.58 × 10−52

genus Lactococcus Renal cell
cancer 6 IVW −0.601 0.244 0.55 0.34–0.88 1.40 × 10−2 TRUE 7.62 × 10−27

family
Christensenellaceae

Renal pelvis
cancer 9 IVW 0.748 0.218 2.11 1.38–3.25 6.30 × 10−4 TRUE 9.96 × 10−49

family Clostridiaceae
1

Renal pelvis
cancer 8 IVW −0.751 0.234 0.47 0.30–0.75 1.40 × 10−3 TRUE 1.89 × 10−30

genus Clostridium-
sensustricto

1

Renal pelvis
cancer 7 IVW −0.601 0.218 0.55 0.36–0.84 6.00 × 10−3 TRUE 2.18 × 10−33

genus Eubacterium
eligens group

Renal pelvis
cancer 6 IVW 0.886 0.287 2.43 1.38–4.26 2.00 × 10−3 TRUE 3.96 × 10−22

genus
Subdoligranulum

Testicular
cancer 7 IVW −2.029 0.781 0.13 0.03–0.61 9.40 × 10−3 TRUE 1.42 × 10−24
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Figure 2. MR results of causal effects between gut microbiota and urological cancers (Bladder cancer
and Prostate cancer) (p < 1 × 10−5).

3.4. Prostate Cancer

In MR analysis at the p < 5 × 10−8 level, we found that the genus Ruminococcus torques
group (OR = 1.96, 95% CI = 1.18–3.25, p = 9.24 × 10−3, Wald ratio) increased the risk of
prostate cancer (Table 1).

In MR analysis at the p < 1 × 10−5 level, we found that the genera Oscillibacter
(OR = 0.86, 95% CI = 0.77–0.96, q = 2.42 × 10−2, IVW), Barnesiella (OR = 0.24, 95%
CI = 0.09–0.62, q = 1.23 × 10−2, IVW), and Butyricicoccus (OR = 0.18, 95% CI = 0.05–0.64,
q = 2.94 × 10−2, IVW) reduced the risk of prostate cancer; the genus RuminococcaceaeUCG005
(OR = 1.51, 95% CI = 1.13–2.03, q = 3.02 × 10−2, IVW) increased the risk of prostate cancer
(Table 2 and Figure 2).

3.5. Renal Cell Cancer

In MR analysis at the p < 5 × 10−8 level, we found that the genus Ruminococcus torques
group (OR = 4.11, 95% CI = 1.34–12.67, p = 1.37 × 10−2, Wald ratio) increased the risk of
renal cell cancer (Table 1).

In MR analysis at the p < 1 × 10−5 level, we found that the family Family XI (OR = 0.76,
95% CI = 0.63–0.92, q = 1.80 × 10−2, IVW), the genera Coprococcus 2 (OR = 0.63, 95%
CI = 0.44–0.89, q = 2.44 × 10−2, IVW), Intestinimonas (OR = 0.69, 95% CI = 0.53–0.89,
q = 1.89 × 10−2, IVW), Lachnoclostridium (OR = 0.53, 95% CI = 0.37–0.77, q = 1.92 × 10−3,
IVW), and Lactococcus (OR = 0.55, 95% CI = 0.34–0.88, q = 3.64 × 10−2, IVW) reduced
the risk of renal cell cancer; the classes Alphaproteobacteria (OR = 1.58, 95% CI = 1.08–2.30,
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q = 4.76 × 10−2, IVW) and Bacilli (OR = 1.41, 95% CI = 1.05–1.90, q = 4.22 × 10−2, IVW), and
the genus Eubacterium brachy group (OR = 2.14, 95% CI = 1.24–3.71, q = 2.27 × 10−2, IVW)
increased the risk of renal cell cancer (Table 2 and Figure 3).
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3.6. Renal Pelvis Cancer

In MR analysis at the p < 5 × 10−8 level, we found that the genus Eubacterium co-
prostanoligenes group (OR = 146.89, 95% CI = 1.95–11,058.66, p = 2.36 × 10−2, Wald ratio)
increased the risk of renal pelvis cancer (Table 1).

In MR analysis at the p < 1 × 10−5 level, we found that the family Clostridiaceae 1
(OR = 0.47, 95% CI = 0.30–0.75, q = 3.98 × 10−3, IVW) and the genus Clostridium sensu stricto
1 (OR = 0.55, 95% CI = 0.36–0.84, q = 1.73 × 10−2, IVW) reduced the risk of renal pelvis
cancer; the family Christensenellaceae (OR = 2.11, 95% CI = 1.38–3.25, q = 2.21 × 10−3, IVW)
and the genus Eubacterium eligens group (OR = 2.43, 95% CI = 1.38–4.26, q = 6.33 × 10−3,
IVW) increased the risk of renal pelvis cancer (Table 2 and Figure 3).

3.7. Testicular Cancer

In MR analysis at the p < 5 × 10−8 level, we found that family Peptostreptococcaceae
(OR = 14.48, 95% CI = 1.22–171.37, p = 3.40 × 10−2, Wald ratio) and the genus Romboutsia
(OR = 14.10, 95% CI = 1.22–162.84, p = 3.40 × 10−2, Wald ratio) increased the risk of
testicular cancer (Table 1).
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In MR analysis at the p < 1 × 10−5 level, we found that the genus Subdoligranulum
(OR = 0.13, 95% CI = 0.03–0.61, q = 1.91 × 10−2, IVW) reduced the risk of testicular cancer
(Table 2 and Figure 3).

3.8. Sensitivity Analyses

Heterogeneity and pleiotropy analyses ensured the reliability and robustness of our
MR analysis results. Cochran’s Q statistic of IVW and MR–Egger showed no heterogeneity
in five urological cancers (Table 3). The funnel plot suggested the same result as Cochran’s Q
statistic (Supplementary Figures S1–S91). The MR–Egger intercept and MR-PRESSO global
test showed no potential horizontal pleiotropy (Table 3). We also performed the leave-one-
out test and re-analyzed after removing one SNP each time, and our results were still stable
(Supplementary Figures S1–S91). Forest plots are shown in Supplementary Figures S1–S91.

Table 3. The results of the sensitivity analyses of MR.

Exposure Outcome Method

Heterogeneity MR-PRESSO MR–Egger Pleiotropy
Test

Cochran’s
Q p-Value Global

p-Value
MR–Egger
Intercept p-Value

family Rikenellaceae Bladder cancer
IVW 14.77 0.61 0.62

MR–Egger 11.64 0.77 −0.050 0.10
genus Eubacterium
ruminantium group Bladder cancer

IVW 17.47 0.42 0.47
MR–Egger 17.43 0.36 0.005 0.86

genus Lachnospiraceae
UCG001 Bladder cancer

IVW 5.31 0.87 0.882
MR–Egger 5.30 0.81 −0.005 0.92

genus Oscillibacte Bladder cancer
IVW 9.54 0.39 0.45

MR–Egger 9.37 0.31 0.020 0.72
genus Ruminococcaceae

UCG013 Bladder cancer
IVW 6.44 0.78 0.80

MR–Egger 3.48 0.94 −0.062 0.12

genus Senegalimassilia Bladder cancer
IVW 1.79 0.62 0.69

MR–Egger 1.43 0.49 0.031 0.61

genus Barnesiella Prostate cancer
IVW 3.70 0.98 0.99

MR–Egger 2.64 0.99 −0.138 0.33

genus Butyricicoccus Prostate cancer
IVW 1.17 0.56

MR–Egger 1.15 0.28 0.031 0.93

genus Oscillibacter Prostate cancer
IVW 10.60 0.56 0.59

MR–Egger 10.59 0.48 −0.002 0.94
genus Ruminococcaceae

UCG005
Prostate cancer

IVW 16.32 0.23 0.17
MR–Egger 12.48 0.41 −0.060 0.08

class Alphaproteobacteria Renal cell cancer
IVW 3.75 0.59 0.56

MR–Egger 3.22 0.52 0.046 0.51

class Bacilli Renal cell cancer
IVW 17.61 0.41 0.46

MR–Egger 16.40 0.43 −0.033 0.29

family FamilyXI Renal cell cancer
IVW 2.07 0.99 0.96

MR–Egger 0.85 0.96 0.091 0.31

genus Coprococcus 2 Renal cell cancer
IVW 4.77 0.78 0.80

MR–Egger 4.72 0.69 −0.015 0.84
genus Eubacterium brachy

group Renal cell cancer
IVW 0.37 0.95 0.95

MR–Egger 0.37 0.83 −0.012 0.97

genus Intestinimonas Renal cell cancer
IVW 13.29 0.58 0.61

MR–Egger 13.24 0.51 −0.007 0.83

genus Lachnoclostridium Renal cell cancer
IVW 12.97 0.37 0.43

MR–Egger 11.87 0.37 −0.044 0.33

genus Lactococcus Renal cell cancer
IVW 4.66 0.46 0.47

MR–Egger 3.69 0.45 −0.138 0.38

family Christensenellaceae Renal pelvis cancer IVW 6.98 0.54 0.58
MR–Egger 6.12 0.53 0.036 0.38

family Clostridiaceae 1 Renal pelvis cancer IVW 4.55 0.71 0.74
MR–Egger 3.24 0.78 0.065 0.30

genus Eubacterium eligens
group Renal pelvis cancer IVW 3.93 0.56 0.55

MR–Egger 2.75 0.60 −0.111 0.34
genus

Clostridiumsensustricto 1 Renal pelvis cancer IVW 4.38 0.62 0.65
MR–Egger 4.34 0.50 −0.011 0.84

genus Subdoligranulum Testicular cancer
IVW 9.99 0.13 0.18

MR–Egger 9.45 0.09 −0.083 0.62
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3.9. Suggestive Associations between Gut Microbiota and Urological Cancers

In MR analysis at the p < 1 × 10−5 level, we found suggested relationships between
some members of the gut microbiota and urological cancers (p < 0.05, q > 0.05, IVW). The
phylum Bacteroidetes, order Desulfovibrionales, order NB1n, family Family XI, genus Lach-
nospiraceae UCG004, genus Victivallis, genus Adlercreutzia, genus Clostridium sensu stricto
1, genus Flavonifractor, genus Lachnospiraceae NK4A136 group, and genus Romboutsia were
suggested to be related to bladder cancer. The order Clostridiales, genus Eubacterium co-
prostanoligenes group, genus Slackia, genus Ruminococcus torques group, genus Actinomyces,
genus Lachnospira, and genus Lachnospiraceae UCG008 were suggested to be related to
prostate cancer. The family Clostridiaceae1, family Family XI, genus Barnesiella, genus Slackia,
genus Alloprevotella, and genus Ruminiclostridium 6 were suggested to be related to renal
cell cancer. The genus Coprococcus 2, genus Holdemanella, genus Howardella, genus Ru-
miniclostridium 5, genus Eubacterium brachy group, genus Eubacterium eligens group, genus
Butyricicoccus, genus Lactococcus, and genus Ruminococcus 1 were suggested to be related to
renal pelvis cancer. The family Ruminococcaceae, family Peptostreptococcaceae, genus Lach-
nospiraceae NK4A136 group, genus Ruminococcaceae UCG002, genus Coprobacter, and genus
Subdoligranulum were suggested to be related to testicular cancer.

3.10. Reverse MR Analysis

Reverse MR analysis suggested that renal cell cancer may be related to class Alphapro-
teobacteria at p < 1 × 10−5 level (p < 0.05, q > 0.05, IVW) (Supplementary Tables S1–S6).

4. Discussion

To our knowledge, this study is the first MR analysis to genetically explore the causal
relationship between gut microbiota and urologic cancers. Based on the largest GWAS of
the gut microbiota, our MR study provides fairly strong genetic evidence that alterations
in the abundance of specific gut microbiota play an important role in the occurrence and
development of urologic cancers. Using genetic variables as tools, MR analysis largely
avoids confounding factors and compensates for the lack of observational studies.

Our study supports previous observational evidence. A metagenomic analysis from
China found dysregulated Eubacterium abundance in the gut of bladder cancer patients [39].
In another cohort study, upregulation of Eubacterium abundance in urine was associated
with non-muscle invasive bladder cancer [40]. Our findings are identical and link this
association specifically to the Eubacterium coprostanoligenes group and the Eubacterium ru-
minantium group. ECM1 is a glycoprotein that can induce tumor growth by promoting
angiogenesis or enhancing epidermal growth factor signaling [41]. As a regulator of the
tumor microenvironment, matrix metalloproteinases can degrade the extracellular matrix
and infiltrate tumors into surrounding tissues [42]. ECM1-MMP9 plays an important role in
the occurrence and development of tumors [43]. Zhang et al. found that Eubacterium can
upregulate ECM1 in bladder tissue, increase the expression of MMP9 through the ERK1/2
phosphorylation pathway, and finally lead to the occurrence and development of bladder
cancer [40]. Our study found that Ruminococcus torques group and Ruminococcaceae UCG005
increase the risk of prostate cancer, which is consistent with previous observational studies.
Liu et al. found that the abundance of Ruminococcus in the gut of castration-resistant
prostate cancer (CRPC) patients was increased [44]. Pernigoni et al. also found that the guts
of CRPC patients and mouse models were enriched for Ruminococcus [45]. Ruminococcus
belongs to Firmicutes, and its main metabolites are short-chain fatty acids (SCFAs) [46].
SCFAs can promote the production of insulin growth factor 1 (IGF-1) in the whole body and
the prostate, and IGF-1 can activate the proliferation of prostate cancer cells through the
MAPK and PI3K pathways [47]. Ruminococcus has also been shown to positively correlate
with serum testosterone levels, possibly through deglucuronidation of testosterone into
a bioactive form and reabsorption [48,49]. Testosterone levels are closely related to the
development of prostate cancer [50].
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Our MR analysis identified more than 20 gut microbial taxa causally associated with
urological cancers, most of which were absent or rarely reported in previous studies. To
explore the mechanism of this causal relationship, we interpreted it in several ways. (1) As
a compound in the bacterial cell wall, lipopolysaccharide is considered a “danger signal”
recognized by the immune system [51]. Gut microbial imbalance can lead to increased
LPS, which binds to TLR4 to activate NF-κB, mediates the transcription of stress-related
compounds, and increases cancer risk [52]. In addition, higher levels of LPS can cause
LPS-endotoxemia to promote carcinogenesis [53]. (2) Gut microbial imbalance can lead
to abnormal differentiation of T cells [54]. Regulatory T cells (Tregs) can promote tumor
development by silencing the immune clearance of tumor cells [51]. Treg levels may be
upregulated during gut ecological dysbiosis, creating a friendly environment for cancer
initiation, progression, and metastasis [55]. Gut microbial imbalance induces chronic
inflammation in the urinary system through NF-B and mTOR pathways, which can trigger
oxidative stress and lead to the accumulation of ROS and NOS [3,56]. (3) Gut microbial
imbalance can lead to fluctuations in sex hormone levels, and elevated androgen levels
increase the risk of prostate cancer [50]. Elevated estrogen levels may activate polycyclic
hydrocarbons, leading to the production of carcinogenic metabolites such as free radical
cations that induce DNA damage and increase the risk of cancer [57,58]. Most of the current
mechanisms remain at the macroscopic whole gut microbiota level, and more mechanistic
studies are needed in the future to explore the role of individual taxa on urologic cancers.

As risk factors for urologic cancers, we propose that obesity and smoking may affect
urological cancers by targeting the gut microbiota. Nowadays, a high-fat diet based on car-
bohydrates and fats is becoming one of the major components of the population’s diet, and
the incidence of obesity is increasing significantly [59,60]. The positive relationship between
obesity and urologic cancers has been confirmed by several studies, and the mechanisms
may be related to insulin resistance, abnormal IGF system, ectopic fat deposition, and
microbiome alterations [3]. However, microbiome alterations have only been mentioned
in observational studies [61–63]. Our study has made a certain contribution to filling the
gap in this field. Compared with a healthy population, there are certain alterations in
the abundance of specific gut microbes in obesity, which we have shown to be strongly
associated with urological cancers. For example, the abundance of Ruminococcus torques
is increased in the gut of obese people, and Ruminococcus torques is associated with an
increased risk of prostate cancer and renal cell cancer [61]. Oscillibacter is associated with
normal body weight and has a protective effect on bladder and prostate cancer [64]. BMI
and Rikenellaceae show a negative linear relationship, and Rikenellaceae may reduce the
risk of bladder cancer [65]. The discovery of key gut microbial taxa may open up new
avenues for the dietary treatment of cancer. On the other hand, the effect of smoking on
urological cancer is surprising. A high-quality MR study demonstrated that smoking leads
to a decrease in the abundance of Ruminococcaceae UCG005, which we believe increases
the risk of prostate cancer [66]. This seems to be contrary to the conventional view that
“smoking is a risk factor for cancer”. However, a large prospective study from Sweden
also came to the same conclusion that smokers have a lower risk of prostate cancer [67]. In
conclusion, the relationship between high-fat diet, smoking, gut microbiota, and urologic
cancer is complex, and more prospective studies and mediation MR analyses are needed to
explore the associations and mechanisms in the future.

Understanding the bidirectional relationship between gut microbiota and urological
cancers may contribute to personalized medicine approaches. Our study provides an
emerging approach to large-scale screening for urological cancers. Currently, cystoscopy
and bladder tissue biopsy are considered to be the gold standard for bladder cancer di-
agnosis [68]. However, both examinations are invasive, limiting their use in large-scale
screening [7]. In recent years, serum prostate-specific antigen (PSA) has been widely used
for screening and early detection of prostate cancer due to its non-invasive advantages [69].
Typically, a prostate biopsy is performed when a patient’s PSA level is greater than
4 ng/mL [70]. However, PSA is organ-specific rather than tumor-specific, leading to
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increased PSA levels in non-neoplastic lesions of the prostate such as benign prostatic
hyperplasia [71]. The low specificity of PSA may lead to overdiagnosis and treatment of
some nonneoplastic lesions of the prostate [72]. Diagnosis of renal cell cancer is challenging
because renal cell cancer is often clinically silent [73]. The clinical manifestations of early
renal cell cancer are variable and nonspecific, and when the renal cancer triad (hematuria,
pain, mass) appears, renal cell cancer is usually in an advanced state [74]. In fact, renal cell
cancer is usually not diagnosed until distant metastases have developed [75]. As mentioned
in the introduction, the value of early screening for urological cancers is tremendous, which
will greatly improve the five-year survival rate and prognosis of patients. We believe that it
is necessary and feasible to construct a risk assessment model for urological cancers based
on changes in the abundance of specific taxa of gut microbiota. The model should take into
account the changes in abundance of all taxa that are genetically predicted to be related
to urologic cancers, not just a specific taxon. In fact, it has been demonstrated that a risk
score based on changes in gut microbiota abundance can diagnose prostate cancer more
accurately than PSA examination (area under the curve = 0.81 vs. 0.67) [76].

Our study may pave the way for the development of targeted interventions. When
microbes are responsible for the development and progression of urologic cancers, mod-
ulating the microbiota may yield potential benefits in the urinary tract [77]. A study
including 67 patients with renal cell cancer found that antibiotic use before or after anti-PD-
2/PD-L1 immunotherapy resulted in significantly shorter progression-free survival and
overall survival [78]. Antibiotic use leads to disturbances in gut microbiota abundance,
with changes in Ruminococcus abundance correlating with clinical response to checkpoint
inhibition [79]. Another study on differences in gut microbiota composition in prostate
cancer patients showed a significant increase in Lachnospiraceae abundance in the gut of
patients with oral androgen receptor axis-targeted therapy [80]. Karen et al. suggested that
the presence of Lachnospiraceae may be associated with a positive response to anti-PD-1
immunotherapy [80]. Our study suggests that Lactococcus, a significant bacterial model
for Lactobacillus, reduces the risk of renal cell cancer. Lactococcus is a potent binder of
fibronectin, contributing to the maintenance of barrier homeostasis and moderating in-
flammatory processes triggered by potentially opportunistic microorganisms and other
injuries [81]. The increased strength of fibronectin can induce specific immunity to bladder
cancer [82]. We suggest that performing fecal Lactococcus transplantation or direct blad-
der instillation may induce an immune response to treat bladder cancer. Gut microbiota
directly or indirectly involved in the treatment of urological cancers, which may be related
to hormones, inflammatory responses, and immunity [77]. Our study identified some gut
microbiota associated with reduced risk of urologic cancers, laying the groundwork for
translating microbiome research into clinical action and opening avenues for microbial-
based therapies. Based on our study, clinicians can target individuals at higher risk of
urological cancers based on their gut microbial profile and guide personalized interventions
to mitigate risk, such as fecal transplantation, probiotic therapy, and dietary therapy.

Additionally, we provide insights for the optimization of the RCT [83]. (1) RCT is the
gold standard for exploring causality [20]. Since gut microbiota plays an irreplaceable role
in body homeostasis, it is worthwhile to conduct RCT to explore the role of gut microbiota
on urological cancer. Our findings provide a solid theoretical basis for conducting RCTs.
(2) Due to the extremely complex composition and a large amount of gut microbiota, it is
unrealistic to conduct RCT studies on every taxon. A bidirectional MR study could help
identify new avenues of research by revealing a hitherto unknown causal relationship
between the gut microbiota and urologic cancers. We screened out a series of specific taxa
through gene prediction and determined the cancers that have causal relationships with
them. Furthermore, we quantified the risk factors utilizing the OR value and provided
references for variables and outcomes within RCTs.

Our study has several limitations. Firstly, the participants in the GWAS for urological
cancers were all of the European ancestry, so extrapolation of our results to other ethnic
groups requires caution. Secondly, GWAS of the gut microbiota included many ethnicities,
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which may still result in some bias even though the ancestry of most participants was
European (greater than 72.3%). Thirdly, we used the largest GWAS of the gut microbiota to
date, but its sample size is still very limited (n = 14,306). In the future, the GWAS of gut
microbiota needs to expand the sample size to the traditional GWAS level (n > 100,000)
to increase power and reduce errors. Fourthly, urologic cancers are more prevalent in the
male population, and the composition of the gut microbiota displays divergence based
on gender [2]. Due to the use of summary-level GWAS, our work could not be analyzed
separately for the two genders. Gender-specific MR analysis should be carried out in
future research. Fifthly, in the process of using drugs to treat diseases, the gut microbiota
may develop drug resistance, thus affecting the therapeutic effect. Exploring the drug
resistance of taxa that are causally related to urological cancer is meaningful to improve
the therapeutic effect of urological cancer. Due to the limitations of the GWAS database,
our study cannot explore drug resistance in specific taxa. Therefore, future studies should
conduct in-depth studies on drug resistance in the gut microbiota.

5. Conclusions

In conclusion, using publicly accessible gene databases, our study comprehensively
explored the causal relationship between gut microbiota and five urological cancers. We
verified the existing observational evidence and explored the mechanism of gut microbiota
on urological cancer from a macroscopic level, providing potential targets for the screening
and treatment of urological cancer and new ideas for future clinical research.
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GWAS genome-wide association study
LD linkage disequilibrium
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