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Abstract: Dietary deficiencies in zinc (Zn) and vitamin A (VA) are among the leading micronutrient
deficiencies globally and previous research has proposed a notable interaction between Zn and
VA physiological status. This study aimed to assess the effects of zinc and vitamin A (isolated
and combined) on intestinal functionality and morphology, and the gut microbiome (Gallus gallus).
The study included nine treatment groups (n~11)—no-injection (NI); H2O; 0.5% oil; normal zinc
(40 mg/kg ZnSO4) (ZN); low zinc (20 mg/kg) (ZL); normal retinoid (1500 IU/kg retinyl palmitate)
(RN); low retinoid (100 IU/kg) (RL); normal zinc and retinoid (40 mg/kg; 1500 IU/kg) (ZNRN);
low zinc and retinoid (ZLRL) (20 mg/kg; 100 IU/kg). Samples were injected into the amniotic
fluid of the fertile broiler eggs. Tissue samples were collected upon hatch to target biomarkers.
ZLRL reduced ZIP4 gene expression and upregulated ZnT1 gene expression (p < 0.05). Duodenal
surface area increased the greatest in RL compared to RN (p < 0.01), and ZLRL compared to ZNRN
(p < 0.05). All nutrient treatments yielded shorter crypt depths (p < 0.01). Compared to the oil control,
ZLRL and ZNRN reduced (p < 0.05) the cecal abundance of Bifidobacterium and Clostridium genera
(p < 0.05). These results suggest a potentially improved intestinal epithelium proceeding with Zn and
VA intra-amniotic administration. Intestinal functionality and gut bacteria were modulated. Further
research should characterize long-term responses and the microbiome profile.

Keywords: zinc; retinoid; vitamin A; intestine; microbiome; brush border membrane; Gallus gallus

1. Introduction

Micronutrient deficiency is estimated to affect approximately 3–4 billion people
globally—in which, 1 in 2 children and 2 in 3 women suffer from the hidden hunger
for one or more essential nutrients [1,2]. Zinc deficiency (Zn) is among the leading micronu-
trient deficiencies globally and inadequate intake is characterized by severe consequences
to host physiology and overall health, including impaired growth and development, poor
epithelial maintenance, diminished cognitive function, and reduced immune response,
all of which can lead to decreased infection resistance [3–5]. As more than 300 enzymes
and transcription factors are zinc-dependent, and approximately 10% of all proteins in
humans contain zinc as a cofactor, zinc plays an abundant role in biological processes,
hence, severe deficiency can render the aforementioned outcomes [4,6,7]. Several animal
and human studies have proposed a synergistic effect between dietary zinc and vitamin A
metabolism and status [8–10], and it is suggested that a poor physiological status of zinc
may impact vitamin A status [11]. Zinc-dependent enzyme alcohol dehydrogenase (ADH)
participates in the conversion of retinol to retinal and ultimately, retinoic acid—key steps in
vitamin A metabolism that are pertinent to optic function and development [10,12]. Hence,
inadequate dietary zinc status is proposed to impair ADH function [13]. Further, earlier
studies have observed that intra- and intercellular transport of retinol via retinol-binding
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protein (RBP) was zinc-dependent. A rodent model study observed that under dietary zinc-
deficient conditions, retinol accumulated in the liver but was not mobilized into plasma by
RBP [14]. However, zinc supplementation enabled a concomitant export of hepatic retinol
and plasma vitamin A increase [14].

According to the World Health Organization, the global burden of vitamin A deficiency
is a severe public health concern that primarily impacts children under the age of 5 years
and women of childbearing age [15]. Poor vitamin A status is primarily characterized by
blindness; however, it can also cause poor epithelial surface maintenance, reduced growth
and development, impaired immune response, and increased risk of diarrhea [16–18].
Additionally, an inadequate zinc physiological status may potentially affect vitamin A
physiological status via the microbiome [19,20]. Reed et al. (2018)’s study was the first
demonstration whereby the functional capacity of a microbiome under a host zinc-deficient
physiological status presented a reduced microbial capacity to metabolize retinol [19]. This
study also concluded that poor zinc status unfavorably modulates the gut microbiome.
Further, it is evident that populations with zinc and vitamin A deficiencies have a greater
risk of diarrhea [21,22]. Although mechanisms by which dietary zinc and vitamin A
nutriture interact have been postulated, these findings are not from recent years and
remain limited.

Few previous studies have investigated the effects of zinc and vitamin A supple-
mentation in order to elucidate the interrelated nature of zinc and vitamin A on host
health. Regarding immune response, while Kartasurya et al. (2020) found that zinc sup-
plementation alone improved cellular immune response in young children by enhancing
interferon-gamma production, zinc supplementation after vitamin A supplementation
improved the mucosal innate immune response by increasing salivary immunoglobulin A
production [23]. Further, simultaneous long-term zinc and vitamin A supplementation was
shown to be associated with reduced parasitic gastrointestinal infections caused by Giardia
lamblia and Ascaris lumbricoides [24]. Interestingly, host physiology and development were
observed to only improve significantly after the isolated supplementation of vitamin A, as
revealed by the greater weight and height of preschool children [25]. There is an evident
burden to readdress these nutrient interactions. Moreover, there exists a lack of robust
research and biomarkers investigating intestinal functionality and the microbiome in the
context of dietary zinc and vitamin A associations.

The Gallus gallus model is an established in vivo model that has been previously
utilized to investigate the absorption and metabolism of trace minerals such as iron, cal-
cium, and zinc [19,26,27] and non-nutritive bioactive substances [28,29]. The in vivo intra-
amniotic approach has also been employed to investigate the effects of vitamin A on the
immune system of chicken embryos [30]. This procedure makes use of the embryo’s amni-
otic fluid consumption that is naturally initiated on day 17 of embryonic development and
subsequent hatch on day 21. The broiler chicken model is sensitive to dietary micronutrient
deficiencies, it exhibits approximately 73% genetic homology when compared to human
trace mineral and vitamin A transporters, and there is notable similarity at the gut microbial
phylum level (Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria) between broilers
and humans [31–33]. The gut microbiome plays a pertinent role in nutrient metabolism and
absorption, and studying its interactions with dietary zinc and vitamin A in broiler chickens
can provide insights into potential mechanisms underlying host nutrient interactions.

To our knowledge, this is the first study to conduct an in vivo intra-amniotic adminis-
tration of combined zinc (ZnSO4) and vitamin A (retinyl palmitate) concentrations. ZnSO4
is a feed-grade form of zinc that is commonly used to supplement zinc in feed [34]; further,
retinyl palmitate is the most abundant form of host vitamin A storage [35]. The objective of
this study was to observe the effects of zinc and vitamin A—isolated and combined—upon
intestinal functionality, duodenal morphology, and the gut microbiome within a novel
system (Gallus gallus).
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2. Materials and Methods
2.1. Zinc and Vitamin A Preparation

Zinc and vitamin A solutions were prepared as outlined in the appendix (Appendix A.1).
Briefly, zinc sulfate was obtained from Beantown Chemical (Hudson, NH, USA) and retinyl
palmitate was acquired from Sigma-Aldrich (CAS No.: 79–81-2; St. Louis, MO, USA). Zinc
and vitamin A intra-amniotic administration concentrations were determined according
to the National Research Council recommendations for broiler chicks [36]. Further, an
assumed body weight of 20 g was utilized based on previously unpublished data. Zinc
sulfate was diluted with 18 MΩ H2O to obtain a standard dose of 40 mg/kg and a marginal
dose of 20 mg/kg. Retinyl palmitate was solubilized in corn oil, diluted with 18 MΩ
H2O to obtain a 0.5% oil in water solution, and vortexed for the final vitamin A doses of
1500 IU/kg and 100 IU/kg. Vitamin A treatments were prepared in semi-dark conditions.
Zinc sulfate and retinyl palmitate samples were stored in complete darkness at −20 ◦C
until intra-amniotic administration.

2.2. Animals and Design

Cornish-cross fertile broiler chicken eggs (n = 100) were acquired from a commercial
hatchery—Moyer’s chicks, Quakertown, PA, USA. All animal protocols were approved by
Cornell University’s Institutional Animal Care and Use Committee according to the ethics
approval code 2020-0077. The fertile eggs were kept incubated under constant optimal
temperature and humidity in a hatchery at the Cornell University poultry farm. The
osmolarity value for all injection samples was verified prior to administration to ensure a
value of less than 320 Osm.

The weight of viable eggs was verified on day 17 of embryonic incubation and sub-
sequently distributed at random into nine groups. The nine treatment groups (n~11) are
as follows: no injection, 18 MΩ H2O (H2O only), 0.5% oil, normal ZnSO4 (40 mg/kg),
low ZnSO4 (20 mg/kg), normal retinyl palmitate (1500 IU/kg), low retinyl palmitate
(100 IU/kg), normal ZnSO4 + normal retinyl palmitate (40 mg/kg; 1500 IU/kg), and low
ZnSO4 + low retinyl palmitate (20 mg/kg; 100 IU/kg). All treatment solutions were mixed
to ensure proper content dispersion then eggs were injected with the respective treatment
solution (0.5 mL) with a 21-gauge needle into the amniotic fluid (identified by candling).
Immediately following, eggs were sealed with cellophane tape. On day 21, the hatchlings
were weighed (Table S1) and subsequently euthanized by exposure to CO2. The blood,
duodenum, liver, and cecum were collected and stored until further analysis.

2.3. Hepatic Retinol Content Quantification

Liver tissue samples were quickly weighed (15 mg) under semi-dark conditions in
2 mL tubes. 170 µL of 50% methanol (v/v) was added to each sample. A blank (no liver
tissue) was processed alongside. Each sample was then homogenized and an additional
70 µL of 100% methanol was added followed by 20 µL of the internal standard (retinyl
acetate (RA) (MedChemExpress, CAS No.: 127-47-9; Monmouth Junction, NJ, USA)) at
100 pmol/µL in 100% methanol. The samples were homogenized once more, vortexed at
1800 rpm for five minutes at room temperature, then incubated for an hour (−4 ◦C) for
deproteination. Samples were centrifuged at 18,000× g for 10 min (4 ◦C), the supernatant
(200 µL) was collected, then transferred into new vials in which 600 µL Methyl-tert-butyl
ether (Honeywell CAT# 34875) was added. Subsequently, all samples were vortexed at
1800 rpm for 10 min (room temperature). The upper organic phase was transferred into
a clean glass culture tube and evaporated to dryness in a speed vac. The extract was
reconstituted into 200 µL of 75% methanol (v/v).

The prepared samples were measured using high-performance liquid chromatography–
mass spectrometry (HPLC-MS). The HPLC-MS apparatus (ExionLC, Framingham, MA,
USA) was used with a C8 column (Restek, Bellefonte, PA, USA; 100 mm × 1.0 mm)
with a 50 µL autoinjector loop. Mobile phase A: H2O/0.1% formic acid; mobile phase B:
100% methanol. The total run time was 30 min at a constant flow rate (100 µL/min) and
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temperature (5 ◦C) with the following gradient program: 0–2 min to 20% A, 80% B; 2–5 min
holding at 20% A, 80% B; 5–17 min to 2% A, 98% B; 17–23 min holding at 2% A, 98% B;
23–25 min to 20% A, 80% B; 25–30 min holding at 20% A, 80% B. The Sciex OS 2.0 software
was used for quantitation analysis.

2.4. Plasma Zinc Content Analysis

On the day of the hatch, blood was collected from the heart and placed into micro-
hematocrit heparinized capillary tubes (Fisher Scientific Waltham, MA, USA). Serum
zinc content was quantified using an inductively coupled argon-plasma/atomic emission
spectrophotometer.

2.5. Total RNA Extraction

Total RNA extraction was completed with liver and duodenal tissue samples (30 mg)
using the Qiagen RNeasy Mini Kit (RNeasy Mini Kit, Qiagen Inc., Valencia, CA, USA)
according to the manufacturer’s protocol. Briefly, buffer RLT with β-Mercaptoethanol was
added to the samples prior to homogenization. After disrupting the tissue, the samples
were centrifuged, and the supernatant was collected. The remaining lysate was washed
with ethanol, buffer RW1, and buffer RPE (twice) while undergoing centrifugation between
each buffer wash. Finally, the samples were treated with RNase-free water and centrifuged
for one minute at 8000× g to elute the RNA. The remaining content was stored at −20 ◦C
until used.

2.6. Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)

A 20 µL reverse transcriptase reaction was used to create the cDNA from the extracted
RNA. To complete the reaction, the BioRad C1000 touch thermocycler (Bio-Rad, Hercules,
CA, USA) using the Improm-II Reverse Transcriptase Kit (CAT# A1250; Promega, Madison,
WI, USA) was utilized. The cDNA concentration was measured by Nanodrop (Thermo
Fisher Scientific, Waltham, MA, USA) at an absorbance of 260 nm and 280 nm using an
extinction coefficient of 33 (for single-stranded DNA). Genomic DNA contamination was
assessed by a real-time RT-PCR assay for the reference gene samples.

The primers used in RT-PCR were designed based on relevant gene sequences from the
GenBank database using the Real-Time Primer Design Tool software (IDT DNA, Coralville,
IA, USA). Table 1 depicts the primer sequences relevant to zinc and vitamin A metabolism,
immune response, and brush border membrane functionality, with the Gallus gallus primer
18S rRNA as the reference gene. Primer specificity was verified through BLAST searches
against the genomic National Center for Biotechnology Information (NCBI) database.

Table 1. DNA primers.

Analyte Forward Primer (5′-3′) Reverse Primer (5′-3′) Base Pair GI Identifier

Zinc-Related

ZnT1 GGTAACAGAGCTGCCTTAACT GGTAACAGAGCTGCCTTAACT 105 54109718
ZIP4 TCTCCTTAGCAGACAATTGAG GTGACAAACAAGTAGGCGAAAC 95 107050877

∆6 desaturase GGCGAAAGTCAGCCTATTGA AGGTGGGAAGATGAGGAAGA 93 261865208

Vitamin A Metabolism

CRBP2 GGCTACATGGTTGCACTAGACA AACCACCCGGTTATCGAGTC 195 NM_001277417.1
LRAT GATTTTGCCTATGGCGGCAG TTGTCGGTCTGGAAGCTGAC 197 XM_420371.7
RBP4 TGCCACCAACACAGAACTCTC CTTTGAAGCTGCTCACACGG 149 NM_205238.2

STRA6 GTGCGCTGAACTTTGTCTGC TTCTTCCTGCTCCCGACCT 116 NM_001293202.2

Inflammatory Response

NF-κB CACAGCTGGAGGGAAGTAAAT TTGAGTAAGGAAGTGAGGTTGAG 100 2130627
TNF-α GACAGCCTATGCCAACAAGTA TTACAGGAAGGGCAACTCATC 109 53854909
IL-1β CTCACAGTCCTTCGACATCTTC TGTTGAGCCTCACTTTCTGG 119 88702685
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Table 1. Cont.

Analyte Forward Primer (5′-3′) Reverse Primer (5′-3′) Base Pair GI Identifier

Brush Border Membrane Functionality

AMPK CTCCACTTCCAGAAGGTTACTT GCAGTAGCTATCGTTCATCCTATC 140 427185
OCLN GTCTGTGGGTTCCTCATCGT GTTCTTCACCCACTCCTCCA 124 396026
CDX2 CCAGCAATGCCAGCATATTG CGGTTTCTCCTTACCACTTCTT 95 2246388

18S rRNA GCAAGACGAACTAAAGCGAAAG TCGGAACTACGACGGTATCT 100 7262899

ZnT1, Zinc transporter 1; ZIP4, Zinc transporter 4; CRBP2, Cellular retinol-binding protein 2; LRAT,
Lecithin/Retinol Acyltransferase; RBP4, Retinol binding protein 4; STRA6, Stimulated by Retinoic aid 6; NF-κB,
Nuclear factor kappa beta; TNF-α, Tumor necrosis factor-alpha; IL-1β, Interleukin beta; AMPK, AMP-activated
kinase protein; OCLN, Occludin; SI, Sucrase isomaltase; CDX2, Caudal type homeobox 2.

2.7. Microbial Samples and Intestinal Contents DNA Isolation

All protocols were conducted as previously reported [37,38]. Briefly, the cecum con-
tents were isolated and placed into 15 mL tubes containing PBS (pH 7.4) under sterilized
conditions. Glass beads (4-mm diameter) were added, and the samples were vortexed for
three minutes and immediately centrifuged at 1000× g for five minutes. The supernatant
was collected and centrifuged at 4000× g for 10 min. The pellet was washed with PBS and
stored at −20 ◦C until DNA purification. DNA extraction was conducted by treating the
pellet with 50 mM EDTA and 10 mg/mL lysozyme at 37 ◦C. Ultimately, DNA purification
was completed by Wizard Genomic DNA purification kit according to the manufacturer’s
protocol (Promega Corp., Madison, WI, USA).

2.8. Primer Design and PCR Amplification of Bacterial 16S rDNA

The following primers were used: Bifidobacterium, Lactobacillus, Escherichia coli, Clostrid-
ium, and 16S rDNA (universal) according to what was previously described [39–41]. Es-
sentially, each bacterial group is reported as a relative proportion of the bacteria to the
universal primer. PCR products were applied to 1.5% agarose gel with ethidium bromide
stain and quantified with Gel-Pro analyzer version 3.0 (Media Cybernetics LP, Rockville,
MD, USA).

2.9. Histomorphological Examination

Proximal duodenal tissues were collected on the day of hatch and immediately placed
into 4% (v/v) buffered formaldehyde and stored at room temperature, as described previ-
ously [38,42,43]. Later, the samples were dehydrated, cleared, and embedded into paraffin.
Sections were sliced (5 µM), placed on glass slides where duodenal sections were de-
paraffinized in xylene and rehydrated in graded alcohol, and ultimately stained (Alcian
Blue/Periodic acid-Schiff). Histomorphological assessment commenced by using light
microscopy and relevant software (EPIX XCAP—Standard version, Olympus, Waltham,
MA, USA). For each treatment group, three biological samples (n = 3) with six segments
each were measured and analyzed. Villi, crypts, and cell measurements and counts were
performed by selecting ten of each at random per segment. To calculate villus surface area,
the following equation was used:

Villus sur f ace area = 2π × VW
2
×VL

where VW is the average of three villus width measurements, and VL is the villus length.

2.10. Statistical Analysis

Values are reported as the means ± standard error mean (SEM). All parameters were
tested for normal distribution and equal variance using a Shapiro-Wilk test. If accepted,
a one-way analysis of variance (ANOVA) was utilized followed by a Tukey post-hoc test
to identify significance based on p < −0.05. Non-normally distributed parameters were
analyzed using the Kruskal–Wallis test followed by Dunn’s post-hoc test (p < 0.05 or
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p < 0.01). Statistical analyses were conducted using GraphPad Prism (version 8.0) and R
Studio (version 2022.12.0+353).

3. Results
3.1. Plasma Zinc and Liver Retinol Content

Table 2 depicts the plasma zinc and liver retinol concentrations. Between all experi-
mental groups, there were no significant differences observed for concentrations of plasma
zinc, nor were differences observed for hepatic retinol levels.

Table 2. Effect of the intra-amniotic administration of zinc and vitamin A on plasma zinc (µg/mL)
and liver retinol content (pmol/mg).

Treatment
Group

No
Injection H2O Only Oil 0.5% ZN ZL RN RL ZNRN ZLRL

Plasma zinc
(µg/mL) 0.700± 0.322 a 0.471± 0.006 a 0.518± 0.113 a 0.609± 0.067 a 0.756± 0.101 a 0.343± 0.037 a 0.507± 0.118 a 0.578± 0.058 a 0.619± 0.116 a

Liver retinol
(pmol/mg) 16.099± 0.527 a 16.605± 2.518 a 19.020± 0.389 a 18.234± 1.529 a 17.023± 1.328 a 26.590± 5.153 a 21.467± 3.665 a 21.577± 1.561 a 19.226± 1.094 a

Values are the means ± SEM, n = 3. a Treatment groups not indicated by the same letter in the same row are
significantly different (p < 0.05) by Kruskal–Wallis with Dunn’s post-hoc test.

3.2. Gene Expression of Duodenal and Hepatic Zinc-Relevant Metabolism Proteins

Figure 1A depicts the impacts of zinc and vitamin A treatments on the gene expression
of proteins related to zinc and its metabolism. The greatest (p < 0.05) expression of ZnT1,
a protein located on the duodenal basolateral membrane, was observed in the ZNRN
and ZLRL groups respectively when compared to group RL which was the lowest gene
expression of ZnT1. ZIP4 gene expression was lowest (p < 0.05) in the ZLRL group when
compared to RL, ZL, and ZN treatment groups. The gene expression of ∆6 desaturase
within the liver was highest (p < 0.05) in the ZN group compared to all other treatments,
where every group excluding ZN was significantly similar.
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Figure 1. Effect of intra-amniotic administration of zinc and vitamin A on zinc (A), vitamin A (B),
inflammatory (C), and functional (D) protein gene expression duodenal and hepatic (∆6 desaturase,
RBP4, and STRA6). Values are the means ± SEM, n = 3–5. a–d Treatment groups not indicated by the
same letter in the same column are significantly different (p < 0.05) by Kruskal–Wallis with Dunn’s
post-hoc test (ZnT1, ZIP4, and OCLN) or ANOVA with Tukey post-hoc test (∆6 desaturase, CRBP2,
LRAT, RBP4, STRA6, IL-1β, TNF-α, NF-κB, AMPK, and CDX2). ZnT1, Zinc transporter 1; ZIP4, Zinc
transporter 4; CRBP2, Cellular retinol-binding protein 2; LRAT, Lecithin/Retinol Acyltransferase;
RBP4, Retinol binding protein 4; STRA6, Stimulated by Retinoic aid 6; NF-κB, Nuclear factor kappa
beta; TNF-α, Tumor necrosis factor-alpha; IL-1β, Interleukin beta; AMPK, AMP-activated kinase
protein; OCLN, Occludin; SI, Sucrase isomaltase; CDX2, Caudal-type homeobox 2.
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3.3. Gene Expression of Duodenal and Hepatic Retinoid-Related Metabolism Proteins

Duodenal retinoid metabolism protein gene expression was investigated in CRBP2
and LRAT Figure 1B. The greatest (p < 0.05) increase in CRBP2 gene expression was evident
in the RL group when compared to ZN and ZNRN treatments. Yet, the gene expression of
CRBP2 in the RL group was similar to the no injection, H2O only and Oil 0.5% controls, the
RN group, and the ZLRL group. Moreover, the gene expression of LRAT was significantly
lowered in the ZN treatment group compared to the zinc and vitamin A treatment groups.
Treatment groups administered vitamin A (RN, RL, ZLRL, ZNRN) had similar LRAT gene
expression. Gene expression of hepatic RBP4 was similar throughout all experimental
groups. However, hepatic STRA6 gene expression was greatest (p < 0.05) in the ZN group
when compared to the RL and ZNRN treatments. Yet, when comparing the controls (no
injection, H2O only, and Oil 0.5%) to all treatment groups, significant differences were
not evident.

3.4. Gene Expression of Duodenal Inflammatory-Related Proteins

There were no differences observed for duodenal IL-1β gene expression between all
experimental groups Figure 1C. The gene expression of TNF-α was lowered significantly
in the ZN group as compared to the H2O control, and RN, RL, and ZLRL treatments. All
other treatment groups (excluding ZN) were similar to the controls. The highest (p < 0.05)
upregulation of NF-κB was in the ZNRN group, whereas ZLRL, ZL, ZN, and no injection
groups were lower (p < 0.05) than ZNRN, yet similar to the remaining controls (H2O only
and Oil 0.5%) and vitamin A-treated groups.

3.5. Gene Expression of Duodenal Functionality-Relevant Proteins

The gene expression of brush border membrane functionality proteins varied through-
out treatment groups. AMP-activated kinase (AMPK) protein gene expression increase
(p < 0.05) was evident in the ZNRN treatment when compared to the ZLRL group. There
was an upregulation (p < 0.05) of occludin (OCLN) protein gene expression in the ZLRL
group as compared to ZL and RL treatments, but no difference was observed when com-
pared to the control groups. The gene expression of Caudal-type homeobox 2 (CDX2) was
significantly lowered in the RN treatment when compared to RL, but similar between each
concentration of zinc and each treatment administered zinc and vitamin A. Overall CDX2
gene expression was greatest (p < 0.05) in ZNRN, RL, and ZN when compared to the no
injection and Oil 0.5% controls.

3.6. Duodenal Morphology

Duodenal villi surface area (Figure 2A) was significantly greater in the RL group
when compared to the no injection and Oil 0.5% controls (p < 0.01). Villi surface area was
also increased significantly in the ZNRN group when compared to the Oil 0.5% control
(p < 0.05). Further, the ZLRL treatment was greater than the no injection and Oil 0.5%
controls (p < 0.01), and the ZNRN treatment group (p < 0.05). Moreover, ZN and ZL group
crypt depth was shorter (p < 0.05) than the H2O-only group, and ZL was also shorter
(p < 0.05) than the no injection control. RL group crypt depth was observably smaller
(p < 0.05) than the no injection control, and both RL and RN groups had a shorter (p < 0.05)
crypt depth than the Oil 0.5% control. Crypt depth in the ZNRN group was shorter
(p < 0.01) than the Oil 0.5% control, and the ZLRL group crypt depth was significantly
shorter than the Oil 0.5% control.
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The villi goblet diameters of ZLRL and ZNRN were the greatest among all of the
treatment and control groups, as shown in Table 3. Group RL villi goblet diameter was
greater (p < 0.05) than group RN and the controls except for the no-injection control which
was similar. No differences were observed between the zinc-only treatments, yet ZN and
ZL were also among the significantly lowest villi goblet cell diameter measurements. The
largest (p < 0.05) diameter for goblet cells located in the crypt was observed in the ZNRN
group when compared to the ZLRL treatment, the zinc-only and RN treatments, and the
controls. Within the vitamin A-only treatments, group RL crypt goblet cell diameter was
greater (p < 0.05) than the RN group and the controls, while there were no differences
observed between the zinc-only treatments and controls. Moreover, there was a higher
(p < 0.05) count of goblet cells in the crypt per unit area in the RN group when compared
to all other treatments, but not when compared to the RL group on no injection control
(p > 0.05). The lowest (p < 0.05) crypt goblet cell number count was observed in treatment
groups ZN and ZLRL—in which the ZN group was significantly lower than ZL and the
control groups, and ZLRL was lower (p < 0.05) than the ZNRN group and the controls.

Table 3. Effect of the intra-amniotic administration of zinc and vitamin A on goblet cells located on
duodenal villi and crypt.

Treatment
Group

Villi Goblet
Diameter (µm)

Crypt Goblet
Diameter (µm)

Crypt Goblet
Cell Number

Crypt Goblet Cell Type

Acidic Neutral Mixed

No injection 3.37 ± 0.06 bc 2.92 ± 0.06 d 6.33 ± 0.25 ab 5.52 ± 0.23 abc 0.01 ± 0.01 d 0.84 ± 0.08 a

H2O only 3.15 ± 0.07 cd 3.04 ± 0.07 cd 7.11 ± 0.25 a 6.59 ± 0.25 a 0.01 ± 0.01 d 0.51 ± 0.06 abc

Oil 0.5% 2.83 ± 0.07 d 2.90 ± 0.07 d 4.53 ± 0.19 c 3.84 ± 0.19 e 0.07 ± 0.02 bcd 0.62 ± 0.06 ab

ZN 2.93 ± 0.07 d 2.79 ± 0.07 d 3.23 ± 0.14 d 2.60 ± 0.14 f 0.15 ± 0.03 bc 0.55 ± 0.07 bc

ZL 3.03 ± 0.07 d 2.80 ± 0.06 d 4.64 ± 0.22 c 4.40 ± 0.35 de 0.07 ± 0.03 cd 0.27 ± 0.04 c

RN 2.90 ± 0.07 d 3.09 ± 0.07 cd 5.91 ± 0.26 ab 5.40 ± 0.25 abcd 0.08 ± 0.02 bcd 0.55 ± 0.08 bc

RL 3.70 ± 0.08 b 3.58 ± 0.07 ab 5.51 ± 0.23 bc 5.01 ± 0.23 bcd 0.17 ± 0.03 ab 0.33 ± 0.05 c

ZNRN 4.12 ± 0.08 a 3.65 ± 0.05 a 5.28 ± 0.23 bc 4.82 ± 0.23 bcde 0.09 ± 0.03 bcd 0.41 ± 0.06 c

ZLRL 4.08 ± 0.07 a 3.29 ± 0.06 bc 3.15 ± 0.16 d 2.39 ± 0.16 f 0.32 ± 0.05 a 0.51 ± 0.06 bc

Values are the means ± SEM, n = 5. a–f Treatment groups not indicated by the same letter in the same column are
significantly different (p < 0.05) by Kruskal–Wallis with Dunn’s post-hoc test.



Nutrients 2023, 15, 2754 9 of 16

Although the abundance of acidic goblet cells per unit area was greatest in the RN
group among treatment groups, significance is only observed when compared to ZN and
ZLRL treatments and the Oil 0.5% control. Neutral goblet cell count within the crypt per
unit area was increased significantly in the ZLRL group compared to the ZNRN group and
all control groups. The abundance of mixed goblet cells was lowered significantly in the
RN and RL groups as well as in the ZNRN and ZLRL groups relative to the no injection
and Oil 0.5% controls.

Table 4 depicts the observed effects of zinc and vitamin A on Paneth cells in the
duodenal crypts. Group ZN had the greatest (p < 0.05) count of Paneth cells per unit area
when compared to No injection and H2O-only controls, as well as RN, ZNRN, and ZLRL
treatments. Among treatment groups, the largest Paneth cell diameter was observed in ZN,
RN, and ZLRL, whereas group ZL had the smallest Paneth cell diameter.

Table 4. Effect of the intra-amniotic administration of zinc and vitamin A on Paneth cells.

Treatment
Group

No
Injection H2O Only Oil 0.5% ZN ZL RN RL ZNRN ZLRL

Crypt Paneth
Cell Number 1.17± 0.06 de 1.31± 0.04 bcd 1.36± 0.05 abcd 1.49 ± 0.05 a 1.32± 0.04 abc 1.07 ± 0.02 e 1.38± 0.04 ab 1.23± 0.03 bcde 1.18± 0.03 de

Paneth Cell
Diameter (µm) 1.69 ± 0.03 a 1.56± 0.03 abc 1.46± 0.03 cde 1.64 ± 0.03 a 1.33 ± 0.02 e 1.59± 0.03 ab 1.41± 0.03 de 1.47± 0.02 bcd 1.59± 0.03 ab

Values are the means ± SEM, n = 5. a–e Treatment groups not indicated by the same letter in the same column are
significantly different (p < 0.05) by Kruskal–Wallis with Dunn’s post-hoc test.

3.7. Cecal Bacterial Abundance of Select Populations

The relative abundance of Bifidobacterium was greatest (p < 0.05) in the Oil 0.5% control
group, while the lowest abundance was observed in treatment groups RL, ZNRN, and
ZLRL (Figure 3). There were no significant differences between treatment groups and
controls for Lactobacillus abundance in the cecum. The ZLRL group had a great abundance
of E. coli compared to No injection and Oil 0.5% controls and the ZN group. Further, the
abundance of E. coli in the ZNRN and RL groups was significantly greater than the Oil
0.05% control and ZN group. Lastly, the relative abundance of Clostridium was reduced in
RL, ZNRN, and ZLRL groups compared to Oil 0.05% control.
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4. Discussion

Given that there is a lack of research assessing intestinal functionality and the mi-
crobiome in the context of dietary zinc and vitamin A associations, this present study
was conducted to investigate the isolated and combined effects of zinc and vitamin A
nutriture via intra-amniotic administration. Intra-amniotic administration is a method that
has been previously used to investigate the effects of particular nutrients on host physiol-
ogy [41,43–45]. The broiler chicken is a valuable model for investigating the associations
between dietary zinc and vitamin A on host physiology due to the genetic homology with
human nutrient metabolism proteins, taxonomic similarity at the phylum level exists, and
sensitivity to micronutrient deficiencies [31–33].

Concerning gene expression, mRNA expression was assessed in duodenal and hepatic
tissue for zinc, vitamin A, and inflammatory- and functionality-related proteins. From
the SLC39 family, ZIP4 is a zinc influx transport protein located on the apical side of the
brush border membrane that imports zinc into the cytoplasm of the enterocyte [6,46]. A
recent review by Kambe et al. (2015) thoroughly highlighted the unique role of ZIP4,
as it is only expressed during dietary zinc deficiency [6]. In our study, we observed
that the marginal concentration of zinc and vitamin A combined significantly (p < 0.05)
downregulated the expression of ZIP4 when compared to RL, ZL, and ZN treatment
groups (Figure 1A). This suggests an improved level of zinc in duodenal tissue despite the
marginal dietary concentrations of zinc and vitamin A administered. This may be further
supported by the observed upregulation of ZnT1 mRNA expression in the combined
zinc and vitamin A treatments. ZnT1 is the zinc efflux transporter protein located on
the basolateral membrane of the enterocyte that functions to shuttle cytosolic zinc to
the blood for systemic distribution [47,48]. Upregulation of ZnT1 mRNA occurs due to
increased cellular zinc [6,49]. Although plasma zinc concentrations did not differ between
treatments (Table 2) and ∆6 desaturase gene expression was only upregulated in the ZN
group, we hypothesize the aforementioned results suggest an initial enhanced metabolic
response within the primary site of absorption for zinc due to the presence of vitamin
A [27]. Hence, we believe a longer exposure to the nutrients would produce a significant
systemic response. For instance, a six-week feeding trial conducted in broiler chickens by
Knez et al. (2018) observed an upregulation of ∆6 desaturase gene expression, higher serum
zinc concentration, and lower LA:DGLA (linoleic acid/dihomo-γ-linolenic acid) ratio in
treatments administered high-zinc biofortified wheat [50]. Moreover, Figure 1B reveals
the gene expression of vitamin A intestinal (CRBP2 and LRAT) and hepatic (RBP4 and
STRA6) metabolism proteins. Likewise with zinc, hepatic retinol concentrations did not
differ; yet CRBP2 and LRAT gene expression significantly differed among treatment groups.
Enterocytes contain CRBP2 (cellular retinol-binding protein-II)—a retinol-binding protein
that is expressed to deliver retinol to LRAT (lecithin:retinol acyltransferase) whereby retinol
is esterified to form retinol ester for further transportation and hepatic storage [51,52]. Few
studies have investigated the impact of vitamin A status on duodenal CRBP2 and LRAT
gene expression, and our findings reveal an upregulation of LRAT when the marginal
concentration of vitamin A (RL) was administered and a significant downregulation when
the adequate concentration of zinc (ZN) was administered. Previous research has reported
that levels of LRAT gene expression decrease in the heart, liver, and lungs of vitamin
A-deficient animals [53–55]. Our findings indicate that the administration of zinc alone
did not suggest an improved vitamin A status via vitamin A metabolism protein gene
expression. Hepatic expression of RBP4 (retinol-binding protein 4) and STRA6 (Stimulated
by retinoic acid 6) did not differ when compared to the no injection control. RBP4 functions
to export retinol from the liver to extrahepatic tissues, while STRA6 is a transmembrane
transporter of the retinol-RBP4 complex [56–58]. We believe a longer exposure to the
treatments would stimulate a clearer gene expression of hepatic vitamin A metabolism
proteins.

Moreover, vitamin A is known for its maintenance role in gut homeostasis via immune
response and cell differentiation [59]. IL-1β is a proinflammatory cytokine that initiates
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an inflammatory response, and as such, the similarity throughout all treatments and the
subsequent inflammatory response elements (TNF-α and NF-κB) indicates the absence of
duodenal epithelial inflammation [60,61]. Further, our results reveal the ZN and ZNRN
treatments simultaneously elevate AMPK and CDX2 expression. AMPK participates in
maintaining intestinal epithelial integrity via tight junctions [62], however, occludin expres-
sion did not differ in the aforementioned groups. Since zinc exposure is also hypothesized
to induce AMPK activation [62,63], this may have influenced AMPK upregulation. Con-
versely, while a previous study by Kim et al. (2015) found retinoic acid supplementation in
human endothelial cells increased AMPK phosphorylation [64], our results do not agree.
Therefore, future studies should include utilizing the active metabolite, retinoic acid, to ob-
serve the effects on gastrointestinal functionality. We observed a concomitant upregulation
of AMPK and CDX2 in the normal zinc and normal zinc with vitamin A treatments. CDX2,
or caudal-type homeobox 2, is a transcription factor that AMPK promotes to enhance
intestinal epithelial homeostasis by regulating cell differentiation [65].

Although zinc and vitamin A are individually known for their maintenance role in
gastrointestinal homeostasis, the interactions between vitamin A and zinc on intestinal
epithelial morphology are not well characterized [66,67]. Interestingly, marginal combined
vitamin A and zinc treatments enhanced the villi surface area greater than the normally
combined treatments (See Figure S1 for representative duodenal morphometric images). A
similar trend was also observed as the marginal treatment of isolated vitamin A improved
villi surface area greater than the normal vitamin A treatment. A study by Wang et al.
(2020) reported long-term vitamin A supplementation in piglets increased jejunal villus
height and surface area by regulating intestinal stem cells [68]. However, the study also
observed an increased crypt depth which was contrary to our results (Figure 2B). All
treatments of zinc, vitamin A, and the nutrients combined yielded shorter crypt depths
(p < 0.01) when compared to the water or 0.5% oil controls. Intestinal morphology is a
primary indicator of gastrointestinal development and health— particularly, villus structure
and crypt depth [69,70]. The lengthening of villi and shortened crypt depth in broilers
was previously associated with sufficient growth performance and increased nutrient
metabolism [71]. Indeed, enterocytes emerge from the crypts of Lieberkühn and migrate
onto the villus to facilitate nutrient metabolism and absorption [72]. The shorter crypts
and larger surface area are indicative of enhanced small intestine health because a slower
enteric epithelial cell turnover rate allows sufficient time for cellular differentiation and
therefore, optimal enterocyte function [73]. Overall, we observed a synergistic interaction
between zinc and vitamin A for intestinal epithelial maintenance: increased villi goblet cell
diameter in ZLRL and ZNRN groups, and increased crypt goblet cell diameter in group
ZNRN. Further, group ZLRL reduced the number of goblet cells per unit area within the
crypts. Goblet cells are endogenous to intestinal epithelial crypts with specialized functions
to support the enteric environment via mucin glycoproteins and mucous production [74].
Poor vitamin A physiological status was previously shown to increase the number of
goblet cells and cause severe atrophy [75]. While utilizing a murine model, the authors
also reported decreased Paneth cell count and overall dysfunction of intestinal epithelial
cells. We did not observe a similar trend in our study (Table 4) perhaps due to the one-time
administration of the treatments, whereas the previous study was conducted with an aging
model over an extended period.

The complex concomitance of gut microorganisms and nutrients is essential for host
physiology [67,76,77]. Hence, we assessed the relative abundance of select cecal microbial
populations after zinc and vitamin A doses (Figure 3). When compared to the 0.5% oil
control, we found marginal VA administration and both marginal and normal adminis-
tration of combined Zn/VA to decrease the abundance of Bifidobacterium and Clostridium
genera yet increase the relative abundance of E. coli. Previous work in various animal
models has reported Zn and VA to alter gut microbiota; however, the findings are often
inconsistent. A recent study revealed ZnSO4 supplementation increased total gut bacteria
in weaned piglets, but without modulation of Lactobacillus, E. coli, and Bifidobacterium
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abundance [78]. However, in a study using a pigeon squab model, the authors reported
10 mg daily supplementation of zinc methionine reduced the abundance of Lactobacillus,
Enterococcus, and Bifidobacterium populations [79]. Host age is also a factor that can impact
the microbiome and must be considered when interpreting results: Davis et al., (2022)
found Lactobacillus species to increase in Zn-supplemented older mice, but not in young
mice [80]. It appears that in the study age-related effects contributed to beta diversity
more than dietary zinc status which was correlated to immunomodulatory-related taxa
such as Lactobacillus spp. and Ruminococcaceae spp. Moreover, VA supplementation was
shown to increase the abundance of Bifidobacterium spp. in VA-supplemented male infants.
However, this was not observed in VA-supplemented female infants [81]. Further, the
complex interactions between VA and gut microbiota were elucidated to contribute to
gut homeostasis via commensal bacteria such as Lactobacillus spp. [82] and Bifidobacterium
bifidum [83] independently converting dietary retinol to retinoic acid (the active form of
VA). This conversion in the intestinal mucus layer can ultimately influence host physiology
as retinoic acid uptake occurs into enterocytes, regulates gene expression through retinoic
acid response elements, and mediates intestinal immune response [83,84].

5. Conclusions

Here, we have assessed the effects of Zn, VA, and combined Zn/VA on intestinal
morphology, functionality, and the microbiome utilizing a novel, naïve in vivo model.
Overall, these results suggest a potentially improved intestinal epithelium proceeding
with Zn and VA intra-amniotic administration. Intestinal functionality and gut bacteria
were modulated, albeit differently than in previous studies. Moreover, the intra-amniotic
administration approach is an advantage of this study in that a physiological response
was garnered in a living, developing system without requiring the use of a diet. Further
research and characterization of long-term responses and the gut microbiome profile should
be completed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15122754/s1, Table S1: Effect of the intra-amniotic administration
of zinc and vitamin A on bodyweight (g); Table S2: Dunn’s post-hoc test on duodenal villi surface
area data; Table S3: Dunn’s post-hoc test on duodenal crypt depth data; Figure S1: Representative
images of duodenal morphology per treatment.

Author Contributions: Conceptualization, E.T. and C.J.; methodology, C.J., N.K. and E.T.; inves-
tigation, C.J. and N.K.; data curation, C.J. and N.K.; writing—original draft preparation, C.J. and
E.T.; writing—review and editing, E.T.; supervision, E.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Animal protocol used in this study was conducted according
to the guidelines of the Declaration of Helsinki and were approved by the Cornell University
Institutional Animal Care and Use committee by the ethic approval code: 2020-0077.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Ruchika Bhawal and Beth Anderson at the Cornell University BRC
Proteomics and Metabolomics Facility (RRID:SCR_021743) for their support in methodology develop-
ment and analysis of the hepatic retinol contents, using HPLC-MS.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Zinc and Vitamin A Preparation

Zinc sulfate (ZnSO4) was obtained from Beantown Chemical (Hudson, NH, USA)
and retinyl palmitate (RP) was acquired from Sigma-Aldrich (CAS No.: 79-81-2; St. Louis,
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MO, USA). ZnSO4 and RP intra-amniotic administration concentrations were determined
according to the National Research Council recommendations for broiler chicks [36]. An
assumed bodyweight of 20 g was utilized based on previous unpublished data. Stock
solutions were prepared by diluting ZnSO4 with 18 MΩ H2O (10 mg/mL) and RP with
corn oil (10 mg/mL). Then, the solution for normal ZnSO4 treatment was prepared by
diluting 1.6 mL of the ZnSO4 stock in 8.4 mL 18 MΩ H2O, and the low ZnSO4 treatment
solution was prepared by diluting 0.8 mL of the ZnSO4 stock in 9.2 mL 18 MΩ H2O.
Therefore, ZnSO4 was diluted with 18 MΩ H2O to obtain a standard dose of 40 mg/kg and
a marginal dose of 20 mg/kg.

Further, normal RP solution was prepared by diluting 33 µL of RP stock solution
in 17 µL corn oil and 9.95 mL of 18 MΩ H2O, and the low RP solution was prepared by
diluting 2.2 µL of RP stock solution in 47.8 µL corn oil and 9.95 mL of 18 MΩ H2O. Overall,
RP was solubilized in corn oil and diluted with 18 MΩ H2O to obtain a 0.5% oil in water
solution for the final doses of 1500 IU/kg and 100 IU/kg.

In addition, the treatment of normal ZnSO4 and RP was prepared by adding 1.59 mL
of the ZnSO4 stock to 7.91 mL 18 MΩ H2O, then 33 µL of the RP stock and 17 µL of corn oil
was added. Lastly, the treatment of low ZnSO4 and RP was prepared by adding 0.796 mL
of the ZnSO4 stock to 8.704 mL 18 MΩ H2O, then 2.2 µL of the RP stock and 47.8 µL of
corn oil was added. Essentially, the solutions were prepared as combined doses to obtain
a normal zinc and vitamin A combined solution (40 mg/kg; 1500 IU/kg) and a marginal
zinc and vitamin A combined solution (20 mg/kg; 100 IU/kg). All solutions containing
vitamin A were prepared in semi-dark conditions. Solutions were vortexed and stored in
completed darkness at −20 ◦C until intra-amniotic administration.
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