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Abstract: This review focuses on mechanisms of calorie restriction (CR), particularly the growth
hormone (GH)/insulin-like growth factor-1 (IGF-1) axis as an evolutionary conserved signal that
regulates aging and lifespan, underlying the effects of CR in mammals. Topics include (1) the
relation of the GH-IGF-1 signal with chronic low-level inflammation as one of the possible causative
factors of aging, that is, inflammaging, (2) the isoform specificity of the forkhead box protein O
(FoxO) transcription factors in CR-mediated regulation of cancer and lifespan, (3) the role for FoxO1
in the tumor-inhibiting effect of CR, (4) pleiotropic roles for FoxO1 in the regulation of disorders,
and (5) sirtuin (Sirt) as a molecule upstream of FoxO. From the evolutionary view, the necessity of
neuropeptide Y (Npy) for the effects of CR and the pleiotropic roles for Npy in life stages are also
emphasized. Genes for mediating the effects of CR and regulating aging are context-dependent,
particularly depending on nutritional states.

Keywords: calorie restriction; FoxO transcription factor; sirtuin; neuropeptide Y; pleiotropy of
CR genes

1. Introduction

Laboratory rodents often continue to gain body weight after puberty until certain age points
under standard husbandry conditions in which animals can freely access food, often called ad libitum
(AL) feeding. In contrast, restriction of food intake in mice by 30% to 40%, when initiated at young
age, e.g., 12 weeks of age, limits the gain in body weight [1]. Dietary regimens involving food
restriction, here referred to as calorie restriction (CR), reduce morbidity and mortality in experimental
animals compared with AL feeding animals [1]. Since the original report on the effects of CR in
1935 [2], many laboratories have confirmed the effects of CR and investigated the underlying molecular
mechanisms. Notably, a recent meta-analysis of lifespan studies in laboratory rodents described various
responses to CR, that is, no extension or even shortened lifespans in CR rodents [3]. The analysis
also suggested potentially substantial effects of the genotypes of animals as well as husbandry on
experimental outcomes in CR studies. A genome-scale metabolic model and transcriptome data in
the male Sprague Dawley rat liver also revealed varied metabolic responses of the liver with different
levels and durations of CR [4]. Recent studies have also identified sexual dimorphism in physiological
responses to CR [5,6]. Kane et al. [6] found that female rodents may have a greater response to CR than
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male rodents, with modulated sensitivities to mechanistic target of rapamycin (Mtor), growth hormone
(GH), insulin-like growth factor-1 (IGF-1) or fibroblastic growth factor 21 and greater inflammatory
and mitochondrial health responses [6]. Therefore, the effects of CR may not be universal as originally
expected. Nonetheless, CR models in a range of organisms have contributed to our understanding of
the aging process.

Epistasis analyses using mutant strains in lower organisms such as Caenorhabditis elegans (C. elegans)
have revealed genes required for the effects of CR (referred to here as CR genes) and the signal pathways
mediating the effects of CR. In C. elegans, a number of genes such as aak-2, daf-16, skin-1, clk-1, and pha-4
have been reported to be associated with the life-prolonging effect of CR [7]. Some of these genes
also mediate the effects of CR in mice. Previous studies also reported that mutations of single genes
(referred to here as longevity genes) can extend lifespan even in AL feeding animals. Many of
these genes can be functionally categorized into genes associated with nutrient sensing or metabolic
responses [8]. Among these gene mutations, reduction- or loss-of-function mutations of genes in the
growth hormone (GH)-insulin-like growth factor-1 (IGF-1) signaling consistently extend lifespan in a
range of organisms [8]. Since CR is known to decrease the plasma concentration of GH and IGF-1,
the GH-IGF-1 pathway is considered an evolutionary conserved pathway for longevity and a main
aspect of the mechanism of CR [9].

Thus far, a total of 112 CR genes in yeast, 62 in nematode, 27 in drosophila, and seven in mice
have been identified and are listed in the database [10]. Among these genes, forkhead box protein O 3
(Foxo3) and sirtuin 1 (Sirt1) genes are common in mice, nematodes, and flies. CR and longevity gene
models have elucidated signal pathways for the extension of lifespan, although the signal pathways are
context dependent. This review will focus on FoxO transcription factors and the sirtuin deacetylases
that are upstream of FoxO. We also discuss roles for neuropeptide Y (Npy), which is essential for the
effects of CR in mice and thus mammals.

2. A Central Role for GH and IGF-1 in the Regulation of Lifespan

Previous studies reported that a single gene mutation can prolong the lifespan of experimental
animals under AL conditions of standard diets. Genetic analyses of long-lived strains of nematodes
identified a mutation in a single gene, age-1 [11]. This gene was later found to encode a component of
phosphoinositide 3-kinase (PI3K) that is important for growth factor signals such as those modulated
by IGF-1 [12]. Kenyon et al. showed that mutation of daf-2, which is associated with resistance
larval development, prolongs the lifespan of C. elegans, and daf-16 is required [13]. Daf-2 and Daf-16
correspond to the receptor for IGF-1 and the FoxO transcription factor in mammals, respectively. Thus,
in C. elegans, attenuated IGF-1 signaling promotes activation of Daf-16, leading to transcriptional
modulation of its target genes and extended lifespan. Even in Drosophila, mutations in genes in
insulin-like signaling such as Inr (insulin-like receptor) and chico (insulin-receptor substrate) can extend
the lifespan [14]. In these conditions, dFoxo is also required.

The lifespan of C. elegans can also be extended by suppression of target of rapamycin (Tor in
mammalians, mechanistic target of rapamycin, Mtor), which is downstream of IGF-1 signaling
and promotes cell proliferation and division when nutrients are abundant [15]. Mtor forms
complexes (mTORC1 and mTORC2) with other molecules in nutrition and energy rich conditions.
These complexes activate transcription and translation when insulin and growth factors concomitantly
rise. Mtor complexes promote protein synthesis and cell division while inhibiting autophagy. All genetic
manipulations that suppress Mtor identified thus far can extend the lifespan of Drosophila [16].

In mammals, GH is upstream of the IGF-1 signal. GH is competitively controlled by Somatostatin
and GH-releasing hormone (Ghrh), which are secreted from hypothalamic neurons. In mice,
reduction-of-function gene mutations in molecules involved in the signal between Ghrh and IGF-1
consistently prolong lifespan [17]. Furthermore, longevity is achieved by inhibition of mTORC1 by
rapamycin [18], deletion of the S6K gene [19], and suppression of Mtor [15,20].
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Together these results in a range of experimental animals indicate that signal attenuation of the
IGF-1 signal, activation of FoxO transcription factor, and suppression of Mtor are key mechanisms for
slowing aging and prolonging lifespan (Figure 1). However, it should be noted that the life-extending
effect of the reduced IGF-1 signaling could be sexually dimorphic. In Igf1 receptor (Igf1r) gene
heterozygotic knockout (Igf1+/−) mouse models of different genetic backgrounds (129/SvPas and
C57BL/6J) [21,22], only female Igf1r+/− mice significantly outlived controls, whereas this was not
observed for males. Genetic studies in humans also indicate that genetic variations causing reduced
IGF-1 signaling are beneficial for survival in old age only in females but not in males [23–25].
The mechanisms underlying the sexual dimorphism for longevity in the context of reduction of IGF-1
signaling remain to be explored.
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Figure 1. Mechanisms underlying the life-extending and tumor-inhibiting effects of calorie restriction in
mammals. Inhibition of the growth hormone (GH)-insulin-like growth factor-1 (IGF-1) signal promotes
activation of FoxO1, FoxO3, and Nrf2 transcription factors, resulting in activated target genes and
inhibition of cancer and aging, and thus counteracting “inflammaging.” By contrast, attenuation of
the GH-IGF-1 signal reduces activity of mechanistic target of rapamycin (Mtor). In C. elegans, the
Daf-2 pathway regulates skn-1 (mammalian Nrf2), although no evidence for this regulation is shown
in mammals. Sirtuins (Sirts) modulate activities of key molecules mediating calorie restriction (CR)
effects by epigenetic mechanisms, mostly deacetylation. Dotted and straight lines represent attenuated
and strengthened signals, respectively. Arrows and bars represent activation and inhibition of target
molecules, respectively.

3. Possible Relation of the GH-IGF-1 Axis with Inflammaging

Generalized chronic low-level inflammation may be a causative factor for aging and related
diseases. This low-level inflammation associated with the aging process is called inflammaging [26].
It is also called sterile inflammation because it is not caused by infection.

Senescent cells that increase in tissues with age not only stop undergoing cell division but also
express inflammatory cytokines such as IL-1α, IFNβ, chemokines, matrix metalloproteases, and growth
factors, inducing local inflammation in tissues. This phenomenon is called the senescence-accelerated
secretory phenotype (SASP) [27]. A recent report showed that the average lifespan of mice can be
extended by selectively removing senescent cells expressing p16 Ink4a from tissues [28]. The removal of
senescent cells also suppresses age-related lipodystrophy, tumorigenesis, glomerulosclerosis of the
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kidney, and so on. This report indicates that senescent cells are involved in the progression of aging
in animals.

SASP was reported to be caused by induction of type I interferon (IFN-I) signal by activating
transcription of the retrotransposable element long-interspersed element-1 (L1) [29]. In normally
proliferating cells, L1 is suppressed by a cell monitoring mechanism, e.g., three prime repair exonuclease
1 (Trex1) and the RB transcriptional corepressor 1 (Rb1). In senescent cells, these repression mechanisms
are disrupted, leading to activation of L1 via activation of FoxA1 [29].

During exposure of cells to harmful stimuli and conditions, such as chemicals and ischemia,
the injured cells excrete or secrete various molecules such as ATP, uric acid, oxidatively modified
DNA, and aggregated proteins, which are called damage-associated molecular pattern molecules
(DAMPs) [30]. DAMPs bind to receptors, such as Toll-like receptors, in the cell membrane and
cytoplasm of resident macrophages and elicit innate immune and inflammatory responses. The sensor
of innate immunity, called the nucleotide-binding domain, leucine-rich-containing family, pyrin
domain-containing-3 (NLRP3) inflammasome, is activated, and macrophages secrete inflammatory
cytokines and exacerbate inflammatory responses. These inflammatory signals have been reported to
damage surrounding parenchymal cells. As with senescent cells, this minor but chronic inflammatory
response at the cellular level is thought to be the main factor driving aging and disease, including cancer.

GH is not only secreted from anterior pituitary cells but is also expressed in various cells
including immune cells. The GH receptor (Ghr) is also expressed in a wide range of cells, and the
GH signaling system is activated by endocrine action as well as by autocrine and paracrine actions.
Recent studies suggested that the sensitivity of the GH-IGF-1 signal increases with age and that DAMP
inflammasome is likely to be activated [31]. This activation of the inflammasome is suppressed in
long-lived Ghr-deficient mice [31]. Since CR also attenuates GH-IGF-1 signals, suppression of the
inflammasome could be a main component of the anti-aging mechanism of CR.

4. Differential Regulation of Cancer and Lifespan by CR via FoxO Transcription Factors

Although multiple studies have used a variety of CR regimens in invertebrates and vertebrates,
most of the CR regimens extend lifespans in these organisms. To analyze the signal pathways
mediating the life-prolonging effects of CR, epistasis experiments in which mutation of a single gene
causes attenuation or abrogation of the life-prolonging effect of CR have been conducted, mostly
in C. elegans. These experiments have identified CR genes such as daf-16, skn-1, pha-4, clk-1, aak-2,
and hsf-1, although the genes required for the effect of CR may differ depending on methods of
CR [7]. These CR genes suggest the importance of regulation of insulin-like signaling, stress response,
and mitochondrial bioenergetics.

CR is known to lower plasma concentrations of insulin and IGF-1 in mammals [9]. Therefore, IGF-1
signaling and thus FoxO transcription factors, the mammalian orthologs of Daf-16, were considered to
play roles in the effects of CR. As mentioned, loss of Daf-16 abrogates the life-extending effects of CR in
C. elegans [7]. In mammals, the FoxO transcription factor family includes four isoforms, FoxO1, FoxO3,
FoxO4, and FoxO6 [32]. We tested the hypothesis that FoxOs are involved in the effects of CR by two
lifespan studies using Foxo1 and Foxo3 knockout mice.

For the FoxO1 study, we used Foxo1 + /− mice, because Foxo1−/− mice died around embryonic day
11 due to defects in the branchial arches and remarkably impaired vascular development of embryos
and yolk sacs, indicating the necessity of Foxo1 in development of the cardiovascular system [33].
In comparison, Foxo1+/− mice grow normally through pre- and post-natal stages. In Foxo1+/− mice,
expression levels of Foxo1 mRNA in the examined tissues were reduced by 50% compared with levels in
wild-type (WT) mice [34]. Results of the lifespan study indicated that CR extended lifespan in Foxo1+/−

mice to the same extent as in WT mice; however, unlike CR in WT mice, CR did not significantly reduce
the proportion of Foxo1+/− mice bearing spontaneously occurring tumors. By contrast, in Foxo3+/− and
Foxo3−/− mice, CR did not extend lifespan [35], indicating the requirement of the Foxo3 gene in the
life-extending effect of CR in mice. With AL feeding, Foxo3+/− mice displayed no reduction of lifespan
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compared with WT mice, while Foxo3−/− mice showed a slight reduction of lifespan [35]. Although
the effect of CR in Foxo1-null mice should be investigated, our lifespan studies suggest a differential
regulation of cancer and lifespan by CR via Foxo1 and Foxo3 (Figure 1).

In early studies using mice with germline-deleted Foxo1, -3, and -4 genes, deletion of a single
gene had little effect on longevity or cancer development in postnatal life under AL conditions [36].
One exception was female Foxo3−/− mice, in which occurrence of pituitary adenoma was accelerated
compared with WT and Foxo3+/− mice. Conditional, widespread somatic Foxo deletion in adult
tissues was also achieved using an interferon-inducible Mx-Cre transgene to circumvent embryonic
lethality of FoxO1 deficiency [36]. When the three Foxo genes were deleted in mice at the same time,
tumor incidences were elevated, while lifespan was shortened. In particular, the incidences of thymic
lymphoma and hemangioma were increased, compared with groups of mice retaining at least one
Foxo allele [36]. Foxo1, -3, and -4 gene-deleted mice showed premature death due to the tumors. These
experiments indicated that FoxO transcription factor genes are complementary as for development of
cancers [36]. In other words, even if one Foxo gene is deleted, the other Foxo genes can substitute in AL
conditions. However, our lifespan studies [34,35] indicate differential roles for FoxO1 and FoxO3 in
the effects of CR.

The Daf-16 isoform-specific extension of lifespan in the context of reduction of IGF signaling has
been also reported in C. elegans. The daf-16 genomic locus encodes three groups of transcripts (a, b,
d/f/h) that are transcribed from distinct promoters [37–39]. Depending on the experimental setting,
Daf-16a and/or Daf-16d/f/h, but not Daf-16b, play a major role in the extension of lifespan [39,40].

Numerous human genetic studies have indicated a correlation of the minor alleles of the FOXO3
gene with longevity [41]. However, there is no significant correlation of FOXO1 genotypes with
longevity. A genome-wide meta-analysis of 30844 adults of European ancestry from 21 studies
confirmed that the known longevity-associated FOXO3 variant rs2153960 is a genome-wide significant
SNP for lowering IGF-1 concentrations [42].

The isoform specificity of FoxO and Daf-16 in the life-extending effect of CR as well as the
human genomic studies for longevity suggest that the mechanism of lifespan control has been
evolutionarily conserved. A recent study showed that FoxO6 functions in age-related insulin resistance
and inflammation in rats with AL feeding, although CR was not investigated [43]. Thus, potential
roles for FoxO4 and FoxO6 in the effects of CR remain to be elucidated.

How FoxO3 regulates lifespan remains unclear. Our microarray analysis in Foxo1+/− and Foxo3+/−

CR mouse liver show that many genes are differentially regulated in these mice under conditions of
CR (Tables S1 and S2). The pathway analysis of the differentially expressed genes between WT-CR and
Foxo1+/− CR mice as well as WT-CR and Foxo3+/− CR mice also suggests that a number of inflammation
and immune response pathways are activated in Foxo3+/− CR mice. By contrast, in Foxo1+/− CR mice,
some T-cell functions may be down-regulated. FoxO3 is reported to prevent excess activation of
interferone (IFN)-I in response to viral infection [44]. A ternary complex consisting of FoxO3, nuclear
co-repressor 2 (Ncor2) and histone deacetylase 3 (Hdac3) exists on the promoter of interferon regulatory
factor 7 (Irf7); a loss of FoxO3 enhances histone acetylation in the promoter of Irs7 gene, resulting in
increased levels of Irf7 mRNA in macrophages [44]. An experimental stimulation of IFN-I activated
the PI3K/Akt pathway, which in turn led to FoxO3 degradation. FoxO3 could play a role in optimizing
host defense mechanisms against harmful stimuli as well as under unstimulated conditions by limiting
the transcription of Irf7 and then Irf7-induced target inflammatory genes. This process could minimize
activation of the inflammasome. Reduction of FoxO3 may disrupt the FoxO3-Irf7 regulatory circuit
under CR conditions.

5. FoxO1 Mediates the Tumor-Inhibiting Effect of CR

A tumor-inhibiting but not life-extending effect of CR has been reported in Nrf2−/− mice [45].
The Nrf2 transcription factor belongs to the cap’n’collar basic-leucine zipper (CNC-bZIP) family.
Under unstressed cellular conditions, Nrf2 binds to Keap1 in the cytoplasm and is degraded by
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the ubiquitin-proteasome system [46]. When the redox environment changes due to oxidative
stress, Nrf2 and Keap1 dissociate and Nrf2 moves into the nucleus. Nrf2 forms heterodimers with
other transcription factor cofactors such as Maf, binds to the antioxidant response element (ARE)
in the promoter of target genes, and promotes the gene expressions of antioxidants and phase II
detoxification enzymes.

The role of Nrf2 in the tumor-inhibiting effect of CR was tested in a two-stage skin carcinogenesis
model using 7,12-dimethyl-benz (a) anthracene (DMBA) and 12-O-tetradecanoyl phorbol 13-acetate
(TPA) [45]. In WT mice, CR significantly suppressed the development of skin tumors; in Nrf2−/− mice,
the CR-mediated inhibitory effect on tumor growth was absent. In Nrf2+/− mice, the inhibitory effect
was attenuated, suggesting a gene-dose dependency of Nrf2 in the inhibition of tumor formation by
CR. However, even in Nrf2−/− mice, the life-extending effect of CR was preserved [45]. These results
suggest that Nrf2 plays a major role in the tumor-inhibiting effect of CR but not for lifespan extension.

We also conducted a two-stage skin carcinogenesis model experiment to confirm the potential role
for FoxO1 in the effect of CR, following the protocol of Pearson et al. [46] Appendix A. Briefly, DMBA
was applied in the dorsal skin of mice at 31 weeks of age; after two weeks, TPA treatment was initiated.
Skin papilloma started occurring six weeks after DMBA application, and thus four weeks later starting
TPA treatment (Figure 2A). Our findings showed that haploinsufficiency of Foxo1 accelerated the
occurrence of skin papilloma, particularly in CR conditions (WT-CR vs. Foxo1+/− CR, p = 0.0103 by
log-rank test; Figure 2A), confirming the role for FoxO1 in the tumor-inhibiting effect of CR, as in Nrf2.

TPA promotes epidermal hyperplasia in the pre-neoplastic phase via reactive oxygen species
(ROS) production and inflammation [47]. We assessed the epidermal thickness during TPA treatment
and the proliferative activity of epidermal cells after TPA treatment. Epidermal thickness was greater
in Foxo1+/− mice than in WT mice (genotype, p = 0.0331 by 3-f ANOVA: Figure 2B), although diet did
not affect the thickness (diet, p = 0.2993 by 3-f ANOVA). Epidermal cell proliferation was greater in
Foxo1+/− mice (genotype, p = 0.0193 by 3-f ANOVA; Figure 2C); the rate of apoptosis did not differ
between WT and Foxo1+/− mice (data not shown). Thus, the reduced FoxO1 promotes epidermal cell
proliferation in response to TPA.

We also evaluated macrophage infiltration in the dermis as an index of inflammation. Although
the number of macrophages was less in the CR groups compared with the AL groups, indicating
an effect of CR (diet, p = 0.0001 by 3-f ANOVA: Figure 2D), the number of macrophages did not
significantly differ between WT and Foxo1+/− mice (genotype, p = 0.1374 by 3-f ANOVA).

We further analyzed the expression of genes associated with inflammatory stimuli. TPA induces
cyclooxygenase-2 (COX-2), an enzyme that catalyzes arachidonic acid to prostaglandin G2, i.e.,
produces chemical mediators of inflammation, in the mouse skin [48]. The mRNA expression levels of
COX-2 were elevated after TPA treatment (Figure 2E). The expression levels were significantly lower
in WT-DR mice compared than other groups of mice; the effect is diminished in Foxo1+/− CR mice
(diet; p = 0.0123; genotype x diet; p = 0.0399 by 3f-ANOVA). Although other inflammatory responses
induced by TPA were mostly reduced in response to CR, even in Foxo1+/− CR mouse skin (data not
shown), reduction of FoxO1 in the CR condition might affect the regulation of prostaglandins formation
and then impair the tumor-inhibiting effect of CR.

The above results indicate that both FoxO1 and Nrf2 are necessary for the tumor-inhibiting effect
of CR. Some Nrf2 target genes are also regulated by FoxO1 [49], such as heme oxygenasae (decycling)
1 (Hmox-1), glutamate-cysteine ligase, and catalytic subunit (Gclc) genes. Gclc is the rate-limiting
enzyme in the synthesis of Glutathione (GSH). We also analyzed the expression of Nrf2-target genes
and found that Gclc and Hmox-1 mRNA expression levels were lower in Foxo1+/− mice than in WT mice
(only the data of Gclc mRNA are shown in Figure 2F; genotype; p = 0.0207: diet; p = 0.0175: genotype
x diet; p = 0.5809 by 3f-ANOVA). In a study in C. elegans, Daf-16 and Skn-1 target genes were also
reported to be preferentially regulated to induce conditions of mitohormesis [49], which could be a
mechanism of CR.
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Figure 2. The inhibiting effects of CR on skin tumorigenesis are diminished in Foxo1+/− mice. (A) The
fraction of mice bearing papilloma (diameter ≤ 1 mm) increased over time more rapidly in Foxo1 +/− CR
mice compared with wild-type (WT) CR mice (p = 0.0103 by Log-rank test); WT- ad libitum (AL) mice
versus vs. Foxo1+/− AL mice, p = 0.0663. DMBA, 7,12-dimethyl-benz (a) anthracene. (B) Epidermal
thickness during TPA (12-O-tetradecanoyl phorbol 13-acetate) treatment. Statistics: genotype, p = 0.0331;
diet, p = 0.2993; time; p < 0.0001 by 3-f ANOVA. (C) Epidermal cell proliferation in response to TPA
treatment. PCNA, proliferating cell nuclear antigen. Statistics: genotype, p = 0.0193; genotype x diet,
p = 0.0401 by 3-f ANOVA. (D) The number of dermal macrophages immunohistochemically stained
with F4/80 antibody. Statistics: diet; p = 0.0001; genotype; p = 0.1374; time, p = 0.0152 by 3-f ANOVA.
(E) Cox2 mRNA expression levels in response to TPA treatment (normalized by Atp5f1 mRNA levels).
Statistics: diet; p = 0.0123; genotype x diet; p = 0.0399 by 3f-ANOVA). **p < 0.01 by Tukey’s honestly
significant difference (HSD) test. (F) Gclc mRNA expression levels in response to TPA treatment
(normalized by Atp5f1 mRNA levels). Statistics: genotype; p = 0.0207; diet; p = 0.0175.

6. Pleiotropic Roles for Foxo1 in Disorders

As indicated above, reduction of FoxO1 diminishes the anti-tumor effect of CR. However, reduction
of FoxO1 does not affect lifespans in AL and CR conditions [34]. Multiple studies have reported
beneficial effects of reduced FoxO1 on lesions or disorders, although these results depended on
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nutritional states. In AL conditions, Foxo1+/− mice showed accelerated skin wound healing with
enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen
density, accompanied by an attenuated inflammatory response, compared with WT mice [50]. Foxo3−/−

mice did not show any significant phenotypes for skin wound healing and inflammation. Reduction of
FoxO1 also ameliorates glucose intolerance and insulin insensitivity in diabetic models [51], probably
due to diminution of gluconeogenesis. Indeed, FoxO1 is reported to increase hepatic gluconeogenesis
through upregulation of glucose 6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (Pck1)
in CR and fasting conditions [42].

Stress resistance is one of the hallmarks in CR animals, although whether this trait directly
causes the extension of lifespan remains unclear. We tested stress resistance in Foxo1+/− mice using the
endotoxin shock model following the procedures of Kamohara [52]. The survival rates and endoplasmic
reticulum (ER) stress were monitored after lipopolysaccharide (LPS) injection. ER stress-responsive
alkaline phosphatase (ESTRAP) mice [53] were used to monitor ER stress in vivo (details are described
elsewhere [52]). In ESTRAP mice, secreted alkaline phosphatase (SEAP) is constitutively expressed,
and SEAP activity in the blood is reduced by ER stress [53]. The experiment was performed using
mice at six months of age. The results showed that the survival rate was extended by CR, particularly
in Foxo1+/− mice (diet, p = 0.0263; genotype × diet, p = 0.0498 by likelihood ratio test: Figure 3A). After
LPS injection, SEAP activity decreased until 8 h in each group and then stayed constant or recovered
between 8 and 24 h (Figure 3B). Between 2 and 8 h after LPS injection, that is, in the acute phase of ER
stress, CR attenuated ER stress (diet, p < 0.0001 by 3-f ANOVA), and the attenuating effect was greater
in Foxo1+/− mice compared with Ctrl mice (genotype, p = 0.0093 by 3-f ANOVA: Figure 3B). These data
indicate that reduction of FoxO1 enhances stress resistance in both AL and CR conditions. Therefore,
in the present experimental setting, reduction of FoxO1 could enhance stress resistance, particularly in
the CR condition.

In summary, these findings demonstrate that FoxO1 exerts pleiotropic effects on disorders
depending on nutritional conditions.
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Figure 3. Foxo1+/− mice become tolerant to endotoxin, particularly in CR conditions. (A) Survival rates
after LPS injection. Initial numbers of mice in each group, n = 9–12. Statistics: diet, p = 0.0263; genotype
x diet, p = 0.0498 by likelihood ratio test. (B) Reduction of the rate of secreted alkaline phosphatase
(SEAP) activity (ratios relative to the values at 0 h in respective groups) in the blood after intraperitoneal
injection of lipopolysaccharide (LPS). The data represent means ± SE (n = 9−12). No error bars were
added in Foxo1+/− AL and Ctrl AL groups to avoid overlapping. Statistics (when data between 2 and
8 h were analyzed): genotype, p = 0.0093; diet, p < 0.0001 by 3-f ANOVA).

7. Sirtuin as a Molecule Upstream of FoxO

Sirtuins (Sirts) are evolutionarily conserved proteins that catalyze the deacetylation and adenosine
diphosphate (ADP) ribosylation of target proteins using the oxidized from of nicotinamide adenine
dinucleotide (NAD+) as a coenzyme [54]. Since overexpression of Sir2p, one of the sirtuin genes
in budding yeast, was reported to extend replicative lifespan of yeast, many studies have been
conducted to demonstrate the importance of Sirts in the regulation of aging in various experimental
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models. Although findings in the early phase of investigation were controversial, re-examinations
have confirmed Sirts as key molecules in the regulation of aging [55].

Although results in epistasis analyses using mutant strains in lower organisms are sometime
affected by experimental settings such as CR or CR-like regimens [7,55], a number of studies have
indicated the necessity of Sirt1 in the life-extending effect of CR. In Drosophila, deletion of Sirt1 (dSir2)
in the fat body abolishes the life-extending effect of CR [56].

There are seven mammalian orthologs of nematode Sir2 (Sirt1–7) [54]. Sirt1, Sirt6, and Sirt7
exist mainly in the nucleus; Sirt2 is localized in the cytoplasm and Sirt3, Sirt4, and Sirt5 are in
mitochondria [54]. Sirt targets in the nucleus include histones, transcription factors, and transcriptional
regulators, which control gene expression by deacetylation. One example is the deacetylation of FoxO1
and PGC-1α by Sirt1 in the liver and increased expression of target genes related to gluconeogenesis
and fatty acid oxidation [54].

Sirt in mitochondria regulates mitochondrial function, that is, energy metabolism, by deacetylating
mitochondrial constituent proteins, energy metabolic pathway proteins, and mitochondrial
transcription factors. Previous studies have shown that Sirt3 is deeply involved in the deacetylation of
mitochondrial proteins [57].

SIRT4 and SIRT6 mainly function as ADP-ribosylating enzymes [44]. Accumulated evidence has
indicated the importance of Sirts in the regulation of energy metabolism and genome instability.

Several studies have indicated the necessity of Sirt1 for the effects of CR in mice. Aged mouse
kidney displays pathology such as glomerular and interstitial fibrosis, which is improved by CR [58].
However, this effect of CR is abrogated in Sirt1+/− mice. From this model, Kume et al. reported
Sirt1-dependent deacetylation of FoxO3 as a key mechanism that promotes mitochondrial autophagy
and then reduces oxidative insult in kidneys. Finally, CR extends lifespan in Sirt1+/− mice but not in
Sirt1−/− mice [59]. These findings indicate that one of the mechanisms underlying the effect of CR
involves epigenetic regulation of FoxO3 by Sirt1 (Figure 1).

8. Roles for Npy in the Effect of CR

An evolutionary perspective predicted that the effect of CR is derived from adaptive responses in
animals to harsh conditions such as a famine [60]. Animals should have acquired a system(s) to survive
in famine, which frequently occurs in the wild. If not, a species could undergo extinction. When food
resources are abundant, animals consume as much food to promote growth and reproduction, while
simultaneously storing the remaining energy as fat in the body. In starvation, animals use the stored
fat as an energy source by activation of the lipolytic pathway. During food shortage, physiological
functions such as reproduction, growth, and heat are suppressed to inhibit excessive consumption
of energy. The transition to Dauer states in nematodes and hibernation in some mammals could be
extreme examples. The effects of CR may derive from these adaptive processes.

A previous study in C. elegans showed that two ciliated neurons that are part of the amphid
sensilla (ASI neurons) in the head, in which chemosensitive receptors are present, are necessary for
the lifespan extension by CR [61]. These neurons express skn-1 as described above and are activated
when dietary energy is reduced to promote the development of Dauer via the endocrine system [62].
The evolutionary view of CR and the finding in C. elegans suggest a possible implication of hypothalamic
neurons in the effect of CR in vertebrates.

We focused on Npy, an orexigenic neuropeptide expressed in neurons in the arcuate nuclei of
the hypothalamus and the sympathetic nervous system (SNS). Published data indicate that Npy
plays a role in neuroendocrine adaptation to negative energy balance in mammals by suppressing
activities of growth, reproduction, and heat, whereas it stimulates the glucocorticoid system [63,64].
Npy-overexpressing rats show improvements of cardiac function by regulation of the SNS and marginal
extension of lifespan [65]. Npy is also known as a neuroprotective peptide [66]. These traits induced
by Npy are consistent with the hallmarks of CR animals. Our previous study also confirmed that CR
elevated mRNA levels of Npy in the arcuate nuclei in rats [67].
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We tested a potential role for Npy in the effects of CR using Npy−/− mice. The life-extending
effect in Npy−/− mice was attenuated to about one-third compared with WT mice [68]. Oxidative stress
tolerance and tumor suppressive effects were also diminished. Initially, Npy deficiency was predicted
to compromise neuroendocrine adaptative processes to CR, especially the inhibition of the GH-IGF-1
system, because experiments have shown that Npy is required to suppress Ghrh in fasting [69].
However, hypothalamic Ghrh mRNA, plasma IGF-1, insulin, and downstream Mtor in tissues, which
could be related to the anti-aging effect of CR, were inhibited as in the WT mice [68]. In addition,
plasma concentrations of leptin, adiponectin, and corticosterone in Npy−/− mice were also altered
similarly as in WT mice [68]. These results indicate the complementary action of the neuroendocrine
system in response to CR even without Npy. These findings also suggest that the Npy-related
anti-aging mechanism of CR does not overlap with previously noted IGF-1, Mtor, adiponectin, and
corticosteroids [68].

Npy−/− mice showed a slight increase of food intake normalized body weight in both AL and CR
conditions during the lifespan study, indicating a reduction of food efficiency (a unit amount of food or
calorie to gain or maintain body weight) compared with WT mice [59], suggesting an increment of
energy expenditure in Npy−/− mice. In male mice, Npy deficiency increased mortality in CR condition
until middle age, probably due to an excess loss of body fat [68]. Indeed, in male Npy−/− CR mice,
lipolysis and/or thermogenesis was elevated through significant activation of the adrenergic receptor
β3 and hormone-sensitive lipase pathway [70]. The premature death in CR mice was inhibited by
administration of acipimox, a lipolysis inhibitor [71]. These findings suggest that the life-extending
effect of CR requires inhibition of an excess loss of body energy through antagonizing the SNS. The
study also emphasized the substantial role for Npy in the SNS in maintaining fat tissue under CR
conditions in male mice. The extent of lifespan extension by CR negatively correlates with rates of
white adipose tissue reduction by CR [72], i.e., mouse strains with less reduction of body fat by CR live
longer than other strains in which fat is reduced greatly in response to CR. Therefore, the ability of
energy preservation by Npy is essential for the life-extending effect of CR.

By contrast, deficiency of Npy may act beneficially in the life-stage under AL conditions. In
female Npy−/−mice with AL feeding, the aging-related increase in body fat was minimized, leading to
an improvement of insulin sensitivity via inhibition of inflammation in the fat [70]. Antagonism of
Npy may be a promising target for drug discovery to prevent obesity in middle age, although Npy
deficiency may cause unintentional weight loss in aged people.

Together these studies indicate that Npy exerts pleiotropic effects in health conditions depending
on nutritional conditions.

9. Role for Npy in the Tumor-Inhibiting Effect of CR

Npy is expressed abundantly in the brain, adrenal gland, and adipose tissue. Npy circulates in
the blood and is secreted locally from the SNS. Minor et al. reported that the tumor-inhibiting effect of
CR was diminished in Npy−/− mice using a chemically induced skin tumor model [73]. The authors
also suggested a role for hypothalamic arcuate nuclei (ARC) in the tumor-inhibiting effect of CR in a
model of monosodium glutamate (MSG)-injected mice. MSG induces neuronal cell death in the ARC
when injected subcutaneously on postnatal day five. In MSG-injected mice, no Npy-mRNA expression
was observed in the ARC but serum Npy was detectable, suggesting a major role for hypothalamic
Npy in the tumor-inhibiting effect of CR [73].

Our lifespan study also demonstrated a diminution of the tumor-inhibiting effect of CR in
Npy−/− mice, suggesting a role for Npy in the tumor-inhibiting effect of CR [68]. The SNS not only
releases catecholamines such as norepinephrine (NE) but also secretes Npy [74]. Recent studies have
indicated that activation of the SNS exacerbates steatohepatitis, which is now recognized as one of the
predisposing conditions of hepatocellular carcinoma (HCC) in obese people [75]. An experimental
study also suggested that the SNS promotes HCC via activation of hepatic stellate cells and Kupffer
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cells [76,77]. Therefore, we investigated a potential role for Npy in a carcinogen-induced HCC model
in different nutritional settings including CR as well as high calorie-intake regimens [78].

The complete details of the experiment are described elsewhere [78]. Briefly, HCC was induced by
an intraperitoneal injection of diethylnitrosamine (DEN) in male C57BL6/J mice null for Npy (Npy−/−)
and their haplotype (Npy+/−) as a control (Ctrl) on postnatal day 15 [78]. Npy+/− mice showed increased
lifespan and reduced incidence of spontaneously occurring tumors in response to CR to the same extent
as WT mice, indicating that one allele of the Npy gene is enough for the effects of CR [69]. Experimental
mice, fed a standard diet AL after weaning, were subjected to three dietary regimens at 12 weeks of
age and thereafter, that is, standard diet fed AL, 30% CR with the standard diet, and a high fat diet
(HFD) fed AL. Mice were killed at 28 and 48 weeks to analyze the occurrence of HCC and growth of
HCC in the liver.

CR inhibited the occurrence of microscopic HCC at 28 weeks in Npy−/− mice as well as Ctrl mice,
compared to the AL and HFD groups (diet, p = 0.0195 by logistic regression; CR vs. AL, p = 0.0192;
CR vs. HFD, p = 0.0310: Figure 4A), although the baseline proportion of mice bearing microscopic
HCC at 28 weeks was slightly but significantly greater in Npy−/− mice (genotype, p = 0.0426 by logistic
regression). Since DEN was administered at 15 days of age before initiating CR, Npy might exert
an inhibitory effect on initiation of the carcinogen. At 48 weeks, many mice in the AL and the HFD
groups showed macroscopic (≤1 mm in diameter) HCC [78], and thus the liver weight alone or the liver
weight normalized by the body weight (Lw/Bw) represents an index of growth of HCC [78]. In the CR
groups, the Lw/Bw was not increased between 28 and 48 weeks in Npy−/− and Ctrl mice, indicating
that CR almost completely inhibits the growth of HCC even in the absence of Npy (Figure 4B). The
AL and HFD feedings promoted the growth of HCC between 28 and 48 weeks more in Npy−/− mice
than in Ctrl mice (genotype x age, p < 0.0001 by 3-f ANOVA; Npy−/− (48) vs. Ctrl (48), p < 0.0001 by
Tukey’s honestly significant difference (HSD) test), although there was no significant difference in the
tumor growth between the AL and HFD feedings (Figure 4B). These findings suggest a role for Npy in
tumor growth in conditions of overnutrition, but not for CR. This HCC model indicates that Npy is not
necessary for the tumor-inhibiting effect of CR.

Steatohepatitis, which was quantitated by the number of inflammatory foci/unit area, was
exacerbated between 28 and 48 weeks (age, p = 0.0117 by 3-f ANOVA; Figure 4C). CR consistently
inhibited steatohepatitis, compared with the AL and HFD groups, in both Ctrl and Npy−/− mice (CR
vs. AL, p < 0.0001; CR vs. HFD, p < 0.0001 by Tukey’s HSD test). Therefore, CR might inhibit the
occurrence and growth of HCC via suppressing steatohepatitis, one of the predisposing conditions
for HCC even in the absence of Npy. Overall, steatohepatitis was less progressed in Npy−/− mice
compared with Ctrl mice (genotype, p = 0.0069 by 3-f ANOVA), although the degree of steatohepatitis
was differently altered by the diets between 28 and 48 weeks (Figure 4C). These findings suggest that
Npy is involved in inhibition of growth of HCC but not simply through preventing steatohepatitis in
AL and HFD conditions.

Npy is reported to counterbalance the actions of NE in stressed conditions [74]. In a Npy-
overexpressing rat model, Npy attenuated sympathetic signals at baseline and diminished the
immediate sympathetic response to stress [65]. Npy was also reported to minimize stress-induced
bone loss through a suppression of NE circuits [79]. These findings indicated a counteracting role for
Npy over NE in the activation of the SNS, a potentially exacerbating factor of many types of disorders
in well-fed conditions (Figure 4D).
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Figure 4. Effects of Npy deficiency in the occurrence and growth of hepatocellular carcinoma (HCC)
and steatohepatitis. Ctrl and −/− represent male control (Npy+/−) mice and Npy−/− mice, respectively.
Figure 4A–C were modified from original data published by Kinoshita, A., et al. [78]. (A) The proportion
of mice bearing microscopic HCC (diameter < 1 mm) at 28 weeks. n = 12 in each group. Statistics: diet,
p = 0.0195 by logistic regression; CR vs. AL, p = 0.0192, CR vs. HFD, p = 0.0310. (B) Growth of HCC.
Liver weights were normalized to body weights (g/g) in mice sacrificed at 28 and 48 weeks of age.
n = 12 in each group at 28 weeks; at 48 weeks, n = 9–12. Closed circles: blue, liver bearing macroscopic
HCC (diameter ≥ 1 mm); red, liver bearing microscopic (diameter < 1 mm) HCC; green, liver bearing
no HCC. Statistics: genotype x age, p < 0.0001 by 3-f ANOVA; Npy−/− (48) vs. Ctrl (48), p < 0.0001 by
Tukey’s HSD test); **p < 0.001. ***p < 0.0001 by Tukey’s HSD test. (C) The degree of steatohepatitis
(the number of inflammatory foci/mm2 in the liver). Bars represent means ± SE (n = 8~12 in each
group). Statistics: age, p = 0.0117; diet, p < 0.0001; genotype, p = 0.0069 by 3-f ANOVA; *p < 0.05
by Tukey’s HSD test. (D) A schematic model for the antagonizing role of Npy over norepinephrine
(NE)-adrenergic receptor (Adr) signaling in the sympathetic nervous system (SNS) under CR conditions.
CR promotes lipolysis, whereas CR inhibits an excess loss of fat via the action of Npy in the SNS. This
trait is necessary for the life-extending effect of CR. CR inhibits steatohepatitis and HCC without Npy.

10. Conclusions

We reviewed and discussed underlying mechanisms of CR from an aspect of CR genes. It should
be stressed that the isoform specificity of FoxO transcription factors for longevity becomes apparent
under CR conditions but not AL conditions. Npy and FoxO1 both play pleiotropic roles in aging and
related disorders, depending on the nutritional state. As briefly described in Sections 1 and 2, the
life-extending effects of CR and reduced IGF-1 signaling are also sexually dimorphic. Genes associated
with regulation of the aging process should be investigated carefully in a context-dependent manner,
i.e., abilities of physiological adaptation for individuals against environmental challenges, particularly
food shortage.
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Table S1: Pathways signified by differentially regulated genes between WT-CR and Foxo3+/− CR livers in the
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Appendix A

Appendix A.1. Microarray Analysis

The microarray analysis using mouse liver tissues at six months of age was conducted, following
the procedure published elsewhere [50]. Total RNA was extracted from liver tissues harvested from
wild type (WT)-calorie restricted (CR), Foxo1+/− CR, and Foxo3+/− CR mice in the fasting phase, i.e.,
3 to 4 h prior to the feeding. The details for isolation of RNA are also described in the Appendix A.2.3.
The animal husbandry was described elsewhere [34,35]. Cyanine 3-labeled complementary RNA
was generated from 200 ng of total RNA using the Low Input Quick AmpLabeling Kit, one color
(Agilent Technologies, Santa Clara, CA), and then those was purified by the RNeasy mini kit (Qiagen),
according to the manufacturer’s instructions. Fragmented cyanine 3-labeled complementary RNA
(600 ng) was hybridized to SurePrint G3 mouse GE microarray, 8 × 60 K (Agilent Technologies), at 65 ◦C
for 17 h. Subsequently, the microarray was washed and scanned using the DNA microarray scanner
(Agilent Technologies). Data analysis was entrusted to Ingenuity Systems, Inc (Redwood City, CA)
with Ingenuity iReport. We compared the gene expression in the liver, between WT and Foxo1+/− CR
groups and between WT-CR and Foxo3+/− CR groups. The filtering standard was a fold change cutoff of
1.5, with statistical significance of p < 0.05. Bio-data mining processes were executed by iReport based
ingenuity knowledge base to identify enriched canonical pathways for the differentially expressed
genes with p < 0.05 by Fisher’s exact tests.

Appendix A.2. The Multistage Skin Tumorigenesis Model

Appendix A.2.1. Experimental Protocol

We followed the experimental procedure of Pearson et al. [36] for the multistage skin tumorigenesis
model. Briefly, the number of mice in each group was 18 at the start of the experiment. At 31 weeks
of age, a single dose of 25 µg of 7,12-dimethybenz(a)anthracene (DMBA, Sigma, St. Louis, MO)
dissolved in 100 µl of acetone was applied topically in a dorsal area shaved in each mouse. Two weeks
later, a topical treatment of 12-O-tetradecanoylphorbol-13-acetate (TPA, Sigma, St. Louis, MO, 4 µg
dissolved in 100 µl of acetone) began and continued twice a week to the dorsal skin area until one
papilloma with a diameter ≥ 1 mm was identified. Skin biopsy was done at the following time points:
0, 2, 3, 4, 5, and 6 weeks after DMBA treatment. Collected skin samples were cut in two specimens.
One was immediately frozen in liquid nitrogen and stored at −80 ◦C. The other one was fixed in 4%
formaldehyde for histological and immunohistochemical analyses. Once a skin tumor was identified,
TPA treatment was stopped and left mice without any treatment. The experiment was terminated at 32
weeks after DMBA application. At the termination, mice were euthanized at 2 and 6 h after TPA or
acetone treatment. The skin tissues without tumors were collected from each mouse, frozen in liquid
nitrogen, and stored at −80 ◦C in order to analyze mRNA and protein expression.

Appendix A.2.2. Histology and Immunohistochemistry

Skin biopsy samples, fixed in 4% formaldehyde, were routinely processed and embedded in
paraffin. Epidermal thickness was measured in hematoxylin and eosin (H.E.) stained sections under
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microscope. Details of immunohistochemical staining for proliferating cell nuclear antigen (PCNA)
and F4/80 are described in elsewhere [41]. The primary antibodies for PCNA and for F4/80 were
purchased from Abcam (Cambridge, U.K.). PCNA-positive cells in the epidermis and F4/80-positive
cells in the dermis were counted for 10 high power views in each skin sample with microscope.

Appendix A.2.3. RNA Isolation and Quantitative Polymerase Chain Reaction

Total RNA was purified from skin using a RNeasy lipid tissue Mini kit (Qiagen). The quality of
extracted RNA was evaluated as the densitometric ratio of 28S and 18S ribosomal RNA. The extracted
RNA was converted to cDNA using RevaTra Ace® qPCR RT kit (TOYOBO, Tokyo, JAPAN) according
to the manufacturer’s instructions and amplified using THUNDERBIRD SYBR qPCR Mix (TOYOBO)
with Light Cycler 480 (Roche Diagnostics Japan, Tokyo, Japan). All of the primers used in the present
analysis were purchased from TAKARA with reference to the Perfect Real time Support System
(TAKARA, Siga, Japan). All samples and standard curves were tested in duplicate. We confirmed that
expression levels of a housekeeping gene, Atp5f1-mRNA, were not significantly affected by the diet or
the genotype or TPA treatment, and then used for normalization of specific mRNA expression levels.

Appendix A.2.4. Statistical Analysis

Difference in the fraction of mice bearing skin papilloma between groups was tested with the
log-rank test. Epidermal thickness, proliferating cell nuclear antigen (PCNA)-positive cells, the number
of dermal macrophages, and the expression levels of Cox2 and Gclc-mRNAs were analyzed using
3-factor ANOVA with Tukey’s honestly significant difference (HSD) test.
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