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Abstract: Wetlands are considered a challenging environment for mapping approaches based on
Synthetic Aperture Radar (SAR) data due to their often complex internal structures and the diverse
backscattering mechanisms caused by vegetation, soil moisture and flood dynamics contributing
to the resulting imagery. In this study, a time series of >100 SAR images acquired by ENVISAT
during a time period of ca. two years over the Kafue River basin in Zambia was compared to
water heights derived from radar altimetry and surface soil moisture from a reanalysis dataset.
The backscatter time series were analyzed using a harmonic model to characterize the seasonality
in C-band backscatter caused by the interaction of flood and soil moisture dynamics. As a result,
characteristic seasonal signatures could be derived for permanent water bodies, seasonal open
water, persistently flooded vegetation and seasonally flooded vegetation. Furthermore, the analysis
showed that the influence of local incidence angle could be accounted for by a linear shift in
backscatter averaged over time, even in wetland areas where the dominant scattering mechanism
can change depending on the season. The retrieved harmonic model parameters were then used in
an unsupervised classification to detect wetland backscattering classes at the regional scale. A total
area of 7800 km2 corresponding to 7.6% of the study area was classified as either one of the wetland
backscattering classes. The results demonstrate the value of seasonality parameters extracted from
C-band SAR time series for wetland mapping.
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1. Introduction

Wetlands are of significant importance for hydrological and ecological processes. They constitute
vital habitats for specialized flora and fauna and contribute to the livelihoods of the local human
population. Within the hydrological cycle, they behave as water storage, thereby alleviating extreme
events like floods and droughts. They also play a vital role in biogeochemical cycles, acting both
as sources and sinks of carbon and nitrogen emissions. However, wetlands are vulnerable to
threats like climate change, land-use conversion—mainly to agricultural areas—and construction of
reservoirs [1]. Recent studies have reported a decrease of about 40% in the area covered by wetlands
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at the global level, albeit strongly varying between regions [2]. In Sub-Saharan Africa, wetlands
cover ca. 9% of the landmass. Since the second half of the 20th century, wetlands there have come
under increasing pressure due to the construction of dams for the production of hydroelectricity.
The function of the Zambezi River Delta as a natural ecosystem, for example, has been heavily altered
after the construction of the Kariba and Cahora Bassa Dams [3]. In other cases, efforts have been made
to restore environmental flows by adapting dam operations. For example, the Kafue Flats in Zambia
are now largely dependent on the operation of dams for annual flooding during the wet season [4].
Due to the high vulnerability of wetlands to the aforementioned factors there is a strong need for
monitoring their current state and projecting future trends [2].

In many regions of the world, wetlands can only be monitored using earth observation
technology, either due to their remoteness or their vast size. In general, both optical and microwave
sensors are suitable for this purpose, each with their own advantages and disadvantages [5].
For global monitoring purposes, multi-sensor fusion techniques have yielded reliable results, like
in the case of the Global Inundation Extent from Multi-Satellites (GIEMS) product providing
monthly surface inundation extent at a spatial resolution of ca. 25 × 25 km2 based on data from
passive and active microwave as well as optical sensors [6]. For more detailed regional and local
assessments, Synthetic Aperture Radars (SAR) are an appropriate source of information: they are
largely unaffected by cloud cover, offer a moderate to high spatial resolution and are very sensitive
to the presence of surface water and—under certain circumstances—even to water underneath
vegetation [7]. Since wetlands are often formed as a complex mosaic of different vegetation types
and hydraulic conditions a variety of scattering mechanisms can contribute to the signal measured
by the sensor. In combination with different sensor configurations in terms of frequency, polarization
and observation geometry this often leads to very diverse backscatter signatures in wetlands. In the
most straightforward case, calm open water surfaces act as specular reflectors, which cause water
bodies to be represented as dark objects in SAR imagery. Wind and heavy rainfall, on the other
hand, often roughen the water surface and complicate the retrieval [8]. If flooding occurs below
vegetation, the signal is reflected between the water surface and the trunks and stems of vegetation
emerging from the water surface. This so-called “double-bounce” scattering usually results in very
high values of the backscatter coefficient σ0. Nevertheless, depending on the density and structure
of the vegetation, the energy can be attenuated by the canopy to a substantial degree, especially
at higher incidence angles. Apart from vegetation structure and density, this attenuation mostly
depends on polarization, frequency and local incidence angle [9]. Compared to vertically polarized
waves, horizontally polarized waves interact less with vertical vegetation structures and are therefore
considered better suited for the purpose of mapping flooded vegetation [10]. Moreover, the use
of smaller local incidence angles reduces the distance incident radiation has to travel through the
canopy, in general leading to a higher amount of energy received by the sensor [11]. Attenuation by
the vegetation also decreases with longer wavelengths like L-band [9], which is why a considerable
number of studies has been carried out using data acquired at that wavelength e.g., [12–16]. It should
be noted that we consider only techniques for single-polarized data here although, more recently,
specialized algorithms for wetland detection from polarimetric SAR data have become available
e.g., [17–19].

A prominent example of the application of L-band SAR data for wetland mapping is the exercise
undertaken by Hess et al. [12] who discriminated different sparsely and densely vegetated wetland
types in a large part of the central Amazon basin using mosaics of scenes acquired by the Japan
Earth Resource Satellite (JERS-1) during low and high water stages. They concluded that 17% of
the study area of 1.77 million km2 were covered by one of the mapped wetland types. The study
also highlighted the importance of seasonality in wetland water stage as it influences which of the
aforementioned scattering mechanisms—specular reflection, volume scattering or double-bounce
scattering—is dominant. At low water stages, stems may be protruding through the surface while
they may be completely submerged during the flood peak. Yuan et al. [14] used multi-temporal
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SAR acquisitions and water heights estimated from radar altimeter data to infer sensitivity of L-band
backscatter towards changes in flood water level. The increase in σ0 with rising water level was
significantly lower in areas which were characterized by a high amount of woody vegetation.

Despite the fact that L-band data are seen as the most suited wavelength for studies
related to surface water and wetlands encouraging results have also been obtained using C-band
data [20–23] especially where herbaceous vegetation is dominant [10], or even using X-band
interferometric SAR (InSAR) in the case of flooded vineyards [24]. For example, in a study on coastal
wetlands, L-band, HH-polarized data was found to be best suited for monitoring water levels using
InSAR techniques but good results could also be obtained using C-band depending on the growth
stage of the vegetation [15]. Kasischke et al. [20] reported an evident decrease of C-band backscatter
with increasing water levels at sites with low to moderate vegetation cover such as prairie and
woodland whereas in non-flooded areas there was a positive correlation with in-situ soil moisture.

Past studies have also suggested that information aggregated from multi-temporal data can
help to compensate some of the shortcomings of C-band data for wetland mapping as observations
are made at different stages of water level and vegetation growth. Indicators extracted from
multi-temporal ENVISAT Advanced SAR (ASAR) data were used by Reschke et al. [22] to map
peatlands and maximum inundation extent over Northern Eurasia. In this case, statistical estimates
of high and low backscatter for the spring and summer seasons were used as inputs to a decision
tree classifier. Areas with high maximum backscatter were assumed to be associated with saturated
soil. On the other hand, the maximum annual inundation extent, which is typically reached after
snowmelt in spring, could be related to the lower quantiles of the per-pixel backscatter time series.
For mapping permanent open water, Santoro and Wegmüller [25] extracted statistics from ASAR
time series and applied threshold classifiers to extract permanent water masks. High accuracy values
could be achieved for pure pixels using minimum backscatter and variance over time as indicators.
However, minimum backscatter was not robust to confounding factors such as temporary flooding
and wet snow so that a low percentile of the time series histograms was used instead. When applying
the approach at the global scale, a simple two-metric approach was found to be problematic, e.g., in
regions where strong seasonal variations in surface water extent occurred [26].

The approaches by Reschke et al. [22] and Santoro and Wegmüller [25] have in common that
they rely on seasonal or global time series statistics to estimate the backscatter signatures for each
pixel of a multi-temporal image stack without explicitly accounting for periodic cycles in σ0 induced
by dynamic environmental variables like soil moisture, vegetation density and inundation extent.
More objective methodologies to explicitly characterize seasonality in satellite-derived time series
have been explored mainly in the field of optical remote sensing, typically in order to derive land
surface phenology from parameters such as the Normalized Vegetation Difference Index (NDVI)
e.g., [27–29]. Recently, Schlaffer et al. [30] applied harmonic analysis to detect flood events in
multi-temporal ASAR time series as deviations from backscattering behavior under non-flooded
conditions. In this context, a 3rd-order harmonic model efficiently reproduced the seasonal patterns
encountered in the backscatter time series from non-flooded land surfaces. Such an approach should
also be suitable for modeling seasonal backscatter patterns caused by vegetation, soil moisture and
inundation dynamics in a wetland, especially if a strong seasonality in the climatic forcing is present.
One of the advantages of a harmonic model is that the majority of the annual variability in a time
series can be explained by only a few terms [27] and therefore it should be more suitable than using
descriptive statistics for characterizing seasonality.

The goal of the presented study is to assess the potential of harmonic analysis for reproducing
ASAR backscatter seasonality in a tropical wetland. For this purpose, ASAR time series are compared
to water heights derived from radar altimeter and soil moisture output from a land-surface model.
Then, the suitability of the derived time series parameters for discriminating between different
wetland types such as permanent water, seasonally flooded areas and inundated vegetation is
investigated using cluster analysis. The paper is structured as follows: in Section 2, the study area,
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the available data and the methodology used for data analysis and wetland mapping are described.
The suitability of the area of interest as a test bed for this assessment is justified. The obtained results
are reported and discussed in Section 3. Finally, Section 4 concludes the study.

2. Material and Methods

2.1. Study Area

The Kafue River basin is located in Northern Zambia and covers an area of ca. 155,000 km2

(Figure 1a). Three large wetlands are located within the basin: the Lukanga Swamps and the Kafue
Flats in Zambia’s Central Province and the Busanga Swamps in Northwestern Province (Figure 1c).
All three of them are listed as wetlands of international importance by the Ramsar Organization [31].
Elevation of the study area ranges between ca. 1000 m and 1300 m whereas downstream of the Kafue
Flats terrain height drops significantly (Figure 1b). Annual rainfall decreases from 1400 mm in the
Northern part of the basin, where most of the runoff of the Kafue River is produced, to ca. 800 mm
in the south. The climate is characterized by a pronounced rainy season which lasts approximately
from October to April (Figure 2). October is, therefore, regarded as the start of the hydrological year
in the region [32].

The Kafue Flats are situated downstream of the Itezhi-Tezhi Dam, which took up operations
in 1977 [33]. They span a length of ca. 250 km along the river and are about 60 km wide.
The area undergoes annual flooding which, approximately, starts in February and lasts until June.
The hydrology of the Kafue Flats, which has been altered by the Itezhi-Tezhi Dam and the Kafue
Gorge Dam further downstream, has been the subject of a series of studies in the past (e.g., [34–36]).
Efforts have been made to restore the natural runoff regime by adapting dam operations [4] but
especially dry-season discharge has been described as higher than what had been occurring before
closure of the Itezhi-Tezhi Dam. In combination with backwater from the lower dam this has led to
permanently inundated areas in downstream parts of the floodplain [34]. According to data from
the Global Runoff Data Centre (GRDC), average dry-season runoff at Itezhi-Tezhi between August
and November is around 200 m3·s−1 while the maximum monthly flow of ca. 600 m3·s−1 is reached
in March (Figure 2). Land cover in the surroundings of the Kafue Flats consists mainly of cropland,
however, also areas with tree cover are found at higher elevations according to the European Space
Agency’s (ESA) Climate Change Initiative (CCI) Land-Cover dataset (Figure 1c) [37]. Information
about vegetation within the wetland can be derived from optical imagery acquired at the end of the
dry season which is largely cloud-free and whose reflectance values are not affected by flooding [38].
Figure 3 shows average NDVI for September from the Moderate Resolution Imaging Spectrometer
(MODIS) on board Aqua (MYD13Q1 product). The Kafue Flats can easily be identified visually due
to the higher NDVI in comparison to their surroundings where vegetation “greenness” is already
very low during this part of the year. Areas with NDVI < 0 appear over open water bodies like the
Itezhi-Tezhi reservoir west of the flats and the Chunga Lagoon in the Southern part of the image.
Green vegetation is present mainly in the proximity of these water bodies and close to the river
that crosses the wetland at its centre from West to East. Dense vegetation along the river has been
described as consisting mainly of tall grasses that grow on levees formed along the river. The main
part of the adjacent flat floodplain is covered by grassland [32]. A large number of irrigated fields are
also visible as bright patches south-east of the Kafue Flats in Figure 3a).

Substantially less effort has been dedicated to studying the Lukanga Swamps which lie upstream
of the two dams mentioned earlier. The swamp is located north of the Kafue Flats in a shallow
depression covering about 1800 km2 and is draining to the West to the Kafue River. Several tributaries
contribute to the water balance of the swamp with the most important being the Lukanga River.
The vast majority of the swamp consists of treeless marsh dominated by Phragmites and Typha as well
as grasslands. In addition, ca. 5% of the area is covered by open water bodies. It has been estimated
that about 60,000 people live in or close to the wetland who primarily use it for fishing, hunting,
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livestock and agriculture [39]. Dry-season NDVI can be seen to be substantially higher in the swamps
and along the outlet to the Kafue River than in the surroundings (Figure 3b).

28°E

28°E

27°E

27°E

26°E

26°E

25°E

25°E

14
°S

14
°S

15
°S

15
°S

16
°S

16
°S

Zambia

Angola

Mozambique

Botswana

Zimbabwe
Namibia

Malawi

United Republic of TanzaniaDemocratic Republic of the Congo

South Africa Europa Island (France)

40°E

40°E

35°E

35°E

30°E

30°E

25°E

25°E

20°E

20°E

10
°S

10
°S

15
°S

15
°S

20
°S

20
°S

28°E

28°E

27°E

27°E

26°E

26°E

25°E

25°E

14
°S

14
°S

14
°30

'S

14
°30

'S

15
°S

15
°S

15
°30

'S

15
°30

'S

16
°S

16
°S0 20 40 60 80 10010 km

a)

c)

±

b)

Cropland, rainfed
Herbaceous cover
Cropland, irrigated or post-flooding
Mosaic cropland (>50%) / natural vegetation
(tree, shrub, herbaceous cover) (<50%)
Mosaic natural vegetation (tree, shrub,
herbaceous cover) (>50%) / cropland (<50%)
Tree cover, broadleaved,
deciduous, closed to open (>15%)
Tree cover, broadleaved,
deciduous, closed (>40%)
Tree cover, broadleaved,
deciduous, open (15-40%)
Shrubland
Shrubland deciduous
Grassland
Sparse herbaceous cover (<15%)
Shrub or herbaceous cover, flooded,
fresh/saline/brakish water
Urban areas
Unconsolidated bare areas
Water bodies

0 20 40 60 80 100
km

Kafue Flats

Lukanga SwampsBusanga Swamps

±±

1300 m

900 m

Figure 1. (a) Location of the study area within the Zambezi (violet) and the Kafue River (green) basins;
(b) digital elevation model of the study area (Source: Shuttle Radar Topography Mission [40]); (c) land
cover ( c© ESA Climate Change Initiative—Land Cover project 2014, version 1.4 [37]).

R
ai

nf
al

l [
m

m
]

R
un

of
f [

m
3 s−1

]

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

100

200

300

400

500

600

Rainfall
Runoff

Figure 2. Mean monthly rainfall from WorldClim [41] for the Kafue River basin and mean monthly
runoff at Itezhi-Tezhi for the period 1978–1991 (source: GRDC).



Remote Sens. 2016, 8, 402 6 of 24

E D

A

C
B

28°E

28°E

27°30'E

27°30'E

27°E

27°E
15

°2
0'S

15
°2

0'S

15
°4

0'S

15
°4

0'S

16
°S

16
°S

G

28°E

28°E

27°40'E

27°40'E

27°20'E

27°20'E

14
°2

0'S

14
°2

0'S

14
°4

0'S

14
°4

0'S

0 5 10 15 20
km0 10 20 30 405

km

a) b)ENVISAT Ground Track

-0.15
0.7

± ±

F
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(a) Kafue Flats and (b) Lukanga Swamps along with location of AOIs. Red lines show ENVISAT
altimeter tracks.

The long, persistent flooding of the wetlands along with the diverse mosaic of vegetation and
open water make the area an interesting test bed for this study. While sparsely vegetated wetland
soil should have a strong radar return due to elevated soil moisture levels, denser vegetation can
be expected to show intermediate backscatter coefficients due to attenuation by the canopy. During
flooding, signatures should become more distinct as specular reflection from open water surfaces
leads to low σ0 values while in flooded vegetation, double-bounce effects between the water surface
and emerging vegetation parts lead to bright areas in the resulting SAR images.

2.2. Datasets and Pre-Processing

2.2.1. ENVISAT ASAR Wide Swath

Since seasonality in backscattering behavior plays an important role in tropical wetlands, a
suitable remote sensing dataset should provide sampling intervals dense enough in order to be
able to capture these seasonal variations. 108 scenes acquired in C-band by the ASAR sensor on
board ENVISAT were available for the Kafue Flats (Figure 1c) for the time between October 2005 to
September 2007 corresponding to two hydrological years. The images were acquired from a total
number of 10 different swaths (see Figure S1 in Supplementary Material). For the entire study region
the number of scenes amounted to 227. ASAR’s Wide Swath (WS) mode offered a moderate spatial
resolution of 150 m and a large swath width of 400 km leading to overlaps between adjacent swaths
and therefore an overall revisit time that was lower than the satellite’s repeat cycle of 35 days. All the
images that were used here were acquired in HH polarization. Precise orbit state vectors were used
to improve information about platform position [42]. The scenes were radiometrically calibrated and
terrain-corrected using the Range-Doppler algorithm [43] with the help of elevation data from the
Shuttle Radar Topography Mission (SRTM) with a resolution of 3 arc-seconds [40]. The images were
then co-registered to a common grid definition with a pixel spacing of ca. 75 m at the Equator.

Due to the fact that the scenes were acquired using ScanSAR technology they cover a large
swath width meaning that images of the same point on the ground have been acquired from different
sensor positions leading to differences in viewing geometry. Local incidence angle θ has an important
influence on σ0 which is often corrected for using the linear relationship

σ0(θre f ) = σ0(θ)− β(θ − θre f ) (1)

where θre f is a reference local incidence angle (usually 30◦ to 40◦) and β = dσ0/dθ e.g., [44,45].
However, a central assumption to a time-invariant linear dependency is that the residual variance in
σ0 is caused mainly by variations in soil moisture [45]. This implies that no major change in scattering
mechanism should take place during the observation period as this would affect the sensitivity of σ0
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towards changes in θ. For example, it has been reported that β is substantially steeper over open
water than over land surfaces [46]. In a wetland, however, the assumption of β being time-invariant
would not hold if a target area is flooded during substantial periods of the year so that the dominant
scattering mechanism may change from bare-soil or volume scattering to specular reflection or
double-bounce scattering and back. Seasonal variations in β caused by seasonality in vegetation
coverage have been reported, e.g., for Southern Italy [47]. For this reason, we chose to carry out the
analysis separately for different ranges of θ. Figure S1 in Supplementary Material shows θ averaged
over the Kafue Flats (Figure 1c) for each scene. While it would have been preferable to analyse the
data separately for each track the number of images available for each track would have been rather
low. Therefore, the images were separated into different classes based on θ averaged over the Kafue
Flats: 15◦ < θ ≤ 25◦, 25◦ < θ ≤ 35◦ and 35◦ < θ ≤ 45◦. The resulting average sampling interval in
each of the θ classes was between 10 and 17 days. The sampling should therefore be dense enough to
represent the underlying seasonality in the backscatter time series induced by rainfall and runoff.

Figure 4a,b show examples of pre-processed scenes acquired over the Kafue Flats along the same
track at the end of the dry season and approximately at the time of peak flood extent, respectively.
During the dry season, a few water bodies can be seen while in general the contrast between water
and land is low. In March, however, large parts of the wetland are clearly recognizable as being
flooded based on the very low σ0 values encountered mainly along the borders of the Kafue Flats.
Furthermore, the contrast between the wetland and its surroundings is enhanced due to high soil
moisture values.
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(b) 30 March 2007 (wet season).
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2.2.2. ENVISAT Radar Altimeter Water Heights

In order to investigate the relationship between SAR backscatter and water level as reported by
e.g., Kasischke et al. [20] information on water stage is necessary. In many cases, however, water level
measurements from in-situ gauges are sparse, especially in remote areas. In the case of the Kafue
Flats, runoff measured at the outlet of the Itezhi-Tezhi Dam is available from GRDC only until 1991
and was therefore not suitable for direct comparison with ASAR σ0. Alternatively, satellite-based
radar altimeters can provide high-accuracy water levels of inland water bodies such as lakes and
rivers e.g., [48,49]. Altimeter data have also been used to infer wetland water heights and to relate
their variations to changes in SAR backscatter intensity e.g., [15,50]. Although the altimeter footprint
can measure up to several kilometers, the signal is highly sensitive to the occurrence of water within
the footprint [51]. However, since satellite altimetry was designed for ocean applications, dedicated
data processing for inland water is mandatory in order to extract reliable and highly accurate water
levels from the observed radar returns.

The RA-2 radar altimeter on board ENVISAT provided accurate water level heights between
2002 and 2010. ENVISAT’s pass 85 crossed the Kafue Flats every 35 days along the same ground track
(Figure 3a). The sampling rate of the altimeter was 18 Hz leading to an along-track sampling distance
of ca. 374 m. Radar echoes (so-called waveforms) were extracted from the Sensor Geophysical Data
Records and processed according to the methodology described by Schwatke et al. [52]. The approach
is based on retracked waveforms and rigorous outlier detection and applies Kalman filtering to
produce consistent and highly accurate water heights from data acquired along different tracks.
The approach provides normal heights with respect to the EIGEN-6c3stat geoid [53]. Moreover, a
time series for the Lukanga Swamps was computed based on data from ENVISAT tracks 543 and
156 (Figure 3b). The latter time series and its formal errors are freely available from the Database for
Hydrological Time Series of Inland Waters (DAHITI) via http://www.dahiti.tum.de [52].

2.2.3. ERA-Interim/Land Volumetric Soil Water

Information on soil moisture dynamics in the study area are necessary in order to characterize
the climatically induced seasonality in the backscatter signal. However, as there are no data
from in-situ monitoring networks available and products from both passive and active microwave
sensors are affected by the prolonged and extensive floods data from the ERA-Interim/Land
reanalysis were used. The ERA-Interim/Land variables are produced at the European Centre
for Medium-range Weather Forecasts (ECMWF) by forcing the HTESSEL land-surface model with
ERA-Interim reanalysis fields [54]. The resulting volumetric soil water fields share the native
resolution of the HTESSEL model of ca. 75 × 75 km2 but versions downscaled to up to 0.125◦ are
available on the website of ECMWF. Due to the low resolution of this product it does not represent
the true soil moisture dynamics in the Kafue Flats but in this context it is used to get information
about the likely start and end of the wet season.

2.3. Data Analysis

The ASAR σ0 time series analysis was carried out in three steps: first, time series were extracted
for a number of small areas of interest (AOIs). In the second step, a per-pixel analysis was carried
out. Then, different wetland backscattering classes were derived from the time series based on their
characteristic signatures using unsupervised classification.

2.3.1. Extraction of Time Series

Visual interpretation of σ0 time series is often made difficult by the occurrence of speckle which
is a characteristic feature of SAR data. The influence of speckle can be decreased by averaging
samples over homogeneous areas [55]. Therefore, averaged time series were extracted from seven
AOIs pertaining to different land-cover units located within and outside the Kafue Flats and Lukanga
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Swamps (Table 1). Their locations are shown in Figure 3. AOIs A–C and G are located below ENVISAT
ground tracks so that the extracted σ0 time series could be compared to water height. In addition, one
AOI was selected over the Chunga Lagoon (F) and two further AOIs in non-wetland areas north of
the Kafue Flats (D and E). It can be seen that they differ considerably in terms of size and vegetation as
estimated by NDVI. Due to the fact that there is much small-scale variability present within the Kafue
Flats no larger AOIs with presumably homogeneous backscattering behavior could be delineated in
cases A–C. However, these AOIs are still large enough to minimize the speckle effect in the averaged
time series. The land-cover information for AOIs D and E was extracted from the ESA Land Cover
CCI dataset (Figure 1c). AOIs A and B are located in areas which show low σ0 indicative of open
water during the flood season and intermediate backscatter during the dry season (Figure 4a). AOI C
is located in the vegetated floodplain close to the Kafue River where no negative change in σ0 due to
flooding is visible (Figure 4b). AOI G is situated in the Lukanga Swamps (Figure 3b).

Table 1. Characteristics of selected AOIs.

AOI Land Cover Avg. Dry-Season NDVI (–) Size (No. of Pixels)

A Seasonally flooded 0.42 371
B Seasonally flooded 0.40 152
C Vegetated floodplain 0.59 170
D Tree cover, open 0.33 755
E Rainfed cropland 0.27 1098
F Permanent water −0.13 1776
G Lukanga Swamps 0.50 4537

2.3.2. Seasonality Analysis Using Harmonic Model

The Kafue Flats are subject to strongly seasonal rainfall and runoff (Figure 2). Radar backscatter
dynamics are closely linked to hydrological processes occurring on the land surface due to the high
sensitivity of microwave radiation to changes in dielectric constant. Moreover, in the case of flooding,
processes such as specular reflection at open water surfaces exert a drastic influence on the energy
amounts backscattered from affected surfaces. Therefore, σ0 time series of the region are likewise
expected to display a strong seasonality. It can also be assumed that the series will not show a single
annual cycle but a more complex pattern produced at multiple frequencies due to the overlaying
effects of different scattering mechanisms.

The seasonal patterns of wetting, flooding and drying of the land surface within and around
the Kafue Flats were analyzed using harmonic modeling of the ASAR σ0 image time series obtained
using the pre-processing workflow described in Section 2.2.1. Seasonality in remotely sensed time
series has been analyzed before using similar approaches, mostly in order to derive land surface
phenology based on NDVI e.g., [27,56] but rarely for SAR-derived time series. A requirement for
the application of a harmonic model is that valid data points have to be present at key points of the
curve [27]. This in turn requires a sufficiently dense series which was generated as described earlier.
The applied methodology is described in greater detail by Schlaffer et al. [30]. The σ0 time series were
averaged over slices of ten days in order to regularize the sampling intervals.

A harmonic model represents a time series as a combination of k ∈ N sinusoids, each with an
amplitude A and a phase angle φ. φ can be interpreted as the time of the maximum of the respective
sinusoid [57]. A backscatter time series can therefore be expressed as

σ0(t) = σ̄0 +
k

∑
i=1

[
Ai cos

(
2πit

n
− φi

)]
+ ε(t) (2)

where σ̄0 is the backscatter coefficient averaged over time t, n is the number of measurements and
ε a residual term. The k sinusoids represent cycles occurring with a frequency fi = 1, 2, 3, ..., k yr−1.
The choice of an appropriate value for k was determined by the motive to reproduce the seasonality
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caused by the underlying climatic and flooding processes. According to our prior considerations that
water level can have positive or negative effects on radar backscatter depending on the occurrence
of flooded vegetation or open water, respectively, we expect that some of the affected time series
will display strongly asymmetric shapes. Such deviations from a purely sinusoidal shape with a
frequency fi can be represented by overlaying a second sinusoid with a frequency fi+1 = 2 fi [58].
We therefore chose to represent the series by a number of k = 3 sinusoids. The number of harmonic
terms is limited by the Nyquist frequency which is half of the sampling rate of a signal. In the present
case, the lowest number of samples is 25 over the two-year study period for θ between 15◦ and 25◦

(see Figure S1). The maximum possible value of k is therefore 25/4 ≈ 6 which is twice as high as the
selected value.

The parameters of the sinusoids were estimated using least-squares optimization as missing
values occurred in the time series due to the user-request-driven acquisition policy for ASAR WS
data. Using the transformations

Ai =
√

c2
i + s2

i (3)

and

φi = tan−1
(

si
ci

)
(4)

Equation (2) can be rewritten as

σ0(t) = σ̄0 +
k

∑
i=1

[
ci cos

(
2πit

n

)
+ si sin

(
2πit

n

)]
+ ε(t) (5)

which was treated like a multiple linear regression with predictors cos (2πit/n) and sin (2πit/n) [30].
We first estimated the parameters σ̄0, ci and si for time series averaged from samples taken

from the homogeneous areas selected as described in Section 2.3.1 to demonstrate the seasonality
encountered in the area of interest. Then, the harmonic model was derived for each point X in space
in the multi-temporal image stack created during pre-processing (cf. Section 2.2.1), which means that
the harmonic model parameters can be visualized as raster maps with the same spatial dimensions
as the input data.

2.3.3. Regional Wetland Mapping

After the harmonic model parameters were estimated as described in Section 2.3.2 we tested
whether the parameters contained enough information to classify different wetland classes such as
permanent and seasonal open water. If the harmonic model is fitted to the σ0 time series of each pixel
of a multi-temporal image stack the parameters of the model, namely mean backscatter, ci and si,
are available as spatially distributed variables. Therefore, using a harmonic model, a large portion
of the variability in a time series can be expressed through a combination of 2k + 1 parameters.
These variables can then be used to compare the seasonal behavior of different pixels against each
other. When no prior information about the seasonality of different wetland classes is available cluster
analysis represents an efficient way to explore the relationships of the different parameters with
respect to each other. Moreover, as the cosine and sine functions in Equation (5) are approximately
orthogonal to each other, Euclidean distance can be used as a measure of dissimilarity between the
time series [59]. A K-medoids partitioning approach was applied here which is outlined below.
Details are given by Kaufman and Rousseeuw [60]. Due to the size of the dataset (> 22× 106 pixels)
smaller sub-samples of 20,000 pixels were drawn at random. The sub-samples were grouped around
K representative objects, the so-called medoids. Subsequently, the samples not included in the
initial sub-samples were assigned to the closest representative object. The use of medoids instead
of centroids assigns lower weights to outliers as the sum of absolute deviations is minimized instead
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of the sum of squared deviations as in the widely-used K-means method. This makes the approach
more robust to the occurrence of outlying observations [60]. The number of target clusters was
estimated by the number of land-cover classes that the CCI Land-Cover dataset reported for the
study region. All clusters related to non-water or non-wetland were combined into a single “Land”
class. The remaining clusters were labelled using the gathered information about hydrological and
backscattering behavior from the analysis of the time series from selected AOIs (Table 1).

In the post-processing step, the resulting map showing the aggregated and labelled clusters
was regularized using a majority filter with a square kernel of 5 × 5 pixels. We further made the
assumption that wetlands and periodic inundation only occur in areas which are not highly elevated
above the river network. Similar assumptions have been made by e.g., Fluet-Chouinard et al. [61].
This assumption was implemented by using a mask based on the Height Above Nearest Drainage
(HAND) index which essentially consists of the elevation difference between a pixel of a digital
elevation model and the nearest pixel that is part of the drainage network. Details of the derivation are
given by Rennó et al. [62] and Schlaffer et al. [30] for the masking. The digital elevation model (DEM)
and the flow direction rasters available at a resolution of 3 arc-seconds from the HYDROSHEDS
website [63] were used as input for the HAND algorithm.

3. Results and Discussion

3.1. Wetland Backscatter Signatures

In this section, the results of the backscatter time series analysis are described. Since one goal
of the study is to discuss the backscatter signatures in context with flood dynamics, we first focus
on time series sampled from the AOIs described in Section 2.3.1. Then, the derived harmonic model
parameters are discussed in a spatial context.

3.1.1. Analysis of Time Series from AOIs

ASAR σ0 time series were sampled from AOIs at different locations along ENVISAT ground
track 85 in the Kafue Flats and track 543 in the Lukanga Swamps to compare backscatter and water
level dynamics. Additional AOIs were selected in a permanent water body and non-wetland areas for
comparison. Seasonality was estimated for different local incidence angle classes using the harmonic
model approach (Figures 5 and 6).

Figure 5 shows the time series of six AOIs in and around the Kafue Flats. In the lower panel,
altimeter-derived water height and soil moisture from the large-scale ERA-Interim/Land reanalysis
are displayed. Although reanalysis soil moisture fields cannot realistically reproduce actual soil
moisture dynamics inside the wetland they can be used to gain information about its general
seasonality based on atmospheric forcing [64]. Indeed, soil moisture shows distinct wet and dry
seasons as could be expected from the monthly rainfall statistics (Figure 2). Water height follows the
soil moisture dynamics with a time shift of some months. The annual amplitude in water height along
track 85 is ca. 2 m which is similar to numbers based on in-situ gauges reported in the literature [36].

In the top panel of Figure 5, the time series of a moderately vegetated AOI (A) with a dry-season
NDVI of ca. 0.42 is shown. For all three local incidence angle classes similar seasonal σ0 patterns
can be observed. The maximum occurs around January which roughly coincides with the peak of
the rainy season (cf. Figure 2) when soil moisture is high and vegetation should be fully developed.
After this maximum, σ0 drops within three months to levels usually considered indicative of
flooding (<−15 dB). Water height reaches its annual maximum around the same time. Water level
then decreases while at the same time there is a gradual increase of σ0 to about −10 dB in September.
This rather fast decrease in backscatter during the second half of the wet season and the subsequent
slow increase can be attributed to flooding followed by comparatively slow flood recession due to
the flat terrain. The strong negative relationship between σ0 and water height provides additional
evidence for this hypothesis. Between October and November there is again a decrease in backscatter
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as the dry season progresses, most likely due to lower soil moisture levels. Approximately in
December, σ0, water height and soil moisture start increasing again. During this time of the year,
there is a positive relationship between σ0 and water height.
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Figure 5. ASAR σ0 time series for different local incidence angle ranges in AOIs A–F as well as soil
moisture from ERA-Interim/Land and altimeter water heights in the Kafue Flats (bottom). Dashed
lines show fitted harmonic models.
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Figure 6. ASAR σ0 time series for different local incidence angle ranges in AOI G (top) as well as
soil moisture from ERA-Interim/Land and altimeter water heights in the Lukanga Swamps (bottom).
Dashed lines show fitted harmonic models.

A similar pattern can be observed for another moderately vegetated AOI (B) in the southern
part of the Kafue Flats. The main difference here is that the flooding seems to be more persistent
as indicated by the more stable low backscatter between March and July. The second maximum in
September is also by a few dB lower than in AOI A. A possible explanation for these dynamics could
be lower vegetation which remains submerged longer while in the first case gradually more and
more vegetation emerges from the water surface when the flooding slowly recedes and contributes to
higher backscatter. However, this cannot be fully answered given the available data as NDVI is very
similar among the two AOIs and it is also does not provide an indication of vegetation height.

Very different dynamics are found for the third AOI (C) which is located closer to the river and
more densely vegetated than the first two AOIs (NDVI = 0.59). Here, an overall positive relationship
between σ0 and water height (irrespective of θ class) can be noticed. Both variables increase between
November and May and then decrease during the dry season. The high σ0 values that are reached
during peak flood water height are indicative of double-bounce backscattering reaching values
between −6 dB and −4 dB, depending on θ. According to Ellenbroek [32], the area along the river
is characterized by tall grasses growing on levees along the river which may lead to only partial
submersion during the flood season.

According to the reference land-cover dataset [37], the two non-wetland AOIs D and E are
covered by trees and rainfed cropland, respectively. Both show similar seasonal patterns with a steep
increase in σ0 at the onset of the rainy season and a slow gradual decline reaching a minimum around
October. The main difference between the two AOIs is that AOI D has a higher annual minimum and
a smaller annual variation than E, presumably due to the denser vegetation and therefore higher
volume scattering during the dry season. The time series corresponding to AOI F, located over a
permanent water body, shows high noise at low local incidence angles resulting in a relatively poor
harmonic model fit with standard errors between 1.2 and 1.4 for the coefficients ci and si while for
higher θ they lie typically around 0.5. This is most likely owed to the higher susceptibility of steep
local incidence angles to water surface roughness. For the other θ ranges, the fitted curve resembles
almost a straight line reflecting the stability of specular reflection throughout the year.

Backscatter, altimeter water height and surface soil moisture time series for the Lukanga Swamps
(AOI G) are shown in Figure 6. The annual amplitude in water height was ca. 1 m, i.e., half the value
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found for the Kafue Flats. Backscatter throughout the year was high reflecting the high moisture
content. For steep incidence angles, σ0 during the wet season is even > 0 dB suggesting a strong
double-bounce contribution from the partially submerged reed stands. It is worth mentioning that
no further increase in σ0 is visible when water height increases above 1115 m. Rather, there seems
to be a small decrease during the height of the flood season between April and June (Figure 6).
This behavior can possibly be explained by the decreasing length of the stems and leaves of reeds
emerging above the water surface and therefore the smaller area available for the production of
double-bounce scattering. Similar findings have been reported based on backscatter modeling [65].
In comparison with AOI C, which is also characterised by seasonally flooded vegetation in the
Kafue Flats, double-bounce scattering is more persistent here meaning that the vegetation is likely
to be longer partially submerged in this case. According to Ellenbroek [32], the Lukanga Swamps’
main water loss is by evaporation whereas drainage towards the Kafue River is low. This offers
an explanation for the sustained high backscatter values encountered in this area. In relation to
the fitted harmonic models it can be noted that in the case of low incidence angles (black dashed
line in Figure 6) the annual dynamics are probably underestimated because there is only one σ0

measurement available at the lowest point of the time series in November 2006.
Overall, very similar harmonic models were fitted for all three value ranges of θ. Steep local

incidence angles (15◦–25◦) are sampled with the lowest density but the strong similarity between the
estimated models suggests that the sample size was high enough for the parameter optimisation.
In general, time series taken at a high local incidence angle are consistently lower than those from
low θ ranges. A more detailed discussion of the differences between the estimated harmonic model
parameters is given in the following paragraphs.

The differences between the harmonic models can also be illustrated in terms of the differences
in the estimated coefficients ci and si, corresponding to the amplitudes and phases estimated for the
respective frequencies. A suitable way to visualize these differences is obtained by plotting the point
pairs (ci, si) for a single frequency fi in Cartesian coordinates and to connect the points to the origin.
As result, a radial plot is obtained as shown in Figure 7 for the seven AOIs. The length of the lines is
equal to the amplitude Ai and the angle between the abscissa and the lines represents the phase angle
φi according to Equations (3) and (4) [59]. For the first harmonic with an annual frequency, both AOIs
with seasonal open water (A and B) have phase angles placing their lines in the lower right quadrant
of Figure 7a). Also, their lines are longer than the other AOIs reflecting the large annual amplitude of
the corresponding backscatter time series (cf. Figure 5). Since no significant seasonal variations in the
backscatter time series of the permanently water-covered AOI F could be identified for intermediate
and high θ (i.e., A1 ≈ 0) only a line for steep θ is visible which points in the almost opposite direction
of the coefficients for seasonally inundated areas. This suggests a certain potential of the harmonic
model parameters for being used to discriminate between permanent and seasonal water bodies even
if the differences in average backscatter σ̄0 are minor. The coefficients corresponding to AOI C, which
is located close to the river, are displayed as lines in the upper left quadrant echoing the very different
dynamics already shown in Figure 5. Moreover, the amplitude is much smaller than in the case of
AOIs A and B. The coefficients related to AOIs D and E, which are not located inside the wetland
areas, have similar phase angles φ1. A1 for the tree-covered area D, however, is smaller than for the
cropland area E. AOI G which is located in the Lukanga Swamps is characterised by comparatively
small A1 values for all three θ ranges. In contrast to the other AOIs, φ1 varies strongly between the θ

classes. This behavior can be explained by the fact that, in Figure 6, two peaks can be recognized in
the σ0 time series, the first one in January and the second one around August to September. For high
local incidence angles (green dashed line in Figure 6), the second peak is higher than the first one
which is likely to be the reason that the corresponding line is situated in the upper left quadrant of
Figure 7a).

In contrast, land and seasonal water bodies show a much higher similarity in terms of the
parameters obtained for the second harmonic term as demonstrated by the corresponding point pairs
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located in the upper-right quadrant of Figure 7b). Amplitudes A2 also tend to be lower than A1. A3

estimates are of similar magnitude as A2. Additionally, there is even less variation in φ3 than in φ2

between the AOIs (Figure 7c).
It is noteworthy that only minor differences in the estimated amplitudes between the different

local incidence angle classes for the same AOIs can be found which is illustrated by the similarity of
the solid, dashed and dotted lines in Figure 7. Viewing geometry expressed as θ, however, seems
to affect σ̄0 estimates for the different AOIs (Table 2). In general, σ̄0 is higher at steep θ which
is in line with our expectations. In dry-land AOIs (D and E) as well as in AOIs with seasonally
flooded vegetation (C and G) σ̄0 decreases in an almost linear manner with higher θ. In case of
permanent water (AOI F), the difference in σ̄0 is very strong between steep to intermediate θ values
whereas between intermediate and high θ the gradient flattens. The comparatively high σ̄0 for low
θ is probably due to the higher sensitivity to water surface roughness at these incidence angles [66].
In case of the AOIs with seasonal open water (A and B) the gradient seems to be marginally steeper
at low θ, however, not enough to assume a strong non-linearity. It can be concluded that, based
on the data from the selected AOIs, the periodic changes between different scattering mechanisms
like specular reflection and double-bounce scattering were not found to cause substantial deviations
from a linear relationship between σ0 and θ which is often reported in the literature e.g., [44,45].
Concerning the separability between wetland and dry-land classes differences between AOIs were
more pronounced at higher angles.
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Figure 7. Fitted parameters ci, si of harmonic model terms (a) i = 1; (b) i = 2 and (c) i = 3 for the
different AOIs A–F and θ ranges. Line lengths represent amplitudes (a) A1; (b) A2 and (c) A3; angles
between the x axis and the lines represent phase angles (a) φ1; (b) φ2 and (c) φ3.
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Table 2. Estimated σ̄0 in dB for each AOI and different ranges of θ.

AOI 15◦–25◦ 25◦–35◦ 35◦–45◦

A −11.6 −14.0 −15.1
B −10.9 −13.1 −14.3
C −6.4 −7.6 −8.6
D −8.3 −8.8 −9.3
E −8.4 −9.8 −10.5
F −10.5 −17.0 −20.4
G −1.1 −3.7 −5.2

3.1.2. Spatial Analysis of Harmonic Model Coefficients

In the next step of the analysis, harmonic models were fitted separately to the time series of
each pixel of the multi-temporal image stack. For each pixel, the harmonic model coefficients,
mean backscatter σ̄0, amplitudes Ai and phases φi were estimated and evaluated w.r.t. spatial
patterns of backscatter seasonality. As it was demonstrated in Section 3.1.1 there should be a high
potential to distinguish seasonal and permanent water bodies as well as regions with double-bounce
backscattering using the coefficients corresponding to the first harmonic term in Equation (2)
corresponding to a frequency f1 = 1 yr−1. The differences between AOIs were less pronounced
in the coefficients corresponding to the 2nd and 3rd harmonic terms. RGB composites of σ̄0, A1

and φ1 are shown in Figure 8 for different θ ranges. Phase angle φ1 is given as Day of Year (DoY)
and rescaled between 0 and 364. Visual inspection shows large differences between the wetland and
surrounding areas but also within the Kafue Flats themselves. The area along the Kafue River appears
as an orange-red ribbon in the centre of the maps. The time series derived from AOI C (Figure 5)
corresponds to this backscattering class. The area is characterized by annual flooding during the wet
season and high NDVI values. This leads to high average backscatter and therefore high values in
the red band of Figure 8 while at the same time the intra-annual variability caused by flooding leads
to intermediate values of A1 (green band) and low φ1 (blue band). In stark contrast, the seasonally
flooded areas north and south of the river appear as bright blue-green bands stretching along the
borders of the wetland. Comparison with the dynamics of AOI A and AOI B reveals that in these
areas the maximum occurs before or during the peak of the rainy season, i.e., late in the year (high
DoY), after which σ0 is decreased due to specular reflection. This in turn leads to high values in
the blue band of Figure 8 for seasonally flooded regions. Moreover, brighter shades of blue imply
that there is also a strong green component due to a high yearly amplitude in backscatter. The high
A1 and φ1 values for seasonally flooded areas were also visible in Figure 7a) for AOIs A and B.
In conclusion, areas with seasonal open water are characterized by low σ̄0 as well as high A1 and
φ1 while in seasonally flooded vegetation high σ̄0, low φ1 and intermediate A1 can be found. AOIs
A and B therefore correspond to areas appearing blue-green in Figure 8 while areas with a similar
behavior as AOI C appear orange to red.

In comparison, non-wetland areas are mainly shown in green and red shades. Areas shown
in green should be characterized by low average σ0 and high A1 while for areas shown in red the
opposite is true reflecting differences in vegetation density and biomass. Indeed, green areas typically
have a dry-season NDVI of 0.25–0.30 while in red areas NDVI is much higher (cf. Figure 3). According
to the reference land-cover dataset red areas mostly belong to tree-covered or even forested classes
(cf. AOI D) while green areas fall inside cropland classes (cf. AOI E). This would partly explain
the differences in σ̄0 and A1 as in forests volume scattering can be expected to be comparatively
high also during the dry season while in agricultural areas a higher sensitivity to soil moisture is
usually observed. Visual inspection of the differences between Figure 8a–c reveals that in some areas
the harmonic model coefficients are more sensitive to changes in θ than in others. Areas that are
labelled as covered by trees in the reference land-cover dataset (Figure 1c), for example, appear with
a higher red value and therefore have higher average σ0 at higher local incidence angles (Figure 8c



Remote Sens. 2016, 8, 402 17 of 24

vs. Figure 8a). This is in line with our expectation that volume scattering is more dominant at a more
oblique geometry due to the longer distance the incident radiation has to travel through the canopy.
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Figure 8. RGB composite of harmonic terms derived for (a) 15◦ < θ ≤ 25◦; (b) 25◦ < θ ≤ 35◦;
(c) 35◦ < θ ≤ 45◦. Red: average backscatter; green: amplitude of first harmonic term A1; blue: phase
of first harmonic term φ1 given as DoY.

Permanent water bodies like the Chunga Lagoon appear almost black at θ > 25◦ while at lower
angles seasonal and permanent water is more difficult to differentiate visually based on the harmonic
model components alone. Figure 5 shows more noise in the time series for AOI F acquired at θ < 25◦

which leads to a harmonic model which erroneously suggests a relatively high seasonality. This
is likely due to the higher σ0 from roughened surfaces at steep incidence angles [67] and therefore
a higher temporal variability which can be mistaken for seasonality by the model (cf. Figure 5).



Remote Sens. 2016, 8, 402 18 of 24

At higher incidence angles, however, the harmonic model components seem to be well suited to
distinguish permanent and seasonal water bodies.

The discussion here is mainly related to the parameters corresponding to the first harmonic.
Additionally, gray-scale images of all the fitted coefficients are included in the Supplement to this
article (Figures S2–S4). It can be seen that amplitudes A2 and A3 are, in general, lower than A1 and
that there is much less contrast between wetland and non-wetland areas. This confirms the conclusion
from Section 3.1.1 that the AOIs can be distinguished mainly based on σ̄0, A1 and φ1.

3.2. Regional Mapping of Wetland Backscattering Classes

Analysis of the harmonic model parameters in Section 3.1 showed that different backscattering
classes in wetlands could be distinguished based on indicators of their annual dynamics and mean
backscatter. We therefore chose the spatially distributed parameters σ̄0, c1 and s1 as well as the
standard deviation of the residual term sε as input parameters for the K-medoids approach described
in Section 2.3.3. The cluster analysis was run over the entire region shown in Figure 1c) to see if
the approach was able to correctly detect the three major wetlands in the study region. Only σ0

measurements acquired at local incidence angles between 25◦ and 35◦ were used for the parameter
estimation of the harmonic model. At these intermediate θ values a higher contrast between
permanent and seasonal water bodies as well as between forested and open areas was described
in Section 3.1. The parameters σ̄0, A1 and φ1 are shown in form of a RGB composite in Figure S5.
The number of target clusters in the cluster analysis was 16 which is the number of land-cover classes
that the ESA CCI Land-Cover dataset lists for the study region. The clusters were then combined and
labelled according to a description of the seasonal behaviour of the corresponding AOIs in Table 3.
Due to the differences in seasonal flooding that were observed between AOI C (Kafue Flats) and
AOI G (Lukanga Swamps) two classes for flooded vegetation were created. “Persistently flooded
vegetation” refers to persistent double-bounce scattering as observed in the Lukanga Swamps while
the more dynamic behavior along the Kafue River was regarded as typical for class “Seasonally
flooded vegetation”. A suitable threshold value for masking areas in which wetlands are very
unlikely to occur based on the HAND index was determined by visually assessing the distributions
of HAND values for the aggregated and labelled classes using a Box-Whisker-Plot (Figure S6 in
Supplementary Material). A threshold value of 10 m effectively separated the HAND distributions of
the wetland backscattering classes from the distribution conditioned on the “Land” class.

Table 3. Reclassification table.

AOI Class Labels Clusters

Permanent water 16 F
Seasonally flooded 14 A, B

Persistently flooded vegetation 15 G
Seasonally flooded vegetation 3 C

Land 1, 2, 4–13 D, E

The result of the classification after applying the post-processing steps described in Section 2.3.3
is shown in Figure 9. A total area of almost 7800 km2 was classified as one of the four wetland
backscattering classes corresponding to 7.6% of the total study area. Of this area, 7% were permanent
water bodies, 26% seasonal open water, 19% persistently flooded vegetation including most of the
Lukanga Swamps and 22% were covered by seasonally flooded vegetation. In comparison, the CCI
Land Cover dataset shows an area of 4800 km2 as covered by either water bodies or flooded shrub and
herbaceous vegetation. Discrepancies are mainly visible in the Lukanga and the Busanga Swamps
where large portions are classified as shrubland in the CCI product. However, flooded vegetation
seems to be more likely here as these areas, according to topography (cf. Figure 1b), are located
within the aforementioned wetlands. All three major wetlands in the region, the Kafue Flats in
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the south, the Lukanga Swamp in the north-east and the Busanga Swamps in the north-west were
detected by our approach. Also, the Itezhi-Tezhi reservoir, the Chunga Lagoon and a number of other
permanent water bodies are well represented. In the Kafue Flats, the main wetland units of densely
vegetated floodplain along the river and seasonal open water along their northern and southern
edges are correctly identified. In contrast to the complex mosaic found in the Kafue Flats, the main
part of the Lukanga Swamps is quite homogeneously covered by persistently flooded vegetation.
This class is also found in the Kafue Flats in the proximity of large permanent water bodies like the
Chunga Lagoon and in the flooded areas behind the Kafue Gorge Dam at the eastern end of the flats.
The Busanga Swamp seems to be more vegetated in its northern part while the southern part exhibits
seasonal open water bodies. The Kafue River is not continuously visible due to its rather narrow
channel width of 150 m to 200 m (according to visual assessment using Google Earth imagery). This is
below the size of the majority filter which may have reclassified pixels belonging to the river to the
land class. However, since the focus of this study was the mapping of wetlands we chose not to alter
the filter size of 5 × 5 pixels.
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The masking based on elevation difference to the nearest drainage mainly removed forested
pixels in the topographically complex south-eastern part of the region which would otherwise
have been falsely classified as open water or flooded vegetation due to radar shadow and layover,
respectively. It should also be mentioned that larger urban areas were falsely classified as flooded
vegetation due to high σ̄0 and low annual variation. Nevertheless, the HAND-based mask
successfully removed such areas as in the case of Lusaka.

4. Conclusions

In the presented study, moderate-resolution ENVISAT ASAR data acquired over a time period
of ca. two years were compared to altimeter-derived water height estimates and surface soil moisture
from a reanalysis dataset to assess characteristic seasonal patterns in C-band radar backscatter from
tropical wetlands. It was hypothesized that different scattering mechanisms caused by soil moisture
and inundation dynamics along with vegetation density affected the observed backscatter (σ0) time
series. Indeed, a positive contribution of water height to the backscatter coefficient was found under
dense vegetation whereas in more open areas, specular reflection dominated the signal as soon as
most of the vegetation had been submerged. These differences lead to typical time series signatures,
which were characterized using a harmonic model. Selected harmonic model parameters estimated
for each pixel in a multi-temporal image stack were then used to classify wetland backscattering
classes at the regional scale by applying an unsupervised classification approach. It was possible
to clearly differentiate permanent water bodies, seasonal open water, seasonal flooded vegetation as
well as persistently flooded vegetation from dry-land areas.

Furthermore, we addressed the question of whether periodic changes in scattering mechanism
(volume scattering, double-bounce scattering, specular reflection) affected the seasonal signatures of
the σ0 time series as expressed in terms of their amplitudes and phases. The effect of different local
incidence angles was found to be sufficiently well described by a linear shift in average backscatter
between the incidence angle bands. The only substantial exception to this finding were permanent
water bodies where data acquired at higher incidence angles seemed to be less affected by water
surface roughness. The effect of local incidence angle θ on σ0could, therefore, be largely corrected for
using a linear normalization approach as found in the literature on soil moisture retrieval from radar
data. For the wetland classification, data acquired in a θ range between 25◦ and 35◦ were selected as
our analysis had shown that, at these intermediate incidence angles, a good trade-off was obtained
between robustness to surface roughness for open water classification and canopy attenuation for the
classification of vegetated wetlands.

Typically, SAR-based wetland classification methods, some of which were mentioned in
Section 1, take into account imagery acquired during flood and dry seasons. Such approaches
usually require a significant amount of intervention by the operator, especially for selecting suitable
image acquisitions. In contrast, in the proposed approach, magnitude and timing of backscatter
seasonality are explicitly modelled for each pixel while taking into account the full time series of
ASAR images. We believe that our method makes an important contribution towards more automatic
wetland classification approaches, especially as more systematic acquisitions are made possible
by satellite missions such as Sentinel-1. As the application of a harmonic model requires a time
series with a length of at least one seasonal cycle the proposed approach for wetlands mapping is
generally suitable for detecting changes and trends in wetland extent and type from longer SAR time
series. An important prerequisite is a dense enough temporal sampling. Since the conclusion of the
ENVISAT mission Sentinel-1 is a prime candidate for continuing the existing time series of C-band
SAR data. However, at the time this manuscript was finalised only a small number of scenes had
been acquired by Sentinel-1 over the study region.
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(g) φ1(15◦–25◦); (h) φ1(25◦–35◦); (i) φ1(35◦–45◦); Figure S3: Harmonic model parameters (a) A2(15◦–25◦);
(b) A2(25◦–35◦); (c) A2(35◦–45◦); (d) φ2(15◦–25◦); (e) φ2(25◦–35◦); (f) φ2(35◦–45◦); Figure S4: Harmonic model
parameters (a) A3(15◦–25◦); (b) A3(25◦–35◦); (c) A3(35◦–45◦); (d) φ3(15◦–25◦); (e) φ3(25◦–35◦); (f) φ3(35◦–45◦);
Figure S5: RGB composite of harmonic model components used for wetland extent mapping in the Kafue River
Basin; Figure S6: Box-Whisker-Plots of the Height Above Nearest Drainage (HAND) index for each of the derived
classes.
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