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Abstract: Baseline information about dryland forest phenology is necessary to accurately 

anticipate future ecosystem shifts. The overarching goal of our study was to investigate the 

variability of vegetation phenology across a dryland forest landscape in response to climate 

alterations. We analyzed the influence of site characteristics and climatic conditions on the 

phenological patterns of an Arizona, USA, ponderosa pine (Pinus ponderosa) forest during 

a five-year period (2005 to 2009) that encompassed extreme wet and dry precipitation 

regimes. We assembled 80 synthetic Landsat images by applying the spatial and temporal 

adaptive reflectance fusion method (STARFM) to 500 m MODIS and 30 m Landsat-5 

Thematic Mapper (TM) data. We tested relationships between site characteristics and the 

timing of peak Normalized Difference Vegetation Index (NDVI) to assess the effect of 

climatic stress on the green-up of individual pixels during or after the summer monsoon. 

Our results show that drought-induced stress led to a fragmented phenological response 

that was highly dependent on microsite parameters, as both the spatial autocorrelation of 

peak timing and the number of significant site variables increased during the drought year. 

Pixels at lower elevations and with higher proportions of herbaceous vegetation were more 

likely to exhibit dynamic responses to changes in precipitation conditions. Our study 

demonstrates the complexity of responses within dryland forest ecosystems and highlights 
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the need for standardized monitoring of phenology trends in these areas. The spatial and 

temporal variability of phenological signals may provide a quantitative solution to the 

problem of how to evaluate dryland land surface trends across time. 

Keywords: dryland forests; phenology; STARFM; data fusion; Landsat; MODIS 

 

1. Introduction 

1.1. Dryland Forests and Woodlands 

Approximately one billion hectare of forests and woodlands exist within dryland areas around the 

globe [1]. One such forest ecosystem is found in the American Southwest, which hosts the largest 

expanse of pure ponderosa pine (Pinus ponderosa ex Laws.) forest in the world [2]. Dryland 

ecosystems are highly sensitive to climate variability [3,4]; even brief deviations from climatic norms 

can lead to rapid and persistent changes in the distribution of vegetation species [5]. The dry forest 

ecosystems of the U.S. West, particularly those dominated by ponderosa pine, were considered to be in 

“widespread collapse” over a decade ago [6] due to the interwoven dynamics of drought, forest 

mismanagement, and associated disturbance processes, such as pest infestations and fire. Between 

1984 and 2008, an estimated 18% of Southwest forest areas suffered high levels of mortality from 

wildfires and bark beetles [7]. The frequency and extent of large wildfires, the length of the wildfire 

season, and the total area burned in western U.S. forests have all increased since the mid-1980s [8]. 

Recent bark beetle infestations are  

the largest in recorded history; pests and pathogens are expected to reduce U.S. ponderosa pine  

forests by 28% over the next 15 years (2013–2027), without taking into account the effects of  

climate change [9]. 

The near-term outlook for dryland forests in the American Southwest is not encouraging. Most 

climate models predict warming across the U.S. over the next century [10], with reduced water resource 

availability across the southwestern states [11]. Warming can exacerbate the physiological stress on 

dryland trees, resulting in higher rates of tree mortality and more frequent die-off events [12,13]. If the 

length and intensity of summer drought increases, the resulting increase in the frequency of large 

wildfires will likely lead to changes in forest composition and tree densities [8]. Forest area in the 

Southwest could be reduced or converted to non-forest by over 50% with only two more drought or 

die-off events that are on par with those in the recent past [7]. 

1.2. Ecological Importance of Dryland Forest Phenology 

There is a pressing need to understand how dryland forests will react to climate change since these 

ecosystems provide a wide array of critical ecosystem services, ranging from nutrient cycling and 

wildlife habitats to timber harvesting and recreational opportunities [1]. Baseline information about the 

range of dryland forest responses to weather events is necessary to accurately predict ecological 

responses to climate change and its associated forcing agents [13,14]. The study of the timing and 

causes of recurrent biological events in a vegetative life cycle (e.g., “phenology” [15–18]) is a key 
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element of global change studies [19]. Temperature and precipitation changes can alter the timing of 

plant development and senescence [18], which can profoundly affect climate-vegetation processes, 

such as land surface albedo, sensible and latent flux partitioning, the timing of photosynthesis, and the 

timing and amount of litterfall [19]. Increased wildfire activity in western U.S. forests, for instance, has 

been positively linked to the earlier occurrence of spring, as measured by the timing of snowmelt [8]. 

Phenological changes can, in turn, influence local climate conditions, forming feedback loops. Earlier 

spring green-up and delayed fall senescence in deciduous canopies have been shown to alter seasonal 

climate characteristics: the prolonged period of increased evapotranspiration lowered soil moisture, 

increased surface temperature, and ultimately reduced summer precipitation [20]. 

One complication is that the phenology of dryland ecosystems can be difficult to characterize and 

predict over landscape extents. Unlike deciduous ecosystems, in which vegetation dynamics are 

controlled primarily by temperature and photoperiod [21], drylands are typically governed by the timing 

and amount of precipitation [22,23]. The spatially scattered and temporally erratic precipitation in 

dryland ecosystems drives a heterogeneous distribution of phenology states across the landscape [24]. 

These patterns are difficult to characterize using standard phenology determination methods [25], which 

were developed to track the more predictable growth phases of temperate, deciduous ecosystems. 

The vegetative composition and arrangement of ponderosa pine ecosystems exemplify this 

challenge. Historically, ponderosa pine ecosystems were composed of clumps of individual trees 

separated by inter-canopy expanses of herbaceous plants [26]. Fire suppression policies over the past 

century have generally led to denser, more evenly distributed stands of ponderosa pine, but the 

ecosystems can still display a wide array of vegetative compositions and structures arranged in a 

variety of mosaics [27]. The drought sensitivity of ponderosa pine is linked to landscape 

characteristics, such as elevation, slope, and soil texture [28,29], while increased tree density and lower 

elevation have been related to increased likelihood of mortality by bark beetles [26]. The removal of 

ponderosa pine overstory due to fire [30], insect infestations [26], and thinning [31] has been 

documented to stimulate the growth of understory forbs and grasses, which can produce different 

annual growth patterns than woody vegetation; herbaceous growth typically reacts quickly to 

precipitation and climatic events, while woody vegetation exhibits a measured and less dynamic 

response [32]. There is therefore a high potential for complex, localized patterns of phenology in 

ponderosa pine ecosystems. 

1.3. Data Fusion for Remote Sensing of Dryland Phenology 

Current satellite sensors are either temporally or spatially inadequate to capture the full 

phenological variability of dryland landscapes; infrequent revisit times may miss precipitous green-up 

events, while frequently-acquired but coarse-resolution data can aggregate multiple asynchronous 

signals into an incoherent response [25]. One solution to the lack of optimal imagery is to combine 

complementary data sources to overcome the inadequate temporal or spatial resolution of a single 

sensor. In this study we rely on the spatial and temporal adaptive reflectance fusion method 

(STARFM) [33]. This technique blends 500 m MODIS and 30 m Landsat imagery to produce 

“synthetic” imagery at MODIS time steps and 30 m resolution. Our earlier research established that 

STARFM can return accurate results in the dryland environment of Northern Central Arizona using 
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Landsat-5 data, particularly when implemented with MODIS nadir-adjusted bidirectional reflectance 

data (NBAR) [34]. We additionally concluded that the studies of phenological patterns in ponderosa 

pine ecosystems would benefit from the analysis of a higher spatial and temporal resolution imagery 

dataset. Phenology profiles derived from a time series of STARFM imagery contained spatial and 

temporal details that were absent from parallel time series based on 500 m MODIS or lower temporal 

resolution Landsat data [34,35]. 

1.4. Objectives 

In this study we applied STARFM data to the analysis of the phenological signatures exhibited by a 

dryland ponderosa pine ecosystem in Central Arizona. The analysis time frame (2005–2009) 

encompassed both anomalously wet and dry precipitation regimes. Our interest was in how general 

climate conditions, site characteristics, and vegetative composition modify the annual and multi-year 

expressions of phenological variability across the landscape. Consistent with the concept of “land 

surface phenology” (LSP) [36–39], our goal was to characterize the overall expressions of phenology 

across the landscape rather than to isolate the signals of a single representative vegetation species. Our 

specific objectives were to use a high spatial and temporal time series of imagery to: 

(1) Characterize the spatial and temporal variability of dryland forest phenology patterns in 

response to climate conditions; 

(2) Assess how terrain characteristics and vegetation composition influence the variability of 

phenological responses; 

(3) Investigate the use of phenological variability as an indicator of vegetation composition. 

To our knowledge this study is one of the first to examine the vegetation growth dynamics of a 

dryland forest at a 16-day temporal and 30-m spatial resolution. Although the analysis time frame is 

too constrained to allow general conclusions about long-term phenological trends within the dryland 

forest study site, the project demonstrates the complexity and variability of phenology patterns 

displayed by these ecosystems. 

2. Study Site and Data 

2.1. Study Site  

The study area is the ponderosa pine forest ecosystem within a 7339 km2 subset of Landsat WRS-2 path 

37/row 36, centered at 34°53.5′N, 111°47.9′W in central Arizona (Figure 1). On average the area receives 

364 mm of precipitation each year, primarily during the summer monsoon (July–early-September) and the 

winter months (November–March) [40,41] (Figure 2). The amount of precipitation received in 2005 

was 117% of the annual average, while 2009 was anomalously dry (231 mm) due to the lack of 

monsoon activity. The precipitation amounts of the intervening years were closer to the 20th century 

annual mean, although the winter of 2006 (October 2005–February 2006) was the 3rd driest in the past 

century; only 40 mm of precipitation fell during that time, compared to an average of 147 mm [41]. 
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Figure 1. Location of study area and extent of Southwest Regional Gap Analysis Program 

(SWReGAP) Southern Rocky Mountain Ponderosa Pine Woodland vegetation class in the 

state of Arizona, USA. 

 

Figure 2. Precipitation recorded in National Climatic Data Center (NCDC) Climate 

Division II in Arizona from 2005 to 2009, shown as (left) cumulative monthly totals, and 

(right) total monthly amounts. 
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2.2. Ponderosa Pine Land Cover  

The vegetative ecosystem of interest is classified by the Southwest Regional Gap Analysis Program 

(SWReGAP) [42] as Southern Rocky Mountain Ponderosa Pine Woodland, which comprises the 

predominant land cover class in the study site. It is characterized by the dominance of ponderosa pine 

(Pinus ponderosa var. scopulorum and var. brachyptera) in the overstory. Douglas fir (Pseudotsuga 

menziesii), pinyon pine (Pinus edulis), and juniper (Pinus-Juniperus spp.) are also potentially found in 

the canopy, and a shrubby understory may be present. Commonly found associate grasses are 

bluebunch wheatgrass (Pseudoregneria spicata) and species of needlegrass (Achnatherum), grama 

(Bouteloua), fescue (Festuca), and muhly (Muhlenbergia) [43]. The ponderosa pine woodland is found 

at higher elevations in the study area (1945–2397 m).  

2.3. Imagery Datasets 

2.3.1. MODIS 

MODIS NBAR data (dataset MCD43A4) are produced every 8 days using 16 days of combined 

data from the Aqua and Terra satellites. The data use multi-angle surface reflectance values to model 

reflectances that would have been obtained from a nadir view given the mean solar zenith angle of the 

16-day period [44–46]. 

We assembled MCD43A4 images acquired from 2005 to 2009 in tile h08v05, in which the quality 

control flags indicated no snow and full inversion for the bidirectional reflectance distribution function 

(BRDF) model for at least 95% of the study site. Although the 16-day datasets are output every 8 days, 

we used temporally adjacent 16-day datasets rather than including all available images. This restriction 

to non-overlapping datasets yields a more conservative time series and excludes potentially redundant 

information. At least 14 images met the criteria during the growing season in each year (Figure 3). The 

annual gap in the time series during the monsoon season does not invalidate the usefulness of the 

dataset for phenology analysis purposes [47]. 

 

Figure 3. Acquisition dates of 16-day MODIS NBAR datasets (MCD43A4). Gaps in the 

time series continuity were caused by cloud cover. Each MCD43A4 dataset identified with 

an asterisk (*) was combined with a contemporaneous Landsat image to create the annual 

STARFM base pair. 
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We acquired all data via the Warehouse Inventory Search Tool (WIST) client at the USGS Earth 

Resources Observation and Science (EROS) Center website (https://lpdaac.usgs.gov). In accordance 

with the STARFM input requirements, the data were spatially subset to the study area dimensions, 

reprojected to a common projection (UTM Zone 12N), and resampled to a 30-m spatial resolution 

using a nearest neighbor transformation. We used the U.S. Geological Survey (USGS) MODIS 

Reprojection Tool (MRT v. 4.0) for all processing steps. 

2.3.2. Landsat 

In each year we chose a Landsat-5 Thematic Mapper (TM) image that was atmospherically clear 

(<5% cloud cover) and non-snowy as the basis for STARFM image generation. Given that our 

previous study returned favorable STARFM results based on fall scenes [34], we selected the clearest 

images available in that general time frame in each year: 16 September (2005); 19 September (2006); 

21 August (2007); 10 October (2008); and 27 September (2009). We acquired all scenes through the 

USGS GLOVIS portal (http://glovis.usgs.gov), then calibrated and atmospherically corrected them using 

the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [48]. The MODIS data 

processing scheme uses the same radiative transfer model for its atmospheric correction algorithm [48], 

thus, the use of LEDAPS for the Landsat correction decreases a potential source of uncertainty in the 

dataset comparison. No additional noise removal was required for the Landsat images from 2005, 

2006, 2007, and 2009, while minor amounts of clouds and cloud shadows were masked from the 2008 

image. Pixels with cloud cover in 2008 were removed from consideration in the overall study. 

2.3.3. U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) Imagery 

We used 1-m NAIP imagery from May and June, 2011 to define percentages of overstory and 

understory cover at a set of random points across the study site, as outlined in Section 3.3.  

2.4. Topographic Data 

We downloaded individual 1/3 arc second (approximately 10 m) digital elevation model (DEM) 

files from the USGS National Elevation Dataset (NED) (http://ned.usgs.gov/). We mosaicked the study 

area files in ArcMap (v. 10.0; ESRI, Inc.) and resampled them to 30 m in ENVI (v.4.8) to conform to 

the STARFM data extent and resolution. We derived slope and aspect from the resampled DEM and 

subsequently partitioned the aspect data into eight, 45° sections: 1 (NNE: 0°–44°), 2 (NE: 45°–89°),  

3 (SE: 90°–134°), 4 (SSE: 135°–179°), 5 (SSW: 180°–224°), 6 (SW: 225°–269°), 7 (NW: 270°–314°), 

and 8 (NNW: 315°–360°).  

3. Methods 

3.1. STARFM Algorithm 

STARFM produces a synthetic image from one or more base pairs of Landsat and MODIS images 

acquired on the same day (t0) and one or more MODIS observations from the prediction date (t1). 

MODIS and Landsat surface data are very consistent relative to one another [48], although bandwidth 
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and solar geometry differences cause variations [33]. After a MODIS surface reflectance image has 

been georeferenced and resampled to the same image size, pixel size, and coordinate system as the 

Landsat data, the high consistency of MODIS and Landsat surface reflectance data allows for the 

development of a stable relationship that can be extrapolated to subsequent MODIS images. The 

introduction of a weighting function adjusts reflectance values according to the complexity and 

heterogeneity of the study area. The resulting synthetic pixel values are quantitatively calibrated, rendering 

them useful for tracking changes in phenological metrics across time. Readers are referred to [33] for a 

thorough explanation of the algorithm. 

We applied the STARFM algorithm to the assembled MODIS images, using a single imagery pair 

from each year, a moving window of 1500 × 1500 m, and band uncertainties of 0.002 and 0.005 for the 

visible and near infrared (NIR) bands, respectively [33]. In our previous studies, synthetic images 

generated from a single base pair returned acceptable results when compared to reference Landsat 

images acquired throughout the growing season [34,35]. We produced synthetic images corresponding 

to Landsat bands 3 (red) and 4 (NIR) only, for a total of 160 STARFM images (2 bands × 80 dates). 

3.2. Creation of Time Series for Phenological Analysis 

To examine the temporal signatures of the land cover classes, we extracted metrics derived from the 

Normalized Difference Vegetation Index (NDVI) [49]. NDVI is calculated as: 

NDVI = (ρNIR – ρRed)/(ρ NIR + ρRed) (1)

where ρ indicates the reflectance of the associated band. We created NDVI images at each of the 

MODIS NBAR dates (Figure 3) to produce profiles of the vegetation dynamics during each growing 

season. We restricted the study to MODIS pixels in which all constituent 30 m STARFM pixels 

(typically ~240 pixels) were classified as Southern Rocky Mountain Ponderosa Pine Woodland 

(identified hereafter as “ponderosa pine”) in the SWReGAP dataset. This restriction reduced errors 

introduced by positioning discrepancies or classification inaccuracies, since adjacent pixels of the same 

land cover type are more likely to exhibit similar phenological behavior. A total of 1.3 million 

STARFM pixels met the criteria. 

We extracted the annual reflectance time series profile from each 30-m pixel. Pixels with differing 

amounts of overstory or understory display profiles that diverge in both amplitude and timing; in most 

instances, neither type resembles the distinct seasonality trends that typify deciduous environments 

(Figure 4). We thus limited our analysis to a single key phenology metric: the timing of maximum 

greenness, i.e., the date of the maximum annual NDVI [50]. For each pixel we computed metrics for 

annual and multi-year (i.e., interannual) time periods. We computed all interannual parameters for both 

2005–2008, to obtain a set of values representative of relatively average climatic conditions, and  

2005–2009, to quantify the effect of the anomalously dry conditions of 2009 that substantially reduced 

regional NDVI values (Figure 5). T-tests of the mean peak NDVI value between the two groups  

(2005–2008: 0.57 vs. 0.56; t(1595.9) = 2.50, p = 0.01) and the date of peak NDVI (255.9 vs. 259.9; 

t(1587.8) = −3.33, p < 0.001) confirmed the distinctness of the classes. 
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Figure 4. Examples of seasonal differences in NDVI timing and value of herbaceous and 

woody vegetation. Shown are neighboring 30-m STARFM ponderosa pine land cover 

pixels dominated by overstory ponderosa pine (blue) or herbaceous vegetation (green). The 

background is 1-m resolution, natural-color U.S. Department of Agriculture (USDA) 

digital orthophoto quarter quad (DOQQ) imagery from June, 2007. 

 

Figure 5. Mean NDVI values of all ponderosa pine STARFM pixels from the contrasting 

precipitation years of 2005 (wet) and 2009 (dry). Error bars represent ± 1 one standard 

deviation. The effect of the lack of monsoon activity is evident in the 2009 profile, which 

diverges markedly from the 2005 response. To highlight the different vegetation dynamics 

between the years, the y-axis range has been reduced to (0.35, 0.65). 

  



Remote Sens. 2015, 7 10841 

 

3.3. Creation of Random Point Dataset 

To evaluate the influence of topographic parameters and overstory proportion on phenology 

metrics, we generated a set of approximately 800 points located randomly across the STARFM 

ponderosa pine pixels. Areas that had burned during 2005–2009 were excluded to prevent disturbance 

events from affecting the phenology analysis. We visually estimated the percent of overstory cover 

within a 30-m square around each point on the basis of 1-m NAIP imagery hosted in Google Earth. We 

associated each point with multiple corresponding landscape and NDVI metrics, as well as the 

potential annual incident solar radiation [51] (Table 1, Figure 6). We included the mean NDVI as a 

covariate since this metric is associated with the relative proportion of pine or herbaceous material in 

each pixel, as demonstrated in Figure 4. Unlike the static percentage metric, however, the mean NDVI 

can vary from year to year. Information about how the timing and variability of NDVI response differ 

depending on annual mean NDVI is, thus, valuable for inferring how the seasonal dynamics change 

according to the relative greenness signal of each pixel. 

 

Figure 6. Mean NDVI (top) and coefficient of variation (CV) of NDVI (bottom) of the 

800 random points located within ponderosa pine STARFM pixels. Mean NDVI error bars 

represent ± 1 standard deviation. 
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Table 1. Mean and standard deviation (SD) descriptive statistics of variables in the annual 

and interannual analyses of peak NDVI timing. Values are calculated from the 800 random 

points located within ponderosa pine STARFM pixels. Mean NDVI and coefficient of 

variation (CV) of NDVI are shown in Figure 6. 

4. Exploratory Data Analysis 

Distribution plots of the peak timing of all ponderosa pine pixels revealed that the majority reaches 

peak greenness during or after the monsoon period. This distribution provided a convenient structure 

for assessing the broad influence of physical site characteristics and vegetative composition on peak 

timing. Our expectation was that a pixel that shows more immediate responsiveness to monsoonal 

precipitation is dominated by herbaceous cover, while one with a more delayed response is dominated 

by ponderosa pine, as demonstrated in other woody/herbaceous ecosystems (e.g., [32]). Pixels that 

alternate between monsoon and post-monsoon peaks likely have more equal vegetation distributions, 

either of which may dominate the annual signal depending on prevailing climate. As such, a study of 

the relative proportion of a landscape that greens up during or after the monsoon period may serve as a 

helpful measure of vegetative condition across broad extents. Our subsequent analytical goals were to 

evaluate the ability of the fused imagery time series to (1) discriminate the site characteristics that 

control the annual peak greenness timing (monsoon or post-monsoon); and (2) assess the consistency 

of the timing across the study time period. 

4.1. Annual Patterns of Peak Greenness Timing  

We chose a cut-off date of 15 October (Day of Year (DOY) 288) to distinguish between pre- and 

post-monsoon periods, based on the clear break in timing distributions in each year. 

4.2. Interannual Patterns of Peak Greenness Timing 

To determine whether each pixel displayed low or high variability of peak timing across years, we 

examined the standard deviation of peak NDVI timing for both 2005–2008 and 2005–2009. As in the 

annual analysis, distribution plots revealed bimodal distributions in each time frame. We fit individual 

Gaussian density components to each mixture distribution to distinguish between the two variability 

sets (Figure 7). To distinguish between low and high interannual variability groups, we chose the 

intersection of the two component density functions: 25 days for 2005–2008 and 20 days for 2005–

2009. 

Variables in Annual Analyses Variables in Multi-Year Analyses Mean (SD) 

Elevation (m) Elevation (m) 2158.65 (84.8) 
Slope (°) Slope (°) 4.50 (3.7) 
Aspect (°) Aspect (°) 211.17 (3.3) 

Solar radiation (MJ/cm2/year) Solar radiation (MJ/cm2/year) 0.99 (0.036) 
Percent cover Percent cover 48.89 (20.9) 

 Peak NDVI value (2005 to 2008) 0.57 (0.064) 
 Peak NDVI value (2005 to 2009) 0.56 (0.065) 
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Figure 7. Frequency distributions of the variation in peak NDVI date for 2005–2008 (left) 

and 2005–2009 (right). The time periods were analyzed separately to assess the behavior 

of high/average precipitation years vs. those that include a drought year (2009). Individual 

Gaussian functions are shown in blue (monsoon) and green (post-monsoon); the dashed 

line represents the density function for the composite distribution. 

5. Statistical Analysis 

We explored the spatial and temporal patterns of the timing of peak greenness using a   

variety of statistical methods to determine whether landscapes that green up at different times—during 

or after the monsoon—exhibit different phenology signals under wet and dry conditions. Given  

that no available precipitation dataset in this region matches the high spatial resolution of our  

imagery dataset, we did not explicitly incorporate rainfall amount or timing into the analysis. Instead, 

we assume that the vegetation greenness patterns are primarily in response to the overall moisture 

conditions in each year. 

5.1. Spatial Analysis 

We investigated the degree to which climate affects the spatial distribution of peak greenness across 

the landscape by calculating the annual global Moran’s Index value [52] in ArcMap. Moran’s I can be 

thought of as the spatially-weighted equivalent of Pearson’s correlation coefficient [53], in which the 

null hypothesis assumes perfect homogeneity among the values. Thus a z-value of –1 indicates 

negative correlation (perfect dispersal); 0 indicates no correlation (random dispersion); and 1 indicates 

positive correlation (clustered). All 1.3 million ponderosa pine pixel values were included in this 

analysis in each year.  

5.2. Comparison of Site Characteristics 

To determine if vegetative and site characteristics differed between the respective annual 

(monsoon/post-monsoon greenup) and interannual groups (low/high variability of peak timing), we 
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performed Welch’s t-tests for continuous variables, and chi-square tests and single-factor ANOVA and 

Tukey’s HSD (Honestly Significant Difference) tests for categorical aspect data. The random point 

dataset served as the basis for the examinations of site characteristics and model development to allow 

us to discriminate the behavior of pine- or herbaceous-dominated vegetation. All tests were conducted 

in R (version 2.14.1).  

5.3. Multivariate Model Development and Analysis 

To identify the multiple site and vegetation parameters that control when a pixel greens up and how 

variable that timing is over the five-year study period, we used a multiple logistic regression approach. 

In the annual analysis, the dependent binary variable was the green-up period to which a pixel 

belonged (monsoon or post-monsoon) and the independent variables were landscape parameters 

(elevation, slope, aspect, and solar), percent of overstory cover, and the annual mean and covariance of 

the NDVI value. In the interannual (multi-year) analysis, the dependent variable was the standard 

deviation group to which each pixel belonged (low or high), and the independent variables were the 

landscape parameters, percent of overstory cover, and the average peak NDVI value during 2005–2008 

and 2005–2009. We used a backward stepwise model selection process with a combined bootstrap 

procedure to investigate the variability of model selection. The bootstrapping procedure strengthens 

the selection process accuracy by evaluating the distribution of each independent variable, which is 

used to distinguish between noise variables and true independent predictors [54]. The algorithm uses 

Akaike’s information criterion (AIC) as measure of the quality of the fit of the model.  

6. Results 

6.1. Test of Spatial Autocorrelation 

The peak greenness dates showed positive spatial autocorrelation across the ponderosa pine 

landscape in all years except 2008 and a considerable range of magnitude (Table 2). The graphical 

presentation of the results (Figure 8) shows the predominance of monsoon timing in most years, with 

an abrupt change to highly clustered, post-monsoon timing in the anomalously dry year of 2009. Just 

3.1% of all pixels registered a post-monsoonal peak NDVI in 2008, in contrast to 49.9% of all pixels in 

2009.  

Table 2. Results of the Moran’s I spatial correlation analysis of the annual date of peak NDVI 

in each year from 2005 to 2009. * p < 0.05. The data from all pixels were used in the analysis. 

Year Index Z-Score p 

2005 0.40 2.83 0.005 * 
2006 0.34 2.47 0.01 * 
2007 0.38 2.73 0.006 * 
2008 0.14 1.03 0.30 
2009 0.86 6.11 <0.001 * 
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Figure 8. Maps of the annual timing of peak NDVI recorded in each of the 1.3 million 

STARFM pixels from 2005 to 2009. Early-season pixels in 2007 (represented in blue) 

were excluded from the overall statistical analysis due to the presence of fire in that year. 

6.2. Results of t-Tests and Logistic Regression of Annual Monsoon vs. Post-monsoon  

Timing Characteristics 

The monsoon green-up group was consistently characterized by significantly lower amounts of 

overstory cover, lower mean NDVI, and higher coefficient of variation of NDVI, while topographic 

parameters were only significant in 2009 (elevation: 2179 m vs. 2144 m; t(648.93) = 5.61, p < 0.001; 

and slope: 5.01 vs. 4.14; t(657.58) = 3.27; p = 0.001) (Figure 9). Aspect and solar radiation were not 

significant in any year. 
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Figure 9. Results of Welch’s t-tests for landscape and vegetation parameters by monsoon 

or post-monsoon annual peak greenup in each year from 2005 to 2009 for 800 random 

point locations across the ponderosa pine ecosystem. Mean NDVI (top), coefficient of 

variation (CV) of NDVI (middle), and percent overstory cover (bottom) were significant 

at p < 0.05 in all years. Error bars in the mean NDVI and overstory cover plots represent 

+/− one standard error. 

The logistic regression models run on a year-by-year basis revealed that as the mean NDVI value of 

a pixel increased, the probability of that pixel displaying a post-monsoon green-up also increased, 

while as the NDVI value variability increased, the probability dropped (Table 3). Shallower slopes 

were associated with higher probability of post-monsoon green-up in all years except 2008. Higher 

elevations corresponded to decreased probabilities of post-monsoon timing in the two drought years 

(2006 and 2009). Aspect was significant in 2006 only; the negative parameter coefficients on aspect 

partition 4 (135°–180°) indicate that the probability of post-monsoon timing decreased for vegetation 

in south/southeast-facing aspects. 
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Table 3. Results of the logistic regression modeling of the annual monsoon/post-monsoon 

timing of peak NDVI for 800 random point locations across the ponderosa pine ecosystem. 

SE = Standard error. * p < 0.05; ** p < 0.01; *** p < 0.001. 

Year Predictor Coefficient SE 

2005 

Intercept −4.75 *** 1.05 
Slope −0.062 * 0.028 

CV of NDVI −0.25 *** 0.066 
Mean NDVI 11.26 *** 1.64 

2006 

Intercept 3.54 2.54 
Elevation −0.004 ** 0.001 

Slope −0.08 *** 0.026 
CV of NDVI −0.38 *** 0.060 
Mean NDVI 15.70 *** 0.06 

Aspect 4 −0.87 * 0.37 

2007 

Intercept −2.83 1.77 
Slope −0.15 ** 0.050 

CV of NDVI −0.53 *** 0.099 
Mean NDVI 10.29 ** 2.73 

2008 
Intercept −4.70 * 2.19 

CV of NDVI −0.54 *** 0.13 
Mean NDVI 13.29 *** 3.43 

2009 

Intercept 14.96 * 2.31 
Elevation −0.0059 *** 0.001 

Slope −0.088 ** 0.025 
CV of NDVI −0.64 *** 0.066 
Mean NDVI 5.89 *** 1.41 

6.3. Results of t-Tests and Logistic Regression between Multi-Year Low vs. High Variability of Peak 

NDVI Date 

Pixels with high variability from the average precipitation years of 2005–2008 were found at 

significantly lower elevations and displayed higher average peak NDVI values and higher percent 

overstory cover (Table 4). Pixels with high variability across both average and dry years were also 

found at lower elevations, with higher peak NDVI values; but they were conversely characterized by 

lower amounts of overstory cover, and located on significantly shallower slopes. The Chi-square 

analysis of the distribution of aspect categories could not reject the null hypothesis of no significant 

difference between high and low variability groups in both time periods (2005–2008: p = 0.09; 2005–

2009:  

p = 0.54). 

The logistic regression models for 2005–2008 and 2005–2009 reveal that only slope and elevation 

were significant factors influencing the variability of peak NDVI timing (Table 5). As either slope or 

elevation increased, the likelihood of a more consistent date of peak NDVI over time also increased. 

The mean peak NDVI value was a significant positive variable in 2005–2008, but was no longer 

significant when 2009 was included. 
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Table 4. Results of Welch’s t-test of variables in pixels displaying low or high variability of peak 
NDVI timing from 2005–2008 and 2005–2009 for 800 random point locations across the ponderosa 
pine ecosystem. Only parameters significant at p < 0.05 are shown.  
SD = standard deviation. 

Time Period Parameter 

Variability of Peak NDVI Timing 

T df Low High 

Mean (SD) Mean (SD) 

2005–2008 
Elevation 2164.79 (90.97) 2149.87 (75.05) 2.53 775.74 

Percent cover 45.83 (20.48) 53.25 (20.63) –5.02 702.84 
Mean peak NDVI 0.56 (0.064) 0.59 (0.059) –7.06 739.89 

2005–2009 

Elevation 2183.95 (93.99) 2151.02 (80.70) 4.31 270.82 
Percent cover 51.62 (21.12) 48.06 (19.77) 2.11 320.89 

Mean peak NDVI 0.56 (0.059) 0.57 (0.066) 2.21 334.07 
Slope 5.30 (4.14) 4.27 (3.46) 3.06 266.03 

Table 5. Results of the logistic regression modeling of the low and high interannual 

variability of peak NDVI timing from 2005–2008 and 2005–2009 for 800 random point 

locations across the ponderosa pine ecosystem. * p < 0.05; *** p < 0.001. 

Time period Variable Coefficient SE 

2005–2008 

Intercept 0.59 4.18 
Elevation –0.0031 *** 0.001 

Slope –0.062 * 0.02 
Mean peak NDVI value 9.38 *** 1.72 

2005–2009 
Intercept 7.0 4.39 
Elevation –0.0049 *** 0.001 

Slope –0.052 * 0.02 

7. Discussion 

As seen in other dryland ecosystems (e.g., [55]), the ponderosa pine forest ecosystem exhibited 

considerable phenological variability within seasons and across years during our study time period. 

This variability was consistently captured by the fused imagery time series, demonstrating that these 

data can be used to identify and quantify ecosystem response to climate conditions. We explore the 

ecological implications of the features captured by satellite data below. 

7.1. Drought-Induced Stress Leads to Fragmented Phenological Response 

The clustered response of 2009 peak NDVI timing to the marginal climate conditions (Figure 8) is 

likely the result of vegetation within neighborhoods of similar site characteristics exhibiting 

synchronized phenological responses; 49.9% of all pixels registered a post-monsoon peak NDVI. The 

obverse argument of less clustering across the landscape under wet or sufficiently rainy conditions, 

however, is less supported by these results; the most homogenous landscape was observed in a year of 

average precipitation (2008), in which just 3.1% of all pixels showed a post-monsoon peak NDVI, 

rather than during the extremely wet year (2005). Previous climate conditions may provide an 

explanatory context. Arizona experienced a severe drought prior to the start of our study period, from 
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2002–2004; tree-ring evidence implicates 2002 as the third-worst drought year in the last 1400 years [56]. 

The complex effects of antecedent climatic conditions on dryland system phenology [55] and the 

lagged influence of drought on subalpine tree species [57] may have influenced the 2005 response. In 

contrast, 2008 represents the first year of the time period that neither experienced seasonal drought 

(such as in 2006) nor was preceded by a drought year. The ecosystem may have recovered sufficiently 

at that point to permit a less fragmented response to climate conditions.  

The average precipitation years of 2007 and 2008 also experienced different temperature regimes 

that might have contributed to the discrepancy in vegetation response. The average temperature from 

May through August 2007 (20.5 °C) was higher than the 20th century mean (19.0 °C), while the 

average temperature during the same time in 2008 was more moderate (19.3 °C) [41]. Although both 

years received approximately the same precipitation amount, the comparatively cooler conditions in 

2008 may have been more amenable to vegetation growth. 

7.2. Drought Intensifies the Discriminatory Power of Site Variables 

During the drought year (2009), site characteristics became critical for determining the observed 

phenological response: post-monsoon pixels were found at significantly shallower slopes and lower 

elevations. This result appears inconsistent with the greater sensitivity of ponderosa pines to climate at 

lower elevations [28,29]. One explanation may be that the NDVI signal from pixels with relatively 

equal proportions of herbaceous and woody vegetation shifted to ponderosa pine-dominated timing at 

warmer, lower elevations due to a suppression of herbaceous response that did not occur at higher 

elevations. Supporting this explanation is the comparison of pixels that consistently experienced 

monsoon peaks from 2005 to 2009 with those that shifted from monsoon peak timing in wet or average 

precipitation years (2005–2008) to a post-monsoon peak in the dry year (2009). The stable monsoon vs. 

variable monsoon groups had no significant differences in percent cover (46% vs. 44%; t(430.46) = 0.78, 

p = 0.44), but displayed a significant effect for elevation (2182 m vs. 2141 m; t(435.41) = 4.87, p < 0.001), 

with inconsistent pixels found at lower elevations. Given the abbreviated time span of our study, we 

cannot draw conclusions about whether the signal shifts reflected a short-term seasonal response or a 

more permanent alteration of vegetation composition. 

7.3. Variability of Peak NDVI Dates Linked to Topography and Herbaceous/Woody Composition 

The variability of peak NDVI timing across moderate precipitation years (2005–2008) and 

moderate/drought years (2005–2009) demonstrates the influence of topographic factors and vegetative 

composition on the phenological response of the landscape to seasonal climate conditions.  

The relatively narrow elevation range of our study site (452 m) played a prominent role in 

controlling phenological behavior, with lower elevations strongly linked to post-monsoon peaks and 

more variable peak green-up timing. Since we can regard elevation as a proxy for climate [58], the 

implication is that an examination of phenological response by stratified elevation gradients could be a 

useful tool for anticipating the effects of regional climate change [59].  

All logistic regression models showed an association of shallower slopes with post-monsoon timing 

and more variable peak green-up dates. The higher variability of peak green-up from year to year is not 

consistent with a concurrent assumption of ponderosa pine-dominated pixels. We do not have an 
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explanation for the dynamics of this particular scenario; the ponderosa pine may be responding to a 

critical deterministic factor that was not taken into account in this study, such as soil texture [29], 

species interactions, or resource availability.  

The reversal of the association of higher peak NDVI timing variability with significantly greater 

percent cover (2005–2008) to significantly lower (2005–2009) may again reflect the suppression of 

herbaceous influence by the 2009 monsoon failure. Pixels with higher proportions of herbaceous 

vegetation were more likely to display a marked difference in peak greenness timing in response to the 

drought, as the dampened herbaceous signal allowed relatively smaller proportions of overstory cover 

to dominate. The amount of overstory cover never identified as a significant factor in the logistic 

regression modeling, despite its significance in the individual t-tests. Although percent cover was only 

moderately correlated with the annual average NDVI value and multi-year peak NDVI value, we 

suspect this collinearity was the reason that the parameter never evaluated as a significant factor.  

8. Conclusions 

Our study is unique in its investigation of the drivers of ponderosa pine ecosystem phenology using 

fused Landsat and MODIS data. We demonstrated that we could capture spatially complex phenology 

signals by examining changes in the seasonal timing of peak NDVI over a five-year span (2005–2009) 

that included extreme annual precipitation differences. Although a single metric cannot represent the 

full phenological complexity of this dryland environment, its behavior allows insights into how climate 

and site characteristics influence both broad and fine-scale patterns of vegetation dynamics. 

Our results show that the 2009 drought produced more spatially and temporally unsynchronized 

signals of peak NDVI timing and shifted overall greenness patterns across the landscape: the 

percentage of all pixels with a post-monsoon peak NDVI increased from a low of 3.1% in the average 

precipitation year (2008) to a high of 49.9% during the drought year (2009). Drought additionally 

amplified the influence of microsite factors on vegetative response. In each year, selected pixels with 

monsoon peak greenness were characterized by significantly lower mean amounts of overstory cover 

(45.4%–48.4% vs. post-monsoon 50.7%–58.3%), lower mean annual NDVI (0.47–0.51 vs. 0.50–0.55), and 

higher annual NVDI coefficient of variation (7.9–10.6 vs. 6.0–8.9); in 2009, monsoon peak NDVI pixels 

were additionally found at higher mean elevations (2179 m vs. 2144 m) and steeper slopes (5.0 vs. 4.1). We 

further demonstrated that the consistency of peak NDVI timing was linked to the elevation and 

vegetation composition of each pixel. More stable peak green-up dates were uniformly associated with 

higher elevations (mean elevation difference: 23.9 m). However, consistent peak greenness timing 

alternated between an association with lower percent canopy cover in average and wet years (2005–

2008; 45.8% vs. 53.3% for high-variability pixels) to an association with higher percent canopy when 

the drought year was included (2005–2009; 51.6% vs. 48.1%), demonstrating the complex response of 

the mixed woody and herbaceous ecosystem to extreme precipitation changes.  

These results provide a basis for interpreting the phenological variability of dryland forests in terms 

of physical site parameters and woody/herbaceous vegetative composition. They also suggest that it 

may be time to reevaluate the defining characteristic of dryland vegetation dynamics: variability. 

Rather than viewing spatial and temporal variability as unwelcome noise that confounds standard 

ecological assessment techniques, we should explore its utility as an integral component of dryland 
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vegetation dynamics. The degree, location, and patterns of variability can shed light on vegetative 

composition and functioning through time; a properly formulated synthesis metric may yield a 

quantitative solution to the question of how to evaluate land surface phenology trends across seasons 

and climatic conditions. 
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