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Abstract: Validation of land cover products is a fundamental task prior to data applications. 

Current validation schemes and methods are, however, suited only for assessing 

classification accuracy and disregard the reliability of land cover products. The reliability 

evaluation of land cover products should be undertaken to provide reliable land cover 

information. In addition, the lack of high-quality reference data often constrains validation 

and affects the reliability results of land cover products. This study proposes a validation 

schema to evaluate the reliability of land cover products, including two methods, namely, 

result reliability evaluation and process reliability evaluation. Result reliability evaluation 

computes the reliability of land cover products using seven reliability indicators. Process 

reliability evaluation analyzes the reliability propagation in the data production process to 

obtain the reliability of land cover products. Fuzzy fault tree analysis is introduced and 

improved in the reliability analysis of a data production process. Research results show that 

the proposed reliability evaluation scheme is reasonable and can be applied to validate land 

cover products. Through the analysis of the seven indicators of result reliability evaluation, 

more information on land cover can be obtained for strategic decision-making and 

planning, compared with traditional accuracy assessment methods. Process reliability 
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evaluation without the need for reference data can facilitate the validation and reflect the 

change trends of reliabilities to some extent.  

Keywords: land cover; validation; reliability evaluation; fuzzy fault tree 

 

1. Introduction 

Land cover is one of the most critical variables of the earth system and affects various parts of the 

human and physical environments. It has a major role in the exchanges of energy, heat, and momentum 

between continents and the atmosphere [1]. Therefore, information on the state of land cover and land 

cover dynamics is much needed on a regular basis to support major scientific and policy applications. 

Land cover products that focus on characterizing different vegetation types have been developed via 

remotely sensed datasets. To provide reliable and accurate land cover information, validating land cover 

data should be a fundamental task prior to data application.  

Efforts to improve the validation methods and schemes of land cover products were realized by 

focusing on sampling design, response design, and analysis [2]. Sampling designs differ in their 

suitability to achieve different objectives in the validation of land cover [3]. Mayaux, et al. [4] used a 

two-stage stratified clustered sampling to validate the Global Land Cover 2000 Map. Stehman, et al. [5] 

constructed a stratified sampling design incorporating class-level stratification to estimate the accuracy 

of land cover maps. Considerable research on response design focused on reducing the effect of error in 

ground reference data to enable more accurate estimation in the validation of land cover products.  

A virtual field reference database was designed to support detailed assessments of land cover products 

by providing a robust database that characterizes representative cover types [6]. Foody et al. [7] used 

two sources of volunteered data to illustrate the potential of amateur activity in validating the forest 

cover representation provided by the GlobCover map of the European Space Agency. Foody et al. also 

studied the impact of ground reference data error on the accuracy of estimates of the extent of change 

and on the accuracy of change detection in [8]. Wulder et al. [9] used the collection of airborne videos 

used for validating sustainable development of forests’ land cover maps. Estimation and analysis are 

commonly based on a confusion matrix that summarizes the key information obtained from sampling 

and response designs. The confusion matrix is mainly used to provide a basic description of land cover 

product accuracy and to compare accuracies [10]. Indices such as overall, users’ and producers’ 

accuracies derived from the confusion matrix are used to assess the accuracy in validating land cover 

products [4,11,12]. 

However, these validations only provide information on the classification accuracy of land cover data 

as a whole; they cannot be used to characterize the reliability of the data, substantially limiting the value 

of data in use. In the field of system engineering, reliability is defined as the probability that an item can 

perform its specified function for a certain interval under given conditions [13]. Reliability of land cover 

products refers to the function that the data can correctly, effectively, and completely reflect the actual 

land cover conditions under certain spatio-temporal conditions. Reliability reflects the characteristics 

more than the classification accuracy of land cover data, and thus it has numerous impacts in applying 

the data and affects strategic decision and planning. Reliability evaluation is widely applied in various 
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fields, such as power system, network, software, and pipeline [14–17]. In the field of geographical 

information science and remote sensing, Zhang et al. [18] proposed a fusion approach of several typical 

change-detection algorithms based on the reliability of individual change-detection algorithms to 

generate reliable land cover change information. Based on the research of uncertainties in spatial 

analysis [19], Shi et al. [20] introduced reliability theory into spatial analysis to obtain more accurate and 

reliable spatial analysis results. Considerable attention should be directed toward the study of reliability 

evaluation of land cover products. 

Validation is also often constrained by the lack of high-quality ground reference data [7]. Furthermore, 

the reference data are expensive and logistically challenging to collect for large area land cover  

products [21]. Reliability analysis on the data production process to obtain the reliability of data products 

can solve this problem to some extent because this analysis does not require the reference data, and the 

reliability propagation in the data production process determines the reliability of land cover products. 

Thus, this paper proposes a new validation schema to evaluate the reliability of land cover data. The 

schema includes two validation methods, namely, result reliability evaluation and process reliability 

evaluation. Result reliability evaluation addresses a few reliability indicators to evaluate the reliability 

of land cover products. Process reliability evaluation obtains the reliability of land cover data through 

the reliability analysis on the process of data production without the need for reference data. Section 2 

describes the proposed validation schema. Section 3 tests the validity of the proposed schema by 

providing applications in six typical study areas and gives the validation results. Discussions and 

conclusions are presented in the last section. 

2. Methodology 

The general framework of our validation schema is shown in Figure 1. The validation schema 

includes two methods: result reliability evaluation and process reliability evaluation. Sampling design 

should be conducted when evaluating the result reliabilities of a group of land cover maps or a certain 

land cover type in the group. The reliability of the sample unit (one map or certain land cover type in 

the map) can then be obtained using seven reliability indicators and a weighted computation method. 

Process reliability evaluation is based on the process reliability analysis model to evaluate the 

reliability of one map. Given that the analysis does not need reference data, evaluating all maps in the 

group is relatively easy without the need for sampling design. 

2.1. Result Reliability Evaluation  

Result reliability evaluation uses reliability indicators to obtain the reliability of land cover data.  

Shi et al. [20] presented reliability indicators such as correctness, integrity, consistency, robustness, 

and applicability in reliable spatial analysis. Errors affecting the reliability of land cover data can be 

caused by confusion between land cover types (wrong label or missing types) or can be spatial errors 

(wrong position of the boundary between types or disappearance of small patches). Other factors such 

as acquisition scale, human factors, and acquisition time can also affect data reliability. Based on these 

factors and the characteristics of land cover data, we propose seven quantized indicators (Figure 1) and 

a weighted computation method to evaluate the reliability of land cover data. In the hierarchical 
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classification system, the multilevel reliabilities of one map or a certain land cover type are supported. 

These reliability indicators are defined as follows: 

(1) Classification correctness (C) refers to the probability of incorrectly classified area in the land 

cover data. When computing multilevel reliabilities of the data, error level should be judged according 
to the feature type and actual land cover type to compute the incorrect area. Let Ac_error be the 

incorrectly classified area of the data, and Atotal be the total area of the data. The following formula can 

thus be obtained 

C ൌ Ac_error/Atotal (1) 

(2) Scale reasonableness (S) represents the scale effect to the reliability of the data. Let 
Acurrenct_scale be the area of the data at current acquisition scale, and A௔௖௧௨௔௟ be the actual area of the 

data. Thus, scale reasonableness can be computed by 

S	ൌ Acurrenct_scale/A௔௖௧௨௔௟ (2) 

(3) Integrity (I) reflects the effect of missing or extra features and feature types on the reliability of 

the land cover data. I can be defined as 

I	ൌ	waሺAa_error/Aa_totalሻ ൅ wcሺ1 െ Nt_error/Nt_totalሻ (3) 

where w௔,	w௖ ൐ 0 are the weighting parameters, Nt_total is the total number of feature types, Nt_error 
is the number of missing or extra feature types, Aa_total is the total area of the data, and Aa_error	 is the 

area of missing or extra features. 

(4) Robustness (B) refers to the stability of the land cover data to maintain its reliability when 

evaluated by different evaluation professionals, who can be affected by several factors, such as 

evaluating experience, evaluating condition, spirit state, and psychological quality. Based on the 

variance value ߜ of the evaluation results obtained by different experts, B is expressed as 

B ൌ	1 െ 0.4 ൈ ଴ߜ/ߜ  (4) 

where δ଴ is a constant normally set to 10. If B is less than zero, then we assign zero to B. 

(5) Consistency (K) refers to the level of congruence between land cover data and actual land cover 

condition. This paper adopts Cohen’s kappa coefficient for the consistency measurement. Cohen’s 

kappa coefficient is often applied as an index of classification accuracy to evaluate the consistency 

between classification result and imagery data [22]. Derived from a confusion matrix, K is expressed as: 

K	=	
N×∑ Nii

r
i=1 -∑ (Ni+N+i

r
i=1 )

N2-∑ (Ni+N+i
r
i=1 )

 (5) 

where r denotes the number of land cover types, N is the total number of features, Nii is the main 

diagonal of the matrix, Ni+ is the sum of the ith row of the matrix, and N+i is the sum of the ith 

column of the matrix. 

(6) Currency (T) measures the extent that the land cover data acquired before can reflect the actual 

land cover condition at the current time. Given the actual land cover condition changes over time, the 
reliability of the data will decrease. Let ݎ௖௛௔௡௚௘ be the change ratio of the land cover condition from 

the data acquisition time to the data evaluation time. Large ݎ௖௛௔௡௚௘ value represents a low reliability 

of the data. Thus, T is defined as 
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T ൌ 1 െ  ௖௛௔௡௚௘ (6)ݎ

(7) Position Precision (P) presents the position offsets of the features in the land cover data 

according to the actual land cover condition. P can be computed according to the features with 

geometry displacement error and overedge error, i.e., 

P	ൌ	w௚ሺNg_error/Ntotalሻ ൅ w௢ሺNo_error/Ntotalሻ (7) 

where w௚ , 	w௢ ൐ 0  are the weighting parameters, Ng_error  and	 No_error	 represent the number of 

features with geometry displacement error and overedge error respectively, and Ntotal	 denotes the 

total number of features of the data. 

Eventually, the reliability of the sample unit can be computed by 

R	ൌ	෍ݓ௜ܴ௜ (8) 

where R is the reliability of the sample unit, ܴ௜	is the ith aforementioned reliability indicator, and 	
௜ݓ ൐ 0	and ∑ݓ௜ ൌ 1 are the weights of the indicator determined by the data application and the 

professional knowledge. 

 

Figure 1. General framework of the reliability evaluation of land cover data. 

2.2. Process Reliability Evaluation 

Process reliability evaluation obtains the reliability of land cover products through the analysis on 

reliability propagation in the data production process without the need for reference data. High 

uncertainty and variability associated with the process of data production pose major challenges in the 

analysis on reliability propagation. In this paper, we introduced the fuzzy fault tree analysis (FFTA) to 

analyze the reliability propagation in the production process of land cover data. 
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Fault tree analysis (FTA) is a logical and diagrammatic approach to represent the sequences and 

combinations of possible events occurring in a system that lead to the top undesired event [23]. This 

model is widely used to evaluate the reliability of a complex system in various fields, such as 

pipelines, aerospace and petrochemical industry [24]. FFTA combines fuzzy set theories for the 

uncertainty analysis in FTA model [25]. The probabilities of events are treated as a fuzzy number, 

which can be obtained by theory of fuzzy set [26]. In the process reliability analysis model of land 

cover data, the FFTA was used to describe the relationships among various events in the data 

production system and the probability of the top event was regarded as a function of the reliability 

probability of the system. 

2.2.1. Construction of Process Reliability Analysis Model  

Two methods to produce land cover products are commonly used [27]. One involves using visual 

interpretation based on professional knowledge with the foundation geographical data and 

interpretation symbols as the auxiliary information. The reliability of visual interpretation is affected 

by operation staff and data sources, including digital orthophoto images and foundation geographical 

data. Another method of computer classification was applied to certain land cover types that have 

homogeneous color and texture, such as water bodies, built-up land, and sandy land. The reliabilities of 

classification algorithms and digital orthophoto images affect the reliability of the computer 

classification. Furthermore, the reliability of the digital orthophoto image is affected by the image 

source (i.e., spatial resolution, spectral type and currency) and the image pre-processing (i.e., plane 

precision and overedge precision). 

 

Figure 2. The process reliability analysis model. 
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Field survey is the auxiliary process of data production and will be performed to identify the land 

cover type in the region where the type cannot be determined by visual interpretation and computer 

classification. Therefore, land cover data are derived from machine interpretation, visual interpretation, 

and field survey, and its reliability depends on the reliabilities of the three processes. 

Based on the production process of land cover data and the FFTA, the process reliability analysis 

model was constructed to evaluate the reliability of land cover products (Figure 2). In the figure, 

circular frames denote the basic events and square frames denote the intermediate and top events. The 

evaluation model involves nine basic events, five intermediate events, and one top event. The reliability 

of land cover products was defined as the top event in this model. The reliabilities of basic events can be 

obtained by professional knowledge or quantitative methods. Through the reliabilities of basic events and 

the relationships among events, the reliability of intermediate events and the top event can be computed. 

2.2.2. Reliabilities of Basic Events  

To evaluate the reliability of the top event in the FFTA model, probabilities of the basic events, as 

the parameters of the model, must be known in advance [24]. Normally, probabilities of the basic 

events can be obtained according to expert knowledge and experience [28]. Based on the research on 

the data production process in the production department, the following preliminary quantitative 

methods are presented to compute these probabilities: 

(1) Image Spectral Type (R1) includes panchromatic and multispectral. Multispectral image contains 

more adequate spectral information than panchromatic image. Thus, the reliability of multispectral 

image is more reliable than that of panchromatic image in theory. In this paper, Image Spectral Type is 

set to 0.7 and 0.9 when the type is panchromatic and multispectral, respectively. 

(2) Image Spatial Resolution (R2). A high resolution image will theoretically provide more adequate 

and reliable land cover information. Setting the reliability of the image with spatial resolution of 2 m to 

0.7 m and considering the image with spatial resolution more than 10 m as unreliable, the possibility of 

Image Spatial Resolution can be computed as 

ܴଶ ൌ

ە
ۖ
۔

ۖ
ۓ 0.7 ൅

2 െ ݎ
2

ൈ 0.3 ݎ ൏ 2

0.7 ൈ
10 െ ݎ
8

2 ൑ ݎ ൏ 10

0 ݎ ൒ 10

 (9) 

where r is the resolution of the image.  

(3) Image Currency (R3) measures the extent that the image acquired before can reflect the current 

land cover condition considering the land cover changes. Setting the reliability of the image acquired 

at the earliest data-acquired time demanded by the design of the data production to 0.6 and assuming 

that the reliability of the image will decrease linearly as time passes by, the possibility of Image 

Currency can be computed as 

ܴଷ ൌ ൝0.6 ൅
ݐ
଴ݐ
ൈ 0.4 0 ൏ ݐ ൏ ଴ݐ

0 ݐ ൏ 0
 (10) 

where t is the month span between the actual data-acquired time and the earliest data-acquired time 

demanded by the design of the data production, and t0 is the month span between the actual 
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data-acquired time and the data-evaluated time. If the image is acquired before the earliest 

data-acquired time demanded by the design of the data production, then t is less than 0 and R3 is set to 0. 

(4) Image Plane Precision (R4) influences the reliability of the image pre-processing and is defined as 

ܴସ ൌ ቐ
0.6 ൅

0.4
0.7 ൈ ݉଴

ൈ ሺ݉଴ െ݉ሻ; ݉ ൐ 0.3݉଴

1; ݉ ൑ 0.3݉଴

 (11) 

where ݉଴ is a constant denoting the limit value of the mean square error of the image plane precision, 

and m is the mean square error of the image plane precision. 

(5) Image Overedge (R5) influences the reliability of the image pre-processing and is defined as 

ܴହ ൌ ቐ
0.6 ൅

0.4
0.7 ൈ ݈଴

ൈ ሺ݈଴ െ ݈ሻ; ݈ ൐ 0.3݈଴

1; ݈ ൑ 0.3݈଴

 (12) 

where ݈଴ is a constant denoting the limit value of the mean square error of the image overedge, and ݈ 
is the mean square error of the image overedge. 

(6) Machine Interpretation Algorithm (R6). Different classification algorithms will yield different 
classification results. Let 	݌௝ be the maximum posteriori possibility of the jth pixel or image object, 

and n be the total number of pixels or image objects. Thus, R6 can be denoted as 

6
1

1 n

i
i

R p
n 

   (13) 

(7) Foundation Geography Information Datum (R7) as the auxiliary datum in the artificial 

interpretation is one of the data sources of artificial interpretation. R7 can refer to the previous accuracy 

assessment result of the data. 

(8) Operation Staff (R8) reflects the ability of the data production operator in artificial interpretation. 

R8 can refer to the previous average accuracy of the land cover data produced by the operator. 

(9) Field Survey (R9). The reliability of land cover data will increase after field survey. Thus, R9 can 

be set to a high possibility value according to expert experience. 

2.2.3. Reliability Interval of Top Event  

Given all the probabilities of the basic events, the reliability of the top event can be obtained through 

the relationships among various events which are normally represented by logical AND and OR  

gates [29]. In the process reliability analysis model, we improved the reliability computation methods 

of intermediate events and top event according to the relationships among the events in the production 

process of land cover data. In addition, we use the possibility intervals instead of the exact possibility 

values of intermediate events and top event to obtain more flexible and reliable results. 

Image source (R10) is affected by image spectral type (R1), image spatial resolution (R2), and image 

currency (R3). Thus, the left value of the possibility interval can be set to the minimum value of the 

three event possibilities, and the right value of the interval can be set to the maximum value as follows: 

ܴଵ଴ ൌ ሾ݉݅݊൫ܴଵ,ܴଶ, ܴଷ൯ ,൫ܴଵ,ܴଶݔܽ݉, ܴଷ൯ሿ (14) 

where the operators min ( ) and max ( ) find the minimum and maximum values of the input  

values, respectively.  
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Given that the image pre-processing (R11) accuracy depends on image plane precision (R4) and 

image overedge (R5), and plane position errors and overedge errors can happen at the same places, the 

reliability possibility interval can be computed as 

ܴଵଵ ൌ ሾܴସ ∙ ܴହ,݉݅݊ሺܴସ, ܴହሻሿ (15)

Digital orthophoto image (ܴଵଶ) used to produce land cover data depends on image source (R10) and 

image pre-processing (R11), two events that are independent of each other. Thus, the reliability 

possibility interval can be obtained by 

ܴଵଶ ൌ ሾ݈݂݁ݐሺܴଵ଴ሻ ∙ ሺܴଵଵሻݐ݂݈݁ , ሺܴଵ଴ሻݐ݄݃݅ݎ ∙ 	ሺܴଵଵሻሿݐ݄݃݅ݎ (16)

where the operators left ( ) and right ( ) find the left value and right value of the input possibility 

interval, respectively.  

Data source of artificial interpretation (ܴଵଷ) containing foundation geography information datum 

(ܴ଻) and digital orthophoto image (ܴଵଶ) can be computed by the average reliability possibility of the 

two data  

ܴଵଷ ൌ ሾ
ሺܴଵଶሻݐ݂݈݁ ൅ ܴ଻

2
,
ሺܴଵଶሻݐ݄݃݅ݎ ൅ ܴ଻

2
ሿ (17)

Machine interpretation ሺܴଵସሻ is affected by the reliability of the image and the classification 

algorithm applied to the images. Machine interpretation algorithm (R6) and digital orthophoto image 

(ܴଵଶ) are also independent of each other. Thus, machine interpretation ሺܴଵସሻ can be computed as 

ܴଵସ ൌ ሾܴ଺ ∙ ,ሺܴଵଶሻݐ݂݈݁ ܴ଺ ∙ ሺܴଵଶሻሿ (18)ݐ݄݃݅ݎ

Similarly, artificial interpretation (R15) is affected by operation staff (R8) and data source of artificial 

interpretation (ܴଵଷ ), which are independent of each other. We can thus obtain the artificial 

interpretation (R15) by 

ܴଵହ ൌ ሾ଼ܴ ∙ ,ሺܴଵଷሻݐ݂݈݁ ଼ܴ ∙ ሺܴଵଷሻሿ (19)ݐ݄݃݅ݎ

Considering that land cover products are derived from machine interpretation, visual interpretation, 

and field survey, the reliability interval of land cover products can be calculated as 

ܴଵ଺ ൌ ሾݓଵ ∙ ܴଽ ൅ ଶݓ ∙ ሺܴଵସሻݐ݂݈݁ ൅ ଷݓ ∙ ሺܴଵହሻݐ݂݈݁ , ଵݓ ∙ ܴଽ ൅ ଶݓ ∙ ሺܴଵସሻݐ݄݃݅ݎ ൅ ଷݓ
∙  ሺܴଵହሻሿݐ݄݃݅ݎ

(20)

where ݓଵ,	ݓଶ,	ݓଷ > 0 and ∑ݓ௜ ൌ 1 are the weighting parameters. These parameters are the proportions 

of land cover data acquired through field survey, machine interpretation, and artificial interpretation. 

3. Case Study  

3.1. Area and Data  

In this paper, we quantitatively analyze the applications of the proposed validation schema using land 

cover data generated from the project of the National Geographical State Monitoring (NGSM). The 

project launched by the State Council of China was initiated in 2011. It completely mapped the 

national land cover in China through remote sensing and geographic information system techniques. 
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The land cover data of NGSM were generated from multisource remote sensing images, such as aerial 

images and images acquired by ZY-3, WorldView-2, and QuickBird. NGSM applied a hierarchical 

classification system with 10 first-level types, 46 second-level types, and 77 third-level types. The 

hierarchical nature of the classification scheme enables generalization and reporting at high levels of 

the hierarchy. 

We choose land cover data acquired in six typical counties in July 2014 to apply the proposed 

validation schema, named County 1 and County 2 of Shaanxi Province, County 3 and County 4 of 

Jiangxi Province, and County 3 and County 4 of Hainan Province. The three provinces of Shaanxi, 

Jiangxi, and Hainan with different landforms and climates are located in the north, middle, and south 

of China, respectively. Table 1 displays the detail information of the six study areas. The locations of 

the six counties are shown as red points in Figure 3. These data are subdivided into map sheets at 

1:10,000 scale (in Jiangxi and Hainan Province) or 1:25,000 scale (in Shaanxi Province). The 

corresponding remote sensing image of one typical land cover map in County 3 is illustrated in Figure 3b. 

Table 1. Information of the six study areas. 

Study Area Location Area (km2) Landform 

County 1 Midwest of Shaanxi Province 720 Rich types of landforms, such as hilly, river terrace, and loess tableland 

County 2 Northeast of Shaanxi Province 428 Mainly ravine regions 

County 3 Northwest of Jiangxi Province 1377.49 Mainly mountainous regions 

County 4 Middle of Jiangxi Province 2439.33 Mainly hilly regions and river valleys 

County 5 Northwest of Hainan Province 1317 Mainly flat regions 

County 6 South Central of Hainan Province 1169 Mainly mountains and valleys 

 
(a) 

Figure 3. Cont.  
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(b) 

Figure 3. Study areas. (a) Chinese provincial administrative region map; (b) County 3 and 

the corresponding remote sensing image of one typical land cover map.  

3.2. Reliability Evaluation Results 

We established a stratified sampling for result reliability evaluation. The stratification was based on 

the landscape complexity and the production department. The sampling was applied in each study 

county and based on the sample strategy and the total land cover maps in each county, a total of 42 

samples were selected. Reference data were collected by the professionals from the field survey and 

the high-resolution images used for the data production. For process reliability evaluation, we 

evaluated the total land cover maps without the sampling design. 

Figure 4 shows the result reliabilities and process reliabilities of a total of 42 samples. Considering 

that NGSM applied a hierarchical classification system with three levels, the reliability of each level of 

the data could be obtained as shown in Figure 4a. Most data perform the reliabilities higher than 0.98 

because these data were produced by the professional production departments and satisfied the 

accuracy requirements of the NGSM. For example, the percentage of features with first-level 

classification error in one map should be less than 0.3% according to the accuracy requirements of the 

NGSM. The reliability of the first level is higher than that of the other two levels because the first-level 

types are more easily recognized.  

Table 2 shows the overall result reliabilities of the six study areas. The reliabilities of County 1, 

County 2, and County 3 are lower than those of County 4, County 5, and County 6 because of different 

production departments and landscape complexities. Experienced professionals and high-reliability 

images in the production department can normally facilitate the data production. On the contrary, 

complex landscapes in the county can increase the difficulty of the data production. 

The reliabilities obtained from the process reliability analysis are presented as the reliability 

intervals as shown in Figure 4b. System bias existing in the process reliability analysis results in the 

process reliabilities lower than the result reliabilities. The differences in process reliabilities of land 

cover data are mainly caused by the reliabilities of basic events (e.g., operation staff, image spatial 

resolution and image currency) and the proportions of the land cover data acquired through field 

survey, machine interpretation, and artificial interpretation. 
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Figure 4. Reliabilities of the samples of six study areas. (a) Result reliabilities; (b) Process reliabilities.  

Table 2. Overall result reliabilities of the six study areas. 

Reliability Level County 1 County 2 County 3 County 4 County 5 County 6 

First level 0.98813 0.98997 0.98937 0.99307 0.99229 0.99337 

Second level 0.98527 0.98983 0.98597 0.99075 0.99216 0.99289 

Third level 0.98437 0.98753 0.98447 0.98915 0.9916 0.99289 

3.3. Classification Correctness Analysis 

Figure 5 shows the classification correctness of first-level land cover types in six cities. If the 

reliabilities of the three levels of a type are equal, then this means the error features of this type are 

classified to the wrong first-level types. If the second-level and third-level reliabilities of a type are 

lower than the first-level reliability, then this means a few error features of this type are classified to 

the wrong second-level or third-level, but the first-level type of the error features is true. 
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Figure 5. Classification correctness of first-level types in the six study areas: (a) County 1; 

(b) County 2; (c) County 3; (d) County 4; (e) County 5; and (f) County 6. 

The classification correctness of woodland, buildings, and structures are lower than other types in 

County 1 (Figure 5a). In County 2 (Figure 5b), the second-level and third-level classification 

correctness of desert and bare surface are lower, whereas the first-level classification correctness is 

normal. This result is attributed to the difficulty of distinguishing between the second-level and 

third-level types of desert and bare surface in County 2, which is covered by loess tableland. The 
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situation is similar to the third-level types of structures. In County 4 (Figure 5d), the third-level 

classification correctness of gardens is low because it is difficult to distinguish between orchard, tea 

garden, nursery, and mulberry. Several features of desert and bare surface were wrongly classified to 

cultivated land, gardens, and artificial piling and digging land in County 4 and County 3 (Figure 5c). 

The classification correctness of structures in County 5 (Figure 5e) is low because different types of 

hardening land are difficult to distinguish. The overall classification correctness of first-level types in 

County 6 (Figure 5f) is high. The analysis of the classification correctness can be the reference for the 

routes of field surveys in the production process of land cover data.  

3.4. Scale Reasonableness Analysis 

The acquisition scale of the study data is 400 m2, which means that features less than 400 m2 were 

abandoned during data production. Therefore, we analyze the scale reasonableness of the study data at 

the scale of 200 and 100 m2, which are represented as Scale 1 and Scale 2 in Figure 6, respectively, to 

obtain further details on the land cover information. The figure shows the scale reasonableness of  

first-level types in the six study areas. The scale reasonableness of buildings is lower than other land 

cover types in all the six counties because several separate buildings, which have an area of less than 

400 m2, exist in the land surface, and these buildings were abandoned during data production. The 

scale reasonableness of water bodies in County 3 (Figure 6c) and County 4 (Figure 6d) is lower than in 

other counties because many little broken water regions exist in the two counties of Jiangxi than in the 

counties of other provinces. The analysis on the scale reasonableness can be the reference for further 

data production to obtain more reliable land cover data. For example, a smaller acquisition scale for 

the buildings and the water bodies in regions containing many little broken water regions can be 

defined to obtain more details of actual land cover conditions and reliable land cover information. 

 

Figure 6. Cont. 
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Figure 6. Scale reasonableness of first-level types in the six study areas: (a) County 1;  

(b) County 2; (c) County 3; (d) County 4; (e) County 5; and (f) County 6. 

3.5. Consistency Analysis between Result Reliability and Process Reliability 

The comparison between result reliabilities and process reliabilities is illustrated in Figure 7. In the 

figure, red points denote the first-level result reliabilities of the samples and blue points represent the 

medians of process reliability intervals. The gradients of reliabilities of the two samples were 

computed to compare two groups of reliabilities. The sign (positive or negative) of the gradient reflects 

the change trend of reliabilities of two samples, while the gradient value reflects the change magnitude 

between the reliabilities of two samples.  

The comparison shows that the reliability trends of 34 samples are consistent between the two 

groups. Only eight of the 42 samples are inconsistent, shown as the points with black circle in Figure 7.  

The inconsistency happens when the data in the complex landscapes have numerous errors caused by 

visual interpretation or computer classification leading to low result reliability. Meanwhile, the weight 

of field survey in the data is too high, resulting in the high process reliability. The opposite case can 

happen in the homogenous landscapes. The gradient values of process reliabilities in 37 samples are 

larger than those of the result reliabilities, which means most change magnitudes between the 

reliabilities of the samples are different in the two groups. The comparison indicates that process 

reliability evaluation is reasonable and can reflect the change trend of reliabilities to some extent. The 
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comparison between the second-level or third-level result reliabilities and the process reliabilities can 

reach a similar conclusion. 

 

Figure 7. Comparison between first-level result reliabilities and process reliabilities.  

4. Discussion 

Experimental results show that the proposed reliability evaluation scheme is applicable in the 

validation of land cover products. Through the analysis on the seven result reliability indicators, 

multilevel and multitype reliabilities of land cover data can be obtained for different applications and 

strategic decisions. For example, the routes of field surveys can be established based on the land cover 

types with low classification correctness, and the analysis on the scale reasonableness can be the 

reference of further data acquisition scale for the land cover types with low scale reasonableness. In 

addition, process reliability evaluation with no need for reference data can save costs, facilitate the 

validation and solve the problem that the validation is often constrained by the lack of high-quality 

ground reference data to some extent. The consistency analysis between result reliability and process 

reliability shows that process reliability evaluation can reflect the consistent change trends of 

reliabilities with the result evaluation method to some extent. 

However, limitations exist in the process reliability analysis model. As the production of land cover 

data is a complicated process with high uncertainty and the process reliability analysis model 

simplifies this process, system biases exist in the results of process reliability evaluation. Therefore, 

process reliability evaluation cannot take the place of result reliability evaluation for the validation of 

land cover products. The construction of the process reliability analysis model, including the 

definitions of the events and relationships among these events, should be further studied. 

5. Conclusions 

The reliability of land cover products has numerous impacts on the applications of the data and affects 

strategic decision and planning. The proposed reliability evaluation schema includes two reliability 
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evaluation methods, namely, result reliability evaluation and process reliability evaluation. Result 

reliability evaluation computes the reliability of land cover data by using seven reliability indicators. 

Process reliability evaluation obtains the reliability through the reliability analysis on the data 

production process without the need for reference data. Experimental results using land cover data in 

six typical counties show that the proposed reliability evaluation scheme is reasonable and can be 

applied in the validation of land cover products. More reliability information of land cover can be 

obtained for the strategic decision and planning through the analysis on the seven indicators of result 

reliability evaluation, compared with traditional accuracy assessment methods. Process reliability 

evaluation, which relatively saves costs and does not need reference data compared with result 

reliability evaluation, can facilitate the validation, reflect the change trends of reliabilities and solve the 

problem that the validation is often constrained by the lack of high-quality ground reference data to 

some extent. However, the process reliability analysis model should be improved in further studies. 
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