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Abstract: Stable night-time light data from the Defense Meteorological Satellite Program 

(DMSP) Operational Line-scan System (OLS) provide a unique proxy for anthropogenic 

development. This paper presents a regional urban extent extraction method using a one-class 

classifier and combinations of DMSP/OLS stable night-time light (NTL) data, MODIS 

normalized difference vegetation index (NDVI) data, and land surface temperature (LST) 

data. We first analyzed how well MODIS NDVI and LST data quantify the properties of 

urban areas. Considering that urban area is the only class of interest, we applied the one-class 

support vector machine (OCSVM) to classify different combinations of the three datasets. 

We evaluated the effectiveness of the proposed method and compared with the locally 

optimized threshold method in regional urban extent mapping in China. The experimental 

results demonstrate that DMSP/OLS NTL data, MODIS NDVI and LST data provide 

different but complementary information sources to quantify the urban extent at a regional 

scale. The results also indicate that the OCSVM classification of the combination of all three 

datasets generally outperformed the locally optimized threshold method. The proposed 

method effectively and efficiently extracted the urban extent at a regional scale, and is 

applicable to other study areas. 

Keywords: urban extent; OCSVM; DMSP/OLS; NDVI; land surface temperature;  

one-class classification 
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1. Introduction 

Urban areas occupy a small fraction of the earth’s surface, but they significantly impact ecosystems 

and climates at local, regional, and global scales. This is because of land cover conversion, the release of 

anthropogenic greenhouse gases, and loss of biodiversity [1–8]. As such, accurate and timely information 

about the extent and spatial distribution of urban areas (especially at regional and global scales) is crucial 

and significant for a diverse range of applications. These applications include land use change [9], energy 

consumption [10], and global climate change [5]. 

High-resolution images provide detailed spatial information for mapping individual cities [11], but 

they are not sufficient for examining urban patterns at a large scale [12]. Although moderate resolution 

images have been used for land cover mapping at continental scales [13–15], the time and labor required 

for processing and interpreting these images make it difficult to map urban areas at a large scale. 

Common cloud conditions over a large area also make it difficult to collect a large number of good-quality 

images within the same year [16]. Satellite data at spatial resolutions of 100–1000 m provide reliable 

data regarding the urban extent and spatial distribution at a large scale, because of their synoptic view 

and wide coverage. Many researchers have investigated mapping urban areas at regional and global 

scales from coarse resolution data over the past two decades [16–22]. 

Different coarse resolution data have been used in urban extent mapping, for example, Terra Moderate 

Resolution Imaging Spectroradiometer (MODIS) data [21], Medium Resolution Imaging Spectrometer 

(MERIS) data [23], and Defense Meteorological Satellite Program/Operational Line-scan System 

(DMSP/OLS) nighttime light (NTL) data [24]. The DMSP/OLS NTL data are regarded as the most 

promising among these data sources [25], because they have the unique capability of recording human 

activities on the earth’s surface by observing artificial lighting at night [17,24], and have a relatively 

long historical archive. Thus, DMSP/OLS NTL data can be used to accurately, economically, and 

unambiguously map the urban extent at a regional scale [24–26]. 

Although the DMSP/OLS NTL data are valuable for regional and global urban mapping and for 

analyzing human activities [17,25–31], the detected lit areas are substantially larger than the ground 

truth. This is called the “blooming” effect [8,24], and is the result of scattered light in the atmosphere 

and the photomultiplier’s response to bright emission sources [8,32]. Various methods have been 

developed to map urban areas using DMSP/OLS NTL data [16,24,26,29,33–38]. Global fixed thresholding 

and locally optimized thresholding methods are the mostly common and efficient techniques [16,24,29,35]. 

Although existing studies have demonstrated the potential of thresholding techniques in reducing 

blooming, there are some problems [8,16,24,29,31,35]. A major challenge related to the global fixed 

thresholding method is how to determine a global threshold value for all urban areas, because of 

significant regional variations in environmental and socioeconomic development levels [8,24,29].  

The global fixed thresholding method may overestimate urban areas with high development levels, and 

underestimate or not identify small urban areas with low development levels [8,29]. Although the locally 

optimized threshold is based on the development level of each urban area and is relatively accurate, there 

are currently no general guidelines for selecting locally optimized threshold values. Moreover, selecting 

locally optimized thresholds is laborious and time consuming when mapping urban areas at regional or 

global scales [16,35,36]. 
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Considering that the vegetation index is negatively correlated with urban features, Lu et al. [16] 

proposed an approach that jointly used DMSP/OLS NTL data, MODIS normalized difference vegetation 

index (NDVI) data, and Landsat TM/ETM+ data to map fractional settlements through regression 

models and overcome problems in the threshold selection. Their results showed that a combination of 

DMSP/OLS NTL and MODIS NDVI data was better than the use of DMSP/OLS NTL data alone.  

In another study, a method based on a support vector machine (SVM) was proposed to classify a 

combination of DMSP/OLS NTL and SPOT VEGETATION NDVI data to extract urban areas [35].  

The SVM-based method achieved comparable results to the locally optimized threshold method, but 

avoided the tedious trial-and-error procedure for determining a local threshold [35]. Pandey et al. [36] 

and Yang et al. [37] also used DMSP/OLS NTL and SPOT VEGETATION NDVI data with modified 

SVM-based methods to map the urban extent in Indian and China, respectively. All these studies 

indicated the combination of DMSP/OLS and NDVI data is promising when mapping urban areas at a 

regional scale. 

However, these existing studies have two problems. First, they only incorporated NDVI data to 

improve the performance of the urban extent mapping based on DMSP OLS NTL data. Related studies 

found that other surface properties, e.g., land surface temperature (LST), are also closely related to  

urban features. For example, the local LST is influenced by urbanization [39–42]. Urban areas typically 

display higher LST values compared with surrounding rural areas, which is related to the urban heat 

island effect [41,42]. Thus, the LST data from Landsat TM/ETM+ have been used to estimate impervious 

surfaces [43]. The LST data were also combined with NDVI data for land cover mapping at regional 

scale [44–47]. Lambin and Ehrlich showed that a combination of LST and NDVI data achieved more 

accurate land cover classifications at a continental scale, when compared to the use of NDVI alone [48,49]. 

These studies indicated that LST and vegetation indices are useful in discrimination between different 

land cover classes. However, LST data were rarely used to extract urban areas at regional or global  

scales [50]. Considering the capability of LST and NDVI data for discrimination between land cover 

classes, and the complementary characteristics of DMSP/OLS NTL, NDVI, and LST data in separating 

urban areas from non-urban areas, combination of these three data sets may provide new insights for 

mapping urban areas at regional scale. 

Second, existing methods based on SVM classification assumed that the mapping was a two-class 

classification problem (i.e., urban and non-urban) [35–37]. However, mapping urban extent at regional 

or global scales is essentially an unbalanced classification task, because urban areas typically occupy a 

much smaller area than non-urban areas. Moreover, the non-urban areas show much significant 

variability in multi-sensor data values, e.g., high NTL data values and low NDVI and LST values 

(illuminated marine vessels), low NTL data values and different NDVI values (soil and vegetation areas), 

and thus are difficult or very expensive to sample. Furthermore, urban areas are the only class of interest 

in mapping urban area at regional scale in this paper. Thus, new methods, which can effectively extract 

urban areas from complex backgrounds with significant variability (non-urban areas), but do not need 

to collect samples from complex backgrounds (non-urban areas), are required. In this context, the 

problem of extracting urban extent from multi-sensor data possesses the features of the one-class 

classification problem, where only data from the target class (i.e., urban area in this study) are available 

and well sampled [51,52]. One-class classification methods have successfully been used in extracting 

specific land cover types and change types [53–56]. Among all one class classification methods adopted 



Remote Sens. 2015, 7 7674 

 

in the remote sensing field, one-class support vector machine (OCSVM) [54–56] and support vector data 

description (SVDD) [53] have been widely discussed. 

Considering the problems mentioned above, the purpose of this study is to evaluate the use of 

combination of NTL, NDVI, and LST data, and a one-class classification method for regional urban 

mapping. The specific objectives are: (1) to evaluate the feasibility and effectiveness of including  

LST and NDVI data to describe urban areas; (2) to develop and evaluate a regional urban extent 

extraction method using the OCSVM, a recently developed one-class classifier, and multi-sensor data, 

i.e., combination of DMSP/OLS NTL, MODIS NDVI, and LST data. The paper is organized as follows. 

Section 2 describes study area and data. The regional urban mapping method using multi-sensor data 

and OCSVM method is presented in Section 3. Experimental results are given in Section 4, while 

discussion of the results and findings are in Section 5. Finally, conclusions are drawn in Section 6. 

2. Study Area and Data 

China has been experiencing rapid and large-scale urbanization since the opening and reform policy 

was established in the late 1970s [57,58]. By the end of 2012, the urban population of China was 52.6% 

of the total population (712 million), rising from 26% in 1990 [59,60]. We selected China as our study 

area, because of the scale of its urban expansion and the uneven development pattern. 

Urbanization levels in China vary greatly across the country [61,62]. The eastern coastal region 

experienced significantly more urbanization, followed by the central region, and finally by the west.  

The differences in urbanization levels across China are attributed to the heterogeneous socioeconomic 

development. The eastern coastal region covers the most developed areas of China, where the majority 

of the population lives in urbanized areas. The economy in this area is undergoing a transition to a 

mixture of manufacturing and service industries. In the central region, the economy relies more on 

manufacturing, and there is less urbanization. The western region includes the vast under-developed 

provinces. In this area, agriculture and manufacturing are the main economic activities, and there is the 

least urbanization [61]. There are also large differences in the urban population distributions of different 

parts of China. In 2008, more than half the cities and urban population of China were distributed on the 

east coast, whereas 19% of cities and 17.7% the urban population were distributed in the west [62]. 

These different urbanization densities and patterns provide ideal experimental regions for evaluating the 

applicability of the proposed methods. 

In this paper, we used a combination of DMSP/OLS stable NTL data, Terra MODIS NDVI data, and 

LST data to extract urban areas at a regional scale. The DMSP/OLS NTL data measure light on the 

earth’s surface caused by human settlements, gas flares, fires, and shipping fleets. The DMSP/OLS  

stable NTL data are annual cloud-free composites based on the highest-quality data and a number of 

constraints [28]. The value at each pixel is a digital number (DN) from 0–63 with a 1 km spatial 

resolution, spanning longitudes of −180°–180° and latitudes of −65°–75°. The Terra MODIS NDVI data 

(MOD13A2) was provided every 16 days at a 1 km spatial resolution. They were computed from 

atmospherically corrected bidirectional surface reflectances that have been masked for water, clouds, 

heavy aerosols, and cloud shadows [63,64]. The MODIS LST data used in this study are MOD11A2 

daytime LST data. The MODIS global LST data (MOD11A2) were derived from the daily 1 km LST 
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product (MOD11A1), and the average values of clear-sky LSTs during an eight day period were stored 

on a 1 km sinusoidal grid [65]. 

All three data sets were acquired in 2006. The NDVI data used in this study were acquired from April 

to October 2006, because this is the growing season. The LST data were collected from January to 

December 2006. The three datasets were re-projected using Albers equal-area conic projection and then 

clipped according to Chinese administrative boundaries (Figure 1). We applied a maximum value 

composition [66] to all the NDVI images to create a yearly maximal NDVI image (Figure 1b). Yearly 

maximal NDVI can effectively reduce the impact of bare soil [16]. We also created a yearly mean LST 

image (Figure 1c) using all the daytime LST images, because mean LST is insensitive to seasonal 

variations and has been extensively used in studies of urban heat islands [67,68]. 

Additionally, we used 50 Landsat TM/ETM+ images covering 55 urban areas to validate the urban 

extent mapping results using multi-sensor coarse resolution data. Landsat TM/ETM+ images with a  

28.5 m spatial resolution were acquired for 2005–2007. Three quarters of these images were acquired 

for 2006, and the others were from 2005 or 2007 because there were no suitable images available for 

2006. All the selected Landsat TM/ETM+ images with the universal transverse mercator coordinate 

system were re-projected using Albers equal-area conic projection. 

 
(a) 

Figure 1. Cont. 
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(b) 

 
(c) 

Figure 1. (a) DMSP/OLS stable NTL data of China in 2006; (b) Terra MODIS NDVI 

maximum value composition of China in 2006; (c) Terra MODIS LST yearly mean image 

of China in 2006. The DMSP/OLS NTL data are digital values of lighted pixels. The white 

background pixels, recorded as zero in DMSP/OLS NTL data, were considered non-urban 

land. The unit of LST is Kelvin temperature. 
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The 55 selected cities with different development levels and urban populations are shown in Figure 2. 

Urbanization levels in the selected cities vary greatly, and these cities are also representative cities from 

each province of China. Specifically, they include cities from coastal regions (such as the Pearl River 

Delta, the Yangtze River Delta, and the Beijing-Tianjin-Tangshan region), which are called the ‘three 

engines of China’s economy’, and cities from inland and under-developed provinces in the west. 

Variations in the urban population among the selected cities are obvious (Figure 2). For example, the 

populations of these 55 cities varied from less than 220,000 (Lhasa) to over 10 million (Shanghai) in 

2006 [69]. For the sake of comparison, the selected cities were divided into three groups according to their 

urban populations. The first group included cities with urban populations greater than 2 million (big cities). 

The second group included cities with urban populations greater than 1 million and less than 2 million 

(medium cities). The third group included cities with urban populations less than 1 million (small cities). 

 

Figure 2. Chinese cities selected for result validation and their urban populations in 2006 [69]. 

We also obtained the socioeconomic statistics for these cities in 2006 from the Chinese Statistical 

Yearbook, 2007 [69]. Statistical data for urban built-up areas were also used for reference purposes. 
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3. Methods 

In this paper, we propose a method for extracting regional urban extent based on the one-class SVM 

(OCSVM) classification method and a combination of DMSP/OLS NTL, MODIS NDVI, and LST data. 

We first analyzed three datasets to fully understand the proposed method and to evaluate the 

effectiveness of MODIS NDVI and LST data when applied to regional urban extraction. We then applied 

the OCSVM method and different data combinations in regional urban extraction. The urban extent 

extracted using different methods was finally evaluated using the reference data. 

3.1. Data Analysis 

Urban areas are typically locations with high densities of buildings and low levels of vegetation. 

Urban areas also generally experience warmer temperatures than their rural surroundings because of the 

“urban heat island” effect, which is one consequence of the concentration of buildings and lack of 

vegetation in urban cores [70,71]. Gallo et al. [39] compared AVHRR NDVI data and DMSP/OLS NTL 

data using DN profiles across a latitudinal transect to examine the relationships between NDVI and NTL 

data in urban and rural areas. Zhang et al. [70] examined the relationship between DMSP/OLS NTL and 

MODIS NDVI data using DN profiles. They found that NDVI values in urban regions are relatively low, 

whereas DMSP/OLS NTL values gradually increase towards the urban core along the transect [39,70]. 

Temperature differences between urban cores and their surrounding rural regions has been extensively 

investigated and documented [42,71–73]. 

We used profiles from selected urban areas to demonstrate the relationships among these three 

datasets, as in previous studies [39,70]. Given that the three data sets have very different data ranges, 

and the yearly maximal NDVI image ranges between 0 and 1, we normalized the DMSP/OLS NTL and 

MODIS LST so that they ranged between 0 and 1. Specifically, the DMSP/OLS NTL data were 

normalized using the following equation: 

min
nor

max min

NTL NTL
NTL

NTL NTL





 (1)

where norNTL  is the normalized value of the DMSP/OLS NTL image, NTL denotes the original DMSP/OLS 

NTL value of a pixel. maxNTL  and minNTL  are the minimum and maximum values of the DMSP/OLS 

NTL image, i.e., 0 and 63. The MODIS LST data were normalized using the following equation: 

min
nor

max min

LST LST
LST

LST LST





 (2)

where norLST  is the normalized MODIS LST value and LST is the original LST value of a pixel. maxLST  

and minLST  are the maximum and minimum values of the original MODIS LST image. 

Three cities of different sizes (in population) were selected for comparison: Beijing (representing big 

cities with urban populations over 2 million), Suzhou of Jiangsu Province (representing medium cities 

with urban populations between 1 and 2 million), and Xuchang of Henan Province (representing small 

cities with urban populations less than 1 million). The normalized DN profiles of the DMSP/OLS NTL, 

MODIS NDVI, and LST data across a latitudinal transect are shown in Figure 3. The DMSP/OLS NTL 

values in Beijing were much more saturated in the urban core area with DN values of almost 63. The LST 
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values in Beijing were significantly higher than surrounding areas, whereas the NDVI values were lower 

than in the surrounding areas with a trough in the urban core. The LST and NDVI values fluctuated 

within the urban area (Figure 3a). For Suzhou, the DMSP/OLS NTL values were less saturated than 

those in Beijing. MODIS LST values peaked in the urban core, and NDVI values troughed. MODIS 

NDVI values varied within the urban area, whereas the LST values changed smoothly (Figure 3b).  

For Xuchang, the DMSP/OLS NTL values for the urban area were much lower than the other two cities. 

The NDVI decreased and the DMSP/OLS NTL values increased towards the urban areas. The DMSP/OLS 

NTL and LST values peaked in the urban core (Figure 3c). 

 
(a) 

 
(b) 

Figure 3. Cont. 
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(c) 

Figure 3. The color composite images (DMSP/OLS NTL, MODIS NDVI and LST as R, G 

and B) and their latitudinal transects of DMSP/OLS NTL (blue), MODIS NDVI (green), and 

MODIS LST (red) data for Beijing (a), Suzhou (b) and Xuchang (c). 

It is evident from the transects of these three cities that urban areas typically display relatively high 

DMSP/OLS NTL and MODIS LST values, and low NDVI values. The opposite is true in rural regions 

(Figure 3). It is also very clear that the lit areas detected by DMSP/OLS NTL data are much larger than 

the ground truth extracted from Landsat TM images (Figure 3). Furthermore, the blooming effect is 

different for cities of different sizes. For example, the blooming effect in Beijing is more significant than 

that in Xuchang and Suzhou. 

Based on the above data analysis, the MODIS LST and NDVI data provide information that is 

complementary to the DMSP/OLS data. Specifically, the MODIS NDVI and LST data provide 

information that can be used to extract the urban extent using vegetation and thermal signals. Thus, we 

expect that a combination of the three data sets will be useful. 

Beijing has NTL values of more than 60, Suzhou has NTL values of less than 55, and Xuchang has 

NTL values of less than 50 (Figure 3). These different NTL values may represent different development 

levels. Therefore, it is inappropriate to use a global threshold value to extract these urban areas, because 

the thresholds used for different cities should be different. Considering this, we selected a locally 

optimized threshold method to validate the proposed methods. 

3.2. Extraction of Urban Areas Using Multiple Sensor Data 

From the analysis in the previous section, MODIS NDVI and LST data provide additional information 

for mapping the urban extent. Thus, a combination of the three datasets may improve the mapping results 

when compared with only using DMSP/OLS NTL data. To jointly use the three datasets, we need an 

appropriate supervised classifier for the multi-sensor data. Although two-class classifiers were used to 

classify multi-sensor data and obtained promising results [35–37], urban area is the only class of interest 
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(or the target class) and only occupies a small area when compared to non-urban areas. Moreover,  

non-urban areas include diverse land cover classes, showing significant variability in multi-sensor data 

values, as described in the Introduction. Thus, mapping urban areas is essentially an unbalanced 

classification problem. Considering this, we used a one-class classification method [52] instead of 

traditional two-class classifiers. One-class classification methods have been successfully used to extract 

a specific land cover class and detect related changes [53,55,56]. Only samples from the target class are 

used during the training process, and no information about the counterpart (outlier class) is required.  

The boundary between the two classes has to be estimated from data of the only available target class. 

The task is to define a boundary around the target class, such that it encircles as many target examples 

as possible and minimizes the chance of accepting outliers [52]. 

OCSVM [51] is one of the most widely used one-class classification methods in remote sensing, and 

was selected as the classifier in this study. The OCSVM may be viewed as a special two-class SVM 

classifier, where all the training data lie in the first class (target class) and the origin is the only member of 

the second class (outlier class). The OCSVM algorithm first maps input data into a high-dimensional 

feature space via a kernel function, and then iteratively finds the maximal margin hyperplane that best 

separates the training data from the origin [51]. Using kernel functions, solving the OCSVM optimization 

problem is equivalent to solving the dual quadratic programming problem. Using the kernel function to 

project input vectors into a feature space, nonlinear decision boundaries are allowed. Generally, four types 

of kernels are often used: linear, polynomial, sigmoid, and Gaussian radial basis function (RBF) kernels. 

In this study, we use the RBF kernel, which has been commonly used for the OCSVM [51,52]. 

For urban extent mapping using multi-sensor data, rather than using training samples from two 

classes, we only use training data from the urban class with the OCSVM classifier. Additionally, instead 

of only using DMSP/OLS NTL and NDVI data when selecting the training samples in previous  

studies [35–37], we used a combination of all three datasets. We selected the urban training samples 

according to the statistical features of the DMSP/OLS, NTL and NDVI data for the 55 selected cities. We 

calculated the mean values for the three datasets in urban areas, and derived the urban extents from the 

Landsat TM/ETM+ data. Pixels that simultaneously satisfied three conditions were selected as candidate 

training samples: (1) DMSP/OLS NTL DN values greater than 30; (2) MODIS NDVI values greater than 

0 and less than 0.4; and (3) MODIS LST values greater than 290 K. Compared with only using DMSP/OLS 

NTL and NDVI data to select the training samples (e.g., [35]), using all three datasets removes the pixels 

containing gas flares, illuminated marine vessels, and water. This produces more reliable training samples. 

Because the study area is very large, this process generated a large number of training samples. We selected 

a subset of these as the final training set. Specifically, we randomly selected 8023 training samples (10% 

of all reference samples) used in the OCSVM classification of multi-sensor data. 

To evaluate the effectiveness of the different data sets for mapping urban extent, we used three data 

combinations: (1) DMSP/OLS NTL and MODIS NDVI data; (2) DMSP/OLS NTL and MODIS LST 

data; and (3) DMSP/OLS NTL, MODIS NDVI, and LST data. 

3.3. Validation 

To validate the effectiveness of the proposed methods and the different data combinations, we 

classified the Landsat TM/ETM+ data from 55 cities to extract urban areas. The obtained classification 
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results were used as reference data. Because the Landsat ETM+ data has a much finer resolution than 

the DMSP/OLS NTL data, the classification results were sufficiently accurate to be used as the ground 

truth. Landsat TM/ETM+ data have been extensively used to validate urban area mapping results at 

regional scales using DMSP/OLS NTL data [8,29,35,37,74]. 

The SVM classifier [75] was used to classify Landsat TM/ETM+ images. Four land cover classes are 

generally recognized: urban area, vegetation (including forest, grass, and farmland), water, and bare soil. 

After classification, the vegetation, water, and bare soil classes were merged into a non-urban class.  

A majority filter with a 3 × 3 window was applied to the classification results to reduce isolated pixels. 

Finally, we up-scaled the 28.5 m pixel classification results to 1 km pixels. First, we determined the 

percentage of 28.5 m urban pixels inside each 1 km pixel. If it was larger than 50%, the pixel was 

considered urban, otherwise the pixel was non-urban. The urban classification results of the 1 km pixels 

were generated for each city under consideration. 

Since the locally optimized threshold method performs well using DMSP/OLS NTL data [29,35,38], 

we applied it to the DMSP/OLS NTL image to extract the urban extent for comparison. In this study, we 

determined an optimal local DN threshold for each city by matching the urban area derived from 

DMSP/OLS NTL data to the urban area from the Landsat TM/ETM+ classification, as closely as possible. 

We used the confusion matrix [76] as a thematic accuracy assessment to quantify the performance of 

the different methods. For each urban extent mapping result, the accuracy assessment includes the 

producer’s accuracy, user’s accuracy, overall accuracy, and kappa coefficient. Although the kappa 

coefficient has known problems when used to assess accuracies in remote sensing applications [77,78], it can 

evaluate the classifications more thoroughly than the overall accuracy. Considering the kappa coefficient was 

widely used in accuracy assessment for regional urban extent mapping using DMSP/OLS NTL and related 

data [35–37], the kappa coefficient is also used in this study. Additionally, to evaluate the performance in 

terms of the geometric properties, we used a discrepancy measure called the average differences of shape 

index [79] to compare the proposed methods with the locally optimized method. Discrepancy measures of 

the geometric properties were originally used to evaluate image segmentation and classification results for 

very high resolution images [79]. The average difference of shape index quantitatively compares the shape 

indexes of urban objects produced by the proposed method with the reference data. 

Urban built-up areas derived from existing urban statistical data [69] were also used to assess the 

performance of the proposed methods. We computed and analyzed the correlation coefficients comparing 

the urban built-up areas from the statistical data with those extracted from the proposed method. 

4. Results 

Figure 4 shows training samples selected with and without the MODIS LST data. The training samples 

for the urban class selected using the DMSP/OLS NLT and MODIS NDVI data include water pixels, 

which will affect the classification results. These water pixels were not present when using the combination 

of the DMSP/OLS NLT, MODIS NDVI, and LST data. Thus, the combination of three datasets provides 

more reliable training samples than only using the DMSP/OLS NTL and MODIS NDVI data. 
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(a) 

(b) 

Figure 4. Training samples selected using different data combinations for Shanghai (a) and 

Wuhan (b). The left images are NTL data. The right images are Landsat TM images (band 

7, 4, 3 as R, G, B). The green points represent the training samples selected from three 

datasets (also from the NTL data and NDVI data), and the red ones represent the samples 

selected only from the NTL data and NDVI data. The red points include the pixels of river. 

The classification results from Landsat TM/ETM+ data that are used as a reference map were 

validated using test samples of typical urban areas, and were over 80% of overall accuracy. 

Figure 5 shows the DMSP/OLS NTL images, reference urban area results from Landsat TM/ETM+ 

images (1 km), and the urban extent mapping results extracted using different methods, for six cities of 

different population sizes. The reference data contain many details, including many isolated pixels 

(Figure 5b). However, the urban areas generated by all the methods using coarse multi-sensor data are 

relatively continuous, with only a few isolated urban pixels (Figure 5c–g). The local-optimized threshold 

method (Figure 5c) accurately extracted the main urban areas, but omitted some pixels from small urban 

areas around the main urban areas. However, the OCSVM classification results using the combination 

of DMSP/OLS NTL and MODIS NDVI data, and the combination of all three datasets were very similar. 

The main and small urban areas were accurately extracted (Figure 5d,f). In particular, the classification 

results based on the combination of all three datasets performed best for the small cities, i.e., Xuchang 

and Hengshui (Figure 5f). However, the classification results from the combination of DMSP/OLS NTL 
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and MODIS LST data were homogeneous, but significantly overestimated the urban extent compared 

with the reference data (Figure 5e). Table 1 shows the average differences in the shape indexes between 

the extracted results and reference data. The proposed methods using different data combinations had 

lower discrepancy values for the average shape index differences than the locally optimized method, 

which indicates that the proposed methods outperformed the locally optimized method in terms of the 

shape. This also agrees with the visual comparison in Figure 5. 

The classification results using different data combinations and from the locally optimized threshold 

method are summarized in Table 2. The locally optimized threshold method performed best for 11 out 

of 55 cities, including six big cities, four medium cities, and one small city. For the big cities, the locally 

optimized threshold method generally achieved higher kappa values than other methods. However, for 

small cities (especially in middle of China), the locally optimized threshold methods produced lower 

kappa values than the other methods. The locally optimized threshold method omitted a large number of 

urban pixels for these small cities. 

 

Figure 5. Urban area extraction results from different methods. (a) DMSP/OLS NTL images 

of selected cities; (b) The reference data from Landsat ETM+ classification;  

(c) Local-optimized threshold method; (d) OCSVM result with combination of DMSP/OLS 

NTL data and MODIS NDVI data; (e) OCSVM result with the combination of DMSP/OLS 

NTL data and MODIS LST data; (f) OCSVM result with combination of DMSP/OLS NTL 

data, MODIS NDVI and LST data. 
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Table 1. Average difference in shape index between the extracted results from different 

methods and the reference data. 

 
Local-Optimized 

Threshold Method 

OCSVM Classification 

with NTL + NDVI 

OCSVM Classification 

with NTL + LST 

OCSVM Classification 

with NTL + NDVI + LST 

Beijing 0.1642 0.1312 0.1460 0.1183 

Shenyang 0.2458 0.2190 0.1734 0.1972 

Hefei 0.1910 0.1169 0.0820 0.1712 

Changsha 0.3620 0.2023 0.2611 0.2193 

Xuchang 0.1846 0.0815 0.1963 0.0785 

Hengshui 0.1725 0.2196 0.2087 0.1196 

The OCSVM classification with DMSP/OLS NTL and MODIS NDVI data performed best for 16 cities, 

including five big cities, seven medium cities, and four small cities (Table 2). The OCSVM classification 

based on this data combination produced higher kappa values than the locally optimized threshold 

method for 37 out of 55 cities. Additionally, for big cities, the OCSVM classification based on this data 

combination performed as well as the locally optimized threshold method. For medium and small cities, 

the OCSVM classification based on NTL and NDVI data outperformed the locally optimized threshold 

method. Specifically, the OCSVM classification based on this data combination achieved higher kappa 

values for 13 out of 18 medium cities and 14 out of 18 small cities, when compared with the locally 

optimized threshold method. Thus, the MODIS NDVI data provided additional discriminative 

information for extracting the urban extent. 

The OCSVM classification based on the combination of DMSP/OLS NTL and LST data obtained a 

relatively low accuracies for big and medium cities, because it overestimated urban areas, when 

compared with the other classification results (Table 2). However, the combination of NTL and LST 

data outperformed the other data combinations and the locally optimized threshold method for small 

urban areas (e.g., Macau). This may be because the temperature gradient between urban and rural areas 

is not as obvious as the difference in vegetation coverage over urban and rural areas. Additionally, LST and 

NTL data have similar fluctuations, whereas NTL and NDVI data had opposite fluctuations (Figure 3). 

The OCSVM classification based on the combination of DMSP/OLS NTL, MODIS NDVI, and LST 

data achieved the highest kappa values for 21 out of 55 cities, including five big cities, five medium cities, 

and 11 small cities (Table 2). The OCSVM classification based on this combination produced higher 

kappa values than the locally optimized threshold method for 38 out of 55 cities (Table 2). In particular, 

for small cities, the classification accuracies (in terms of kappa) were significantly improved using this 

combination. For example, the kappa value of the combination of three datasets for Xuchang (a small 

city) is 0.72, whereas the kappa value produced using the local-optimized threshold method is only 0.49. 
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Table 2. Accuracy assessment of different methods of extracting urban areas for 55 cities. 

 City Population (Thousand) 
Local-Optimized Threshold OCSVM NTL + NDVI OCSVM NTL + LST OCSVM NTL + NDVI + LST 

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa 

The first group: 

Big cities 

Shanghai 11,511.9 89.01 0.6222 88.16 0.6357 77.22 0.4623 87.31 0.6286 

Beijing 8792.8 94.89 0.6521 94.48 0.6665 88.58 0.5062 93.94 0.6531 

Hong Kong 6857.1 79.95 0.5119 82.22 0.5842 71.31 0.4058 84.1 0.6106 

Chongqing 5966.9 87.08 0.6018 90.22 0.6529 80.59 0.5239 89.46 0.6469 

Tianjin 5400.2 90.68 0.5548 91.74 0.6002 86.69 0.5174 91.87 0.6176 

Guangzhou 4909.5 78.54 0.5155 68.94 0.4188 54.06 0.2345 65.95 0.3812 

Nanjing 4470.4 87.73 0.6466 89.17 0.7011 76.48 0.4891 88.56 0.6969 

Wuhan 4446.4 91.85 0.5495 92.15 0.5668 86.79 0.4642 91.55 0.5646 

Shenyang 4441.8 90.31 0.7006 90.56 0.6908 85.71 0.6314 90.96 0.7237 

Chengdu 3802.8 91.99 0.7787 90.63 0.6748 85.76 0.658 92.91 0.7682 

Harbin 3413 94.86 0.6095 92.52 0.5925 84.72 0.4095 91.82 0.5697 

Xi’an 3182 85.52 0.619 75.67 0.4947 55.05 0.2445 73.4 0.4615 

Jinan 2770.2 95.23 0.7222 90.74 0.599 78.92 0.3701 89.36 0.5619 

Taipei 2632.242 90.85 0.5528 90.51 0.6239 78.23 0.4038 89.16 0.5982 

Hangzhou 2564.2 86.61 0.5726 84.68 0.3835 84.32 0.5739 85.71 0.4558 

Changchun 2508.5 93.96 0.783 94.68 0.8154 90.69 0.7164 94.18 0.8048 

Shijiazhuang 2313.5 94.88 0.6859 95.12 0.713 86.87 0.5031 94.92 0.72 

Taiyuan 2276.9 89.04 0.564 89.44 0.5606 88.19 0.5883 89.44 0.5797 

Wuxi 2186.3 88.11 0.5963 86.21 0.5946 61.31 0.2774 83.4 0.5544 

The second 

group:Medium 

cities 

Shenzhen 1968.3 79.04 0.4444 81.23 0.5768 69.73 0.3966 79.92 0.5523 

Zhengzhou 1932.6 92.43 0.5903 92.78 0.6312 85.38 0.472 92.7 0.6426 

Fuzhou 1817.2 91.07 0.5376 90.57 0.457 91.45 0.584 91.23 0.5151 

Changsha 1798.9 92.72 0.7256 93.65 0.7475 88.68 0.6533 94.16 0.7758 

Nanchang 1737.5 87.59 0.6183 88.11 0.6532 80.73 0.5221 85.59 0.6035 

Lanzhou 1723.1 94.88 0.5889 85.93 0.4071 85.12 0.3912 85.32 0.3951 

Kunming 1720.7 93.7 0.6385 94.64 0.6804 91.25 0.572 94.35 0.673 

Hefei 1605.4 94.2 0.7135 94.97 0.7358 91.15 0.6403 94.9 0.7466 
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Table 2. Cont. 

 City Population (Thousand) 
Local-Optimized Threshold OCSVM NTL + NDVI OCSVM NTL + LST OCSVM NTL + NDVI + LST 

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa 

The second 

group:Medium 

cities 

Urumchi 1576.6 97.5 0.6572 94.65 0.5205 93.58 0.4735 94.36 0.5084 

Zibo 1557.4 91.19 0.3173 90.6 0.4199 79.94 0.28 89.48 0.4092 

Guiyang 1513 93.02 0.6505 93.75 0.535 92.69 0.6752 93.94 0.5994 

Suzhou 1501.4 88.02 0.5665 83.95 0.5585 64.15 0.3053 81.2 0.5207 

Nanning 1308.1 97.5 0.7443 98.37 0.8138 96.14 0.6618 98.18 0.8044 

Fushun 1260.2 89.15 0.4947 90.93 0.5456 84.42 0.4758 90.73 0.5856 

Ningbo 1257.6 89.76 0.5356 88.54 0.583 66.46 0.2804 85.67 0.5402 

Handan 1245.8 89.23 0.5867 90.46 0.6425 84.15 0.5556 91.69 0.6979 

Changzhou 1115.9 89.71 0.5398 88.24 0.5656 65.02 0.2553 85.35 0.5208 

Xiamen 1092.4 79.6 0.3562 81.44 0.4724 72.24 0.3222 81.17 0.4622 

The third group: 

Small cities 

Hengyang 966 91.15 0.5698 92.8 0.573 90.74 0.5691 93.42 0.6331 

Xiangfan 953.4 94.14 0.6961 94.14 0.6642 92.03 0.6474 94.41 0.7005 

Baoding 927.5 93.24 0.4964 93.38 0.5385 89.32 0.4671 93.48 0.5598 

Xining 909.8 98.99 0.2606 98.53 0.3442 98.14 0.3033 98.38 0.3338 

Haikou 897.7 84.88 0.4432 88.37 0.5052 86.21 0.5187 88.27 0.5168 

Hohhot 842.3 94.64 0.7457 77.74 0.4046 68.45 0.2963 74.64 0.3679 

Yinchuan 711.9 95.39 0.5424 94.99 0.5603 92.01 0.4401 94.3 0.5324 

Xinxiang 711.9 90.48 0.649 91.1 0.6999 69.77 0.3438 89.65 0.6675 

Yichang 702.2 96.8 0.5568 97.22 0.5484 95.75 0.5455 97.22 0.5813 

Anyang 688 87.93 0.6567 91.33 0.7547 80.5 0.5586 91.33 0.7594 

Guilin 629.1 98.47 0.5378 98.27 0.2551 98.49 0.5896 98.3 0.2897 

Kaifeng 592.4 87.2 0.3727 90.13 0.4768 85.6 0.4206 89.73 0.4896 

Xianyang 545.3 75 0.3226 78.1 0.4604 55.48 0.2367 79.52 0.5127 

Macau 513.4 59.62 0.1817 66.35 0.3142 75.96 0.5138 74.04 0.467 

Cangzhou 492.6 89.38 0.3986 91.72 0.5396 85.52 0.4302 91.59 0.5649 

Xuchang 401.5 89.18 0.4927 92.69 0.6573 81.58 0.4654 93.57 0.7239 

Hengshui 298.1 97.28 0.5485 97.5 0.5776 96.03 0.5578 97.61 0.6275 

Lhasa 211.4 96.74 0.6312 96.78 0.6617 96.34 0.6306 96.6 0.6489 

Note: The bold text in the table represents the maximum value of each row. 
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Table 3 shows the correlation coefficients between urban areas extracted using different methods and 

those from the statistical data for cities of different sizes. For big cities, the urban areas derived from the 

proposed methods using different data combinations were highly correlated with urban built-up areas 

determined using the statistical data [69], with correlation coefficients greater than 0.8. In particular, the 

urban areas extracted using the combination of all three datasets were most correlated with urban built-up 

areas derived from the statistical data [69]. For medium cities, the correlation coefficients comparing the 

urban areas extracted using all the methods with the urban areas derived from the statistical data were 

greater than 0.92, with the exception of the NTL and LST combination (which had a correlation 

coefficient lower than 0.9). For small cities, the correlation coefficients of the proposed method (>0.7) 

were much larger than those of the locally optimized threshold method (<0.55). We found that the urban 

areas derived from the combination of three datasets were highly correlated with urban built-up areas 

derived from the statistical data. The highest correlation was between the urban areas that were based on 

the combination of the three datasets and the statistically derived built-up areas, in two cases (i.e., big 

cities and small cities). In general, the proposed methods using different data combinations performed 

better than (or were at least comparable to) the locally optimized threshold method in terms of the 

correlation with urban areas derived from statistical data. 

Table 3. Correlation coefficients between the results from different methods and statistical 

built-up areas. 

 Local-Optimized Threshold 
OCSVM NTL + NDVI + 

LST 

OCSVM NTL + 

NDVI 

OCSVM NTL 

+ LST 

Big cities 0.7700 0.8190 0.8127 0.8128 

Medium cities 0.9321 0.9175 0.9269 0.8763 

Small cities 0.5439 0.7267 0.7139 0.6914 

5. General Discussion 

The results presented above demonstrated that DMSP/OLS NTL data, MODIS NDVI and LST data 

provide different but complementary information sources to quantify properties of urban areas, as shown 

in Figure 3. The urban extent mapping results showed that the OCSVM classification with combination 

of DMSP/OLS NTL, MODIS NDVI and LST data outperformed the locally optimized threshold method, 

a widely used urban extent mapping method. 

Although the NDVI data are a valuable information source for improving the urban extent mapping 

using DMSP/OLS NTL data alone (e.g., [16,35]), it is found from this study that MODIS LST data also 

provided additional discriminative information. For example, the inclusion of LST and NDVI data 

achieved the best accuracy in the small cities. The LST data strengthened the differences between urban 

and non-urban areas, because of the temperature difference between urban and rural areas. It should be 

mentioned that the MODIS LST data were not only used in the classification, but were also used to select 

training samples for classifications of all data combinations. The combination of three datasets provides 

more reliable training samples than the use of the DMSP/OLS NTL and MODIS NDVI data only,  

as shown in Figure 4. Thus, it is understandable that the classification using DMSP/OLS NTL and 

MODIS NDVI data produced similar results to the classification using all three datasets for medium-size 



Remote Sens. 2015, 7 7689 

 

 

cities and large cities, since MODIS LST data were also used to select the training samples in 

classification using DMSP/OLS NTL and MODIS NDVI data. 

The experimental results also show that the OCSVM classification provided an effective and efficient 

method of classifying multi-sensor data combinations for extracting urban areas at regional scale. 

Compared with traditional two-class SVM classification methods which require training samples  

from both classes [35,37], the OCSVM does not require samples from complex backgrounds with 

significant variability (non-urban areas). Moreover, the OCSVM can focus on the urban areas, the only 

class of interest. In terms of mapping accuracy, the proposed OCSVM based method achieved generally 

better results than the locally optimized threshold method, whereas the existing two-class SVM 

classification-based method [35] produced extraction accuracies comparable to the locally optimized 

threshold method. Thus, from these observations, the proposed OCSVM based method is more effective 

than the two-class SVM-based method (i.e., [35]) in urban extent mapping at regional scale. 

It is also worth noting that the locally optimized threshold was generated by comparing reference data 

for each city, the method heavily relies on the availability of high-resolution data of the whole study area 

and requires extensive and tedious work. In contrast, the proposed OCSVM-based method is not very 

dependent on the high resolution images and is more efficient in extracting the urban extent. 

There are still some limitations with the proposed method. The inclusion of LST and NDVI data in 

urban extent extraction may fail in some places. Since our proposed method is based on the assumption 

that there are significant differences in vegetation and temperature features between urban and non-urban 

areas, the assumption will be invalid for the regions where there are no vegetation or little vegetation 

surrounding urban areas and there is no significant difference between urban and non-urban areas. Thus, 

the inclusion of LST and NDVI data in urban extent extraction will fail in these regions. For our study 

area, we found that the proposed method failed only in few cities. For example, for cities in arid or  

semi-arid regions (e.g., Lanzhou), there is more vegetation in urban areas (since vegetation is mainly 

planted on artificial irrigation systems) and the temperatures of urban areas are even lower than those of 

non-urban areas. However, the inclusion of LST and NDVI data is generally effective for regions with 

rapid urbanization, where the ‘Urban Heat Island’ effect is obvious and the fractional impervious surface 

area and the fractional vegetation cover vary inversely in urban areas [41]. Considering the above 

discussions, further investigation is required to explore new and more sophisticated methods to solve 

these problems. 

6. Conclusions 

In this study, MODIS LST data were combined with DMSP/OLS NTL and MODIS NDVI data to 

quantify and extract urban areas at regional scale. The OCSVM, a one-class classifier, were adopted to 

classify different data combinations of three datasets. The proposed method was compared with the 

locally optimized threshold method, a widely used method. The experimental results demonstrate that 

DMSP/OLS NTL, MODIS NDVI, and LST data provide different but complementary information 

sources to quantify the urban extent at regional scale. The combination of DMSP/OLS NTL, MODIS 

NDVI, and LST data was the best data combination for OCSVM classification, and outperformed the 

locally-optimized threshold method. Therefore, the OCSVM classification of combination of 
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DMSP/OLS NTL, MODIS LST, and NDVI data is an effective and efficient method for extracting the 

urban extent at regional scale, and can be applied to other study areas. 
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