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Abstract: The increasing number of Chinese sensor types used for terrestrial remote sensing 

has necessitated an additional effort to evaluate and standardize the data they acquire. In this 

study, we assessed the potential use of GF-1 WFV (Wild Field Camera), ZY-3 MUX (Multi-

spectral camera), and HJ-1 CCD (Charge Coupled Device) sensor data for grassland 

monitoring by comparing spectral field measurements, vegetation coverage, and the leaf area 

index (LAI) of grassland stands with reflectance in the red and near-infrared bands and the 

Normalized Difference Vegetation Index (NDVI). Based on spectral field measurements, the 

characteristic differences of spectral response functions of the sensors were analyzed. Based 

on simulations using the SAIL bidirectional canopy reflectance model coupled with the 

PROSPECT leaf optical properties model (PROSAIL), we investigated the effects of 

changes in the sensors’ zenith angle caused by side sway. The following conclusions were 

drawn. (1) Differences in the adjusted coefficients of determination (R2) exist when comparing 

correlations between the reflectances from the three sensor types in different bands. The 

values of R2 are 0.556–0.893 and 0.819–0.850 for the infrared and red bands, respectively, 

and these data show a better correlation for the red band than for the infrared band. Fitted 
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slope equations revealed inconsistencies in the data between the different sensor types. In 

the red band, GF-1 WFV and HJ-1 CCD data are the most consistent, but in the near-infrared 

band, GF-1 WFV and ZY-3 MUX data are the most consistent; (2) The correlation of NDVIs 

obtained from the different sensor types is high (R2 between 0.758 and 0.852); however, the 

consistency is low in that the NDVI based on GF-1 WFV data is significantly higher than 

that based on ZY-3 MUX and HJ-1 CCD data. In contrast, the mean difference is small 

between the NDVIs based on ZY-3 MUX and HJ-1 CCD; (3) Correlation analysis between 

ground grass-coverage and measured LAI data shows that the three sensor types are better 

at estimating coverage than the LAI, and that the GF-1 WFV sensor gave the best 

performance; (4) Changes in the sensors’ zenith angle caused by side sway were proven to 

have greater impact on reflectance and NDVI than the spectral response function; (5) For 

LAI values of 0–3, the NDVI changes significantly with increasing LAI, and differences 

between the three sensor types are obvious. For LAI > 3.5, the NDVI appears to experience 

a saturated tendency, which greatly reduces the differences between the sensors. 

Keywords: GF-1 WFV; ZY-3 MUX; HJ-1 CCD; vegetation index; grassland monitoring; 

PROSAIL model 

 

1. Introduction 

Grassland is one of the world’s most widely distributed vegetation types and it plays an important 

role in the global carbon cycle [1]. There are nearly 400 million ha of natural grassland in China, which 

account for 42.05% of the entire land area; this places China second in the global rank of countries with 

abundant grassland resources [2]. Grassland is an important part of ecological systems, but grassland 

vegetation parameters can be difficult to study given their strong spatial heterogeneity and temporal 

dynamics. Rapid access to the key parameters of regional grassland productivity is vital for grassland 

resource management, regulation of livestock product safety, and monitoring of regional carbon 

balances. Regardless of scale, remote sensing has become established as an important tool for estimating 

vegetation canopy parameters and their dynamic changes [3–7]. 

During the early twenty-first century, China developed and launched a variety of satellites, such as 

the China and Pakistan resources satellite (CBERS), the environment satellite (HJ-1A/1B), and the 

resources satellite (ZY-3) that are intended for studying different scales of land cover change, monitoring 

natural resources, and assessing environmental quality and changes in the ecological environment. As 

part of the “High-Resolution Earth Observation System”, many major projects are being implemented. 

The first optical satellite (GF-1) in the high-resolution satellite series has completed in-orbit tests and 

entered the stage of data acquisition. All in-orbit Chinese satellites constitute part of a joint mission 

intended to reduce the mean revisitation period to eight hours, which has obvious advantages in temporal 

resolution. However, for the same object, the consistency and correlation between image data obtained 

by the various sensors of the different platforms are affected by sensor orbit height, spatial resolution, 

spectral resolution, spectral response function, and other spatiotemporal differences in data acquisition. 
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Further study is required to determine the best methods for acquiring accurate and continuous data of 

the temporal dynamics for a coverage area using the available multi-source remote sensing capability. 

The differences and consistencies between image data acquired by different satellite sensors have 

been investigated by a number of studies in China and internationally. Gallo and Daughtry [8] analyzed 

the effects of using different wavelength bands of the Landsat MSS, Landsat TM, AVHRR, and SPOT 

sensors on the Normalized Difference Vegetation Index (NDVI) and the ratio vegetation index (RVI). 

Using 20-m-resolution Airborne Visible Infrared Imaging Spectrometer data acquired over forest cover, 

Teillet et al. [9] tested the sensitivity of the NDVI to the spectral and spatial characteristics of SPOT 

HRV, Landsat TM, NOAA AVHRR, EOS MODIS, and Envisat MERIS sensors. They showed that the 

obtained NDVI is affected significantly by differences in spectral bandwidths, especially in the red band. 

Changes in NDVI due to differences in spatial resolution between sensors depend on the spatial and 

spectral heterogeneity of the vegetation. Soudani et al. [10] assessed the potential use of IKONOS, 

ETM+, and SPOT HRVIR sensors for leaf area index (LAI) estimation in temperate coniferous and 

deciduous forest stands. They concluded that for bare soils or surfaces covered by very sparse vegetation, 

radiometric data acquired by IKONOS, SPOT, and ETM+ were similar, but for surfaces with dense 

vegetation, a negative offset of 10% for IKONOS NDVIs should be considered. Li et al. [11] analyzed 

both sensors’ spectral responses under simulated atmospheric conditions and the various NDVI values 

derived from 30 different satellites. Using linear regression analysis, they estimated the transfer 

parameters between any two different satellite NDVI values, and presented lookup tables of transfer 

parameters under atmospheric conditions for three surface visibility range values (10, 23, and 50 km). 

Li et al. [12] compared the spectral bands of ETM+ and OLI, and showed that OLI had higher values in 

the near-infrared band for vegetative land cover types, but lower values for non-vegetative types. 

In summary, many studies have focused on verifying and evaluating the different resolution of sensor 

data outside China [10,12–16], but few studies have compared and examined the consistency of data 

from HJ-1 CCD and other sensors. Furthermore, few studies have considered the feasibility of using 

different sensors for the determination of LAI and coverage in grassland stands, and, as far as we are 

aware, there has been no attempt to analyze the effects on vegetation index caused by changes in sensors’ 

zenith angles due to side sway. An evaluation of the capabilities of different in-orbit Chinese satellites 

for monitoring vegetation, and an analysis of the main factors leading to data differences between 

satellites, will contribute to the application of satellite acquired data, and enhance the reliability of the 

multi-source remote sensing platform for the continuous monitoring of vegetation. 

We compare and examine the consistency of the GF-1 WFV (Wild Field Camera), ZY-3 MUX 

(Multi-Spectral Camera), and HJ-1 CCD (Charge Coupled Device) sensors for grass monitoring. 

Furthermore, this work investigates the feasibility of using GF-1 WFV, ZY-3 MUX, and HJ-1 CCD 

images for the determination of LAI and biomass in grassland stands by analyzing the effects of the 

sensors’ spectral characteristics on the characterization of canopy reflectance behavior in the red and 

infrared bands. Finally, we analyze the effect of factors that cause differences between the data obtained 

by different sensors. 
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2. Materials 

2.1. Study Sites 

The selected test sites are situated in the Gongger prairie, which is located northwest of Chifeng in 

the northern central region of Inner Mongolia, China (43°26′N, 116°40′E; altitude 1236 m) (Figure 1). 

This area is the remote sensing test site for in-orbit calibration and authenticity tests, and it was 

established in 2006 by the Institute of Remote Sensing and Digital Earth, Chinese Academy of  

Sciences [17]. Its main landscape type is typical steppe that is composed mostly of Stipa krylovii Roshev, 

Stipa grandis, Leymus chinensis, Agropyron cristatum, and Artemisia frigida Willd. The climate is 

continental monsoon with an average annual temperature of 1 °C and average annual precipitation of 

395.8 mm. 

 

Figure 1. Locations of the study area and sample plots. 

 

Figure 2. Time-series curves of 16-day composite MODIS 250 m NDVI for different  

sample plots in the 2013 growing season. The range of the dotted line indicates the data 

acquisition period. 
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2.2. Sampling Plot Settings 

Based on the results of the NDVI derived from HJ-1 CCD image data within 10 days prior to the 

monitoring and field investigations, 62 grassland plots (30 × 30 m) with different vegetation coverages 

were chosen. Seven quadrats (1 × 1 m) along the diagonal direction of each sample plot were then used for 

field measurements. The field measurements comprising grass hyperspectral reflectance, LAI, and 

vegetation coverage were performed from 31 July to 6 August 2013, and a MobileMapper™ CX GPS was 

used to record the GPS coordinates of the sampling points. From the perspective of vegetation phenology, 

the field measurement data recorded the most vigorous growth stage of the grassland in the research area, 

as illustrated by the time-series curves of 16-day composite MODIS (Moderate Resolution Imaging 

Spectroradiometer) 250-m NDVI of different sample plots in the 2013 growing season (Figure 2) [18]. 

2.3. Hyperspectral Reflectance Field Measurements 

All hyperspectral reflectance field measurements were obtained under clear-sky conditions between 

10:30 and 14:30 (Beijing local time), using an ASD Field Spec4 spectrometer (Analytical Spectral 

Devices, Boulder, CO, USA). This spectrometer records in the spectral range of 350–2500 nm. The 

spectral resolution was 10 nm between 350–700 nm, 8 nm between 700–1400 nm, and 30 nm between 

1400–2500 nm. The field of view was 25° and the observation probes were 1.5 m above the grass canopy. 

A white board was referenced prior to recording the grass spectral reflectance in each quadrat. Five 

samples were averaged to obtain the measured hyperspectral reflectance data for each quadrant. 

2.4. LAI and Vegetation Coverage Field Measurements 

The LAI measurements were performed using a ground-based optical instrument, the Plant Canopy 

Analyzer (PCA) LAI-2000 (LI-COR Biosciences Inc., Lincoln, NE, USA). An LAI measurement taken 

by the instrument represents the plant’s “effective” LAI [19]. To avoid direct sunlight, all samples were 

collected just before sunset and just after sunrise under cloudy skies, and within 48 h of the hyperspectral 

reflectance measurements. A 270° view cap was used on the sensor to shield it from the operator and to 

minimize both the illumination conditions and boundary effects. A reference measurement was performed 

to log the blue diffuse light over the canopy before the observation of light transmission under the canopy. 

Three measurements were averaged to give the canopy LAI data for each quadrat [20]. 

 

Figure 3. Vegetation coverage interpretation. 
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Grass coverage measurements were undertaken synchronously with the hyperspectral reflectance 

field measurements. A digital camera was placed above the grass canopy at a height suitable to frame 

the surface quadrat. All the photographs were clipped by the boundary of the quadrat frame and the 

vegetation coverage was derived by image classification (Figure 3). 

2.5. Remote Sensing Image Acquisition 

The key properties of the images used in this study can be seen in Table 1. The radiometric resolution 

of the GF-1 WFV and ZY-3 MUX sensors is higher than that of HJ-1 CCD by 2 bits, which enhances 

the hierarchy of each band and improves the detectability of changes in feature characteristics. The band 

range settings are identical for GF-1 WFV and ZY-3 MUX; HJ-1 CCD settings are identical for the red 

band, similar for the green and near-infrared bands, but narrower for the blue band. The HJ-1 CCD and 

ZY-3 MUX image data were obtained on 28 July 2013, but GF-1 WFV data was obtained on 30 July 

2013; however, for grassland vegetation, these data can be treated as synchronous. The spatial and 

spectral characteristics and acquisition dates of the images are given in Tables 1 and 2, respectively. To 

compute surface reflectance, atmospheric and geometric corrections of these remote sensing images 

must be made. 

Table 1. Key properties of GF-1 WFV (Wilf Field Camera), HJ-1 CCD (Charge Coupling 

Device), and ZY-3 MUX (Multi-Spectral Camera). 

Sensor 
Revisitation  

Period (d) 

Spatial  

Resolution (m) 
Breadth (km) 

Radiometric  

Resolution (Bit) 

Band 1 

(nm) 

Band 2  

(nm) 

Band 3  

(nm) 

Band 4 

(nm) 

GF-1 WFV 4 16 
200 (1CCD) 

10 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89 
800 (4CCD) 

HJ-1 CCD 4 30 
360 (1CCD) 

8 0.41–0.52 0.52–0.60 0.63–0.69 0.76–0.90 
700 (2CCD) 

ZY-3 MUX 5 5.8 52 10 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89 

Table 2. Image acquisition information. 

Sensor Date Time/UTC 
SOLAR  

Zenith Angle (°) 

Solar  

Azimuth Angle (°) 

Sensor  

Zenith Angle (°) 

Sensor  

Azimuth Angle (°) 

GF1-WFV 2013-7-30 03 h 42 min 26.1747 158.4 54.0402 286.6640 

HJ-1 CCD 2013-7-28 02 h 41 min 33.036 132.348 16.7984 283.5116 

ZY3-MUX 2013-7-28 03 h 19 min 27.5188 147.628 6.3623 11.1373 

3. Methods 

3.1. Remote Sensing Image Processing 

3.1.1. Atmospheric Correction 

Atmospheric correction is a vital for the application of quantitative remote sensing data. Its purpose 

is to eliminate the influence of the atmosphere and illumination on feature reflection. Atmospheric 

corrections can be performed based on the radiative transfer model, on the information of the image 
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itself, and relative to atmospheric correction [21]. This paper used the FLAASH ([1 August 2013] 

http://exelisvis.com/docs/FLAASH.html) atmospheric correction package for atmospheric corrections. 

FLAASH operates within the 400–2500 nm wavelength range and it is based on the MODTRAN 4+ 

radiation transfer model. The required basic parameters were derived from the image header files and 

the China Center for Resources Satellite Data and Application (CRESDA) [22]. Within the FLAASH 

package, the options for a mid-latitude summer model and a rural aerosol model were chosen. Because 

the three sensors have a side-sway function, the setting of the zenith angle and azimuth information was 

incorporated into the correction process. 

3.1.2. Geometric Correction 

First, the geometric correction was applied to the ZY-3 MUX image. Homologous ground control 

points (GCPs), with a positional accuracy of about 1 m, were collected by the MobileMapper™ CX 

GPS. Image rectification was based on a quadratic polynomial transformation, and the geolocation error 

was about one pixel (ca. 5.8 m). After rectification, the image was radiometrically resampled at its initial 

spatial resolution using the nearest neighbor procedure, and set to the Universal Transverse Mercartor 

Grid System (UTM) projection and the WGS84 coordinate system. Then, this geometrically corrected 

ZY-3 MUX image served as a reference with which to correct the GF-1 WFV and HJ-1 CCD images 

according to the same procedure. The geolocation errors of the GF-1 WFV and HJ-1 CCD images were 

less than one pixel. Overall, the geometric errors of the GPS data and ZY-3 MUX, GF-1 WFV, and HJ-1 

CCD images were <30 m, and thus, positional errors have little effect on our data analysis. 

3.2. Computing Band Reflectance Based on the Spectral Response Function (SRF) 

The band reflectance of the different sensors is affected by the characteristics of their components. 

The different responses in the particular spectral intervals can be described quantitatively by the spectral 

response coefficient (Figure 4). In order to explain accurately the differences between the three sensors, 

each spectral response coefficient was used to calculate the band reflectance, based on the measured 

canopy hyperspectral reflectance and simulated reflectance from the PROSAIL model. The band 

reflectance can be calculated as follows: 

 
   

 

max

min

max

min

s

s

d
=

d

i i

i


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



    
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(1)

where  s   is the simulated band reflectance of the sensor, min  and max  are the lower and upper band 

wavelength limits, respectively,  s i   is the measured or simulated hyperspectral reflectance for the  

i-th wavelength, and  i   is the response coefficient of the different sensors for the  

i-th wavelength. 
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Figure 4. Spectral response functions for GF-1 WFV, HJ-1 CCD, and ZY-3 MUX.  

3.3. Vegetation Index 

The NDVI is one of the most widely used spectral indices in the study of vegetation remote  

sensing [15,23–25]. This index reflects the absorption and reflection properties of the red and  

near-infrared bands of vegetation; it is closely related to parameters such as vegetation biomass, 

coverage, and LAI. Therefore, many satellite systems (e.g., NOAA/AVHRR, Terra/MODIS, 

SPOT/Vegetation) have been used to establish a long-term sequence of NDVI data as an important 

remote sensing product, both in China and internationally. Based on the steady accumulation of data 

from various types of sensor, China is developing various remote sensing products, including the NDVI, 

and therefore it is necessary to undertake a comparative study of the NDVIs acquired by the different 

sensors. The NDVI can be expressed as follows [26]: 

   NIR Red NIR RedNDVI= - +   
 (2)

where Red  and NIR  represent the red and near-infrared wavelength reflectance, respectively. 

3.4. Simulations with PROSAIL 

The side-sway imaging ability causes large differences between the angles of the three satellites’ 

sensors. In order to compare the characteristics of the NDVIs derived from the different sensors, we used 

the PROSAIL radiative transfer model to simulate grass canopy reflectance for the different satellite 

angles. PROSAIL is a combination of the canopy reflectance model, SAIL [27], and the leaf optical 

properties model, PROSPECT [28]. It simulates canopy reflectance as a function of many input 

parameters. Field measurements included collection of the required model parameters such as LAI, leaf 

chlorophyll content, and leaf angle. The LAI measurements were performed using an LAI-2000 analyzer 

(LI-COR Biosciences Inc., Lincoln, NE, USA). Leaf chlorophyll content measurements were performed 

using a SPAD-502 chlorophyll meter (MINOLTA. Inc., Tokyo, Japan) [29]. The SPAD values are unit-

less and must be converted to leaf chlorophyll content (µg·cm−2). Markwell [30,31] provided an 

empirical calibration function that has been tested successfully over a wide range of species [32]. Leaf 

angle measurements were performed using a simple protractor. Furthermore, based on the parameters of 

the sensors’ operation, the zenith and azimuth angles of the sun and the sensors were calculated. All 
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these parameters were input into the PROSAIL model to simulate the canopy reflectance of the three 

sensors with different side-sway angles. The PROSAIL model was used to assess whether changes in 

the side-sway angle affect the derived NDVIs. 

3.5. Data Analysis 

We focused on descriptive statistics to evaluate the comparative performance of different  

sensors. These methods include scatter plots, correlation analysis, standard deviation comparisons, and 

a two-directional estimated line fit. 

4. Comparative Analysis of Different Sensors’ Data 

4.1. Reflectance of Red and Near-Infrared Bands 

According to the corresponding image pixels of the grassland plot coordinates, the reflectance of the 

three sensors in the red and near-infrared bands were extracted for use in vegetation monitoring. 

Correlation analysis was used to compare and contrast the accuracy of the different sensors. The results 

of the correlations between GF-1 WFV and ZY-3 MUX or HJ-1 CCD are presented in Figure 5, and the 

associated adjusted determination coefficients (R2) for the red band are 0.8497 and 0.8818, respectively 

(Table 3), and 0.556 and 0.5893, respectively, for the near-infrared band. These values show that the 

reflectances derived from the three sensors are well correlated within the corresponding bands. The 

ranking of the sensors’ reflectance in the red and near-infrared bands from high to low is as follows: HJ-

1 CCD > ZY-3 MUX > GF-1 WFV. The band reflectance of GF-1 WFV is significantly lower than ZY-

3 MUX and HJ-1 CCD; specifically, the average reflectances from GF-1 WFV in the red band are 37.4% 

and 49.6% lower than ZY-3 MUX and HJ-1 CCD, respectively, and 9.9% and 18.4% lower than ZY-3 

MUX and HJ-1 CCD, respectively, in the near-infrared band. In contrast, the difference between ZY-3 

MUX and HJ-1 CCD reflectances is relatively small (Table 4). In terms of the fitted slope equation 

showing the increase in reflectance, the increase in amplitude of ZY-3 MUX over GF-1 WFV 

reflectances is faster than for HJ-1 CCD. Therefore, for large reflectance, the reflectance data of HJ-1 

CCD and ZY-3 MUX are close in the red and near-infrared bands. The standard deviation of all statistical 

pixels in the red and near-infrared bands are ranked from high to low as follows: ZY-3 MUX > GF-1 

WFV > HJ-1 CCD, which shows that the image quantitative classification is improved noticeably with 

increasing radiometric resolution. 

4.2. NDVI 

The NDVIs derived by the three sensors were computed and extracted based on the locations of the 

sample plot coordinates. The results of the comparison between GF-1 WFV and ZY-3 MUX or HJ-1 

CCD are presented in Figure 6. The NDVIs from the different sensors are ranked from high to low as 

follows: GF-1 WFV > ZY-3 MUX > HJ-1 CCD. The NDVI of GF-1 WFV is significantly higher than 

ZY-3 MUX and HJ-1 CCD; the average NDVI is higher by 0.1107 and 0.1551, respectively, but the 

difference between values from ZY-3 MUX and HJ-1 CCD is relatively small (a difference of 0.0444) 

(Table 4). In terms of the results of the correlation analysis, GF-1 WFV and ZY-3 MUX, GF-1 WFV 

and HJ-1 CCD, and ZY-3 MUX and HJ-1 CCD are highly correlated with R2 values of 0.8515, 0.8221, 
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and 0.7576, respectively (Table 3). In terms of fitting of the slope equation with regard to the increase 

of NDVI, the increase amplitude of GF-1 WFV is fastest, followed by ZY-3 MUX, and HJ-1 CCD is 

slowest. Therefore, the NDVIs of the three sensors in small values are closer than for large values, and 

the differences between GF-1 WFV, ZY-3 MUX, and HJ-1 CCD values increase significantly with 

increasing NDVI. The standard deviation of all statistical pixels ranked from high to low is as follows: 

GF-1 WFV > ZY-3 MUX > HJ-1 CCD. The standard deviations of GF-1 WFV and ZY-3 MUX are 

noticeably higher than HJ-1 CCD, which show that the quantitative classification for grassland is clearly 

improved with an increase of radiometric resolution. 

 

Figure 5. Comparison of reflectance from the three sensors in the red (a) and near-infrared 

(b) bands located by sample plot coordinates. 

Table 3. Adjusted determination coefficients (R2) for Band 3 (Red), Band 4 (NIR), and 

NDVI of the three sensors located by sample plot coordinates. 

 

Band 3 (Red) Band 4 (NIR) NDVI 

GF-1 

WFV 

HJ-1 

CCD 

ZY-3 

MUX 

GF-1 

WFV 

HJ-1 

CCD 

ZY-3 

MUX 

GF-1 

WFV 

HJ-1 

CCD 

ZY-3 

MUX 

GF-1 WFV 1   1   1   

HJ-1 CCD 0.8188 1  0.5893 1  0.8221 1  

ZY-3 MUX 0.8497 0.7492 1 0.5560 0.4401 1 0.8515 0.7576 1 

Table 4. Statistical results for Band 3 (Red), Band 4 (NIR), and NDVI of the three sensors 

located by sample plot coordinates. 

Sensor 
Band 3 (Red) Band 4 (NIR) NDVI 

Max Min Mean Std. Dev Max Min Mean Std. Dev Max Min Mean Std. Dev 

GF-1 WFV 0.065 0.026 0.040 0.010 0.248 0.168 0.206 0.019 0.807 0.488 0.675 0.078 

HJ-1 CCD 0.106 0.064 0.079 0.010 0.282 0.210 0.252 0.014 0.596 0.405 0.520 0.049 

ZY-3 MUX 0.100 0.039 0.064 0.015 0.281 0.173 0.229 0.028 0.708 0.422 0.564 0.069 
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Figure 6. (a) NDVIs of the three sensors located by sample plot coordinates.  

(b) Correlations of NDVI for three sensors located by sample plot coordinates. 

 

Figure 7. Correlations of (a) grassland coverage or (b) LAI with NDVI for different sensors 

located by sample plot coordinates. 

4.3. Correlations of Grassland Coverage or LAI and NDVI of Different Sensors 

Figure 7a shows the relationships between NDVI and grassland coverage for the three sensors, all of 

which show positive correlations. The NDVI from GF-1 WFV is proven to have the closest correlation 

with grassland coverage, with a determination coefficient (R2) of 0.6904, followed by the NDVI from 

HJ-1 CCD, with an R2 value of 0.6057. The correlation between the ZY-3 MUX NDVI and grassland 

coverage was the weakest with an R2 value of 0.5358. 

Figure 7b shows the relationships between NDVI and LAI for the three sensors, all of which 

demonstrate a weaker correlation than for NDVI and grassland coverage. This is similar to the results of 

previous studies that found broadband reflectance reduces the performance of LAI estimation for 
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multispectral sensors [3,33,34]. The GF-1 WFV NDVI is proven to have the best correlation with 

grassland LAI with an R2 value of 0.503. The relationships between NDVI and LAI for ZY-3 MUX and 

HJ-1 CCD are similarly correlated, with R2 values of 0.4349 and 0.4262, respectively. 

5. Effect Factors Analysis for Discrepancies among the Three Sensors 

Previous studies have shown that numerous factors cause discrepancies between the different sensors, 

such as the sensor zenith angle, solar zenith angle, atmospheric conditions, spectral response function, 

atmospheric correction approach, geometric correction, and temporal variations [10,11,21,35]. For the two 

types of sensors that acquire data almost simultaneously, the difference in grass reflectance was mainly 

caused by discrepancies in the LAI, the spectral response function, and the sensor zenith  

angle [10,36–39]. In this study, there were only two days between acquisition dates and one hour between 

scan times for the images obtained by the three sensors and so, the solar zenith angles were very similar 

for all sensors. In addition, the atmospheric conditions were uniform, and the atmospheric correction was 

processed using the same approach. Therefore, in this study, the influence of temporal variations can be 

ignored with regard to grassland vegetation. Thus, the sensor zenith angle and spectral response function 

were identified as the main causes of the differences between the sensors. The effect of varying spectral 

response functions for the different sensors is similar to that observed in previous studies, which has been 

rigorously verified and discussed thoroughly based on simulated data using radiative transfer models 

[10,13,14]. However, the effect of the sensor zenith angle differs for the sensors used in this study, because 

previously studied sensors (e.g., IKONOUS, ETM+, ALI, and SPOT) have no side-sway imaging function. 

5.1. Effects of the Spectral Response Function on Band Reflectance 

In order to assess the effects of varying spectral response functions in the red and near-infrared bands 

for the different sensors, Equation (1) was used to calculate the band reflectance based on the measured 

canopy hyperspectral reflectance. Then, a correlation analysis method was used to investigate the contrasts 

between the different sensors. The results of correlations between GF-1 WFV with ZY-3 MUX or HJ-1 

CCD are presented in Figure 8. The adjusted determination coefficients (R2) for the red band are 0.9981 

and 0.992, respectively, and all R2 values for the near infrared band are 1.0. All of the R2 values given in 

Table 5 are a little higher than those of IKONOS and ETM+ or SPOT presented in Soudani et al. [10]. 

These results show that the spectral response function has some influence on the band reflectance, but that 

the overall effect is small. 
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Figure 8. Effects of the spectral response function in the red (a) and near-infrared (b) bands 

for different sensors. Band reflectance was simulated based on the measured canopy 

hyperspectral reflectance. 

Table 5. Adjusted determination coefficients (R2) of Band 3 (Red), Band 4 (NIR), and NDVI 

of the three sensors simulated based on the measured canopy hyperspectral reflectance. 

 

Band 3 (Red) Band 4 (NIR) NDVI 

GF-1 

WFV 

HJ-1 

CCD 

ZY-3 

MUX 

GF-1 

WFV 

HJ-1 

CCD 

ZY-3 

MUX 

GF-1 

WFV 

HJ-1 

CCD 

ZY-3 

MUX 

GF-1 WFV 1   1   1   

HJ-1 CCD 0.9981 1  1.0000 1  0.9988 1  

ZY-3 MUX 0.9920 0.9961 1 1.0000 1.0000 1 0.9985 0.9999 1 

5.2. Effects of the Spectral Response Function on NDVI 

In order to assess the effects of varying spectral response functions on the NDVI from the different 

sensors, Equation (1) was used to calculate the band reflectance of the red and near-infrared bands based 

on the measured canopy hyperspectral reflectance. This was then input into Equation (2) to obtain the 

NDVI. The NDVI of HJ-1 CCD is higher than GF-1 WFV and ZY-3 MUX with average values that are 

4.26% and 3.56% higher, respectively. However, the statistical indicators of ZY-1 and HJ-1 CCD show 

little difference. In terms of the correlation analysis, GF-1 WFV and ZY-3 MUX,  

GF-1 WFV and HJ-1 CCD, and ZY-3 MUX and HJ-1 CCD are highly correlated with R2 values of 

0.9985, 0.9988, and 0.9999, respectively (Figure 9). All of the R2 values presented in Table 5 for NDVI 

are close to those of Steven et al. [40]. This result shows that the spectral response function has an 

influence on the range of NDVIs, but the overall differences between NDVIs from different sensors due 

to variations in the spectral response functions are small. 
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Figure 9. Effect of the spectral response function on NDVI for the different sensors.  

The NDVI was simulated based on the measured canopy hyperspectral reflectance. 

5.3. Effects of Sensors’ Zenith Angle Changes Caused by Side Sway on NDVI 

Side-sway imaging is used in the multiple satellite observation system in China because it greatly 

improves data coverage, but it also creates problems regarding data consistency because of the sensors’ 

zenith angle. This angle is an issue of great importance in remote sensing, and a large number of 

measurements and modeling activities have confirmed the anisotropic reflectance of the Earth’s surface 

by using bidirectional reflectance distribution functions (BRDF). A BRDF is defined as a function of 

illumination and it gives a view of the geometry for surface scattering within a given band [41,42]. A 

variety of multi-angle satellite sensors, such as POLDER (Polarization and Directionality of the Earth’s 

Radiation Instrument), MODIS, and MISR (Multi-Angle Imaging Spectroradiometer) have been used to 

retrieve surface parameters such as vegetation structure using inversion techniques [42–44]. These 

studies have all been based on multi-angle data from a single sensor, but studies on the effect of zenith 

angle variations caused by the use of different sensors are rare. 

In order to compare further the characteristics of the NDVI from the different sensors, we used the 

PROSAIL radiative transfer model to simulate grass canopy reflectance with different satellite angles 

(θZY-3 = 6.36°, θHJ-1 = 16.80°, and θGF-1 = 54.04°) for LAI values of 0–5. Equation (1) was used to 

calculate the reflectance of the red and near-infrared bands based on the simulated grass canopy 

hyperspectral reflectance. This was then input into Equation (2) to obtain the NDVI. The results within 

the range of zenith angles relevant to this study are shown in Figure 10. It can be seen that the vegetation 

NDVI increases with increasing LAI, and that the range of increase varies depending on the LAI range. 

For LAI values ranging from 0 to 3, NDVI changes significantly with increasing LAI, and the differences 

between GF-1 WFV, ZY-3 MUX, and HJ-1 CCD values are caused by satellite zenith angle differences. 

For LAI values ranging from 0.5 to 1, the effect of the sensor zenith angle increases with increasing LAI; 

when LAI = 0.5, the GF-1 WFV NDVI is 11.9% and 14.89% greater than for ZY-3 MUX and HJ-1 

CCD, respectively, but when LAI = 1, the GF-1 WFV NDVI is 12.85% and 16.60% greater than for ZY-

3 MUX and HJ-1 CCD, respectively. For LAI values ranging from 1.5 to 3, the effect of the sensor zenith 
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angle decreases with increasing LAI, when LAI = 1.5, the GF-1 WFV NDVI is 10.93% and 14.67% 

greater than for ZY-3 MUX and HJ-1 CCD, respectively, but when LAI = 3, the GF-1 WFV NDVI is 

2.82% and 5.04% greater than for ZY-3 MUX and HJ-1 CCD, respectively. When LAI > 3.5, the NDVI 

values represent a saturated tendency, and the differences caused by the satellite angles are  

clearly reduced. 

 

Figure 10. Effects of the sensor zenith angle on NDVI for different sensors. The NDVI was 

simulated based on PROSAIL and the spectral response function. 

6. Discussion 

We evaluated the consistency and correlation of GF-1 WFV, HJ-1 CCD, and ZY-3 MUX sensor data 

for grassland monitoring applications by comparing spectral field measurements, vegetation coverage, 

and the leaf area index (LAI) of grassland stands with reflectance in the red and near-infrared bands and 

the Normalized Difference Vegetation Index (NDVI). The R2 values in the infrared band (0.556–0.893) 

and red band (0.819–0.850) showed that the correlation between sensors was higher for the red band 

than the infrared band. The correlation of NDVIs derived from the different sensor types was high  

(R2 between 0.758 and 0.852); however, the consistency was low in that the NDVI based on GF-1 WFV 

data was significantly higher than that based on ZY-3 MUX and HJ-1 CCD data. 

Based on simulations using the PROSAIL model, the effects of changes in the sensors’ zenith angle 

have greater impact on reflectance and NDVI than that caused by the spectral response function. The 

correlation is better than those of IKONOS and ETM+ or SPOT presented in Soudani et al. [10]. 

However, there are many other factors that can impact different sensors and these were not discussed in 

this paper. The three sensors’ observation times were not completely synchronous, which must have 

been caused by spatial and temporal differences of the aerosol optical depth (AOD). Quality of the 

surface reflectance estimation is mainly dominated by knowledge of the AOD [45], especially in low 

surface reflectance regions where the aerosol radiative effect is stronger. 

The phenology is an important characteristic of grassland vegetation during different periods [18]. 

However, in our study, the data from the three sensors were obtained by adjusting the satellites 

observation tasks, which has certain inherent difficulties for measurements at many periods during the 
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year. Correlation analysis between ground grass-coverage and measured LAI data shows that the GF-1 

WFV sensor gave the best performance, but its’ value is higher than those of the other two sensors, and 

the reason for this will require a more in-depth study to explain. 

7. Conclusions 

As an important means of earth observation, remote sensing not only provides users with radiation 

intensity data, but it can also produce high-level standardized data products to cover different areas.  

GF-1 WFV, HJ-1 CCD, and ZY-3 MUX are among the most important and frequently used sensors for 

terrestrial applications in China, and these are the main data sources for remote sensing products. 

However, for the same object, consistency and correlation are lacking between the different sensors’ 

image data. The best approaches to exploit the available multi-source remote sensing capability, so that 

accurate and continuous data on the temporal dynamics of grasslands can be acquired, represent  

a scientific issue that desires more consideration. Therefore, the inter-comparison of these three sensors 

is an important task that may reveal new perspectives regarding spatiotemporal analyses of changes in 

grassland. 

Based on the field measurements of vegetation coverage and LAI of grassland stands, this study 

analyzed the capabilities of the three sensor types for monitoring grassland vegetation. The reflectances 

in the red and near-infrared bands and the NDVI from the three satellites were compared and the adjusted 

coefficients of determination (R2) revealed that differences exist between the reflectances from the three 

sensor types in different bands. The R2 values in the infrared band (0.556–0.893) and red band  

(0.819–0.850) showed that the correlation between sensors was higher for the red band than the infrared 

band. From the fitted slope equations, it was shown that differences exist in the consistency of data 

between the different sensor types. The consistency of data was highest between GF-1 WFV and HJ-1 

CCD in the red band, whereas, in the near-infrared band, the consistency of data between GF-1 WFV 

and ZY-3 MUX was highest. The correlation of NDVIs derived from the different sensor types was high 

(R2 between 0.758 and 0.852); however, the consistency was low in that the NDVI based on GF-1 WFV 

data was significantly higher than that based on ZY-3 MUX and HJ-1 CCD data. In contrast, the mean 

difference between the NDVI based on ZY-3 MUX and HJ-1 CCD data was small. The correlation 

analysis between ground grass coverage and measured LAI data showed that the three sensor types 

estimated coverage better than the LAI, and that the GF-1 WFV sensor gave the best performance. 

Based on field spectral measurements, the effects of the sensors spectral response characteristic 

difference function were analyzed. The results showed that the spectral response function has some 

influence on band reflectance, but that the overall effect is small. 

Based on simulations using the SAIL bidirectional canopy reflectance model coupled with the 

PROSPECT leaf optical properties model (PROSAIL), the effects of changes in the sensors’ zenith angle 

caused by side sway were analyzed. This was found to have greater impact on reflectance and NDVI 

than that caused by the spectral response function. For LAI values of 0–3, NDVI values changed 

significantly with increasing LAI, and the differences between the three sensor types were large. For 

LAI > 3.5, NDVI appeared to reflect a saturated tendency, which greatly reduced the differences between 

the sensors. 
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