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Abstract: In this study, we considered the geophysical model for microwave brightness 

temperature (BT) simulation for the Atmosphere-Ocean System under non-precipitating 

conditions. The model is presented as a combination of atmospheric absorption and ocean 

emission models. We validated this model for two satellite instruments—for Advanced 

Microwave Sounding Radiometer-Earth Observing System (AMSR-E) onboard Aqua 

satellite and for Special Sensor Microwave Imager/Sounder (SSMIS) onboard F16 satellite 

of Defense Meteorological Satellite Program (DMSP) series. We compared simulated BT 

values with satellite BT measurements for different combinations of various water vapor 

and oxygen absorption models and wind induced ocean emission models. A dataset of clear 

sky atmospheric and oceanic parameters, collocated in time and space with satellite 

measurements, was used for the comparison. We found the best model combination, 

providing the least root mean square error between calculations and measurements. A 

single combination of models ensured the best results for all considered radiometric 

channels. We also obtained the adjustments to simulated BT values, as averaged 

differences between the model simulations and satellite measurements. These adjustments 

can be used in any research based on modeling data for removing model/calibration 

inconsistencies. We demonstrated the application of the model by means of the 

development of the new algorithm for sea surface wind speed retrieval from  

AMSR-E data. 
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1. Introduction 

Satellite passive microwave measurement data remain an invaluable source of regularly available 

remotely sensed data for environmental studies because they can be quantitatively inverted into the 

whole set of geophysical parameters independent of time of day and cloud coverage. Low spatial 

resolution of these data turns into an advantage for operational weather forecast and climatic studies 

with no artificial smoothing needed. In the polar regions, these data have special value since most 

radiometers work on polar orbiting satellites, providing the highest time resolution in remote oceanic 

areas lacking in situ measurements. Long-term records of satellite passive microwave radiometer 

measurements play an important role in climate change monitoring as well as in providing 

indispensable information for understanding the Earth’s climate system, including water and energy 

circulation. Microwave radiances provided by polar orbiting satellite sensors have become an 

increasingly important component of observing systems for both global and regional data assimilation 

systems for numerical weather prediction systems [1,2]. 

So, undoubted advantages of passive microwave data go side-by-side with the necessity to be 

strictly consistent in their interpretation, especially for long-term climate studies based on using data 

from different instruments [3,4]. Such consistency can be ensured both by sensor intercalibration  

work [5–7] and model calibration studies. The last are based on radiative transfer calculations fulfilled 

for in situ matchup data collocated in time and space with the satellite measurements [8,9]. The quality 

of the used matchup dataset in any model calibration work acquires not less importance than the 

quality of the geophysical model used for brightness temperature calculations. 

In this study, the simulation of brightness temperatures (BTs) over open oceans under  

non-precipitating conditions is presented for two satellite passive microwave instruments—for 

Advanced Microwave Sounding Radiometer-Earth Observing System (AMSR-E) onboard NASA 

Aqua satellite and for Special Sensor Microwave Imager/Sounder (SSMIS) onboard Defense 

Meteorological Satellite Program (DMSP) satellites. The geophysical model is comprised of empirical 

ocean emissivity model and simplified atmospheric absorption model. The atmospheric absorption 

model takes into account emission and absorption of oxygen, water vapor and cloud liquid water.  

The applicability of such an approach for the microwave range of frequencies from 5 to 100 GHz, in 

which AMSR-E and SSMIS channels work, is repeatedly confirmed and proved by many scientific 

studies [10,11]. As a rule, general differences between various geophysical models concern either the 

way in which sea surface wind dependency of the ocean emission is taken into account or which of the 

several water vapor absorption model is used for the atmospheric radiance calculation [2,12]. For low 

microwave frequency range (L-band) adequate sea water permittivity model becomes also important 

for the accurate ocean radiance modeling [9,13]. Restriction of the model by non-precipitating 

conditions is valid for the frequencies less than 37 GHz for clear and cloudy atmosphere and for light 

rain up to ~2 mm/h [14]. Such a restriction allows using absorption-emission approximation and 
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neglecting microwave radiation scattering on large rain drops and ice particles. It is estimated [15,16] 

that only 3% of all global ocean observations relate to the rainfalls with rate more than 2 mm/h.  

So, non-scattering model is applicable to about 97% of all ocean observations. The imposed absence of 

rain with large rain rates restricts usage of such geophysical models for the scanning channels up  

to 37 GHz. For SSMIS sounding channels, influence of rain may be essential only at ν = 50–53 GHz. 

At higher frequencies within the oxygen absorption band the contribution of the ocean and the lower 

troposphere to the upwelling radiation is small due to high oxygen absorption. Including into 

consideration higher frequency scanning channels at 85.5 GHz for SSMIS and at 89.0 GHz for  

AMSR-E requires special care since scattering is observed even for large cloud droplets with diameter 

d > 50–60 mkm [17]. 

Obtaining precise geophysical products from satellite passive microwave radiances requires the 

capability to model the observed radiances with very small systematic and random errors. Systematic 

errors in calculating microwave brightness temperatures are due to several error sources, first of all due 

to inadequacies in the radiative transfer models (RTM) [18]. The proposed research aims mainly at the 

choice of the combination of the atmospheric absorption model and ocean emission model, ensuring 

the best reproduction of AMSR-E and SSMIS measured brightness temperatures and providing the 

adjustments to simulated BT values. These adjustments should account integrally both for geophysical 

model uncertainties and instrument calibration errors. Addition of such adjustments enables the 

following usage of simulated BTs for geophysical parameter retrieval algorithm development and 

consistency in estimated parameter series independently on the type of instrument used [19]. Such an 

approach is particularly important meaning the loss of AMSR-E in October 2011 and the 

calibration/validation work relating to AMSR2.  

It should be emphasized that the obtained adjustments are not claimed to work properly over areas 

other than open oceans. The correction schemes for the whole range of brightness temperatures need a 

non-linear and much more complicated approach [20]. However, these adjustments can successfully be 

used for the atmosphere-open ocean system under proper atmospheric conditions depending on the 

channel frequency. For example, for AMSR-E low frequency channels at 10.65 and especially at  

6.9 GHz even rain does not impede the usage of suggested geophysical model and obtained brightness 

temperature adjustments. 

The described study is comprised of the following consecutive steps. The first step is the 

atmospheric absorption and ocean emission model simulation, based on the scientific findings of the 

last years. The second step is the creation of the data set of simultaneous clear sky atmospheric and 

oceanic parameter measurements and collocated AMSR-E and SSMIS measurements, followed by the 

comparison of calculated brightness temperatures with measured ones. Such a comparison allows 

selecting the combination of the models, providing the least averaged differences. The derived 

averaged differences can be used as corrections to simulated radiances. These corrections can be 

considered as a final goal of the presented study along with the specified geophysical model.  

An accurate specification of the geophysical model is the crucial step in developing the geophysical 

parameter retrieval algorithms. The algorithm development, based on simulated brightness 

temperatures, can be successfully performed using the selected geophysical model and brightness 

temperature corrections for handling model/calibration inconsistencies. In this way, we developed a 

new Neural Network algorithm for sea surface wind speed retrievals from AMSR-E data, using the 
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same approach as described in [21] and suggested geophysical model. The new geophysical model 

resulted in new possibilities associated with the adequate performance of the new algorithm under high 

wind conditions. Two case studies of an extratropical cyclone and a polar low illustrated these new 

capabilities. The suggested geophysical model was also successfully used for AMSR-E successor 

AMSR2 on GCOM-W1 satellite which was launched on 18 May 2012 [22]. Though we still did not 

derive new calibration additions for this new instrument due to too little time of data availability, 

preliminary results of AMSR2 algorithm performance showed good correspondence with in situ 

measurements of sea surface wind speeds, even for high wind speed areas. 

2. Modeling 

2.1. Ocean Emission Model 

Ocean emissivity for the calm ocean surface depends only on a dielectric constant of sea water.  

It is determined as one minus reflectivity, where the reflectivity can be accurately calculated from the 

Fresnel formula for a given water permittivity and a local incident angle. For the wind influenced 

surface the emissivity becomes a function of surface wind speed and direction. A calm sea surface is 

characterized by a highly polarized emission. Formulating a consistent theoretical model for the wind 

speed dependency on sea surface emissivity seems to be mostly complicated [23,24]. 

Three mechanisms can be named as responsible for the variation in the ocean emissivity with wind 

speed [25]. First, the appearance of the surface waves with wavelengths much larger than the 

microwave radiation wavelength mixes the horizontal and vertical polarization states and changes the 

local incidence angle. This phenomenon can be modeled as a collection of tilted facets, each acting as 

an independent specular surface [23]. The second mechanism is the sea foam, arising with wind speed 

more than 4–7 m/s. This mixture of air and water raises the emissivity for both polarizations. Sea foam 

models were developed in the past [26,27] and continue to be developed. So, complicated objects at 

the ocean surface, named integrally as ―foam‖, actually presents a mixture of foam, whitecaps, 

bubbles, spray, aerosol, and also water-biogenic and water-oil emulsions. All of these formations are 

modeled with serious difficulties because of their instability and microstructure variety [13,26]. 

Furthermore, the third roughness effect is the diffraction of the microwaves by surface waves, which 

are small compared to the radiation wavelength. Rice [28] was the first who provided the basic 

formulation for computing the scattering from a slightly rough surface. Some authors applied this 

scattering formulation to the problem of computing the emissivity of a wind-roughened sea surface, 

because these three effects can be parameterized in terms of the root mean square (rms) slope of the 

large-scale roughness, the fractional foam coverage, and the rms height of the small-scale waves. Each 

of these parameters depends on wind speed. The authors of [14,29–32] derived wind speed 

relationships for the three mentioned parameters, respectively. These wind speed relationships in 

combination with the tilt, foam and diffraction models provide the means to compute the sea-surface 

emissivity. Computations of such type have been done by many authors [9,14,33,34]. 

In addition to depending on wind speed, the large-scale rms slope and the small-scale rms height 

depend also on wind direction [34,35]. Another type of directional dependence occurs because the 

foam and capillary waves are not uniformly distributed over the underlying structure of large-scale 
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waves. The dependence of foam and capillary waves on the underlying structure produces an  

upwind-downwind asymmetry in the ocean surface emissivity [13]. The anisotropy of capillary and 

small gravity waves is responsible for the observed dependence of radar backscattering on wind 

direction. The upwind radar return is considerably higher than the crosswind return. These directional 

characteristics of the radar return have provided the means to sense wind direction from aircraft and 

satellite scatterometers [36]. 

So, well understood theoretical modeling of the ocean emission encounters serious difficulties in 

implementation. Numerical integration of complex equations needs simplifying assumptions, 

suggestions and parameterization. 

The other approach exists to parameterize ocean emission wind dependency. This approach is 

associated with accurate measurements of the brightness temperature response to wind speed increase 

and derivation of the empirical relation between them as a function of incidence angle, sea surface 

temperature, salinity and wind speed. Most empirical ocean models are based on near-surface 

microwave radiance measurements to minimize the atmospheric constituent. Such coordinated 

observations were performed, for example, in [37] during the Fluxes, Air–Sea Interaction, and Remote 

Sensing (FAIRS) experiment. The results obtained during FAIRS showed a good agreement with 

previous models [11,23,24,38,39] and a good linear fit between the emissivity and surface wind speed 

in the range of 4–16 m/s at three incidence angles (45°, 53°, and 65°) at 10.8 and 36.5 GHz. Slightly 

different results from [37] were obtained in [40]. Here, the isotropic (direction independent) wind 

induced emissivity for vertical and horizontal polarizations was derived by averaging globally over a 

large number of wind directions. 

In the present study, two empirical wind speed dependencies were used for brightness temperature 

calculations. The first one already proved to be able to reproduce passive microwave wind dependency 

in the range of wind speeds up to 20 m/s. The Neural Networks algorithms for integrated atmospheric 

water parameter retrievals from SSM/I and AMSR-E measurement data were developed on simulated 

brightness temperatures. They were extensively validated against in situ data and led to significant 

(40%) retrieval accuracy increase [21]. This model will be referenced as Ros92, though actually it is 

the combination of several empirical wind induced emissivity models. For horizontal polarization the 

model of [39] is adopted. It is in the best agreement with all the models, referenced here, but provides 

the values of derivatives of the emissivity (ε) with respect to wind speed (WS) ∂ε/∂WS for the whole 

range of SSMIS and AMSR-E frequencies from 6 to 90 GHz. For vertically polarized ∂ε/∂WS,  

Ros92 uses a combination of [39] and [37] models. The main feature of Ros92 is an independence of 

∂ε/∂WS from the wind speed. Many authors suppose [37,39,41,42] that the increase in the microwave 

emissivity with wind speed ∂ε/∂WS is a constant for the whole wind speed range (WS<20 m/s).  

Their assumption is that the foam due to wave breaking at these winds does not change this constant. 

The value of ∂ε/∂WS is derived from the corresponding measurements which are usually restricted to a 

limited set of incidence angles and frequencies. Such models thus differ only by the value of ∂ε/∂WS. 

Earlier studies [39] tended to conclude approximately (dependent on frequency and angle) values of 

∂ε/∂WS twice as low as the late models.  

The second model for the wind induced emissivity comes from the experimental parameterization 

of ∂ε/∂WS, based on the work of Bertrand Chapron’s team at IFREMER, Brest, France [43]. This team 

integrated in situ and satellite wind speed measurement data and built a high quality dataset of 
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consolidated ocean observations. The model will be referenced as Chapr12. According to Chapr12, 

ocean emissivity can be presented as a sum of the constituent, associated with the roughness changes, 

and the constituent, associated with the foam: 

 (1) 

where α is a coefficient responsible for wind induced roughness and its influence on emission in terms 

of facet tilt wave diffraction, β is a coefficient responsible for all kinds of air-water mixtures in the 

form of foam, spray etc., f is the fraction of the ocean covered by these mixtures. The foam fraction is 

mainly a function of wind speed, whereas α and β are the functions of frequency, sea surface 

temperature, sea surface salinity, incidence angle, wind speed and polarization. The complex 

parameterization of α and β is derived from numerous experimental studies [43]. For example, the 

resulting ocean emissivity—wind speed (WS) dependencies for AMSR-E channels at 10.65  

and 18.7 GHz are shown in Figure 1a,b, where the upper curves refer to vertical, and lower  

ones—to horizontal polarizations. The incidence angle is constant and corresponds to that of  

AMSR-E −55°; the sea surface salinity is a constant of 34°/oo. The thicker lines refer to SST = 30 °C, 

the thinner lines refer to SST = 0 °C.  

Figure 1. Ocean emissivity, calculated using Chapr12 model, as a function of sea surface 

wind speed WS for four lower AMSR-E frequencies: (a) 6.9 GHz, (b) 10.65 GHz,  

(c) 18.7 GHz, (d) 36.5 GHz. The thicker lines refer to SST = 30 °C, the thinner lines refer 

to SST = 0 °C. The upper (blue) curves are for vertical polarization, the lower (red) curves 

are for horizontal polarization. 
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The second important modeling of the ocean emission concerns the dielectric permittivity of water. 

A precise knowledge of the complex dielectric permittivity of water is essential for studying the 

transfer of the microwave radiation in the AOS. First, this parameter refers to the sea saline water and 

defines the sea surface emissivity and reflectivity, and, second, it refers to the fresh water of the cloud 

droplets. The most frequently used in the past model [44] is becoming increasingly inaccurate with the 

frequency increase [11,45]. A number of experimental studies of the last two decades [46–49] resulted 

in appearance of new updated models. Quite recently, a new permittivity model appeared [10] 

following the permittivity formulation of [47]. Its coefficients were determined by fitting the new 

permittivity measurement data, mostly important for L-band BT simulation (for MIRAS on SMOS and 

Aquarius on SAC-D instruments).  

For presented geophysical model we adopted the model of [49] since it is extensively validated and 

valid for frequencies up to at least 90 GHz for the fresh water in the temperature range (including 

supercooled water) between −20 °C and 40 °C, and for sea water for temperatures between −2 °C  

and 29 °C. It should be noted that for radiometric simulation in L-band the model [10] should be used 

to account accurately for sea salinity variations. 

2.2. Atmospheric Absorption Model 

The atmospheric absorption in the microwave range of frequencies below 100 GHz is governed by 

three components: oxygen, water vapor, and liquid water in the form of clouds and rains [50].  

The ice cloud influence on the brightness temperature is expressed only in signal diminishing due to 

scattering for higher frequency channels—for 85.5 GHz for SSMIS and for 89.0 GHz for AMSR-E. 

The sum of these three components gives the total absorption coefficient: 

 (2) 

Each of the constituents in (2) depends on the atmospheric height h. 

Since this work is based specifically on the consideration of the clear sky atmosphere to exclude all 

uncertainties of cloud modeling, αL = 0. Thus, liquid water absorption will not be considered here in 

detail. It may be taken from [40,51]. 

A lot of studies were devoted to the investigations of the oxygen and water vapor coefficient O2 

and H2O dependency on frequency (ν), atmospheric temperature (T), pressure (P), and water vapor 

density ρ [52–58]. In order to properly account for the radiative contribution of these gases, the 

radiative transfer models use the results of the accurate laboratory measurements of the parameters of 

their resonance lines (e.g., frequencies, strengths, half widths, shapes, temperature and pressure 

dependencies, etc.), currently available in common spectral databases (e.g., HITRAN [59]).  

These parameters are not perfect and vary from model to model. There are contributions in the far 

wings of the absorption lines, considered in most models as a ―continuum‖ non-resonant absorption 

model. Improving the accuracy of the continuum absorption models has been an ongoing challenge for 

the radiative transfer community [57], especially for water vapor absorption. Some of the investigators 

adopt the parameters of a chosen spectral model and slightly modify either the strength of one or more 

lines or some other parameters. For example, Wentz [11] used [52] expressions with a reduced  

self-broadening component of the water vapor continuum. 
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Since the accuracy of the absorption model dramatically influences the radiative transfer modeling 

results, many studies inter compared different absorption models [57,60–63]. Such intercomparison is 

usually fulfilled for the downwelling radiation to minimize the errors associated with inaccurate 

estimation of the ocean constituent of the radiation. Clear sky conditions are also mandatory to 

minimize the ambiguities associated with liquid water content modeling in clouds. The aim of such 

work is always to select the model which best represents collocated in time and space radiometric 

measurements. At this stage, the quality of radiosonde measurements and radiometric calibration is 

estimated. One of the strongest conclusions of [57], confirmed also in [63], is that the original model 

of [54] does not match the observations at 150 or 31.4 GHz. Unfortunately, many groups are still using 

the water vapor continuum model from this model (e.g., the models in the intercomparison study of [62]). 

Figure 2. Total atmospheric opacity , calculated using Liebe87, Liebe93, Ros98, 

MonoRTM and Turn09 water vapor absorption models for a clear sky polar atmosphere  

(Q = 13.9 kg/m
2
) for the frequency range 20–30 GHz. Liebe87 is used for oxygen 

absorption calculation in all calculations.  

 

In this study, we used the same approach as described in [57]. The general difference is that instead 

of downwelling atmospheric radiation upwelling total atmosphere-ocean system radiation was 

estimated. Thus, we included the ocean constituent, described in the previous section, two atmospheric 

constituents and a little addition of cosmic radiation of 2.73 K [11]. 

We excluded [54] from the comparison in spite of its wide usage [57]. Four water vapor absorption 

models—[53] (Liebe87), [55] (Ros98), [64] (MonoRTM), and modified MonoRTM [57] (Turn09) and 

two oxygen absorption were used—[53] (Liebe87) and [58] (Tret05). The detailed description of each 

model can be found in the corresponding publications. Figure 2 shows the total atmospheric opacity  

as a function of frequency ν for the frequency range around water vapor resonance line at 22.235 GHz 

for a clear sky (total cloud liquid water content W = 0 kg/m
2
) mid-latitude atmosphere (total 

atmospheric water vapor content Q = 13.9 kg/m
2
). To calculate  we used five water vapor absorption 

models and Liebe87 model for oxygen absorption simulation for all five cases. The model of [54] 

(Liebe93) is included in Figure 2 to underline its underestimation of  around this water vapor spectral line.  
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We want to emphasize once more that the final goal of the current study was not the choice of the 

most correct molecular spectroscopy model for water vapor or oxygen absorption. The aim of the 

study was to find the combination of the atmospheric and oceanic models, simulating brightness 

temperatures for AMSR-E and SSM/I instruments in the best way, e.g. providing the least root mean 

square error (rms) between radiometric measurements and modeling results. 

3. Data 

3.1. Satellite Passive Microwave Data 

We used AMSR-E and SSMIS measured brightness temperatures for the selection of the most 

adequately performing geophysical model. We considered only those channels which are characterized 

by low (≤0.7 K) values of noise (NEΔT). 

AMSR-E Level 1B swath data, consisting of calibrated brightness temperatures converted from 

observed sensor data of level 1A by the radiometric correction coefficients, were provided by Japan 

Aerospace Exploration Agency. AMSR-E made dual-polarization observations at the six frequencies: 

6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. From the altitude of 705 km, it measured the upwelling 

Earth brightness temperatures at about 55.0° Earth incidence angle with a resulting swath width of 

1445 km. Earth observations are recorded at equal sample intervals of 10 km (5 km for 89.0 GHz 

channels) along the scan, though actual spatial resolution is worse for lower channels: from 15 km at 

36.5 GHz to 50 km at 6.9 GHz. The sensitivity (noise equivalent temperature) for the channels from 

10.65 up to 36.5 GHz is about 0.7 K and about 1.2 K at 89 GHz [65]. Sensor sensitivity and spatial 

resolution are the important factors to be taken into account when we compare radiometric measurements 

averaged over not only sample intervals but over much larger areas viewed by antenna lobes.  

We used AMSR-E measurements at five lower frequencies (for both polarizations, in total 10 channels); 

two channels at 89 GHz were excluded from consideration. The brightness temperatures for the 

corresponding frequencies and polarizations will be denoted further as TB06H, TB06V, TB10H, 

TB10V, TB18H, TB18V, TB23H, TB23V, TB36H and TB36V. 

SSMIS Level 1B swath calibrated brightness temperature data were downloaded from NOAA data 

center Comprehensive Large Array—Data Stewardship System [66]. The SSMIS collects microwave 

energy from the Earth’s surface and atmosphere in 24 channels at frequencies from 19.35 to 183.31 GHz 

including those in the oxygen absorption band. The last allow air temperature profile retrievals [67]. 

Earth scene data for 24 channels are collected at 180 sample positions along the active portion of the 

scan in an angle of 143.2°. At the nominal orbital height of 833 km, this produces a swath width on the 

ground of 1707 km with 12.5 km scene spacing. The achieved scene width applies uniformly to all 

SSMIS channels. Then, for some channels several scenes are averaged to larger samples. This 

resampling reduces the effective noise for the cost of spatial resolution. We used 10 SSMIS channels 

for geophysical model selection and calibration: dually polarized measurements at 19.35, 37.0, and 

vertically polarized measurements at 22.235, 50.3, 52.8, 53.596, 54.40 and 55.5 GHz. The brightness 

temperatures for the corresponding frequencies and polarization will be denoted further as TB19H, 

TB19V, TB22V, TB37H, TB37V, TB50V, TB52V, TB53V, TB54V and TB55V. 
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3.2. Data for Brightness Temperature Calculations 

Mostly reliable and accurate data on the geophysical parameters defining the microwave radiation 

of the system are needed for brightness temperature calculations. 

Model data (including re-analysis) are not appropriate for this task. This is not only due to 

insufficient accuracy but also due to not enough specification for the whole atmospheric height. The 

brightness temperature calculations can be compared with satellite radiometric measurements only if 

the atmospheric meteorological parameters are known at detailed height levels beside the main isobar 

surfaces. Their values are especially important near the surface with high values of atmospheric 

humidity. Radiosonde data from meteorological stations satisfied these requirements. The data from 

Wyoming University [68] contain more than 40 levels from the Earth surface up to relative humidity 

of about 10% (height more than 25–30 km). The next restriction, which should be applied to 

radiosonde stations, is the station level over the sea. In case of a comparatively large height of the 

station, the extrapolation of the air temperature and humidity profiles is needed for correct brightness 

temperature calculations. The next consideration concerns the temporal-spatial collocation of the 

measurements in a point (atmospheric pressure, air temperature, air humidity) and over the pixel. 

Meaning nonzero time difference in measurements and spatial remote sensing averaging over antenna 

field of view, radiometric BT should be temporally and spatially homogeneous to be comparable with 

simulated BT. This is especially important for the channels sensitive to atmospheric meteorological 

parameters. Since we impose the absence of clouds, this means that the channels around the water 

vapor absorption line of 22.235 GHz and in the oxygen band of 50–60 GHz should be homogeneous in 

time and space. It is almost impossible to implement such a requirement in the regions with high air 

humidity, e.g., at tropic latitudes. We used two polar stations—Jan Mayen (#01001: 70.93N; 8.67W, 9 

m over the sea level) and Bjornoya (#01028: 74.51N; 19.01E, 18 m over the sea level) in the 

Norwegian and Barents Seas correspondingly—as the radiosonde data source for several more reasons. 

First, high latitude ensures high temporal resolution of radiometric data due to polar orbits of DMSP 

and Aqua. This enables not only to choose the data with minimum time difference between satellite 

and radiosonde measurements but also to check their time homogeneity. Second, since the radiosonde 

stations usually provide data twice a day it is most important to have the radiometer data close to either 

0:00 UTC or 12:00 UTC. Both SSMIS on F16 and AMSR-E on Aqua have paths over both stations 

around 12:00 UTC ± 4 hours. Furthermore, the third reason concerns the availability of wind speed 

data for model calculations. We used scatterometer wind speed fields from MetOp-A ASCAT as the 

wind speed source data in numerical calculations of brightness temperatures. We suppose that spatially 

averaged fields of this parameter are more meaningful then in situ wind speed measurements in a 

point, e.g., buoy data. Scatterometer data seem to be most appropriate since they have approximately 

the same spatial resolution as the data of passive microwave radiometers. Metop-A ASCAT data 

perfectly fit the task also due to the time passage over Jan Mayen and Bjornoya stations around 

midday. The data of scatterometer SeaWinds on QuikSCAT satellite cannot be used due to night and 

evening passage over the stations with large time difference for time collocation. That is why we 

selected data only starting from March 2009, when Metop-A ASCAT wind fields became available. 

We checked the absence of clouds by two ways. First, we selected only those radiosondes where the 

relative humidity did not exceed 70% along the whole humidity atmospheric profile. This ensured that 
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no clouds could form under such threshold. Then, for these selected radiosondes we analyzed Aqua 

MODIS images to check and ensure the absence of clouds not only over the station but also over 

comparatively large area taking into account nonzero time difference in the measurements of different 

kinds and spatial averaging. These clear sky MODIS data presented the most suitable source of sea 

surface temperature (SST) data for the brightness temperature calculations. The values of sea surface 

salinity (SSS) were taken from the World Ocean Atlas [69]. Since we did not calibrate L-band 

channels we did not need more precise salinity knowledge. 

We selected about 150 data, satisfying all the above mentioned requirements. These data consisted 

of cloudless 12-hour radiosonde profiles of atmospheric air temperature, humidity and pressure from 

Jan Mayen and Bjornoya stations, collocated in time with MetOp-A ASCAT wind fields, DMSP F16 

SSMIS and Aqua AMSR-E homogeneous brightness temperature fields within 2 h time difference, 

Aqua MODIS SST and World Ocean Atlas SSS. The wind speed range for the selected data  

is 0–30 m/s. The distance from the station to a radiometer/scatterometer pixel was within the limits  

of 70–120 km to exclude land influence and be not far away from the radiosonde. We checked the 

homogeneity of the atmosphere by the analysis of brightness temperature fields for the channels  

at 22.235 and 23.8 GHz, vertical polarization for SSMIS and AMSR-E instruments correspondingly. 

We selected only those data where BT variations within the collocation distance did not exceed the 

value of NEΔT. When the brightness temperature homogeneity spread far away from the station we 

considered it possible to use several scatterometer/radiometer/spectroradiometer collocations to 

enlarge the data set by additional ocean surface data (wind speed and SST) for the same atmosphere. 

Figure 3 illustrates an example of satellite data fields qualified as appropriate for the calculations. 

Cloudless area is located in the upper left of the images. Mesoscale variations of TB23V are seen in 

Figure 3a. Surface wind speed variations are within 2–3 m/s (Figure 3b). Clouds cover the bottom right 

side of the images. They are characterized by the high TB23V values and low cloud top temperature 

(Figure 3c). SST increases from the North (−1 °C) to the South (+1 °C). 

Figure 3. Satellite data fields taken over Jan Mayen radiosonde station on 3 May 2011:  

(a) Aqua AMSR-E brightness temperature at 23.8 GHz, vertical polarization, 12:28 UTC; 

(b) MetOp ASCAT wind speed, 13:34 UTC; (c) Aqua MODIS SST, 12:30 UTC  
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4. Results and Discussion 

We used the selected data to calculate brightness temperatures for AMSR-E and SSMIS instrument 

characteristics (incidence angle, selected frequencies and polarizations). We calculated BT  

using four models for water vapor absorption—Liebe87, Ros98, MonoRTM and Turn09, 2 oxygen 

absorption models Liebe87 and Tret05, two ocean emission wind dependency models: Ros92 and 

Chapr12, and a single sea water (or saline water) permittivity model of [49]. We then compared the 

calculated values of brightness temperatures with radiometric measurements for AMSR-E for the 

channels at 6.925, 10.65, 18.7, 23.8 and 36.5 GHz at both polarizations and for F16 SSMIS for the 

channels at 19.35 and 37.0 GHz at both polarizations, and at 22.235, 50.3, 52.8, 53.596, 54.4 and 55.5 GHz 

for only vertical polarization.  

As it could have been presumed, the general difference between the models manifested in the 

channels corresponding to the frequencies close to water vapor or oxygen spectral lines or band.  

So, there were no differences between the two oxygen absorption model performances on the channels 

other that at frequencies higher than 50 GHz. Also, any water vapor absorption model can be used to 

calculate brightness temperatures in the band of 50–60 GHz with no significant difference. 

For each of the 10 channels for each instrument, the resulting scatter plot of measured versus 

simulated brightness temperature values was built and the corresponding statistical analysis was 

fulfilled. An example of such a scatter plot for SSMIS TB19H is shown in Figure 4. It can be noticed 

that the data are rather scattered. Since the brightness temperature fields at the channels, sensitive to 

water vapor content, are selected to be uniform around the station, it may be supposed that the scatter 

is caused by the variability, time difference and errors in the wind speed fields given by ASCAT.  

Figure 4. DMSP F16 SSMIS brightness temperatures measured at 19.35 GHz, horizontal 

polarization versus calculated brightness temperatures using Turn09 model for water vapor 

absorption, Liebe87 model for oxygen absorption and Chapr12 model for ocean emission 

wind dependency model calculations. 
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The resulting root mean square differences are given in Tables 1–3 for SSMIS and AMSR-E.  

We included only significant results, e.g., only those models are listed which influence rms. For 

example, due to strong atmospheric absorption in the oxygen absorption band (sounding SSMIS 

channels) ocean emission model differences are negligible comparatively to the oxygen absorption 

model differences. 

Table 1 summarizes the results, relating to the oxygen model performance for the five SSMIS 

channels in the oxygen band. It can be seen that for these two models rms between measured and 

calculated brightness temperatures are both close to each other and small in value. The maximum 

difference of 0.22 K between rms is observed for TB55V channel. The other differences in rms do not 

exceed 0.08 K. Such close results indicate that in spite of different complexity (Liebe87 model 

accounts for 48 oxygen lines and Tret05—only for 40 lines) and different types of temperature and 

pressure oxygen coefficient dependence both models lead to identical results. Moreover, Tret05 model 

was extensively validated for a wide range of temperatures [70] whereas Liebe87 model was validated 

only for positive temperatures. The fact that the data set used in the study is featured by lower 

temperatures due to the polar station source did not influence Liebe87 model performance. Since the 

data included significantly varied atmospheric pressure profiles (ground level pressure varied  

from 970 to 1020 mB) it can be concluded also that the pressure dependence of the oxygen absorption 

coefficient is parameterized properly. Resuming the analysis of Liebe87 and Tret05 oxygen absorption 

model performance, we state that such low differences in rms imply that any of these models can be 

successfully used in brightness temperature simulations without losing accuracies. 

The other general conclusion that can be drawn from Table 1 relates to the instrument performance. 

All considered SSMIS oxygen band channels are well calibrated and the calibration is stable  

for 2009–2011 period of time (time period covered by the data). 

Table 1. Root mean square difference (in K) between simulations and measurements for 

Liebe87 and Tret05 models used for the oxygen absorption at SSMIS oxygen band 

channels. Turn09 is used for water vapor absorption. 

 TB50V TB52V TB53V TB54V TB55V 

Liebe87 0.46 0.57 0.84 0.56 0.88 

Tret05 0.51 0.59 0.92 0.58 1.10 

Analyzing rms for SSMIS window channels, summarized in Table 2, we can see that the difference 

in five water vapor absorption model performances is in accordance with those reported in [57] except 

that rms values in our study are 0.5–1 K larger than in the cited paper. Since in [57] a ground-based 

two channel microwave radiometer (23.8 and 31.4 GHz) with well controlled calibration was used for 

measuring downwelling radiation, these systematic (through all models) differences can be definitely 

referred to calibration issues. The rms at the TB22V channel—the channel with the closest to a water 

vapor line of 22.235 GHz—is not significantly different from the other channel rms. This allows 

concluding independency of model performance on the total atmospheric water vapor content (TWV), 

though restricted to 32 kg/m
2
 (the maximum TWV in the data set). Contrarily to [57], we did not 

obtain the results indicating worse performance of Liebe87 model comparatively to the other models. 
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Table 2. Root mean square difference (in K) between simulations and measurements for 

eight model combinations for SSMIS lower frequency channels. Liebe87 is used for 

oxygen absorption. 

  TB19H TB19V TB22V TB37H TB37V 

WV Turn09 
1.42 1.21 1.25 1.28 0.76 

OE Chapr12 

WV Ros98 
1.50 1.32 1.40 1.31 1.20 

OE Chapr12 

WV MonoRTM 
1.49 1.32 1.27 1.30 0.81 

OE Chapr12 

WV Liebe87 
1.43 1.23 1.38 1.30 0.95 

OE Chapr12 

WV Turn09 
1.62 1.43 1.55 1.47 1.10 

OE Ros92 

WV Ros98 
1.67 1.48 1.62 1.52 1.40 

OE Ros92 

WV MonoRTM 
1.65 1.47 1.58 1.51 1.20 

OE Ros92 

WV Liebe87 
1.64 1.44 1.60 1.51 1.30 

OE Ros92 

The same conclusion follows from the Table 3 relating to the window channels of AMSR-E 

instrument. A possible explanation can be related to the principle difference between the studies: in [57] 

downwelling radiation is calculated and measured. In the present work, upwelling radiation is 

considered with significant constituent of the ocean radiation. In this case, ocean emission correct 

modeling becomes more important for the comparisons between calculated and measured brightness 

temperature values. Also, the accuracy of the wind speed used in calculations can have crucial 

significance for the results. That is why the data set used in the study is restricted not only by the 

absence of clouds but also by availability of ASCAT wind data over the station with minimal time 

difference between radiosounding, satellite and ASCAT measurements. 

Moreover, as it might be presumed, we can see also from Table 3 that the choice of water vapor 

absorption model does not at all influence the comparison results for the lower AMSR-E frequencies in 

C- and X-bands (TB06H, TB06V, TB10H, TB10V)—far away from the water vapor line center. 

Instead, the results in Table 2 show that the choice of the ocean emissivity model acquires the critical 

meaning. Chapr12 model for ocean emissivity provides better results in comparison to the Ros92 

model. For 19, 22 and 37 GHz channels, the Chapr12 rms values are less than the Ros92 rms values on 

0.2–0.5 K. The main reason is the usage of the new experimentally-derived wind speed emission 

dependence in which ∂ε/∂WS derivative is approximately two times larger than that used in the Ros92 

model [39].  

The same conclusion can be deduced from Table 3 for AMSR-E window channels. The differences 

in rms values reach 0.8–0.9 K. For 6 and 10-GHz channels—the main channels providing the principal 

contribution in Sea Surface Temperature (SST) and WS retrievals—these differences are equal  

to ≈0.4 K. This means that the use of Chapr12 model will provide more accurate retrieval of SST and 
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WS: SST rms error decrease ensured by 0.4 K will be ≈0.7–0.8 K and the corresponding WS rms error 

decrease will be ≈0.3–0.4 m/s.  

Table 3. Root mean square difference (in K) between simulations and measurements  

for 8 model combinations for AMSR-E lower frequency channels. Liebe87 is used for 

oxygen absorption. 

  TB06H TB06V TB10H TB10V TB18H TB18V TB23H TB23V TB36H TB36V 

WV Turn09 
0.83 0.70 0.91 0.78 1.14 0.77 1.94 1.08 1.22 0.65 

OE Chapr12 

WV Ros98 
0.84 0.71 0.91 0.79 1.21 0.93 2.60 1.50 1.42 0.90 

OE Chapr12 

WV MonoRTM 
0.83 0.71 0.91 0.78 1.20 0.90 2.40 1.48 1.38 0.87 

OE Chapr12 

WV Liebe87 
0.83 0.70 0.92 0.79 1.16 0.79 2.00 1.10 1.23 0.69 

OE Chapr12 

WV Turn09 
1.11 1.00 1.30 1.22 1.40 0.92 2.15 1.30 1.43 0.95 

OE Ros92 

WV Ros98 
1.12 1.11 1.32 1.25 1.48 1.20 3.20 1.96 1.56 1.43 

OE Ros92 

WV MonoRTM 
1.11 1.11 1.31 1.24 1.47 1.10 3.15 1.90 1.52 1.35 

OE Ros92 

WV Liebe87 
1.12 1.1 1.35 1.24 1.46 0.94 2.18 1.35 1.47 1.10 

OE Ros92 

It is very likely that this difference will be increased at high wind speeds. Unfortunately, there are 

no hurricane-force data in our data set for well grounded confirmation of this statement. However, we 

provided an indirect confirmation by the analysis of high wind speed events in Section 5. We present 

there the application of the new geophysical model to AMSR-E wind speed retrieval algorithm 

development and verify better performance of the new algorithm in high wind areas by means of the 

comparison with other WS products. 

Fortunately, the obtained results did not raise the questionable problem of choosing the criteria  

for the selection of the best model selection in case of different behavior of rms at different  

radiometric channels.  

The results demonstrated the least root mean square difference between simulations and 

measurements for all considered radiometric channels provided by Turn09 model for water vapor 

absorption (WV), Liebe87 model for oxygen absorption (OX) and Chapr12 model for ocean emission 

wind dependency (OE) model calculations. That fact that a single model combination ensured the best 

results for both radiometers, allows concluding that this model combination can be used not only  

for considered instruments but for other passive microwave radiometers including AMSR2.  

We are collecting the similar data for AMSR2 calibration currently. 

The obtained statistic for the best model combination for all considered channels is presented in 

Tables 4 and 5 for AMSR-E and F16 SSMIS correspondingly. 

It follows from Tables 4 and 5 that the maximum difference between measured and computed 

brightness temperatures can reach 5–6 K for F16 SSMIS and 4–6 K for AMSR-E. The cases with 

maximum differences should be analyzed in details to explain such large values. It is not inconceivable 

that the maximum observed differences (at 19 and 37 GHz frequencies, horizontal polarization) are 

due to the local features associated with the sea surface, and the maximum observed difference  
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at 53 GHz, vertical polarization might be caused by the lower troposphere variability over the 

radiosounding station. 

Table 4. Descriptive statistics of the differences between measured and calculated 

brightness temperatures for DMSP F16 SSMIS instrument for cloudless atmosphere.  

The atmosphere-ocean geophysical model is comprised of Turn09 model for water vapor 

absorption, Liebe87 model for oxygen absorption and Chapr12 model for ocean emission 

wind dependency. 

 TB19H TB19V TB22V TB37H TB37V TB50V TB52V TB53V TB54V TB55V 

mean, K 1.76 1.37 0.80 1.93 −2.03 −0.63 1.34 4.54 1.55 0.99 

rms, K 1.42 1.21 1.25 1.28 0.76 0.46 0.57 0.84 0.56 0.88 

minimum, K −1.29 −1.17 −2.89 −1.06 −4.08 −2.05 0.04 2.46 0.25 −1.05 

maximum, K 5.79 5.11 4.04 5.14 −0.16 0.45 2.61 6.26 2.63 2.64 

Table 5. Descriptive statistics of the differences between measured and calculated 

brightness temperatures for Aqua AMSR-E instrument for cloudless atmosphere.  

The atmosphere-ocean geophysical model is comprised of Turn09 model for water vapor 

absorption, Liebe87 model for oxygen absorption and Chapr12 model for ocean emission 

wind dependency. 

 TB06H TB06V TB10H TB10V TB18H TB18V TB23H TB23V TB36H TB36V 

mean, K 1.10 0.56 −0.09 −0.09 0.28 −0.21 0.90 0.67 −3.81 −4.07 

rms, K 0.83 0.70 0.91 0.78 1.14 0.77 1.94 1.08 1.22 0.65 

minimum, K −0.79 −0.80 −2.32 −1.81 −2.24 −1.75 −4.14 −1.95 −6.27 −5.71 

maximum, K 3.00 2.40 1.72 2.07 2.66 2.43 4.24 3.07 −0.55 −2.37 

Obtained mean differences can be used as model/calibration additions to adjust simulated 

brightness temperature values to instrumentally measured BT. They also serve as a facility to use 

modeling data for geophysical parameter retrieval algorithm development. 

We also studied the dependence of the estimated differences on such determinative for brightness 

temperature parameters, as sea surface wind speed and total atmospheric water vapor content.  

We found no significant dependence of measured/simulated difference on wind speed either for 

SSMIS or for AMSR-E for any of the considered instrument channels. Nevertheless, it is obvious that 

a wider range of total water vapor content conditions, than ensured by two polar stations and presented 

in the study, would be more representative for the general model validation. An increased data base for 

the broader range of environmental parameters should be used to compute brightness temperatures and 

compare them with measured ones to confirm the obtained results. More accurate modeling and 

retrieved geophysical parameter values have especial importance for climatic research. 

5. Model Application 

To demonstrate the applicability of an updated geophysical model, we used it (along with 

brightness temperature corrections) to develop the new algorithm for sea surface wind speed retrievals 

from AMSR-E measurement data. The methodology for the algorithm development is described in 
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detail in [21]. First, we carried out the simulations of the brightness temperatures for the input data sets 

of atmospheric meteorological parameter profiles and ocean surface parameter data (sea surface 

temperature, salinity and wind speed). These simulations were performed for frequencies, polarization, 

sensitivity, and sensing geometry of AMSR-E instrument. Then, the Neural Network function was 

trained on the dataset of simulated brightness temperatures for sea surface wind retrievals. We found 

that the usage of four lower frequency AMSR-E channels (6H, 6V, 10H, 10V) ensured the least 

retrieval error and the most stable algorithm performance practically independent on weather 

conditions. The algorithm details are beyond the scope of this paper but we summarize here the 

validation results. The algorithm was validated using Japan Aerospace Exploration Agency (JAXA) 

database of more than 15,700 collocated AMSR-E and buoy wind speed measurements with the total 

retrieval error of about 1.2 m/s for the algorithm using a new geophysical model and about 2.7 m/s for 

the algorithm using an old one, described in [21]. The data were spatially collocated within 50 km 

distance from the buoy locations. Time difference was less than 1 hour. The corresponding scatter 

plots of AMSR-E retrieved versus buoy wind speeds are shown in Figure 5a for the old algorithm and 

in Figure 5b for the new one.  

Figure 5. Scatter plots of AMSR-E retrieved WS versus buoy measured WS: (a) the 

algorithm is trained using brightness temperature calculations with an old geophysical 

model [21], (b) the new algorithm.  

 

We can observe the worst performance of both algorithms for the range of very low (<2 m/s) sea 

surface wind speeds. This can be explained by the low accuracies of either buoy measurements or 

ocean emissivity wind speed dependence for this range. Howeverm beside the overall larger scatter of 

the data in Figure 5a comparatively to Figure 5b, we can see that the new algorithm performs with no 

significant bias at the range of wind speeds higher than 15 m/s. The old WS algorithm clearly 

underestimates WS values for high winds. This is the crucial advantage of the new AMSR-E sea 

surface wind speed retrieval algorithm. Exactly this feature—ability to perform with high accuracy for 

the areas of high winds—allows using this algorithm to study dangerous high wind events in which 

 

-5

0

5

10

15

20

25

0 5 10 15 20

-5

0

5

10

15

20

25

0 5 10 15 20

buoy sea surface wind speed (m/s) A
M

S
R

-E
 r

et
ri

ev
ed

 s
ea

 s
u
rf

ac
e 

w
in

d
 s

p
ee

d
 (

m
/s

) 

buoy sea surface wind speed (m/s) 

(a) (b) 
- old algorithm - new algorithm 



Remote Sens. 2014, 6 2334 

 

 

wind speed can reach storm and hurricane force values. Below, two examples of such events—a 

system of polar lows in the Barents Sea and an extratropical hurricane system over the North 

Atlantic—are considered. 

The first example of the algorithm application is shown in Figure 6 showing the wind speed field 

developed in a polar low system in the Barents Sea. This figure shows two polar lows developed  

on 12 March 2011 in the Barents Sea and manifesting themselves in the wind vortex structures with 

high wind speed areas (WS > 12 m/s). WS field on the left (Figure 6a) is retrieved with the old 

algorithm, whereas WS field on the right is retrieved with the new algorithm. It can be seen that the 

new algorithm provides higher wind speed estimates over the polar low areas than the old algorithm. 

Figure 6. Polar lows 1 and 2 in the Barents Sea on 12 March 2011 at 9:56 UTC. Sea 

surface wind speed was derived from Aqua AMSR-E measurement data with Neural 

Network algorithms: (a) the algorithm is trained using brightness temperature calculations 

with an old geophysical model [21], (b) the new algorithm. The dark red areas indicate ice 

covered regions and coastal zone with strong land contamination where the retrievals are 

not possible. 

 

(a) (b) 

The considered polar lows (PLs) were not marked on the surface analysis charts for 06 and 12 UTC 

on 12 March 2011 issued by UK Meteorological Office [71]. This is typical for mesoscale lows with 

the size less than approximately 200 km. Polar lows are small sized extreme weather events, 

characterized by high wind speeds and very fast development. Their life circle may be as short as only 

12 h. That is why it is always a problem to compare the wind fields in PLs estimated by different 

satellite instruments in different times even if time difference constitutes only 1–2 h. For example, for 

the considered polar low system Metop-A ASCAT wind fields were taken 2.54–4 h later when the 

system state had changed significantly comparatively to the moment of AMSR-E measurements. 

Fortunately, we had an Envisat ASAR image of the PL 2 (Figure 7b) with a time difference between 

AMSR-E measurements of only half an hour. This difference is nevertheless large enough for polar 

lows so not to allow wind filed difference analysis. Indirect conclusion about the algorithm 
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performance can only be done estimating the maximum wind speeds developed in the cyclone. The 

maximum WS retrieved from AMSR-E with the new algorithm for the PL 2 is about 18 m/s, which is 

in better correspondence with a maximum WS of 20 m/s retrieved from the Envisat ASAR image of 

the PL 2 (Figure 7b). The maximum WS in case of the old algorithm usage is only about 14 m/s.  

Figure 7. (a) Envisat ASAR image, taken on 12 March 2011 at 9:25 UTC and (b) Sea 

surface wind field retrieved from this image (image courtesy of CLS SOPRANO). 

 

(a) (b) 

Figure 8 demonstrates the possibilities of the new algorithm to estimate high wind speeds in the 

areas of extratropical cyclones. AMSR-E retrieved wind speed fields associated with the two 

extratropical cyclones over the North Atlantic on 13 February 2011 are shown in Figure 8a as 

compared with the Metop-A advanced scatterometer (ASCAT) Level 2 Operational and Optimized 

Coastal Ocean Near-Real-Time ocean wind vector product in Figure 8b. One of the most powerful 

extratropical storms Quirin is the cyclone south-west of Newfoundland, less intensive cyclone is the 

storm Paolini also with hurricane-force winds blowing south of Greenland. The maximum wind speed 

over Paolini (41 m/s) at the moment of AMSR-E measurements was greater than the maximum wind 

speed over Quirin (36 m/s). The absence of precipitation and strong convective clouds, leading to low 

values of the atmospheric absorption near the south-east coast of Greenland, allowed WS retrievals 

over the whole Paolini area. Quirin system was the last of four deep lows with hurricane-force winds 

that developed in close succession over the North Atlantic. Quirin cyclone was considered in detail in [72], 

where the necessity to use different satellite data to provide a comprehensive analysis is stressed. A lot 

of data from different sources were collected to observe the dynamics of these storms, including those 

from scatterometer and altimeter instruments. At the moment of AMSR-E measurements, a part of this 

system was covered with optically thick atmosphere, making WS retrievals not possible (white areas in 

the Figure 8a). Again, the time difference between ASCAT and AMSR-E measurements is too large 

(more than 7 h) to make the direct pixel to pixel comparison between sea surface wind speed retrieved 

(a)

m/s

(b)

0 100 Kilometers



Remote Sens. 2014, 6 2336 

 

 

values. However, as in the previous case, we can indirectly estimate the ability of the new algorithm to 

obtain high wind speeds comparable with other WS products. The maximum AMSR-E wind speed is 

about 36 m/s 7 h earlier than ASCAT measurements with a maximum WS of 34 m/s. Altimeter data 

(significant wave height) confirmed the hurricane-force winds for Quirin. It is emphasized in [72] that 

the actual maximum wind speed estimates are very difficult to obtain and validate with in situ 

measurements. However, the general agreement of all sensor estimations, including AMSR-E retrieved 

wind speeds, up to hurricane-force winds is remarkable. 

Figure 8. Sea surface wind speed fields for the two extratropical cyclones over the North 

Atlantic on 13 February 2011: (a) AMSR-E retrieved WS at 4–7 UTC; (b) Metop-A 

ASCAT Level 2 Operational and Optimized Coastal Ocean Near-Real-Time ocean wind 

vector product at 12:30 UTC. 

 

(a) (b) 

These two case studies demonstrated the adequate performance of the new AMSR-E WS retrieval 

algorithm and new possibilities associated with wind speed estimation under high wind conditions. 

6. Conclusion 

In this study, we modeled brightness temperatures (BT) over open oceans under non-precipitating 

conditions for two satellite instruments—for Advanced Microwave Sounding Radiometer—Earth 

Observing System (AMSR-E) onboard Aqua satellite and for Special Sensor Microwave 

Imager/Sounder (SSMIS) onboard F16 satellite of Defense Meteorological Satellite Program (DMSP). 

We simulated BT using different combinations of existing atmospheric absorption and ocean emission 

models. We then compared the calculated values of BTs with collocated in time and space satellite 

measurements under cloudless conditions. On the basis of this comparison, we made a choice of the 

best model combination, providing the least root mean square difference between the calculations and 

measurements. We also obtained the adjustments to simulated BT values accounting cumulatively for 

geophysical model ambiguities and sensor calibration errors. We performed the calculations for the 

(b) 

m/s

0 1000

Kilometers

(a) 

m/s



Remote Sens. 2014, 6 2337 

 

 

data set of simultaneous clear sky measurements of the atmospheric and oceanic parameters. The 

comparison was done for F16 SSMIS channels at 19.35 and 37.0 GHz at both polarizations, and at 

22.235, 50.3, 52.8, 53.596, 54.40 and 55.5 GHz for only vertical polarization and for AMSR-E for the 

channels at 6.925, 10.65, 18.7, 23.8 and 36.5 GHz at both polarizations. 

The results showed that the water vapor absorption model described in [57] (Turn09), the oxygen 

absorption model described in [53] (Liebe87) and the ocean emission wind dependency  

model described in [43] (Chapr12) ensured the least root mean square error (rms) between the 

simulations and measurements. This combination of models ensured the best results for all considered 

radiometric channels. 

We obtained the results indicating similar performance of considered oxygen absorption  

models [53,67]. This allowed concluding that any of them could be successfully used in brightness 

temperature simulations without losing accuracies. Analyzing rms, we have also postulated effectively 

the calibration of all considered SSMIS oxygen band channels stable for the 2009–2011 period of time. 

When we considered water vapor absorption model performances for SSMIS and AMSR-E window 

channels, we found systematic (for all models) differences between calculated and measured BTs.  

This can definitely be referred to as a calibration issue. We also did not obtain the results indicating 

worse performance of the Liebe87 model [53] comparatively to the other models which had been 

reported in [57]. We found the best performance for the model Turn09 [57], its performance 

independent of the total atmospheric water vapor content, though restricted to 32 kg/m
2
—the 

maximum in the data set. 

The obtained results suggest that for the simulation of the BT of the atmosphere-ocean system, the 

choice of the correct ocean emission model becomes much more important than for already  

well-established oxygen and water vapor absorption models. We found that the Chapr12 model [43] 

for the ocean emissivity provided better results in comparison to the Ros92 model [39] for all 

considered AMSR-E and SSMIS channels. For 19.35, 22.235 and 37 GHz SSMIS channels, the 

Chapr12 rms values are less than Ros92 rms values on 0.2–0.5 K. For AMSR-E channels, these 

differences constitute 0.4 K for 6.9 and 10.65 GHz channels and 0.80–0.9 K for 18.7, 23.4 and  

36.5 GHz channels. 

We obtained mean differences between the simulations and measurements which can be used to 

convert modeled BT to measured BT. These differences, presented in Tables 4 and 5, can be used to 

remove model/calibration inconsistencies. 

We demonstrated the application of the suggested model by means of the development of the new 

algorithm for sea surface wind speed (WS) retrievals from AMSR-E data. We validated this algorithm 

using a database of collocated in time and space AMSR-E and buoy wind speed measurement data. 

The validation results showed that the total retrieval error was 1.2 m/s for the algorithm using a new 

geophysical model and 2.7 m/s for the algorithm using an old one [21]. 

We showed that the old WS algorithm underestimated wind speeds for high winds. We stated the 

ability of the new WS algorithm to be used to study dangerous high wind events, illustrating this by 

two case studies and showing adequate AMSR-E algorithm performance under high wind conditions. 

However, more quantitative analysis including hurricane-force winds is needed to substantiate this claim. 

We suppose that a considered geophysical model along with the calibration adjustments can be used 

in any research associated with BT modeling and following algorithm development. With this, a wider 
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range of total water vapor content conditions should also be used to extend the validation of the model 

for tropical latitudes. 
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