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Abstract: Multitemporal optical remote sensing constitutes a useful, cost efficient method 
for crop status monitoring over large areas. Modelers interested in yield monitoring can 
rely on past and recent observations of crop reflectance to estimate aboveground biomass 
and infer the likely yield. Therefore, in a framework constrained by information 
availability, remote sensing data to yield conversion parameters are to be estimated. 
Statistical models are suitable for this purpose, given their ability to deal with statistical 
errors. This paper explores the performance in yield estimation of various remote sensing 
indicators based on varying degrees of bio-physical insight, in interaction with statistical 
methods (linear regressions) that rely on different hypotheses. Performances in estimating 
the temporal and spatial variability of yield, and implications of data scarcity in both 
dimensions are investigated. Jackknifed results (leave one year out) are presented for the 
case of wheat yield regional estimation in Tunisia using the SPOT-VEGETATION 
instrument. Best performances, up to 0.8 of R2, are achieved using the most physiologically 
sound remote sensing indicator, in conjunction with statistical specifications allowing for 
parsimonious spatial adjustment of the parameters. 
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1. Introduction 

Satellite instruments providing frequent, coarse resolution observations, such as AVHRR 
(Advanced Very High Resolution Radiometer), SPOT-VGT (SPOT-VEGETATION), or MODIS 
(Moderate Resolution Imaging Spectroradiometer), have been used extensively for crop monitoring 
and yield estimation at the regional scale (for a review see [ 1, 2]). The rationale for using optical 
remote sensing (RS) observations to predict yield is based on the close relationship between crop 
biomass and yield, often formalized in the so-called harvest index (i.e., fraction of the total 
aboveground biomass allocated to the grains). Biomass is itself estimated from vegetation spectral 
properties derived from satellite observations. However, the definition of the transfer functions from 
satellite observations to biomass, and from biomass to yield, presents several challenges.  

The derivation of biomass proxies (hereafter BP) from satellite observations usually proceeds in 
two steps. First, the top of canopy spectral reflectances of vegetation are retrieved from top of 
atmosphere satellite observations by taking atmospheric effects into account. This is typically achieved 
using atmospheric radiative transfer models (e.g., [3,4]). Second, the BP is derived from the estimated 
canopy reflectances. A pragmatic and widespread approach to extract the relevant information from 
the various spectral reflectances relies on the computation of vegetation indexes (e.g., NDVI, 
Normalized Difference Vegetation Index) that are thought to be proportional to the aboveground 
biomass. Vegetation indexes are subjected to intrinsic limitations (e.g., saturation of the signal) and 
contaminations from different sources (e.g., illumination and observation geometry, 3D structure of the 
vegetated medium, and background reflectance) [ 5]. More modern approaches make use of canopy 
radiative transfer models to derive key vegetation variables (e.g., LAI, leaf area index; FAPAR, 
Fraction of Absorbed Photosynthetically Active Radiation) from canopy reflectances [6–8]. The 
advantage of these methods is that they provide access to inherent vegetation properties largely 
decontaminated of external factors [ 9]. In particular, FAPAR acts as an integrated indicator of the 
status and health of vegetation, and plays a major role in driving gross primary productivity [ 10]. 

BPs can be estimated with either approach at different times during the growing season. The 
correlation between the BP and the final yield is expected to increase with later estimates since they 
are closer to harvest. However, the best timing cannot be known a priori and must be determined from 
the data. Alternatively, time series of RS indicators can be further manipulated to derive more 
physiologically sound BPs, for example, by retrieving their peak level or amplitude during the season 
(e.g., [ 11]), expressing the RS indicator as a function of thermal instead of calendar time [ 12], or 
cumulating their values during an appropriate time period (e.g., [ 13]). 

The selected BP then needs to be translated into grain yield. Two groups of techniques are mainly 
used to accomplish this step: statistical modeling, both parametric and non-parametric, and crop 
growth modeling. Models of the first category rely on the availability of reference information (from 
actual ground measurements usually aggregated at some spatial level) for the empirical estimation of the 
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conversion coefficients. Conversely, in the second group of techniques, RS data is assimilated [ 14] into 
more or less detailed models describing the physiological mechanisms of crop growth and 
development [ 15]. Both groups of techniques can explicitly deal with measurement uncertainties, 
systematic and random, typical of RS and yield data. Pros and cons are discussed in [ 1, 16].  

This manuscript focuses on empirical regression modeling and aims to understand the implications, 
in terms of regional wheat yield estimation performance, of (i) the choice of BP and (ii) the differences 
in assumptions underlying a chosen set of regression models. 

We investigate different RS approaches of increasing physical meaning by considering four BPs: 
the NDVI and the FAPAR value at a specific time of the year, and the integrated FAPAR and APAR 
(Absorbed Photosynthetically Active Radiation, the product of FAPAR and incident PAR) values 
during the period of plant activity. We also use six regression models, from a general country level to 
more region-specific ones, and the analysis is restricted to the linear framework for describing the 
relationships between the BP and yield. However, the models vary on their ability to locally adjust the 
relationship between the BP and actual yields, on their parsimony with respect to the number of 
parameters to be estimated, and on the implied assumptions concerning the error term they rely on.  

The overall goal is to select the combination BP and statistical model that provides the best 
predictive capacity, avoiding over/under-parameterization given the dimension of the data set available 
for the calibration of the model. Overparameterization occurs when the amount of information 
contained in the calibration data is not enough to estimate the model parameters. The resulting model 
fits the calibration dataset, but produces large errors when used in prediction. Underparameterization 
refers to a situation in which the available information is not fully exploited by the restricted set of 
model parameters. 

We address three additional important issues related to regional crop monitoring. First is the 
importance of distinguishing between the ability of a model to estimate the temporal and spatial 
variability of yield. In fact, in regional yield estimation studies, the model performance in predicting 
the interannual variability in yield is seldom decoupled from the overall performance in space and time 
together. However information regarding the temporal variability is of high practical importance for 
crop monitoring and yield forecasting, whilst information regarding the spatial variability may be of 
little practical use as the model may only be describing geographic variation in yield. 

Second, the implications of data scarcity on model performance. Data availability can restricted by 
the limited length of RS time series used for crop monitoring (e.g., 14 years for SPOT-VGT). This 
issue is expected to be even more critical with new satellite missions (e.g., the future ESA-Sentinel 2) 
if a multi-sensor approach is not used to produce consistent long-term time series, integrating different 
sensors. Further data restrictions must also be faced in many regions of the world where only a shorter 
archive of ground yield measurements is available. Therefore, data constraints are investigated and 
discussed when choosing among statistical models, relying on different assumptions and with varying 
number of parameters to be estimated to avoid model over/under-parameterization. 

Third, for specific applications such as crop monitoring in food-insecure regions, a qualitative yield 
assessment may be the only solution in the absence of ground calibration measurements. This is often 
achieved by comparing a BP, at a given time, with its “long-term” average or to a particular reference 
year (e.g., [ 17]). For this purpose, indications about the most robust RS-based yield indicator to be 
used in the absence of local calibration are proposed. 
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2.2. Official Yield Statistics 

The statistical department of the Ministry of Agriculture provided the archive of durum wheat 
(Triticum durum desf.) grain yield, sowed, and harvested area. Yield statistics are obtained from 
ground sample surveys and are available as governorate level averages of grain weight per unit of 
sowed area from 1980 to 2011. Years overlapping with the RS time series were used for the purpose of 
this analysis (from 1999 to 2011, 13 years in total). The dataset includes 128 observations (13 yearly 
yield records for 10 governorates; yields for the La Manouba governorate are only available from 
2001, consecutive to its creation). Yield is highly variable in both space and time (Figure 2) and no 
significant yield temporal trend, tested as the significance of the regression year vs. yield, is present in 
any of the governorates during this time period (all p-values greater than 0.16, mean and standard 
deviation equal to 0.47 and 0.20, respectively). 

Figure 2. Box-and-whisker plot showing wheat yield for years 1999–2011. Medians, 
quartiles, and extreme values are given. Department on the x-axis are ordered from North 
to South. 

 

3. Methods 

Wheat yield is estimated through empirical linear regression models relating RS-derived indicators 
of aboveground biomass to yield statistics at governorate level. Aboveground biomass is thus assumed 
to be the main predictor of yield in this study area, characterized by low to moderate productivity 
compared to other regions of the world (e.g., European Union mean yield is above 5,000 kg/ha, source: 
Eurostat). Limitations of this approach are represented by the marginal presence of high-yield irrigated 
crops for which grain productivity may not be linearly related to biomass and the possible occurrence 
of meteorological (e.g., dry conditions, and heavy rains) or biological disturbances (e.g., diseases) 
affecting the crop during its late development stages and leading to yield reduction not associated with 
green biomass reductions, and thus not easily detected by RS methods.  
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3.1. RS-Derived Biomass Proxies 

Four candidate BPs of increasing biophysical meaning have been selected from the range of 
existing techniques proposed to estimate vegetation biomass (see [ 1, 2]). The first two are computed 
according to the simple and effective method used by the Centre National de la Cartographie et de la 
Télédétection (CNCT, Tunis) for the production of cereal production forecast bulletins. The method 
assumes that the “greenness” attained at a given time of the year is a predictor of the final grain yield. 
This specific timing is selected by finding the NDVI (or FAPAR) dekad that provides the highest 
correlation with yearly yield records (e.g., [21,22]). FAPAR is considered in the analysis in order to 
evaluate if it provides any improvement with respect to the vegetation index. The retrieval of the 
appropriate dekad was performed at both national and governorate level. The governorate-level 
retrieval attempts to take into account possible phenological differences among governorates. 
Hereafter, these proxies will be referred to as NDVIx and FAPARx (where x indicates the selected 
dekad), respectively.  

The last two proxies belong to the group of techniques opting for the integration of the RS indicator 
over an appropriate time interval (automatically retrieved of fixed a priori) rather than selecting a 
single timing (e.g., [23, 24]). Such proxies are computed according to the phenologically-tuned method 
used by JRC-MARS to analyze the vegetation development in arid and semi-arid ecosystems in the 
absence of ground measurements [ 25]. They represent two variations of the light use efficiency 
approach [ 26], in which the biomass production proxy is linearly related to the integral of FAPAR and 
APAR, respectively. With FAPAR, the incident radiation is not considered a limiting factor. The 
integral is computed between the start of the growing period (start_dek), and the beginning of the 
descending phase of the seasonal FAPAR profile (end_dek), which are computed for each pixel and 
each crop-growing season. The latter corresponds to the beginning of the senescence phase, and 
roughly overlaps with anthesis. Hereafter, these proxies will be referred to as CUMFAPAR and 
CUMAPAR, respectively. Incident PAR needed to compute APAR is derived from ERA Interim and 
Operational models estimate of incident global radiation produced by ECMWF (European Centre for 
Medium-Range Weather Forecasts), downscaled at 0.25° spatial resolution and aggregated at dekadal 
temporal resolution [ 27]. No conversion factors (from global radiation to PAR, and from APAR to dry 
matter production) have been applied since the performance of linear regression models is insensitive 
to linear transformations in the data.  

The cumulative value is calculated, as shown in the example of Figure 3. First, satellite FAPAR 
data of each growing season are fitted by a Parametric Double Hyperbolic Tangent (PDHT) 
mathematical model mimicking the seasonal trajectory [ 25]. Second, the integration limits are defined 
as follows: the growth phase (start_dek) starts when the value of the modeled time series exceeds the 
initial base value (asymptotic model value before the growth phase) plus 5% of the seasonal growth 
amplitude; the decay phase (end_dek) starts when the value of the modeled time series drops below the 
maximum fitted value minus 5% of the decay amplitude. Finally, such integration limits are used to 
compute CUMFAPAR (CUMAPAR) as the integral of the modeled values (modeled values times incident 
PAR) after the removal of the base FAPAR level. 
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3.2. Statistical Modeling 

The conversion of biomass proxies into actual yields is not a straightforward task. First, the 
relationship between the two variables may vary, in functional form (e.g., from linear to logarithmic) 
and in magnitude (i.e., value of coefficients), between crops and varieties, locations, and possibly from 
year to year. Second, both biomass proxies and yield data are prone to measurement errors. 
Uncertainties in RS data result from a wide range of processes and are both systematic and random, 
while yield statistics may be affected by sampling and measurement biases and errors. Third, the 
spatial aggregation methods used to retrieve the regional figures of the two variables may not be fully 
coherent. Typically, the regional average of the RS indicator is computed on a static crop mask while 
the actual crop area may vary from year to year. Finally, data availability is a major concern since 
yield and RS time series “long enough” to allow for a reliable estimation of the conversion parameters 
are often not available. 

The empirical estimation of this relationship is often made through regression techniques. Models 
and specifications differ in the hypothesized nature of the link between the variables and in the 
properties of the subsequent residuals. This is an important issue since wrong choices can lead to 
biased, inefficient, and inconsistent parameter estimates. The simplest and most widespread way of 
modeling the relationship between yield and biomass proxies is through Ordinary Least Squares 
regression (OLS): ܻ݈݅݁݀௜,ௗ ൌ ଴ߚ ൅ ଵߚ כ ܤ ௜ܲ,ௗ ൅ ௜,ௗ (1)ߝ

where Yieldi,d denotes the yield in year i and governorate d, BPi,d is the biomass proxy for the same 
year and governorate, β0 and β1 are the parameters to be estimated, and εi,d is the error term assumed to 
be Gaussian iid (0, σε2) (independent and identically distributed with zero mean and the same finite 
variance). The advantages of such a model are its simplicity, and its parsimony on the number of 
estimated parameters. This specification, hereafter referred to as pooled OLS (P-OLS), assumes a 
constant relationship between yield and the BP in both space and time. This relation might not hold in 
all circumstances, in particular with respect to spatial variation. Indeed, the harvest index may vary 
spatially because of different management practices, as well as water and nitrogen availability, leading 
to different yields for the same amount of aboveground biomass. The typical mixture of elements 
within the elementary pixel (e.g., crops, bare soil, natural vegetation, water, etc.) may vary spatially, 
generating differences in the relationship between the RS signal and the BP, and ultimately, with the 
measured yields. In addition, the relationship with vegetation indexes, such as NDVI, may change 
spatially to account for external factors such as different soil reflectance or sowing practices leading to 
different 3D canopy structure. Finally, when considering NDVIx and FAPARx (i.e., their value at a 
given dekad of the year), they may refer to distinct stages of crop phenological cycle in different 
spatial locations, thus requiring governorate-specific tuning to estimate the final yield.  

Although it is recognized that such differences are present at different geographic scales, the spatial 
information needed for their detailed modeling is not available. Therefore, an alternative approach 
consists in estimating the yield at the governorate level (G-OLS) to account for these  
spatial heterogeneities: 
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ܻ݈݅݁݀௜,ௗ ൌ ଴,ௗߚ ൅ ଵ,ௗߚ כ ܤ ௜ܲ,ௗ ൅ ௜,ௗ (2)ߝ

where β0,d and β1,d are governorate-specific coefficients. Although this specification benefits from the 
fact it does not assume the BP-yield relation to be constant over space, it raises overparameterization 
concerns. In fact, the number of estimated parameters is multiplied by the number of administrative 
units (G) present in the dataset. In the present study this means estimating 20 parameters given 128 
data points (10 governorates, 13 yearly records per governorate). An intermediate solution is then to 
specify either a model with a single intercept and governorate-specific slope (Equation (3)), or a model 
with a single slope and governorate-specific intercepts (Equation (4)): ܻ݈݅݁݀௜,ௗ ൌ ଴ߚ ൅ ଵ,ௗߚ כ ܤ ௜ܲ,ௗ ൅ ௜,ௗ (3)ܻ݈݅݁݀௜,ௗߝ ൌ ଴,ௗߚ ൅ ଵߚ כ ܤ ௜ܲ,ௗ ൅ ௜,ௗ (4)ߝ

Both models estimate G + 1, instead of 2 × G parameters. Equation (3) refers to a model where only the 
slope is adjusted at the governorate level and it is named Governorate-Slope OLS (GS-OLS). Equation (4) 
corresponds to a fixed effects (FE) panel model that can be expressed in the form of Equation (1), 
where the error term εi,d is not assumed to be iid, but to have a fixed governorate component [30]: ߝ௜,ௗ ൌ ௗݑ ൅ ௜,ௗ (5)ݒ

where vi,d is the iid(0,σv
2) Gaussian error component and ud represents the governorate-specific 

unobservable effects such as those discussed above (varying harvest index, land cover mixture within 
the pixel, etc.). This latter component is modeled in Equation (4) by the governorate specific 
intercepts. Here, it is worth noting that P-OLS is nested within (i.e., it can be considered a restricted 
model of) G-OLS, GS-OLS and FE, and that the last two are nested within G-OLS. Therefore, the 
benefit of increases in model complexity can be assessed with an F-test. 

Although GS-OLS and FE models are more parsimonious than G-OLS, they can still suffer a 
significant loss of degrees of freedom from the estimation of governorate-specific parameters in 
datasets where the number of governorates is large. This can be avoided if ud is assumed (i) to be  
iid(0, σu

2), (ii) independent from vi,d and, (iii) independent from BPi,d. In this case, the random effects 
model (RE) is suitable for a consistent, unbiased, and efficient estimation of the unobservable 
governorate-specific effects (see [30] for the details). The hypothesis underlying the RE model can be 
tested through the Hausman Test [31] in order to determine if, or not, the FE model should be 
preferred to it, while the Breusch-Pagan Lagrange multiplier test (LM-test) [30] allows the modeler to 
decide between the RE and the P-OLS. The use of this approach reduces the number of parameters to 
be estimated to 4, two for the slope and intercept, and two for the characterization of the variances of 
the unobservable effects (i.e., σu

2 and σv
2). The estimation of the RE model and the predictions of the 

model has been performed based on the maximum likelihood technique described in [30]. 
To take into account possible phenological differences among governorates when using NDVIx and 

FAPARx as BPs, we also considered a G-OLS model for which the most correlated dekad x is selected 
at the governorate level (named Dek-G-OLS). Note, that while this approach may be able to better 
adapt to the local phenology, it indirectly results in a further loss of degrees of freedom because the 
retrieval of appropriate dekad is performed using the calibration data set. 
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All the models are assessed using a jackknife technique, leaving one year out at a time (G 
observations). The following prediction performance indicators are computed for predictions for the 
year left out: root mean square error (RMSE), ܴ௢௩௘௥௔௟௟ଶ  and ܴ௪௜௧௛௜௡ଶ . ܴ௢௩௘௥௔௟௟ଶ  measures the fraction of 
yield variability that is explained by the model, in both the spatial and the temporal dimensions. ܴ௪௜௧௛௜௡ଶ  aims to measure the performance of a model in reproducing the temporal variability of the data 
and not the spatial: ܴ௪௜௧௛௜௡ଶ ൌ 1 െ ∑ ∑ ൫ܻ݈݅݁݀௜,ௗ െ ܻଓ݈݁෣݀ ௜,ௗ൯஽ௗ௒௜ ଶ∑ ∑ ൫ܻ݈݅݁݀௜,ௗ െ ܻଓ݈݁݀തതതതതതതௗ൯஽ௗ௒௜ ଶ  (6)

where ܻଓ݈݁෣݀ ௜,ௗ and ܻଓ݈݁݀തതതതതതതௗ are the yields predicted by the model in governorate d and year i and the 
average yield over time of governorate d. By replacing the sum of squares of yields, present in the 
denominator of the second term on the right hand side when computing the ܴ௢௩௘௥௔௟௟ଶ , by the sum of the 
squared yield deviations from the governorate average, one measures to what extent the selected model 
performs better than a naïve model that every year predicts a yield that equals the governorate 
temporal average. The statistical significance of the differences in R2 across BP-statistical model 
combinations is tested following [32]. The test explicitly takes into account the correlation between the 
outputs of the models and, consequently, does not rely on the hypothesis of independence. 

Finally, as data scarcity is a major concern when modeling yields based on RS data, an analysis is 
run in order to understand how model performance deteriorates with respect to decreasing data 
availability. We simulated increasing data scarcity in both the temporal and spatial dimensions. In the 
first case, jackknifed results are again reported but leaving n years out of the calibration and predicting 
for those years (n × G observations). In the second case, the number of governorates included in the 
analysis is progressively reduced while leaving n years out for computing the predictive performances. 
This analysis is of particular interest since the models used in the comparison estimate different 
number of parameters and are then expected to have different deterioration patterns. 

To facilitate the analysis of the results, a table summarizing the acronyms used for the biomass 
proxies and statistical models is provided in Table A1 in Appendix. 

4. Results and Discussion 

We found that NDVI in the second dekad of April (i.e., NDVI11) and FAPAR in the third dekad of 
April (i.e., FAPAR12) provided the maximum correlation with yield and so we used them as the first 
two BPs in the following analysis. For the second two BPs, the phenologically-tuned CUMFAPAR and 
CUMAPAR, we did not perform any tuning for computing the integration limits. 

Before comparing the performances of the different BP-statistical model combinations, it is worth 
presenting the results of the statistical tests that can be performed in order to guide the choice between 
regression specifications. F-tests show that models that have a governorate-specific adjustment (i.e.,  
G-OLS, GS-OLS and FE) should be preferred to OLS (all p-values < 0.01). The same applies when 
testing the RE with respect to the OLS with the LM-test (all p-values < 0.01). These tests show that the 
increased number of model parameters, always producing a better fit of the data, gives a significant 
performance improvement. In doing that, they anticipate the jackknifed results presented in the 
following sections. However, other performed tests show that no significant improvements (at 10%) 
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can be achieved once a simple spatial adjustment is adopted: neither the F-test, that compares G-OLS 
to GS-OLS, and to FE, neither the Hausman test, that compares the FE to the RE, allow the modeler to 
reject the null hypothesis that more parsimonious models perform as well as the ones producing a 
greater loss of degrees of freedom. 

4.1. Overall Predictive Capabilities 

In general, fairly good performances are observed in the Tunisian study case for all combinations of 
BP-statistical model we tested. Jackknifed ܴ௢௩௘௥௔௟௟ଶ  values are reported in Table 1 and range from 0.66 
(P-OLS model using NDVI11) to 0.80 (FE model using CUMAPAR). This latter combination explains 
80% of the actual yield variability over the 13 years and 10 governorates included in the analysis. The 
jackknifed scatterplot of modeled vs. observed yield for this model is reported in Figure 5. 

Table 1. Jackknifed ܴ௢௩௘௥௔௟௟ଶ  with BP in rows and models in columns. R2 that are 
significantly lower than the higher value (in bold) at 10%, 5% and 1% are respectively 
indicated by superscripts <, << and <<<. n indicates the number of parameters to be estimated. 

 P-OLS G-OLS GS-OLS FE RE 
 (Pooled OLS, n = 2) (Gov. OLS, n = 20) (Gov. Slope OLS, n = 11) (Fixed Effects, n = 11) (Random Effects, n = 4) 

NDVI11 0.66<<< 0.71<< 0.74<<< 0.75 0.75<<< 
FAPAR12 0.68<<< 0.75 0.77 0.79 0.78 
CUMFAPAR 0.71<<< 0.72<< 0.75<< 0.77 0.76< 

CUMAPAR 0.72<< 0.75 0.78 0.80 0.79 

Figure 5. Modeled vs. observed yield scatterplot. Modeled points are jackknifed predictions 
obtained with the FE model using CUMAPAR. The 1:1 line is drawn for reference. 

 

With respect to the choice of BP, the one with the higher physical relevance, i.e., CUMAPAR, 
consistently appears as the best yield predictor across models. However, the magnitude of the 
improvement is rather low, ranging from 6% to less than 1%. With respect to the choice of the 
statistical model, the FE appears as the best performing regardless of BP used. This confirms that the 
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relationship between yield and BP is not necessarily spatially homogenous, and that  
governorate-specific errors are best accommodated using an FE model. Holding the BP constant and 
considering FAPAR12 and CUMAPAR, FE model performances are not substantially different from the 
other models allowing for some governorate tuning: G-OLS, GS-OLS, and RE. However, the 
implications of opting for FE, GS-OLS, or RE models instead of P-OLS or G-OLS are important since 
the P-OLS cannot take local errors into account, while G-OLS may suffer from over-parameterization. 

Despite the small the sample size (128 observations), several statistically significant differences 
have been detected: the FE model using CUMAPAR outperforms all tested BPs when using the P-OLS 
model and, with the exception of the FE, all statistical models that make use of NDVI11 or CUMFAPAR 
as BP. However, once the FE model is adopted no conclusion can be reached with respect to what BP 
is to be used (no statistically significant differences between FE models). 

4.2. Predicting Temporal Variability 

The following step of the analysis is to assess to what extent the combinations of BP-models are 
able to mimic the temporal variability of the data. This is accomplished by analyzing the jackknifed ܴ௪௜௧௛௜௡ଶ , which measures the fraction of the temporal variance explained by the model, instead of the ܴ௢௩௘௥௔௟௟ଶ  (Table 2). 

Table 2. Jackknifed ܴ௪௜௧௛௜௡ଶ  with BP in rows and models in columns. R2 that are 
significantly lower than the higher value (in bold) at 10%, 5% and 1% are respectively 
indicated by superscripts <, << and <<<. n indicates the number of parameters to  
be estimated.  

 P-OLS G-OLS GS-OLS FE RE 
 (Pooled OLS, n = 2) (Gov. OLS, n = 20) (Gov. Slope OLS, n = 11) (Fixed Effects, n = 11) (Random Effects, n = 4) 

NDVI11 0.36<<< 0.43<<< 0.50<<< 0.53< 0.52<<< 

FAPAR12 0.40<<< 0.51< 0.57< 0.60 0.59 

CUMFAPAR 0.45<<< 0.45<<< 0.53<<< 0.55< 0.54<<< 

CUMAPAR 0.46<<< 0.53< 0.58 0.61 0.60 

As expected, a lower fraction of the yield variance is explained by the BPs when considering the 
temporal variability instead of the overall variability. ܴ௪௜௧௛௜௡ଶ  ranges from 0.36 (P-OLS using NDVI11) 
to a maximum of 0.61 for the FE model using CUMAPAR. The range of ܴ௪௜௧௛௜௡ଶ  is greater than the range 
of the ܴ௢௩௘௥௔௟௟ଶ , and the differences in the performances of models are detected with a higher statistical 
significance because the ܴ௪௜௧௛௜௡ଶ  tests the more challenging ability to predict the temporal variability of 
yield. Only four combinations of a statistical model and a BP cannot be said to perform less well than 
the FE-CUMAPAR with less than 10% chances of error. The first two also rely on CUMAPAR as BP and 
model the relationship with yield using GS-OLS or RE. Here, it is worth noting that results are robust 
to changes in growth and decay thresholds used for the computation of CUMAPAR and CUMFAPAR (all 
combinations having been tested using 1%, 5% and 10% thresholds). The second two make use of the 
FAPAR12 combined with either the FE or the RE model. Therefore, for operational application specific 
to the Tunisia case study, FAPAR12 may be selected since it more easily implemented and available 
earlier in the season (at dekad 12 in the present case) as opposed to CUMAPAR, which requires the 
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whole season of observations. However, care must be taken in adopting the single-timing approach to 
more extended and/or heterogeneous geographical settings. In fact, the method is not robust to 
significant changes in crop phenology that may occur due to differences in climatological conditions or 
farming practices. Facing these conditions, prior knowledge about climate, soil, and cropping systems 
should be exploited to segment the study area into regions with similar characteristics. Then, the best 
correlated dekad should be selected for each region and its empirical predictive capability tested. 

In other operational crop monitoring applications, where no reliable yield data is available for 
model calibration, the BP is the only available information. Typically, in such situations the BP values 
are compared at different spatial locations and different times to highlight anomalies. For this purpose 
one would requires the linear relation between the BP and yield to be spatially homogenous. In fact, 
without ground measurement, it is not possible to spatially adapt the relationship. An insight on the 
spatial homogeneity of the relationship between the various BPs and yield is obtained by analyzing 
their performance when the P-OLS is used (i.e., one single relationship for all governorates). Table 2 
shows that the BPs based on the cumulated values of FAPAR and APAR are more suitable for this 
purpose than those using the optimal dekad value (0.45 and 0.46 ܴ௪௜௧௛௜௡ଶ  against 0.36 and 0.4). 
Significance tests on the ܴ௪௜௧௛௜௡ଶ  differences confirm these finding: P-OLS-CUMAPAR performs 
significantly better than P-OLS-NDVI11 and P-OLS-FAPAR12 at 1% and 5% confidence levels, 
respectively. The same applies for P-OLS-CUMFAPAR, suggesting that cumulated values over the 
actual season should be used in the absence of ground measurements. 

Finally, the application of the Dek-G-OLS, did not improve the performances of yield estimation 
(ܴ௢௩௘௥௔௟௟ଶ  = 0.70 and ܴ௪௜௧௛௜௡ଶ  = 0.39). The search for the most correlated dekad at each governorate 
separately increased the loss of degrees of freedom and resulted in a selection of heterogeneous and 
somehow erratic timing ranging from dekad 1 (first of January, early in the growing season), to 11 and 
12 (last two of April, as selected at the national level), and 15 and 18 (June and July, corresponding to 
the harvest period). A possible explanation may refer to the fact that allowing for some simple 
governorate-specific phenology adjustment is not sufficient because crop phenology is a complex 
phenomenon driven by climate (i.e., rainfall temporal distribution) and management practices (i.e., 
sowing dates). The crop cycle may therefore change at a spatial scale finer than that of the 
administrative governorates, and exhibit inter-annual variability, two features that can only be tackled 
with a phenology-based approach such as that of the CUM BPs. 

4.3. Effects of Data Scarcity 

The effects of data scarcity in the temporal dimension on the different modeling solutions are 
investigated by reducing the number of years on which the models are fitted from the original 13 down 
to four. For this purpose, we only analyzed the best candidate BPs (FAPAR12 and CUMAPAR) and all 
statistical models but GS-OLS (Figure 6). 

As expected, Figure 6 shows that a reduction of data availability has a negative impact on predictive 
performance, and that increases in RMSE are not evenly distributed across models. Models consuming 
more degrees of freedom suffer more from the reduction of the number of years used in the estimation 
process. The highest contrast is observed between P-OLS (two parameters) in which performance 
remains nearly stable and G-OLS (20 parameters), for which the RMSE increases rapidly and breaks 
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down when less than six years of data are available. In this example G-OLS should only be considered 
when more than 10 years of data is available. However, better models are available for archives with at 
least four years of data: the FE (11 parameters) and RE (four parameters) models allowing  
governorate-specific tuning provide the best performances and are fairly robust to sample size 
reductions. Figure 6 also shows that, holding the BP constant, the RMSE rank between the FE and RE 
is inverted when the number of years is reduced to less than 10. This indicates that, below this 
threshold, parameter parsimony is effective and the RE model should be selected. Above this 
threshold, although the hypothesis on which the RE model relies on cannot be rejected, the FE model 
is less affected by overparameterization and becomes suitable as well. In this case, performance 
consideration may guide the choice toward the FE model. A similar rank inversion can be observed 
around nine years between G-OLS and P-OLS.  

Figure 6. Jackknifed Root Mean Square Error (RMSE) of different modeling solutions as a 
function of the number of available years of data (the parameters of each model have been 
estimated with the years available less one). Only models using FAPAR12 and CUMAPAR 
are showed. 

 
With respect to the BP used, it’s worth noting that the use of the more physiologically meaningful 

CUMAPAR improves the performances under two circumstances: when no governorate-specific tuning 
is performed (i.e., P-OLS) and when a FE or RE model is used with a reduced dataset (12 years  
or less). 

Another source of data scarcity to be explored is the number of spatial entities (i.e., governorates) 
included in the analysis. Figure 7 shows how the jackknifed RMSE evolves when fewer governorates 
are available for the analysis of three levels of years of data available: four, nine, and the full Tunisian 
sample of 13 years. It is worth mentioning that the jackknifing process applied is again in terms of 
years, predictions only being performed for the considered governorates in each simulation. Moreover, 
for each number of governorates stated in the graphs, all possible combinations between the 10 
available governorates have been taken into consideration. Note that the RMSE stated in Figure 6 
corresponds to the ones in Figure 7 for 10 governorates. 
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“wise” pooling of governorates into larger entities with similar characteristics (i.e., climate, soil 
properties, management practices, etc.) may be efficient as well.  

5. Conclusions  

In a case study of regional durum wheat yield estimation in Tunisia using 13 years of  
low-resolution SPOT-VGT observations, we have explored the interactions among four different 
remote sensing biomass proxies characterized by increasing physiological meaning, and six different 
statistical models relying on different hypotheses and using a varying number of degrees of freedom. 
The analysis aimed at assessing the improvements of the adoption of more sophisticated biomass 
proxies and the tradeoff between model complexity and data availability. 

Results show that the high yield variability (spatial and temporal) in Tunisia can be predicted using 
Earth observation techniques with jackknifed ܴ௢௩௘௥௔௟௟ଶ  up to 0.8. Best performances are achieved using 
the most physiologically sound remote sensing indicator (the phenologically-tuned cumulative value of 
the absorbed photosynthetically active radiation) in conjunction with statistical model allowing for 
parsimonious spatial adjustment of the parameters (the Fixed Effects model). Fair performances 
(ܴ௢௩௘௥௔௟௟ଶ  ≥ 0.75) are guaranteed, regardless the adopted biomass proxy, when the most appropriate 
statistical model is employed (i.e., Fixed or Random Effects). Among the proxies derived from a single 
observation, FAPAR always outperformed NDVI regardless of the statistical model used, empirically 
confirming its superior suitability for vegetation productivity studies. 

When focusing on the ability of the models to describe the temporal yield variability, the ranking 
between biomass proxy-statistical model combinations remained stable, although the ܴ௪௜௧௛௜௡ଶ  values 
were lower than the ܴ௢௩௘௥௔௟௟ଶ  values. Differences among model performances could be detected with a 
higher significance, suggesting that the choice of the more appropriate combination between biomass 
proxy and statistical model specification is even more important if the modeler is mainly interested in 
temporal predictions.  

The results also showed that for qualitative crop monitoring, where crop conditions are to be 
assessed in the complete absence of ground calibration measurements, phenologically-tuned biomass 
proxies should be preferred to single observation indicators. First, because yield ground measurements 
are needed for the selection of the optimal NDVI or FAPAR dekad while the phenological tuning is 
performed in absence of such information; and secondly, because phenologically-tuned biomass 
proxies have been shown to have a more robust linear relationship with yields. 

Finally, we assessed the role played by data scarcity on the yield estimation accuracy. Results 
confirm that the selection of the model specification should take into account the number of 
observations available, and not merely the expected spatial heterogeneity of the yield-BP relationship. 
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Appendix 

Table A1. Summary table of biomass proxies and statistical models. 

Biomass proxies (in order of increasing bio-physical insight) 
NDVIx NDVI value for the xth dekad from the beginning of the year 

FAPARx FAPAR value for the xth dekad from the beginning of the year 

CUMFAPAR 
Cumulative FAPAR value during the growing period (estimated for each pixel, each 
season) 

CUMAPAR 
Cumulative FAPAR*PAR value during the growing period (estimated for each pixel, 
each season) 

Statistical models (in order of increasing parameterization) 
P-OLS Pooled Ordinary Least Squares, 2 parameters 

RE 
Random Effects model, 4 parameters (slope, intercept, and variances of the 
unobservable effects) 

GS-OLS 
Governorate Slope OLS, slopes estimated for each governorate, single intercept, G + 1 
parameters (G is the number of governorates) 

FE 
Fixed Effects model, intercepts estimated for each governorate, single slope, G + 1 
parameters 

G-OLS 
Governorate specific OLS, intercepts and slopes estimated for each governorate,  
2 × G parameters 

Dek-G-OLS 
G-OLS model for which the most correlated dekad is selected for each governorate,  
2 × G parameters plus G dekad selections 
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