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Abstract: Spatial variability in a crop field creates a need for precision agriculture. 

Economical and rapid means of identifying spatial variability is obtained through the use of 

geotechnology (remotely sensed images of the crop field, image processing, GIS modeling 

approach, and GPS usage) and data mining techniques for model development. Higher-end 

image processing techniques are followed to establish more precision. The goal of this paper 

was to investigate the strength of key spectral vegetation indices for agricultural crop yield 

prediction using neural network techniques. Four widely used spectral indices were 

investigated in a study of irrigated corn crop yields in the Oakes Irrigation Test Area 

research site of North Dakota, USA. These indices were: (a) red and near-infrared (NIR) 

based normalized difference vegetation index (NDVI), (b) green and NIR based green 

vegetation index (GVI), (c) red and NIR based soil adjusted vegetation index (SAVI), and 

(d) red and NIR based perpendicular vegetation index (PVI). These four indices were 

investigated for corn yield during 3 years (1998, 1999, and 2001) and for the pooled data of 

these 3 years. Initially, Back-propagation Neural Network (BPNN) models were developed, 

including 16 models (4 indices * 4 years including the data from the pooled years) to test for 

the efficiency determination of those four vegetation indices in corn crop yield prediction. 

The corn yield was best predicted using BPNN models that used the means and standard 

deviations of PVI grid images. In all three years, it provided higher prediction accuracies, 
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coefficient of determination (r2), and lower standard error of prediction than the models 

involving GVI, NDVI, and SAVI image information. The GVI, NDVI, and SAVI models 

for all three years provided average testing prediction accuracies of 24.26% to 94.85%, 

19.36% to 95.04%, and 19.24% to 95.04%, respectively while the PVI models for all three 

years provided average testing prediction accuracies of 83.50% to 96.04%. The PVI pool 

model provided better average testing prediction accuracy of 94% with respect to other 

vegetation models, for which it ranged from 89–93%. Similarly, the PVI pool model 

provided coefficient of determination (r2) value of 0.45 as compared to 0.31–0.37 for other 

index models. Log10 data transformation technique was used to enhance the prediction 

ability of the PVI models of years 1998, 1999, and 2001 as it was chosen as the preferred 

index. Another model (Transformed PVI (Pool)) was developed using the log10 transformed 

PVI image information to show its global application. The transformed PVI models 

provided average corn yield prediction accuracies of 90%, 97%, and 98% for years 1998, 

1999, and 2001, respectively. The pool PVI transformed model provided as average testing 

accuracy of 93% along with r2 value of 0.72 and standard error of prediction of 0.05 t/ha. 

Keywords: yield estimation; normalized difference vegetation index (NDVI); green 

vegetation index (GVI); soil adjusted vegetation index (SAVI); perpendicular vegetation 

index (PVI); back propagation neural network (BPNN); data mining 

 

1. Introduction 

Achieving maximum crop yield at minimum cost is one of the goals of agricultural production. 

Early detection and management of problems associated with crop yield indicators can help increase 

yield and subsequent profit. Remote sensing and global positioning systems (GPS) can be used to 

assess spatial variability in crop yield [1]. Visible red, green, and blue band and near-infrared (NIR) 

regions of the electromagnetic spectrum have been used successfully to monitor crop cover, crop 

health, soil moisture, nitrogen stress, and crop yield [2-11]. 

More recently, aerial images have been widely used for crop yield prediction before  

harvest [1,12,13]. These images can provide high spatial cloud free information of the crop’s spectral 

characteristics. Analysis of vegetation and detection of changes in vegetation patterns are important for 

natural resource management and monitoring, such as crop vigor analysis [14]. Healthy crops are 

characterized by strong absorption of red energy and strong reflectance of NIR energy [1]. The strong 

contrast of absorption and scattering of the red and near-infrared bands can be combined into different 

quantitative indices of vegetation conditions. These mathematical quantitative combinations are known 

as vegetation indices. Since the late 1980s, numerous studies like Funk and Budde [1,3,8,12,13,15,16] 

have been conducted on crop growth analysis using normalized difference vegetation index (NDVI) to 

support precision agriculture. Presently, site-specific crop management (SSCM), an important 

component of precision agriculture is being pursued vigorously to increase production, which involves 

five main processes of spatial referencing, crop and climate monitoring, attribute mapping, decision 

support systems, and differential action. NDVI study is appropriate in large area crop management but 
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precise SSCM warrants use of advanced image processing approaches like high-end vegetation 

indices. As described earlier, slope-based vegetation indices (e.g., NDVI) are widely used in crop yield 

estimation [1,3,8,12,13,15,16]. Baez-Gonzalez et al. [3] used Landsat ETM+ (enhanced thematic 

mapper) data in an NDVI model to predict corn yield in Sinaloa, Mexico. They obtained an average 

error of 9.2% in corn yield prediction. Yang et al. (2004) [5] used the United States Department  

of Agriculture (USDA) EPIC model to predict crop yield for a part of China. They found the  

differences in the statistical and simulated crop yield (using the EPIC model) was under 10%.  

Baez-Gonzalez et al. [8] modeled corn yield in Mexico with NDVI derived from NOAA-Advanced 

Very High Resolution Radiometer (AVHRR) images. Their model accounted for 89% variability in 

yields in irrigated conditions and 76% under non-irrigated conditions.  

Gopalapillai and Tian [12] obtained correlation coefficients ranging from 0.13 to 0.98 for predicting 

corn yield from a study in 9 different fields and in two different years. They used aerial images of the 

corn plots with agriculturally controlled conditions and computed NDVI to model yield. The average 

correlation coefficient (r) between the NDVI and the yield from all the nine fields was 0.54. In the 

agriculturally controlled conditions, crop production parameters such as fertilizer, irrigation, and 

pesticide application are tracked in test plots maintained by researchers. However, these controlled 

conditions are not to be expected under real farming scenarios. Senay et al. [13] obtained a very high 

coefficient of determination (0.99) between non-discrete corn yield values (five classes) and spectral 

information from the NIR band (800–890 nm) of an aerial image of a 9 ha field crop under controlled 

condition. Plant et al. [9] obtained an R2 of 0.65 while correlating cotton yield from a small research 

plot using NDVI. However, in general, farmers’ crop fields are not under controlled conditions. It is 

essential to develop precision crop yield models using general field condition and discrete crop yield 

information. Therefore, this study attempted to develop a corn crop yield estimation modeling 

technique by using spectral information from the field. The models were developed using crop spectral 

data over several years. This SSCM precision agriculture study not only involves the widely used NDVI 

analysis but also explores the advantages of other vegetation indices including a green vegetation 

index (GVI), a perpendicular vegetation index (PVI) and a soil adjusted vegetation index (SAVI). 

NDVI [17,18] is determined using the red (R) and near-infrared (NIR) bands of a given image and 

is expressed as follows 

rir

rirNDVI






       (1) 

where r and ir are spectral reflectance from the R- and NIR-band images, respectively. The green 

vegetation index (GVI) was determined using 

gir
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       (2) 

where g, and ir are spectral reflectance from the G and NIR-band images. Lecain et al. [19] 

established the direct relationship between the GVI and grazed pasture green-up with the progression 

of the season. Todd and Hoffer [20] used GVI and NDVI to evaluate the effects of variations in soil 

texture and soil water content on vegetation cover and varying soil backgrounds. Therefore, based on 

their studies, we hypothesized that GVI could help in crop yield estimation and subsequent SSCM.  
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The main function of vegetation indices, other than NDVI, is to compensate for the effects of 

disturbing factors on the relationships between vegetation spectral reflectance as measured by crop 

characteristics, such as crop type, leaf area index (LAI), or canopy biomass [21]. Undesirable 

disturbing factors include soil background and atmospheric conditions. Distance-based vegetation 

indices cancel or diminish the effect of soil brightness in cases where vegetation is sparse, i.e., the 

pixels in the image are a combination of vegetation and soil information [22]. PVI and SAVI are some 

examples of distance-based vegetation indices [14].  

SAVI tends to minimize soil brightness, a phenomenon that has been demonstrated by many 

researchers [23-25]. Huete [26] introduced a soil calibration factor in the NDVI equation to account for 

the first order soil-vegetation optical interactions. SAVI is a compromise between NDVI and PVI and 

is defined as 
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where L is a constant that is a surrogate for LAI. Huete [26] defined the optimal adjustment factor of  

L = 0.25 to be considered for higher vegetation density in the field, L = 0.5 for intermediate vegetation 

density, and L = 1 for the low vegetation density. He suggested that SAVI (L = 0.5) successfully 

minimized the effect of soil variations in green vegetation compared to NDVI.  

Casanova et al. [27] reiterated that PVI, which corrects for soil reflectance, had a more linear and 

less-scattered relationship with the fraction of intercepted photosynthetically active radiation (fPAR) 

than NDVI. The PVI equation is expressed as the function of the slope and intercept of the vegetation 

images of the R and NIR band, and the soil images of the R and NIR band [14].  

PVI = 2
,

2
, )()( rsrirsir PGPG       (4) 

where r, s and ir, s are reflectance of soil background in R and NIR bands, respectively; and r and  

ir = reflectance of vegetation in R and NIR bands, respectively. PVI is determined using the distance 

between the intersection point (Gir,s and Gr,s) and the vegetation image pixel coordinate (Pir and 

Pr) by the Pythagorean Theorem. 

Each vegetation index (VI) provides information on vegetation vigor in the field. However, the 

comparison of broad-band and narrow-band red and NIR vegetation indices suggested that there were 

advantages of distance based vegetation indices over the slope based vegetation indices [28]. They 

found that the predictive powers of SAVI and PVI were better than the NDVI for LAI prediction and 

estimation of green cover percentage of vegetation. The SAVI and PVI provided R2 value of 0.87 and 

0.86, respectively, for green cover estimation using narrow bands while the NDVI provided R2 = 0.59. 

With the Advanced Very High Resolution Radiometer (AVHRR) platform, SAVI and PVI provided R2 

values of 0.58 and 0.68, respectively, for green cover prediction while the NDVI provided R2 of 0.42. 

They used Landsat MSS and thematic mapper (TM) broad-band images for vegetation green cover and 

LAI prediction using distance based vegetation indices as well as slope based vegetation indices. The 

slope based vegetation indices (SAVI and PVI) performed better against NDVI. This finding was 

further supported by other researchers [29-31].  

However, these studies were performed with low-resolution satellite images. Sufficient studies have 

not been completed using distance-based vegetation indices (PVI and SAVI) for processing aerial 
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images and differentiating vegetation vigor to estimate crop yield. Moreover, the above-mentioned 

study on the prediction of LAI and green cover using vegetation indices showed potential for the use of 

VI (from an aerial image platform) for crop yield prediction. Thus, this study was designed to evaluate 

the use of slope based vegetation indices (NDVI, GVI) and distance based vegetation indices (SAVI 

and PVI) in corn crop yield estimation. 

The vegetation index information is data intensive and correlates nonlinearly with spatial based crop 

yield. Therefore, a proper model building technique for crop yield prediction is essential. A general 

method previously used by researchers was statistical model building [1,12,13]. Black [32] suggested 

that the complexity of the total environment affects crop production. The dataset relating to crop yield 

is essentially nonlinear. Considering the nature of data used for crop yield modeling, the neural 

network (NN) modeling techniques, which are analogous to information processing methods used in 

the human brain, can be a better substitute. NNs have the ability of computing, processing, predicting, 

and classifying data. The approach has the advantages of nonlinearity, input-output mapping, 

adaptivity, generalization, and fault tolerance [33]. An NN functions as a massive parallel-distributed 

processor that has a natural property for storing experimental knowledge and making it available for 

use in prediction (a process known as training [33]). Through learning procedures, artificial neural 

networks (ANNs) have the power to approximate any non-linear relationship that exists between a set 

of inputs and their corresponding set of outputs [34]. Zhuang and Engel and Ranaweera et al. [35,36] 

provided evidence regarding the advantages of NN modeling techniques over the statistical process in 

the case of nonlinear data modeling, to diminish collinearity problems and model flexibility. The  

back-propagation NN (BPNN) modeling technique was selected for yield prediction in our study. 

Moshou et al. [37] have used self-organizing map (SOM) NNs to classify crops and different types of 

weeds by using spectral reflectance measurements. They proved its superiority over results obtained by 

using statistical optimal Bayesian classifier. 

In this study, we used NDVI, GVI, SAVI, and PVI measurements from aerial images to develop 

models for predicting corn crop yield before harvest, which can be used in general crop production. 

We used BPNN and other data mining techniques to create yield prediction models. The models could 

be useful for farmers to estimate spatial variability in crop yield using aerial images of the  

mid-crop season. 

The objective of this study is to develop and evaluate BPNN models for predicting crop yield using 

vegetation index information. 

2. Methods, and Materials 

2.1. Study Area and Aerial Images Acquisition 

The research site is located in Oakes, North Dakota, USA. The Oakes Irrigation Test Area (OITA) 

consists of several quadrants. Each quadrant of the research site was irrigated using a central pivot 

irrigation system. Aerial images of the test area were acquired. The images were taken from several 

quadrants under differing cropping patterns (Figure 1, Table 1) (65 ha with corn) of the OITA site for 

three different years, 1998, 1999, and 2001. We used the best date images from four different quarters 

(NW29, SW16, SW03, and NW15) for 1998, five different quarters (NW15, SW03, NW22, SW16, 
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and SE16) for 1999, and three different quarters (NW29 and NW22) for 2001 (Table 1 and Figure 1). 

These sites, with diversified crop production features (different nitrogen application rate, irrigation 

amount, soil moisture and texture conditions, etc.), were selected to allow development of the crop 

yield prediction models. The quarters (65 ha) chosen for the training and testing of the crop yield 

prediction models were different from each other and separated by several kilometers (Figure 1). It is 

to be noted that each quarter (65 ha) has a dimension of 805 × 805 m. Again, the selection of training 

and testing samples were done to include the most variation in field condition and crop production 

parameters (Table 1), so that the model could be used with different crop production conditions. 

Figure 1. The false color composite (FCC) aerial image of the Oakes area in 1998 showing 

quarter pattern used for this study. 

 

Table 1. List of dataset used for hybrid BPNN yield prediction models of various years. 

Year Training data Testing data Remarks 

Number of 

observations 

Data from 

quadrants 

Number of 

observations 

Data from 

quadrants 

1998 100 29NW* 31 16SW, 03SW, 

and 15NW 

Training and test quarters are 

totally different 

1999 80 15NW, 

SW03 and 

22NW 

21 16SW and 

16SE 

Training and test data generated 

by random selection from a 

combination of various quadrants 

2001 100 22NW 30 29NW Model trained and tested on 

individual quarter information 

* 29NW is the name of the quadrant which is in the NW corner of the Oakes Irrigation Test Area plot number 29. 

Please refer to Figure 1 to understand the field name and their positions. 
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The imaging system used for the aerial image acquisition was an SLR 35 mm camera with either 

100 or 200 ASA Ektachome slide film. The slides were scanned with a Nikon Scanner (Nikon Inc., 

Digital Imaging, Melville, NY, USA) at 2,800-dpi (dot per inch) resolution. The aerial images were 

saved in 8-bit TIFF format. The nominal ground resolution of the images was 60 cm × 60 cm. The 

initial raw images acquired from the airplane were not geometrically corrected. The images were 

georeferenced with ArcGIS 9.2 (ESRI, Redlands, CA, USA) with reference to actual ground control 

points acquired by Trimble (Sunnyvale, CA, USA) GeoXT GPS instrument. The geographical 

coordinates of each square quadrant corner were used for georeferencing. The images were taken using 

a broad range of the visible and NIR spectrum, ranging from 400–900 nm. Images of the study area 

were acquired with a window of 1 hour of solar noon (Central Standard Time). Color calibration of 

the aerial images of different years was performed with respect to the red, green, white, and black 

sheets placed in the field during the time of image acquisition. The camera used for the image 

acquisition was calibrated each time to an ideal standard in the laboratory before use to reduce 

aberrations in image gray levels. All the images were acquired under cloud free conditions. Other 

image acquisition parameters, such as flight height and image acquisition system (aperture and speed 

setting of the camera) were kept the same for all image acquisition dates. The images in all three years 

(1998, 1999, and 2001) were acquired in a narrow window during the growing season. Therefore, it 

was assumed that the affect of radiometric aberrations in the images were minimal for this study. 

2.2. Extraction of Vegetation Indices  

Our approach was to use various vegetation indices as input parameters for crop yield prediction 

models. Slope-based vegetation indices (NDVI and GVI) and distance-based vegetation indices (SAVI 

and PVI) were used.  

SAVI was also selected for determination of vegetation vigor. Unlike other slope-based vegetation 

indices, PVI and SAVI analysis minimizes the soil brightness effect on the image [38]. Our objective 

was to minimize the effect of bare soil on the image of the study area. Based on our observations, we 

considered canopy cover of the corn crop in the field as intermediately dense during the aerial image 

acquisition period in 1998, 1999, and 2001. Thus, 0.5 was used as the L factor using the Huete [25] 

strategy of selecting the L factor, which was also supported by Thiam and Eastmen [14]. PVI, NDVI, 

GVI, and SAVI for each image were calculated for the three years (1998, 1999, and 2001) using the 

IDRISI (IDRISI Production, Worcester, MA, USA) environment. 

Initially, the NIR- and R-band images were processed using IDRISI 32.2 software. Thus, separate 

NDVI, SAVI, PVI, and GVI images were obtained using Equations 1, 2, 3, and 4, respectively. Each 

approximately 65-hectare (805 m × 805 m) image was divided into 100 grid images of 75 m × 75 m 

size for analysis of the crop yield pattern, based on different imagery information. These grid images 

were obtained after discarding a 25 m wide portion from the edges of the entire quarter (65 ha) image 

for which crop yield information was unavailable. This individual grid image information was used as 

independent observations for crop yield estimation model building. Yield information was available 

for a few of the grid images in some quarters and was used for the study. Figure 2 shows the extracted 

grid image positions in the aerial image of one of the quarters (NW29) as an example. 
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Figure 2. Aerial image of the OITA NW29 quarter in July 30, 1998, showing grid  

image pattern. 

 

From the grid images of individual quarters for each year, means and standard deviations of NDVI, 

GVI, PVI, and SAVI were calculated for use as input parameters for the yield models. The VI images 

were transformed into ASCII format to facilitate gray values statistical manipulation. An MS-Excel 

(Microsoft Corporation, Bellevue, WA, USA) macro program was written to determine the mean and 

standard deviation from those VI grid images. The flow chart of the procedure used for extracting 

imagery information is shown in Figure 3. 

Figure 3. Schematic of working procedure for imagery input parameter extraction for 

BPNN model. 

 

2.3. Yield Data Collection 

The actual grid-based yield was recorded, along with longitude and latitude, by the yield monitor  

at 6 m intervals using the ‘Microtrack’ program (Micro Track Software Corporation, Wyomissing, PA, 
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USA). A combined harvester that used the Microtrack’ program was used for measuring the corn yield 

during harvest at each 6 m interval. It was recorded in a spatial format and stored in the memory of the 

software. Trimble differential global positioning system (DGPS) was used while recording the yield 

data and thus the error in the GPS recording was kept to a minimum of a few centimeters. The 

resulting file was downloaded into Surfer 7.0 program (Scientific Software Corp., Sandy, UT, USA). 

Using the 3-dimensional information the dataset was interpolated into the crop yield values at a 3 m 

interval using the kriging geostatistics option. An MS Visual Basic (Microsoft Corporation, 

Washington) program was written to calculate the average yield from each 75 m × 75 m plot (grid 

image) using the average sampling algorithm. The average sampling algorithm is expressed as 

n

X

Y

n

i
i

GP


 1        (5) 

where YGP is the average crop yield from the individual plot (corresponding to grid images), Xi is the 

yield from each individual 3 m grid within the 75 m × 75 m plot, and n is the total number of 

individual 3 m grids present in the entire plot. Spatial coordinates of the grid-based yield were used to 

correlate with the grid images. Actual yield from the field was used as the output neuron for the  

back-propagation neural network (BPNN) model. 

Data mining was an important aspect of the dataset preparation for crop yield estimation. 

Sometimes, due to inadequacy in data collection, data input misunderstanding, and/or equipment 

malfunction, some of the data were not recorded in the data set. These missing values can be filled by 

using the ‘attribute mean’ [39], most probable value [39], or by a global constant [39]. In a 

classification problem, the mean of the group is used for the missing number to which it belongs. In 

our study, the yield matrix collected from the field had some missing data points; those data points 

were not recorded. Thus, we used the average 8-neighborhood technique, in which the missing data 

were filled with the mean of the adjacent eight neighborhood grid values. If the missing data were in 

the edge, we chose the mean of the adjacent five neighborhood values, where one row/column 

comprised of 3 values were not available. 

2.4. Neural Network Development  

2.4.1. Input-output architecture of the NN model 

BPNN architecture was chosen to develop a predictive model for yield estimation. Thus, for four 

vegetation indices (NDVI, GVI, PVI, and SAVI) and three separate years (1998, 1999, and 2001), a 

total of 12 NN models were developed. These models used individual information like mean and 

standard deviation of each VI grid image as input and actual yield as output. In these models, the input 

and output parameters were not transformed, i.e., the actual gray value statistics obtained from image 

processing were used. 
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2.4.2. Data preprocessing/mining of input parameters  

The original input parameters were in different ranges in different VI-NN models. For example, the 

SAVI mean values ranged from −1.5 to +1.5. NDVI and GVI mean values were from +1 to −1, while 

their corresponding standard deviations were less than one. However, the PVI mean values were high 

(0.05 to 250), while their standard deviations were low. Therefore, data preprocessing was essential to 

standardize the digital information. The data in their original form were used in initial evaluation of 

individual VI models without any preprocessing. 

The best comparative individual VI model for corn crop yield estimation was chosen. The PVI 

individual model performed better compared to other individual VI models while using the 

preprocessed dataset for model building. Therefore, a data transformation technique was employed to 

enhance the model yield prediction results. PVI mean values were transformed using the log10 

transformation technique as they ranged from 0.05 to 250. The transformed PVI mean values were 

ranged from −1.3 to 2.4. Thus, three new models (Processed PVI) using the log10 transformation data 

preprocessing technique for 1998, 1999, and 2001 were obtained. Moreover, the min-max scaling 

algorithm (Equation 6) was used in the Neural Works Professional II Plus software (Neural Ware, 

Carnegie, PA, USA) to bring the data range to a scale of –1 to 1. The min-max equation used in the 

software is as follows  

XX
XXX i

n
minmax

min




       (6) 

where  Xn is the scaled value of X, Xi is the input variable X with ‘ith ’ training case, and Xmax and Xmin 

are maximum and minimum values of input variable respectively. 

2.4.3. Processing of output parameters 

The actual grid plot corn yields used as the output neurons for the BPNN models were from  

2.52 t/ha to 18.77 t/ha. It was postulated that the model prediction accuracy might improve by reducing 

the data range of the difference of actual yield using a data transformation technique. The same log10 

data transformation technique was also used to transform the output dataset in the PVI model in 

anticipation of increased model prediction ability. Nonetheless, this output transformation was not 

carried out during the preliminary model development process. 

Thus, initially twelve new BPNN yield prediction models (Table 2) were created, one each for the 

years 1998, 1999, and 2001, using original VI information as input and actual non-transformed yield 

data as output. Four more BPNN yield prediction models (Table 2) were later created using randomly 

selected data for training and testing from the combined pool data of 362 grid plots for all the three 

years. The training data included 287 grid plot information and the testing data included 75 grid plot 

information. Individual models were compared with each other based on their prediction ability and 

using the yearly model information. 
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Table 2. The performance of hybrid VI-BPNN models using original data. 

Modelg Optimized net architecture 

and network parameters 

Testing prediction 

accuracy (%) 

Actual-Predicted output linear-fit 

parameters 

Net 

arch.f 
a b 

epochs Max. Min. Avg. ac d r-sqe SEP 

(t/ha) 

GVI 98 2-1-1 0.1 0.1 5,000 57.58 9.69 24.26 136.1 0.72 0.49 1.65 

NDVI 98 2-1-1 0.1 0.1 5,000 42.10 10.76 19.36 128.4 1.23 0.16 1.98 

PVI 98 2-1-1 0.1 0.1 5,000 99.38 25.81 83.50 68.5 0.56 0.69 1.82 

SAVI 98 2-1-1 0.1 0.1 5,000 41.87 10.67 19.24 128.7 1.23 0.16 1.98 

GVI 99 2-1-1 0.1 0.5 5,000 99.99 66.77 93.86 −326.4 2.76 0.53 0.68 

NDVI 99 2-1-1 0.1 0.1 5,000 99.74 70.14 91.36 −111.4 1.59 0.38 0.62 

PVI 99 2-1-1 0.1 0.1 5,000 99.35 64.49 93.03 −186.8 1.98 0.25 0.75 

SAVI 99 2-1-1 0.1 0.1 5,000 99.68 70.20 95.37 −105.6 1.56 0.53 0.61 

GVI 01 2-1-1 0.1 0.9 10,000 99.78 77.61 94.85 −1520.9 9.14 0.30 0.61 

NDVI 01 2-1-1 0.5 0.5 50,000 99.79 81.53 95.04 693.7 −2.82 0.22 0.68 

PVI 01 2-1-1 0.1 0.1 50,000 99.97 79.34 96.04 −64.8 1.35 0.09 0.60 

SAVI 01 2-1-1 0.5 0.5 50,000 99.79 81.54 95.04 690.5 −2.80 −0.22 0.68 

GVI (Pool)h 2-1-1 0.1 0.5 5,000 99.55 69.63 91.81 −23.9 5.25 0.37 0.80 

NDVI (Pool) 2-1-1 0.5 0.5 10,000 98.44 77.54 89.11 245.6 −4.77 0.31 0.77 

PVI (Pool) 2-1-1 0.1 0.9 5,000 99.87 79.58 94.27 −54.8 0.95 0.45 0.55 

SAVI (Pool) 2-1-1 0.1 0.1 50,000 98.59 71.34 92.11 350.8 −2.80 0.32 0.64 
a Leaning rate used in neural network simulation; b Momentum term used in neural network simulation; c Intercept of 

the linear fit equation; d Slope of the linear fit equation between the actual and predicted crop yield; e Correlation 

coefficient of the linear fit model; f Architecture (BPNN); g The individual VI models used 100 grid plots for training 

and 31 grid plots for testing model development in 1998; 80 grid plots for training and 21 for testing in 1999; and 100 

grid plots for training and 30 for testing in 2001; h The pool models used randomly selected 287 grid plot vegetation 

index information as training data and 75 for testing data. They were chosen from the pool of total 362 grid plots of 

1998, 199, and 2001. 

In the best resultant VI model (PVI model), where the output yield was transformed using the log10 

technique, the predicted yield was obtained in the same log10 form. Therefore, it was necessary to 

transform the obtained output to its conventional original range format (t/ha). This transformation was 

carried out by performing an antilog (10x) of the predicted output yield for each grid plot image.  

2.4.4. Neural network model development and evaluation 

BPNN is known as a multiplayer perceptron (MLP) network, because of how it handles errors. 

Back-propagation solves the problems of “assignment of error in prediction to which input group” by 

propagating the output error backward into the network [40]. This process is repeated until the input 

layer is reached with a model of minimum possible error [40].  

A typical BPNN model consists of an input layer, hidden layer(s), and an output layer as shown in 

Figure 4. BPNN structural algorithm is very well known and widely published in many books, journal 

papers, and other neural network software manuals [33,42-44]. 
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Figure 4. Back propagation neural network (BPNN) architecture. 

 
For this study, the Neural Works Professional II Plus (Neural Ware, Carnegie, PA, USA) software 

was used to develop and test the BPNN. In the NN software, for BPNN modeling, error is  

back-propagated to the hidden layer each time and subsequently to the input layer with each iteration. 

Then, the weights connecting the input neurons (processing elements in the NN) to the hidden neurons 

changed randomly to establish a better correlation between the input neurons and the actual output. 

Thus, at a particular point, the lowest error to stop the model was obtained. The comparison of model 

prediction ability was performed on optimized models that had optimal hidden layers, hidden nodes, 

learning rate, momentum rate, and epochs. The step-by-step optimization procedure [41] was used to 

optimize the models.  

The BPNN model performances were evaluated based on Root Mean Square Error (RMSE), 

prediction accuracy, and standard error of prediction (SEP). Moreover, the correlation coefficient (r) 

between the actual and predicted output along with the slope and intercept of linear regression model 

was used. The equation for RMSE is given by 

pn

SSE
MSERMSE


            (7) 

where n is the number of observation, p is the number of parameter to be estimated and SSE and MSE 

are the sum of squared error and the mean square error, respectively. Average test prediction accuracy 

is calculated based on Equation 16: 
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where N is the total number of observations and OPA and OPP are actual and predicted  

output, respectively. 

A C++ program (MS-Visual C++, Microsoft Corporation, Bellevue, WA, USA) was developed to 

determine the predicted yield accuracy, subsequent actual yield, and predicted yield correlation 

coefficient (r), intercept (a), slope (), and SEP from the back-propagation neural network result. The 

predicted and actual output regression analysis was done using the following linear equation: 

Y = X + a         (9) 

where X and Y are predicted and actual output, respectively,  is slope and a is the intercept. The SEP 

of the predictive model is calculated by using the following equation [42]. 
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where dm is the mean of the difference between actual and predicted values Y and X (of ith individual), 

respectively and n is the total number of observations. 

3. Results and Discussion 

3.1. Best Date Image Selection for the Study 

Images from the mid cropping season (July 2nd half or August 1st half) of corn in each year best 

correlated to the yield. This was based on our earlier study [43] on the temporal analysis of different 

cropping period images with respect to their ability to predict crop yield. Thus, we used visible and 

infrared band aerial images on July 30, July 24, and August 2 for 1998, 1999, and 2001, respectively.  

3.2. VI image Analyses and Soil Line Information for PVI Analysis 

Four vegetation index images were created using the grid images of the quarters for the years 1998, 

1999, and 2001. VI images were created using the R-, G- (only in case of GVI), and IR-band image 

information using IDRISI. Examples of four vegetation index images of a single quarter (SW16) field 

for 1999 are shown in Figures 5, 6, 7, and 8, respectively. Vegetation vigor (strength) of the quarter 

could be established from these VI images by visual analysis. The non-irrigated corners of the 

quadrants outside of the irrigation pivot line were well differentiated from the irrigated area. However, 

in the irrigated portion of the field, there was less variation in vegetation vigor, since the corn crop 

with similar crop production inputs provides uniform crop vigor during the period under consideration 

in the study. There were only a few roads, walking tracks, and a farmstead (in the bottom left of the 

quadrant) in the crop field. These features were well differentiated in the vegetation index color 

images. Of course, the change in vegetation density in the images (refer to the index scale at the side) 

could be visually observed from the color images. 

Figure 5. Green vegetation index (GVI) image of the OITA SW16 quarter of 1999. 
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Figure 6. Normalized difference vegetation index (NDVI) image of the OITA SW16 

quarter of 1999. 

 

Figure 7. Soil adjusted vegetation index (SAVI) image of the OITA SW16 quarter of 1999. 

 

Figure 8. Perpendicular vegetation index (PVI) image of the OITA SW16 quarter of 1999. 
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3.3. Performance Evaluation of VI-BPNN Models  

Sixteen models using individual VI data (NDVI, GVI, PVI, and SAVI means and their standard 

deviations, respectively) for 1998, 1999, 2001, and the pool data were optimized using a step-by-step 

approach. For the optimization of model architecture, a fan-in approach was followed, i.e., the number 

of hidden nodes was less than the number of input neurons. For each individual VI model, the neural 

network architecture was 2-1-1 for all the three years. The model architecture 2-1-1 suggests that the 

back-propagation neural network had 2 input neurons, 1 hidden node in a single hidden layer, and one 

output neuron (corn yield). The modeling simulation was carried out with initial network parameters, 

such as learning rate (0.5), momentum term (0.5), and 20,000 epochs (iterations). The optimum 

network parameters for each network are provided in Table 2. Table 2 also provides the comparative 

information on the prediction ability of each model using individual VI information for three years and 

the pool.  

3.4. Individual VI Models 

Models with PVI 98 data provided better performance than the other VI models, measured on the 

basis of yield prediction accuracy of 83% with an actual and predicted output coefficient of 

determination (r2) value of 0.69 for 1998 (Table 2). However, the SAVI 99 model for 1999 provided 

the highest average prediction accuracy of 95% with an r2 of 0.53 between actual and predicted crop 

(corn) yield. The PVI 99 model could predict the corn yield with an average yield prediction accuracy 

of 93%, with an r2 of 0.25. The PVI 01 model for 2001 was the best among other individual VI models 

in that year with an average prediction accuracy of 96% (Table 2). The other individual VI models 

(SAVI 01, NDVI 01, and GVI 01) in 2001 also predicted with comparable average accuracies  

(94%–95%). However, the PVI (Pool) model was best among all other pool models. The PVI (Pool) 

model provided a 94% average testing prediction accuracy and an r2 of 0.45.  

The results showed that the use of a distance-based vegetation index, especially PVI that diminishes 

the bare soil reflectance factor from the image, was the better procedure to use in crop yield prediction. 

It should be noted that individual PVI models of each year had a very high range of input variability 

(mean ranging from 0.05–250) compared to the small range digital data used in other individual VI 

models. Therefore, the individual PVI models were found to be better models due to their 

 consistent results. 

SAVI, being a distance-based vegetation index, also provided greater yield prediction ability for 

1999 and 2001. For the year 1998, the average prediction was very low. Therefore, the SAVI model 

could not provide consistent yield prediction. One reason for this could be attributed to our assumption 

of a fixed L = 0.5 in the calculation of SAVI. Both the distance-based vegetation indices SAVI and 

PVI were found to be better input for the yield prediction models than the slope-based vegetation 

indices (NDVI and GVI). GVI models provided better corn yield prediction accuracies of 93% and 

94% in 1999 and 2001, respectively. R2 values were 0.53 and 0.30 for the respective models. The GVI 

(Pool) model also provided high testing prediction accuracy of 92% and an r2 of 0.37. However, in 

1998, the GVI model performed poorly with average yield prediction accuracy of only 24%. 

Therefore, GVI models did not show consistently better performance for these three years. On the 
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other hand, the PVI models showed consistency and comparatively better prediction accuracies. This 

finding supports the findings of Elvidge and Chen [28] for comparison of vegetation indices on the 

basis of predicting the LAI and green cover. Their finding indicated that prediction of LAI and green 

cover using SAVI and PVI based on any platform and band range were equal to each other and were 

better than those by NDVI. 

Graphical comparisons of the predicted and actual yields using different VI models are shown in 

Figures 9, 10, 11, and 12 for 1998, 1999, 2001, and pool, respectively. The PVI models predicted 

better in two different years (1998 and 2001) than all other individual VI models based on better 

average prediction accuracies. However, it did not perform similarly for the year 1999 and for pool 

data, but the prediction ability was almost similar to other individual VI models. It is important to 

mention that there was erratic crop yield in 1998 for different quadrants due to a late season pest 

attack. Most of other VI models except PVI model could not predict the crop yield competently. 

Hence, the superiority of PVI model was clearly established for that year. Therefore, the PVI model for 

each year was chosen for additional performance enhancement using log10 transformation technique.  

Figure 9. Comparison of VI-NN model prediction ability for the year 1998. 
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Figure 10. Comparison of VI-NN model prediction ability for the year 1999. 

 

Figure 11. Comparison of VI-NN model prediction ability for the year 2001. 
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Figure 12. Comparison of VI-NN model prediction ability for pool data. 

 

Again, the inconsistency in corn yield predictability in different years was because crop yield is a 

very complex phenomenon that depends upon many other non-imagery factors, such as late season 

pest attack, nitrogen stress, or water scarcity. These factors were not reflected in the aerial image taken 

in the later part of July in each year, nor considered in developing the models reported in this paper. It 

is postulated that we could obtain very high performance in crop yield prediction if the crop production 

parameters remain consistent throughout the season until the crop is harvested. The year 1998 is the 

perfect example of this.  

3.5. Performance Evaluation of Neural Networks with log10-Transformed Datasets (PVI) 

Using the log10-transformed dataset, BPNN predictive models were created for all the three years 

(1998, 1999, and 2001) and pool data using the step-by-step optimization technique (Jhang et al. [42]). 

These models were known as “transformed PVI 98, transformed PVI 99, transformed PVI 01, 

transformed PVI (Pool) models”, respectively. 

3.6. Transformed BPNN PVI Models  

The model optimization was obtained with 2-1-1-network architecture, network parameters of 

learning rate (0.1), momentum term (0.1), and 50,000 epochs for 1998 model (transformed PVI 98). 

The average yield prediction accuracy of 90% (on testing dataset) was obtained. It was almost 7% 

higher than the prediction accuracy (83%) of the earlier model that was obtained using the data in their 

original form (PVI 98 model) (Table 3). In both cases, the obtained r2 was 0.69 (Tables 2 and 3). This 

result showed the usefulness of data transformation in NN modeling to increase the prediction 

accuracy over that of earlier models, which used the data in their original form.  
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Table 3. The performance evaluation of the optimal PVI models using log10 transformed 

input (mean only) and output. 

 

Model 

 

Optimal 

Net 

Testing Models Testing Results 

Optimal model 

parameters 

Linear fit equation Accuracy (%) 

Learning 

rate 

Momentu

m term 

r-sqa ab c SEPd 

(t/ha) 

Min. Max. Avg. 

Transformede PVI 98 2-1-1 0.1 0.1 0.69 0.64 0.37 0.15 29.78 99.75 90.00 

Transformed PVI 99 2-1-1 0.1 0.1 0.20 −1.0 1.94 0.03 85.44 99.90 96.91 

Transformed PVI 01 2-1-1 0.1 0.1 0.21 0.79 0.26 0.03 92.24 99.83 97.79 

Transformed PVI (Pool)f 2-1-1 0.1 0.9 0.72 0.55 0.35 0.05 69.78 98.97 93.05 

a coefficient of determination, b intercept, c Slope of the linear fit model, and d Standard error of prediction of the model based 

on log10 transformed yield. 

e Transformed PVI BPNN model,  

f The pool models used training and testing data randomly selected from all three years.  
 

An average yield prediction accuracy of 97% was obtained for the transformed PVI 99 model. The 

accuracy was 1–6% higher than those obtained by all individual VI models of the same year, including 

PVI 99 model. The r2 obtained for Transformed PVI99 model was only 0.20 (Table 3). 

The transformed PVI 01 model provided an average yield prediction accuracy of 98%, which was a 

2% increase over that given by the earlier PVI 01 model. The model r2 was 0.21 (Table 3) an increase 

of 0.12 from the PVI 01 non-transformed model (Table 2). Average yield prediction accuracies from 

the transformed PVI models were greater than those obtained from the other individual VI models that 

used the original data without transformation.  

The linear regression analysis report of the anti-log predicted (original format) and actual test plot 

yields correlation provided the same linear regression parameters as the log10-transformed models 

(1998, 1999, and 2001) (Table 3). Figures 13, 14, and 15 compare the predicted versus actual yield 

using the anti-log transformation for 1998, 1999, and 2001. The errors of predictions are also shown in 

these figures. In the transformed PVI 98 model, five discrete yield data points out of 32 testing data 

had absolute variations of approximately 4 t/ha. Predicted yield variations for other grid plots were 

from 0–2 t/ha. However, the variations of yield prediction from actual yield were very low (0–1 t/ha) 

for most of the test grid plots (21) used in the transformed PVI 99 model. The errors in corn crop yield 

prediction were −2 to −3 t/ha. In 2001, the transformed PVI model had generally lower predicted yield 

variation than the actual yield (0–1 t/ha). Out of the 30 test grid plots, the yield prediction varied from 

the actual yield (corn) by −2 t/ha for only one individual grid plot. 
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Figure 13. Comparison of actual versus predicted corn yield using testing dataset of the 

optimal prediction model of the year 1998 (Transformed PVI 98). 

 

Figure 14. Comparison of actual versus predicted corn yield using testing dataset of the 

optimal prediction model of the year 1999 (Transformed PVI 99). 

 

Figure 15. Comparison of actual versus predicted corn yield using testing dataset of the 

optimal prediction model of the year 2001 (Transformed PVI 01). 
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The pool model that used randomly selected training and testing data over three years (1998, 1999, 

and 2001) provided an r2 value of 0.72 with an average prediction accuracy of 93.05 which was lower 

than Transformed PVI models of 1999 and 2001 but better than 1998 (Table 3). The SEP obtained 

from the model was only 0.05 t/ha (Table 3). Figure 16 provides a comparative graph of actual and 

predicted yields for those 75 testing data points. It includes the error in prediction values in t/ha. 

Figure 16: Comparison of actual versus predicted corn yield using testing dataset selected 

from all three years (1998, 1999, and 2001) pool data (Transformed PVI (Pool)). 

 
 

Again, the difference in prediction ability in various years using the BPNN could be attributed to 

the varying crop management factors (non-imagery), such as soil quality, soil and air temperature, 

applied nitrogen quantity, ground elevation, available volumetric water content, diseases etc. Many of 

these factors were not represented in the mid-crop season period image information used for the 

development of the model.  

4. Conclusions 

Four widely used spectral indices, including GVI, NDVI, PVI, and SAVI were investigated in the 

study of irrigated corn crop yield estimation. PVI, a distance-based VI technique, was found to be 

better than other individual VI techniques for yield prediction of corn, as it reduced the interference 

caused by the bare soil information present in the aerial image. PVI based models provided average 

corn yield prediction accuracies of 83.5%, 93%, 96% in 1998, 1999, and 2001, respectively. These 

accuracies were about 59 to 64% higher, −2 to 2% higher, and 1 to 2% higher than other prediction 

models in 1998, 1999, and 2001, respectively. Data transformation techniques using the  

log10-transformed procedure with PVI mean and corn actual yield increased the prediction accuracy by 

more than 7% for 1998. With this technique, testing prediction accuracies of more than 97% with the 
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log10-transformed yield were obtained for 1999 and 2001. The PVI pool model was developed using 

the randomly selected training and testing data of all three years. The transformed PVI pool model 

provided as average testing accuracy of 93% along with coefficient of determination (r2) value of 0.72 

and standard error of prediction of 0.05 t/ha. The study supports the use of crop images for yield 

estimation. The main and unique contribution of this study in precision agriculture was to show that 

distance based vegetation indices like PVI can help improve the crop yield prediction results. This 

research also verified the utility of NN application and data transformation technique as tools for crop 

yield prediction with high accuracies.  
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