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Abstract: In recent decades, eutrophication in inland and coastal waters (ICWs) has increased due
to anthropogenic activities and global warming, thus requiring timely monitoring. Compared with
traditional sampling and laboratory analysis methods, satellite remote sensing technology can provide
macro-scale, low-cost, and near real-time water quality monitoring services. The Geostationary Ocean
Color Imager (GOCI), aboard the Communication Ocean and Meteorological Satellite (COMS) from
the Republic of Korea, marked a significant milestone as the world’s inaugural geostationary ocean
color observation satellite. Its operational tenure spanned from 1 April 2011 to 31 March 2021. Over
ten years, the GOCI has observed oceans, coastal waters, and inland waters within its 2500 km ×
2500 km target area centered on the Korean Peninsula. The most attractive feature of the GOCI,
compared with other commonly used water color sensors, was its high temporal resolution (1 h, eight
times daily from 0 UTC to 7 UTC), providing an opportunity to monitor ICWs, where their water
quality can undergo significant changes within a day. This study aims to comprehensively review
GOCI features and applications in ICWs, analyzing progress in atmospheric correction algorithms
and water quality monitoring. Analyzing 123 articles from the Web of Science and China National
Knowledge Infrastructure (CNKI) through a bibliometric quantitative approach, we examined the
GOCI’s strength and performance with different processing methods. These articles reveal that the
GOCI played an essential role in monitoring the ecological health of ICWs in its observation coverage
(2500 km × 2500 km) in East Asia. The GOCI has led the way to a new era of geostationary ocean
satellites, providing new technical means for monitoring water quality in oceans, coastal zones, and
inland lakes. We also discuss the challenges encountered by Geostationary Ocean Color Sensors in
monitoring water quality and provide suggestions for future Geostationary Ocean Color Sensors to
better monitor the ICWs.

Keywords: GOCI; inland and coastal waters; atmospheric correction; algal blooms; water quality
parameters

1. Introduction

Water accounts for about 74% of Earth’s surface. Water is an important carrier and
critical factor in studying the energy exchange of surface materials [1,2]. For research
convenience in water color remote sensing, the Earth’s water is usually divided into
Case I and Case II waters based on the optical properties of water [3–5]. The optical
properties of Case I waters (open oceans) are mainly determined by phytoplankton. Case II
waters, including inland and coastal waters (denoted as ICWs; all abbreviations or symbols
in this study are shown in Table 1 and Table S1), are optical complexes determined by
phytoplankton, detritus, and colored dissolved organic matter (CDOM) [6,7]. Most of the
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Earth’s population lives near ICWs, making them the most economically and socially active
regions on Earth. Large quantities of nutrients and pollutants released by human activities
are entering various ICWs globally, disrupting their ecological equilibrium. Damaged
waterbodies will, in turn, threaten human health and lead to economic losses [8–13].
Remote sensing technology can complement traditional field sampling and laboratory
analysis methods by targeting optically active substance concentrations in monitoring
water quality, using reflectance signals. With the growing number of water color satellite
sensors launched in recent decades, numerous algorithms have been proposed to retrieve
water quality parameters from satellite images to monitor ICWs.

Table 1. Abbreviations and symbols used in this study.

Abbreviations or Symbols Abbreviations or Symbols

ABs Algal blooms OSMI Ocean Scanning Multispectral Imager
AFAI Alternative floating algae index OE Optics EXPRESS
AC Atmospheric correction POC Particulate organic carbon

CNKI China National Knowledge Infrastructure PC Phycocyanin
Chla Chlorophyll a RF Random forest

CDOM Colored dissolved organic matter Lrc(λ) Rayleigh-corrected radiance
CBI Cyanobacterial bloom intensity RI Red tide index
kd Diffuse attenuation coefficient RS Remote Sensing

DOC Dissolved organic carbon RSE Remote Sensing of Environment
FAC Floating algae cover Rrs(λ) Remote sensing reflectance
FLH Fluorescence line height Sci Total Environ Science of the Total Environment
GABI Generalized algal bloom index algorithm SIA Sea ice area
GLI Generation Global Imager SIT Sea ice thickness

GLIMR Geostationary Littoral Imaging and Monitoring Radiometer SSCs Sea surface currents
HABs Harmful algal blooms SSS Sea surface salinity

IEEE T-GRS IEEE Transactions on Geoscience and Remote Sensing SDD Secchi disk depth
ICWs Inland and coastal waters SGLI Second Generation Global Imager
JAG International Journal of Applied Earth Observation and Geoinformation SWIR Shortwave infrared

Int J Remote Sens International Journal of Remote Sensing SZA Solar zenith angle
ISPRS ISPRS Journal of Photogrammetry and Remote Sensing SPM Suspended particulate matter

LCI Linear Combination Index SCI Synthetic chlorophyll index
MERIS Medium-Resolution Imaging Spectrometer Instrument GOCI The Geostationary Ocean Color Imager
MODIS Moderate-Resolution Imaging Spectroradiometer UV Ultraviolet
NASA National Aeronautics and Space Administration VIIRS Visible Infrared Imaging Radiometer

NIR Near-infrared WR Water Research
NPP Net primary production YRE Yalu River estuary

NDVI Normalized difference vegetation index YOC Yellow and East China Sea Ocean Color
NRTI Normalized red tide index

Remote sensing of water color from space began in 1978 with the successful launch
of the Coastal Zone Color Scanner (CZCS) by the National Aeronautics and Space Ad-
ministration (NASA) [14]. The CZCS, an experimental radiometer intended to operate
for only one year, had six bands ranging from visible to near-infrared (NIR). The CZCS
provided valuable experience for subsequent water color satellite development [15–17].
After ten years, several water color sensors were launched, including the Maritime Obser-
vation Satellite (MOS) and Ocean Color and Temperature Scanner (OCTS), as well as the
Polarization and Directionality of the Earth’s Reflectances (POLDER) instrument in 1996
and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) in 1997. The SeaWiFS was the
first water color sensor that could provide continuous data on the bio-optical properties
(i.e., those properties of organisms that can be visually recorded) of the oceans [18–20]. In
1999, the United States successfully launched the Moderate Resolution Imaging Spectrora-
diometer (MODIS) on the Terra satellite, the first advanced polar-orbiting environmental
remote-sensing satellite with nine specific water color bands from 412 to 865 nm. MODIS
also had three shortwave infrared (SWIR) bands (1240, 1640, and 2130 nm), which had
very low reflectance due to the high absorption of pure water [21,22]. The SWIR-based
atmospheric correction (AC) method is critical for obtaining reliable and high-accuracy
remote sensing reflectance (Rrs(λ)) products of highly turbid ICWs. In 2002, the MODIS
sensor on the Aqua satellite was launched and began to observe the Earth along with
MODIS from Terra (Terra in the morning, Aqua in the afternoon), providing continuous
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water color observations. MODIS has been the most critical water color satellite of the
past two decades [23–28]. The Visible Infrared Imaging Radiometer (VIIRS) extends and
enhances the AVHRR and MODIS observation series with six water color wavelengths.
The three VIIRS sensors (Suomi-NPP, NOAA-20, and NOAA-21) were launched in 2011,
2017, and 2022, respectively. Since VIIRS has spectral bands similar to MODIS, the water
quality parameters that MODIS can extract or derive can also be directly monitored by
VIIRS. VIIRS can provide water color products for highly turbid ICWs, improving the
observations capabilities of MODIS, whose water color bands tend to saturate [29–34]. In
December 2018, the United States launched SeaHawk-1, a CubeSat (small, cube-shaped
satellites) fitted with a low-cost, miniature ocean color sensor called HawkEye that enables
fine spatial resolution observations of the ocean [35].

The Medium-Resolution Imaging Spectrometer Instrument (MERIS) is a sensor de-
ployed in March of 2002 onboard the polar-orbiting Envisat-1 environmental research
satellite by the European Space Agency (ESA). The most significant advantage of MERIS is
its various water color band selections (fifteen bands from 412 to 900 nm). For example, the
620 nm band can be used to estimate cyanobacteria biomass in ICWs by targeting 86 char-
acteristic pigments (phycocyanin (PC)) [36–38]. The Sentinel-3 Ocean and Land Colour
Instrument (OLCI) is based on ENVISAT MERIS’s opto-mechanical and imaging design
and was launched in 2016 (S3A) and 2018 (S3B). The OLCI presents many improvements
compared with MERIS, such as an increase in the number of spectral bands (from 15 to
21), mitigation of sun-glint contamination by tilting cameras in the westerly direction, and
increased coverage of global ocean (<4 days) and land (<3 days with one satellite, ignoring
the effect of clouds), compared to MERIS, which is approximately 15 days [39–42].

In addition to the United States and the European Union, other countries, such as
Japan, China, India, and South Korea, have also released satellites with water color bands.
Japan launched the ocean color satellite Advanced Earth Observation Satellite (ADEOS)
in 1996. ADEOS had twelve bands in the wavelength range of 400–900 nm with a spatial
resolution of 700 m [43–45]. Japan launched the ADEOS-II satellite with the Generation
Global Imager (GLI) sensor, with thirty-three bands in the 375–12500 nm wavelength
range in 2002. Among these thirty-three bands, six had a spatial resolution of 250 m.
The Second-Generation Global Imager (SGLI) satellite is an Earth observation satellite
developed by the Japan Aerospace Exploration Agency (JAXA) and launched in 2017. The
SGLI can observe 19 bands of radiation from ultraviolet (UV) to the thermal infrared region
(380 nm–12 µm). The SGLI has two polarization channels (673.5 and 868.5 nm) [46–48].
Since 2002, China has launched a series of ocean water color satellites, including HY-1A
(2002), HY-1B (2007), HY-1C (2018), HY-1D (2022), and HY-1E (2023). The water color
bands of the early HY satellite series (e.g., HY-1A, HY-1B) are very close to the MODIS
water color bands. Starting from HY-1C, the HY series satellites have specific water color
bands (e.g., UV bands). The recently launched HY-1E has two sensors, Chinese Ocean
Color and Temperature Scanner 2 (COCTS2) (with eighteen bands and a one-day revisit
cycle) and Playful Magnetic Resonance Imaging Simulator (PMRIS) (with nineteen bands
and a three-day revisit cycle) [49,50]. India has launched several water color satellites,
including Oceansat-1 (1996), Oceansat-2 (2009), and Oceansat-3 (2022). The bands have
increased from eight (Oceansat-1) to thirteen bands with a spatial resolution of 360 m
(Oceansat-3) [51–53]. The Ocean Scanning Multispectral Imager (OSMI), mounted on the
polar-orbiting satellite Korea Multi-Purpose Satellite-1 (KOMPSAT-1), was launched by
South Korea in 1999. OSMI was launched in 2010 and had six bands in the 400–900 nm
wavelength range and a spatial resolution of 1 km [54,55].

The Geostationary Ocean Color Imager (GOCI) was the world’s first geostationary
water color satellite. It was positioned in a geostationary orbit at approximately 128.2 de-
grees east longitude, providing continuous monitoring of the oceanic and ICW conditions
over the East Asian region. Subsequently, South Korea launched the GOCI-II in 2020. The
GOCI-II has many improvements over the GOCI, with more water color bands and higher
spatial resolution [56–58].
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Compared with MODIS, VIIRS, or other commonly used water color sensors, the most
attractive characteristic of the GOCI was its high temporal resolution (1 h, eight times daily
from 0 UTC to 7 UTC), which is important for the accurate monitoring of water quality,
which can change on an hourly or even sub-hourly basis in ICWs [19,59–63]. The GOCI
was the first sensor with the ability to continuously monitor water quality variations in
the ICWs with an hourly temporal resolution. The GOCI provided images to monitor the
water quality of oceans and ICWs in its target area (about 2500 km × 2500 km centered on
the Korean Peninsula) for nearly ten years, from the first image in 2011 to 2021, when it
stopped observations.

Systematic reviews of the research progress and challenges in applying the GOCI to
inland coastal waters (ICWs) have been scarcely documented until now [64–69]. Many
countries have launched or plan to launch geostationary water color satellites such as the
GOCI-II and the Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) [62].
The insights garnered by reviewing the GOCI’s functionality have helped design sensors
and construct water quality algorithms. This study aims to comprehensively review the
GOCI, providing information on the configuration parameters of the GOCI sensor, an
overview of the GOCI, an AC algorithm, AB monitoring, estimation of water quality
parameters (chlorophyll a (Chla), suspended particulate matter (SPM), water clarity. In
addition, we also reviewed other parameters such as CDOM, particulate organic carbon
(POC), dissolved organic carbon (DOC), net primary production (NPP), sea surface salinity
(SSS), sea surface currents (SSCs), sea ice, sea fog, lake ice, and the diffuse attenuation
coefficient (kd), etc.). We also discuss advantages and disadvantages as well as future trends
(Figure 1). We compare its spatial and temporal resolutions with those of MODIS, Landsat,
Sentinel, and other water color satellites, highlighting the high observation frequency of
the GOCI in Table 2.
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Table 2. Comparison of spatial and temporal resolutions of typical water color remote sensing
satellites and their launch dates.

Number Data Spatial Resolution (m) Temporal Resolution Launched Time

1 CZCS 1000 One day 1978
2 SeaWiFS 1100, 4500 One day 1997
3 MODIS_TERRA 250, 500, 1000 One day 1999
4 MODIS_AQUA 250, 500, 1000 One day 2002
5 VIIRS Suomi NPP 375, 750 One day 2011
6 VIIRS NOAA-20 375, 750 One day 2017
7 VIIRS NOAA-21 375, 750 One day 2021
8 MERIS 300, 1200 Three days 2002
9 Sentinel-3A OLCI 300 <Two days 2016
10 Sentinel-3B OLCI 300 <Two days 2018
11 ADEOS 700 Ten days 1996
12 ADEOS-II 250, 1000 Four days 2002
13 SGLI 250 One day 2017
14 HY-1A 250 Three days/Seven days 2002
15 HY-1B 250 One day/Seven days 2007
16 HY-1C 250 One day/Three days 2018
17 HY-1D 250 One day/Three days 2022
18 HY-1E 100 One day/Three days 2023
19 Oceansat-1 360 Two days 1996
20 Oceansat-2 360 Two days 2009
21 Oceansat-3 360 One day/Three days 2022
22 OSMI 1000 Three days 1999
23 GOCI 500 One hour 2010
24 GOCI-II 250 One hour 2020

2. GOCI Overview

The Communication Ocean and Meteorological Satellite (COMS), launched in 2010,
is South Korea’s first geostationary orbit meteorological satellite and was designed for
meteorological services and ocean monitoring research. It was equipped with a new
generation of GOCI sensors, which acquired data in eight bands (including six visible
light bands and two NIR bands), as shown in Table 3. Its main advantage was to provide
satellite observation of the target area eight times daily, from 0 UTC to 7 UTC. Real-time
monitoring was centered on South Korea (36◦N 130◦E) and also encompassed North Korea,
Japan, Russia, and China, including the Bohai Sea, the Yellow Sea, and the East China Sea
(Figure 2). The total coverage area was about 2500 km × 2500 km [70].

Table 3. GOCI bands and configuration parameter information.

Bands Center
Wavelength/nm Band Width/nm Spectrum Type Signal-to-Noise

Ratio

B1 412 20 VIS 1077
B2 443 20 VIS 1199
B3 490 20 VIS 1316
B4 555 20 VIS 1223
B5 660 20 VIS 1192
B6 680 10 VIS 1093
B7 745 20 NIR 1107
B8 865 40 NIR 1009
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The GOCI has fulfilled its mission for nearly a decade by playing a significant role in
ICW monitoring. The GOCI-II, which succeeded the GOCI, was launched in February 2020
and has up to 13 bands (Table 4). Moreover, the GOCI-II has a spatial resolution of up to
250 m, generating ten views of imagery a day (23 UTC to 8 UTC) [71].

Table 4. Band parameters information for GOCI-II.

Band Wavelength/nm Bandwidth/nm Primary Use

B1 380 20 CDOM
B2 412 20 CDOM, Chla
B3 443 20 Chla absorption maximum
B4 490 20 Chla, other pigments
B5 510 20 Chla, absorbing aerosol in ocean waters
B6 555 20 Turbidity, SPM
B7 620 20 Detect phytoplankton species
B8 660 20 Baseline of fluorescence signal, Chla, SPM
B9 680 10 Fluorescence signal

B10 709 10 Fluorescence base signal, AC, SPM
B11 745 20 AC, vegetation index
B12 865 40 AC, aerosol optical depth
B13 PAN 483 /

3. Bibliometric Analysis

Over the last decade, the GOCI has been increasingly used in remote sensing moni-
toring research of ICWs due to its advantages and development potential, with a surge in
research papers. Our bibliometric analysis, based on Web of Science queries with “GOCI”
and “remote sensing” as keywords, retrieved a total of 164 papers, of which 123 met
eligibility criteria. The number of publications showed a steady increase, starting from
4 papers published in 2010 to a peak of 13 in 2021 and 2022 (Figure 3 and Table S2). The
study areas mentioned in these papers are summarized in Figure 4. Additionally, we find
that articles have been published in more than 40 journals, of which 36 were published
in Remote Sensing (RS); followed by 16 in Remote Sensing of the Environment (RSE); 7 in
the Ocean Science Journal (Ocean Sci J); 6 in Optics EXPRESS (OE); 4 in the Science of the

https://kosc.kiost.ac.kr/index.nm?menuCd=43&lang=en
https://kosc.kiost.ac.kr/index.nm?menuCd=43&lang=en
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Total Environment (Sci Total Environ), International Journal of Remote Sensing (Int J Remote
Sens), and Environmental Science and Pollution Research (Environ Sci Pollut Res); and 3 in
Sensors, ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS), and IEEE Transaction
on Geoscience and Remote Sensing (IEEE T-GRS) (Figure 5).
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Using “GOCI”, “remote sensing,” and “inland and coastal waters” as the subject terms
in the “Web of Science” search, we retrieved a total of 1546 eligible authors from the core
collection. A VOSviewer statistical analysis of keywords using “author name” was used to
form a keyword map (Figure 6). The authors with the highest number of occurrences were
Kim, Jhoon, Ryu, and Joo-hyung, totaling 36 occurrences. The highest number of citations
was 1090. Recognizing the significant contributions of Chinese scholars, we extended our
search to the China National Knowledge Infrastructure (CNKI), merging the search of
Chinese and English papers to obtain a clearer picture of the application of the GOCI. A
total of 746 documents were retrieved through CNKI with GOCI as the keyword, of which
323 were classified and analyzed according to the “subject”. Figure 7 shows that most
research was on “SPM” and “Chla”, followed by “Estimation studies” and “Spatial and
temporal resolution”, which can be seen from the size of the box area.
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In summary, it can be seen that awareness about GOCI satellites is increasing annually,
and their application in various fields is becoming increasingly extensive. In the past
decade, the application of the GOCI in ICWs has become more and more comprehensive.
We found that the highest number of studies on Chla concentration estimation by scholars
was 23 articles, followed by SPM concentration estimation (22) and ABs (17), accounting for
19%, 18%, and 14%, while there were 13 and 10 studies on AC and water clarity, accounting
for 11% and 8%, respectively (Figure 8).
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4. Inland and Coastal Waters Monitoring by the GOCI

The GOCI has been entering a rapid development phase in ICW use to offer more
services for water quality detection, environmental assessment, and monitoring sudden
events. The GOCI will become an important instrument for water color monitoring in
the future and will, simultaneously, provide a reference for the design of future water
color sensors. In this section, we review the capabilities of the GOCI. We first provide an
overview of AC algorithms. We compare the advantages and disadvantages of different
methods and their applicability. Secondly, we highlight the research progress of scholars
on AB monitoring. Finally, the estimation of water quality parameters is reviewed and
divided into four aspects: Chla, SPM, water clarity, and other water quality parameters.

4.1. Atmospheric Correction of GOCI Images

AC is the process of obtaining the reflectance from the top of the atmosphere as
observed by satellites. This process is vital because the Rrs(λ) is the primary input for
most water-quality remote sensing algorithms [72–74]. The GOCI Data Processing System
(GDPS) is the official data processing software for the GOCI. The standard AC algorithm of
the GOCI evolved initially based on the algorithms of the SeaWiFS and MODIS but then
expanded and improved according to the characteristics of the GOCI’s own instrument
design and research fields [70,75–78]. This model followed a regional empirical relationship
between the Rrs(660) and two NIR bands (Rrs(745) and Rrs(865)) (denoted as SR660).
Aerosol properties from neighboring non-turbid waters were also incorporated to finalize
the AC process [75]. Ahn [79] improved the SR660 model by introducing two AC models.
The first AC model used Rrs(709) to replace the Rrs(660), taking advantage of the lower
contribution of the absorption signal of non-pure water constituents in Rrs(709). SR709
has been shown to perform well in waters with only one sediment type. The second AC
model used the 620 nm radiation (denoted as SRIOP) to estimate the Rrs(λ) in the NIR
bands. SRIOP showed good performance in waters with a variety of sediment types.

Another software, the SeaWiFS Data Analysis System (SeaDAS), provides an AC
module to the GOCI, including the Management Unit of the North Sea Mathematical
Models (MUMM) algorithm, which is used to produce Rrs(λ) products for the turbid
Hangzhou Bay and Yellow River Estuary. MUMM assumes that the magnitude of Rrs(λ) at
745 and 865 nm is dominated by the backscattering of particles. The ratio of Rrs(745) and
Rrs(865) is assumed to be constant. As aerosol types do not usually vary over spatial scales
of about 100 km, the ratio of aerosol reflectance in these two bands can also be regarded
as a constant. However, this assumption of Rrs(865)/Rrs(745) is deemed to be invalid for
highly turbid waters. Therefore, Ahn [80], Goyens [81], and Jiang [17] used a second-order
polynomial relationship to parametrize Rrs(745) and Rrs(865) for the AC of the GOCI in
highly turbid waters.

The Polymer software also offers a GOCI AC module. However, it is seldom used
for the GOCI, even though it has been shown to perform well in turbid coastal waters
when applied to satellites like MODIS and OLCI. For extremely turbid waters, such as in
parts of Changjiang Estuary, Huanghe Estuary, and Hangzhou Bay, where the SPM can
be greater than 500 mg L−1, researchers have proposed innovative AC algorithms for the
GOCI. Pan [82] proposed an improved GOCI AC algorithm for the Changjiang (Yangtze)
estuary and the adjacent coast. This approach, based on a spectral optimization algorithm
(ESOA) with a coupled water–atmosphere model, employed the simple semi-empirical
radiative transfer (SERT) model to parameterize Rrs(λ) based on the SPM concentrations
and the aerosol models proposed by [56]. SeaDAS was used to calculate the contributions
in aerosols, and the genetic algorithm optimized the ESOA AC process. For highly turbid
waters, the Rrs(λ) in the UV band may be much less than Rrs(λ) in the NIR band, enabling
the UV band’s use in estimating aerosol scattering. The UV-AC algorithm was applied to
the GOCI by using the 412 nm band as the UV band [83]. The retrieved aerosol or apparent
optical properties products of other satellite sensors can also be used to help the GOCI
obtain the Rrs(λ) products.
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Many researchers have also developed AC methods for the GOCI under non-ideal
observation conditions. Men [84] proposed a novel AC algorithm based on deep learning
(denoted as DLACC) to improve the quality of Rrs(λ) data contaminated by cloud edge
effects, including stray light, cloud shadows, and cloud adjacent effects. The observation
characteristics of GOCI images from morning to evening also determine that many images
have a larger solar zenith angle (SZA) (>70◦). It has been reported that a high SZA will
increase the residual errors in satellite Rrs(λ) products due to several factors (e.g., high
atmospheric multiple scattering effects and underestimation of the Rayleigh scattering
contribution). Li [85] proposed a new neural network (NN) AC algorithm for GOCI data
with a high SZA that retrieves Rrs(λ) directly from Rayleigh-corrected radiance (Lrc(λ)).
This NN AC algorithm can retrieve Rrs(λ) in the morning or evening when NIR and KOSC
algorithms fail.

4.2. Algal Blooms

ICWs, due to their high population density, are prone to ABs when certain meteorolog-
ical conditions arise [86–93]. The impact of ABs, such as the reduction in dissolved oxygen
and the release of toxins, presents major challenges to aquatic ecosystem management [9,94–
96]. Monitoring ABs is essential for improving water quality and the inhabitants’ quality
of life and reducing unnecessary losses. A variety of strategies have been developed to
monitor and understand algal blooms, integrating satellite data, modeling, and machine
learning techniques for improved accuracy and efficiency [97].

As presented in Section 4.1, most existing AC algorithms do not apply to the pixels af-
fected by harmful algal blooms (HABs) or red tides [79,98–101]. Kim [102] developed PUK,
a red tide quantification algorithm for the GOCI that does not require an independent AC
process, incorporating a radiative transfer simulation combined with a machine-learning
technique. Other approaches for extracting the red tide area from the GOCI include the
linear mixed model (LMM) and the normalized difference vegetation index (NDVI) thresh-
old method [103]. Also, an improved red tide index (RI) was established by Lou [67] using
normalized Lrc(λ) data at 443, 490, and 555 nm to monitor red tide changes dynamically in
the East Lake. Additionally, Lee [104] proposed a newly developed normalized red tide
index (NRTI) (calculated with Equations (1)–(4)), utilizing a spectroradiometer to observe
the spectral characteristics of red tides and seawater in real-time.

P555 = Rrs555 −
(

Rrs660 +
660 − 555
660 − 490

(Rrs490 − Rrs660)
)

(1)

P680 = Rrs680 −
(

Rrs745 +
745 − 680
745 − 660

(Rrs660 − Rrs745)
)

(2)

RTI =
P555

Rrs490
× P680

Rrs660
(3)

NRTI =
RTI

Rrs555 − Rrs745
(4)

Lagrangian particle tracking experiments allow us to understand the paths of floating
green algae patches and explain the physical forcing factors that affect the distribution
and advection of floating green algae. Using a combination of GOCI data and numerical
simulations helped track and monitor extensive areas in the Yellow Sea and East China
Sea [105]. Furthermore, Son [106] developed the Index of floating Green Algae for the
GOCI (IGAG) (Equation (5)) using multispectral band ratios of three wavelengths (555, 660,
and 745 nm) in the Yellow Sea and East China Sea.

IGAG =
R(555) + R(660)
R(745)− R(660)

+
R(745)
R(660)

(5)
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A U-net model for the extraction of long-term spatial variations in ABs along the East
China Sea was developed using the GOCI and was trained on two different datasets—six-
band channels (all visible bands) and RGB-band channels (443, 555, and 680 nm) [107].
Qiu [108] used a Multi-Layer Perceptron (MLP) machine learning algorithm to establish
a novel automatic method to continuously monitor ABs in the Yellow Sea. The method
consists of two MLP models, which consider both spectral and spatial features of Rrc maps.
Accuracy assessment and performance comparison showed that the proposed method has
the capability to provide highly accurate prediction maps of macroalgal blooms (F1-score
approaching 90% or more) with more robustness than the traditional methods. A novel
subpixel-level area estimation method for green algae blooms based on spectral unmixing
can detect the existence of green algae and determine their proportion in each pixel. A
fast endmember extraction method was proposed to calculate the endmember spectral
matrix and the abundance map of green algae automatically, which outperformed existing
techniques in experiments on GOCI data [109,110]. Qi [111] used an algal index algorithm
to quantify equivalent surface algae density (σ, 0–100%) at pixel and synoptic scales from
each cloud-free image and offered an analysis of diurnal changing patterns of σ. Ai [112]
and Wang [113] used the alternative floating algae index (AFAI) (Equations (6) and (7)),
indicated as follows:

AFAI = Rrc(λ2)− Rrc(λ2)
′ (6)

Rrc(λ2)
′ = Rrc, λ2 + (Rrc, λ3 − Rrc, λ1)×

λ2−λ1

λ3 − λ1
(7)

where the subscripts refer to bands (λ1 = 660 nm, λ2 = 745 nm, and λ3 = 865 nm). A
classification method was then devised to classify the daily change patterns of ABs auto-
matically into four types to monitor the daily dynamics in Lake Taihu. Li [114] used the
cyanobacterial bloom intensity (CBI) index (Equation (8)), combined with meteorological
factors, water stability, and nutrient factors, to monitor hourly changes in cyanobacterial
blooms in Lake Taihu, indicated here:

CBI = ∑n
i=1(AFAIi + 0.001) (8)

Xue [110] developed a new floating algae cover (FAC) model following a logistic curve
and applied it to China’s two large shallow eutrophic lakes, Lake Taihu and Lake Chaohu.

4.3. Water Quality Parameters

The estimation of water quality parameters involves the use of Rrc and the underwater
irradiance ratio to estimate Chla concentration, SPM concentration, and yellow substance
content by calculating the absorption coefficient of phytoplankton, the absorption coef-
ficient of yellow substances, the absorption coefficient of non-pigmented SPM, and the
backscattering coefficient (bbp(λ)) of SPM [65,115,116]. Most commonly, empirical or semi-
empirical and artificial intelligence models have been used [117–121]. This section mainly
introduces Chla in Section 4.3.1, SPM in Section 4.3.2, and water clarity in Section 4.3.3, and
then it briefly introduces other water quality parameters such as CDOM, POC, DOC, NPP,
SSS, SSCs, sea ice, sea fog, lake ice, and kd, among others, in Section 4.3.4.

4.3.1. Chla

The concentration of Chla is the most prevalent pigment in algae and relates to
phytoplankton biomass [97,122–127]. Chla concentration is a key indicator of water quality
and aquatic ecological health [128–130].

The GOCI official process software suggests using the empirical ocean Chla algorithm
(OC3G) for the GOCI using the 443, 490, and 555 bands (Equation (9)) [131], as follows:

Chla = 10 f0+ f1∗R+ f2∗R2+ f3∗R3+ f4∗R4
(9)
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where R is calculated as

R =
Max(Rrs(443), Rrs(490))

Rrs(555)
(10)

and the values of f0, f1, f2, and f3 are 0.0831, −1.9941, 0.5629, 0.2944, and −0.5458, respec-
tively.

Various studies have explored alternative models and algorithms for Chla estimation
in ICWs. Hong [94] explored the physical–biological interaction between anticyclonic
mesoscale eddies and Chla secondary blooms after spring blooms in the East Sea and
Japan Sea using the GOCI OC3G Chla products. Zhao [132] found diurnal changes in
GOCI-derived Chla, with generally higher values in the afternoon than in the morning,
and identified heterogeneities in the temporal and spatial domains. Sakuno [133] applied
the Linear Combination Index (LCI) algorithm to the GOCI to map Chla distribution in
Tachibana Bay, Japan, and found OC3G to have relatively large uncertainties in turbid
ICWs. Park [129] developed MFNN, a neural algorithm that can classify the pixels of GOCI
images into three Chla concentration categories (normal, abnormally high, and abnormally
low) so that outliers can be identified and provide quality control of GOCI Chla products.

A spectral index method, such as the fluorescence line height (FLH) [134], helped
construct a band conversion relationship from 681 to 685 nm to establish a phytoplank-
ton retrieval model suitable for the GOCI. Wang [68] calibrated three empirical spectral
index algorithms (OC4, OC5, and Yellow and East China Sea Ocean Color (YOC)) and
constructed four machine learning algorithms (BP neural network (BPNN), random forest
(RF), AdaBoost, and support vector regression (SVR)) using numerous in situ data collected
in the Bohai Sea and Yellow Sea. The comparison illustrated that machine learning methods
were more accurate than classic spectral index algorithms and that RF performed best. The
waters in Hangzhou Bay were classified into moderately and extremely turbid based on
the ratio of Rrs(745)/Rrs(490) [135]. Then, the OC3G and modified synthetic chlorophyll
index (SCI) index were used for these two water types to map Chla distribution in this
bay [135]. Fan [97] modified the generalized algal bloom index algorithm (GABI) to map
Chla in the turbid Changjiang Estuary. For this water region, the modified GABI algorithm
showed better accuracy and stability than the two-band ratio, as well the three-band, and
four-band spectral algorithms.

Lake Taihu is a favorite research area for GOCI Chla model construction and ap-
plication in inland waters. Bao [136] proposed a weighted algorithm to estimate Chla
concentrations based on spectral classification and weighted matching using normalized
mutual information (NMI). Huang [137] proposed a regional NIR red ratio algorithm
(Rrs(745)/Rrs(680)) for Chla retrieval in Lake Taihu. Based on this model, the hourly
Chla maps of Lake Taihu were produced from 6 August to 9 August 2013. In this paper,
the GOCI-derived Chla products revealed clear evidence of hourly spatial and tempo-
ral variations in Chla in the eutrophic inland waters. The Rrs(745)/Rrs(680) was also
used by Du [115] to analyze the spatio-temporal dynamics of Chla and their response to
river flow in the estuary of Lake Taihu. Duan [138] proposed a three-band model using
GOCI 681, 745, and 865 nm bands. Guo [139] proposed another three-band Chla model
(R−1

rs (681)− R−1
rs (709) ∗ Rrs(753)) for the GOCI. Simulated and in situ data illustrated that

the three-band model outperformed the two-band model under various SPM conditions.
Guo [140] proposed a bio-optical hyperspectral reconstruction (BBHR) algorithm to gener-
ate simulated hyperspectral Rrs(λ) ranging in wavelengths from 400 to 800 nm from the
GOCI and five widely used water color sensors. Simulated hyperspectral Rrs(λ) facilitate
the construction of more accurate Chla estimation models for optically complex turbid
inland waters. Guo [141] compared the performance of different Chla algorithms for the
GOCI and the GOCI-II in Lake Taihu, Lake Chaohu, and Lake Hongze, with Lrc(λ) as input.
The results indicated that the RF algorithm outperformed the commonly used spectral
index models.
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4.3.2. SPM

SPM refers to the substances suspended in a water body and can be used to characterize
its cleanliness [9,142–145]. SPM includes inorganic substances (such as minerals, salts, and
metals), particles from algae, silt and clay, and other organic matter [146]. SPM directly
affects the propagation of light in the water body, which in turn affects the aquatic ecological
environment and ultimately determines the primary productivity of the lake [20,147–149].

The initial GOCI SPM standard product was based on the algorithm proposed by
Ahn [150] and Moon [151] as Equation (11), indicated here:

SPM = 945.07 ∗ (Rrs(555))1.137 (11)

Ruddick [152] applied the SPM model proposed by Nechad [153] to the GOCI as
Equation (12) for comparison with the first official SPM algorithm above, as follows:

SPM = A745 ∗
π ∗ Rrs(745)

1 − πRrs(745)/C745
(12)

where A745 equals 1755, and C745 equals 0.198. This paper found that GOCI data can be
used to qualitatively study SPM dynamics except in extremely turbid waters, which are
masked out of the GOCI official Rrs(λ) products. The following standard GOCI SPM was
retrieved by the YOC algorithm based on Siswanto’s SPM retrieval model for the Yellow
and East China Sea (as Equation (13)) [154–156]:

SPM = 10(0.649+25.623∗(Rrs(555)+Rrs(670))−0.646∗( Rrs(490)
Rrs(555) )) (13)

He [83] developed a two-band ratio SPM algorithm (Rrs(745)/(Rrs(490)) for Hangzhou
Bay and nearby coastal waters. The diurnal variations derived by the GOCI showed a good
relationship with the buoy data in the region. Yu [157] proposed an experiential SPM algo-
rithm suitable for the Bohai Sea and Yellow Sea to evaluate the effects of typhoons on SPM
by carrying out parameter optimization and genetic programming, as with Equation (14).

lg(SPM) = 4.8581 + 0.8206 ∗ Rrs(745)
Rrs(490)

− 0.9998 ∗ Rrs(555)
Rrs(490)

− 3.6504 ∗

√
Rrs(490)

Rrs(555) + Rrs(660)
(14)

Also, using this model, Cheng [158] studied dynamic variations in SPM in China’s
macro-tidal Yalu River estuary. Choi [159] and Meng [160] developed a single-red band
model (Rrs(660)) to retrieve SPM on the west coast of the Korean Peninsula and Bohai Sea.
Liu [148] developed an empirical SPM retrieval algorithm based on the spectral absorption
index (SAI) in highly turbid Hangzhou Bay with Equations (15) and (16).

SAI =
d ∗ Rrs(490) +

(
1 − 555−490

745−490

)
∗ Rrs(745)

Rrs(555)
(15)

SPM = 102.01814∗SAI+0.83774 (16)

Lyu [119] developed a two-step SPM retrieval model using in situ simulated GOCI
Rrs(λ) and SPM data collected in Lake Taihu, Lake Chaohu, Lake Dianchi, and the Three
Gorges Reservoir. Firstly, a clustering method was applied to classify the turbid inland
waters into three types (Type 1, Type 2, and Type 3). Secondly, the best performing of the
three SPM algorithms was gauged and determined via comparison of their results (Type 1:
Rrs(865)/Rrs(555), Type 2: Rrs(745)/Rrs(555), and Type 3: Rrs(745)/Rrs(555)). Similarly,
Huang [137] proposed another classification-based SPM inversion algorithm in Lake Taihu.
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The waters were classified into two types based on the Rrs−depth(680) index calculated with
Equation (17), indicated as follows:

Rrs−depth(680) =
{

Rrs(660) + [Rrs(745)− Rrs(660)] ∗ 745 − 680
745 − 660

}
− Rrs(680) (17)

For the waters with Rrs−depth(680) ≤ 0.005, the two-band ratio (Equation (18)) was
used, and for the waters with Rrs−depth(680) > 0.005, the three-band algorithm (Equation
(19)) was used.

BRSPM = 102.2135/(1+exp (−( Rrs(745)
Rrs(555)−0.1223/0.1439))) (18)

TBASPM = 102.314/(1+exp (−( Rrs(745)+Rrs(680)
Rrs(555) −0.6263)/0.431)) (19)

Du [115] proposed a single NIR band algorithm (Rrs(745)) to retrieve SPM in the
estuary of northwest Lake Taihu. Zhang [161] developed a semi-analytical SPM model
for estimating SPM using the satellite in situ matchup data collected in Lake Taihu and
Hangzhou Bay. He [162] calibrated the SPM model proposed by He [83] to map SPM
products using the GOCI in Lake Taihu as Equation (20).

SPM = 100.61+1.43∗Rrs(745)/Rrs(490) (20)

The GOCI-derived SPM products are consistent with a two-dimensional model that
couples shallow water and SPM transport dynamics. The high-spatial-resolution GOCI
SPM product combined with the hydrodynamic model provides the opportunity to monitor
the suspended solids transport with high-time frequency monitoring. Xu [145] developed
a quadratic polynomial model of one variable (Rrs(745) + Rrs(865)) to map SPM in Lake
Taihu (Equation (21)).

SPM = 32, 517 ∗ (Rrs(745) + Rrs(865))2 + 1327.2 ∗ (Rrs(745) + Rrs(865)) + 0.5 (21)

From the hourly GOCI-derived SPM products, they found that the Tiaoxi River greatly
influenced the spatial distributions of SPM in Lake Taihu by the plumes after heavy
precipitation events. Lei [147] developed a multivariate linear stepwise regression method
for the retrieval of the surface horizontal distribution of SPM using the GOCI. Then, the
estimation model of the vertical structure of underwater SPM was constructed using layer-
by-layer recursion. These efforts retrieved the horizontal and vertical distribution of SPM
concentration from GOCI data over Lake Hongze.

4.3.3. Water Clarity

Water clarity is a critical parameter for the optical properties of ICWs [145,163–166],
vital for characterizing the turbidity and absorption/scattering of light by water bodies. It
directly relates to the inherent optical properties of waterbodies, such as Chla, SPM, and
phytoplankton biomass [167–172].

To estimate water clarity using GOCI data, Zhou [172] proposed a regional linear
corrected Secchi disk depth (SDD) model based on the mechanical model developed by
Lee [173] (denoted as SDDLee). This model uses the GOCI Rrs(λ) derived by the MUMM
in Jiaozhou Bay, and its formulation is given in Equation (22) as follows:

SDDLee =
1

2.5Min(Ktr
d )

In(

∣∣0.14 − Rtr
rs
∣∣

0.013
) (22)

where Min
(
Ktr

d
)

is the minimum Kd in the visible bands (412, 443, 490, 555, 660, and
680 nm), while Rtr

rs is the Rrs(λ) corresponding to the waveband with the minimum Kd
value. The model considers factors like SZA, tides, and wind force to control diurnal
variations. Liu [174] validated the suitability of SDDLee using in situ Rrs(λ) products and
SDD in Jiaozhou Bay and Qingdao coastal areas. Liu [175] compared the retrieved SDD
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by different atmospheric correction products, and the previous conclusions regarding the
hourly variations in biochemical parameters using the GOCI were improved. Ref. [168]
found that the retrieved SDD by SDDLee was underestimated for their in situ data collected
in the Bohai Sea and Yellow Sea due to the uncertainties in the estimation of Kd(490) in
SDDLee in turbid waters. They replaced the original Kd(490) estimation method using a
weighted Kd(490) proposed by Mao [176] combined with two Kd(490) estimation methods
(one for clear and one for turbid water) and a weighted coefficient. Ding [177] used the
GOCI-derived Chla and SPM products to calculate a(λ) and bb(λ) and then input them
into the semi-analytical model proposed by He [178] and He [179] (denoted as SDDHe) to
retrieve SDD in the eastern Chinese seas with Equation (23).

SDDHe =
1

4(a(λ) + bb(λ))
In(

ρpαβ(a(λ) + bb(λ))

Ce f bb(λ)
) (23)

Many studies have shown that SDDLee is biased in estimating SDD in inland wa-
ters [167,180]. Bai [167] used a linear relationship to correct SDDLee (denoted as SDDBai)
and applied this algorithm to the GOCI in Lake Taihu with as Equation (24).

SDDBai = 2.68 ∗ 1
2.5Min

(
Ktr

d
) In

(∣∣0.14 − Rtr
rs
∣∣

0.013

)
+ 0.0046 (24)

Zeng [181] proposed an improved Quasi-Analytical Algorithm (QAA)-estimated SDD
algorithm (denoted as SDDZeng) for the GOCI using in situ data collected in Lake Taihu,
Lake Hongze, Lake Dongting, and Lake Erhai. SDDZeng firstly estimated bb(745) using
QAA with an assumption of the pure water absorption (aw(745)), which is dominated at
this band (a(745) ≈ aw(745)). Kd(745) was estimated using Equation (25) as follows:

Kd(745) = (1 + 0.0124 ∗ θs) ∗ aw(745) + 3.16 ∗ (1 − 0.52 ∗ exp(−10.8 ∗ aw(745))) ∗ bb(745) (25)

where θs represents the SZA. Zeng [181] found that the Min
(
Ktr

d
)

is at 555 nm in Lake Taihu
and Lake Hongze. Thus, a linear relationship was built to convert Kd(745) to Kd(555).

Kd(555) = 0.99 ∗ Kd(745)− 1.96 (26)

The retrieved Kd(555) was used to retrieve SDD using Equation (22).
In this section, we summarized the proposed algorithms of the GOCI by researchers

in ICWs classified by different water quality parameters. These algorithms can be classified
as empirical algorithms, semi-analytical algorithms, analytical algorithms, and machine
learning algorithms. For Chla, the most widely used algorithms include OC3G (official
algorithm), LCI, FLH, SCI, CABI, YOC, BPNN, RF, SVR, NMI, and BBHR. For SPM, the main
used algorithms are three-band semi-analytical algorithms and empirical band combination
algorithms (e.g., SAI). For SDD, the QAA and improved QAA algorithms are the most
widely used.

4.3.4. Other Parameters

In addition to the main water quality parameters above, scholars have also conducted
research on CDOM, POC, DOC, NPP, SSS, SSCs, sea ice, sea fog, lake ice, kd, and other
parameters. CDOM is the main constituent of dissolved organic matter (DOM) and a
key indicator of water quality conditions [182–184]. Based on QAA and QAA_CDOM,
Wang [185] developed a new algorithm named QAA_cj to estimate CDOM concentration.
The algorithm can easily be applied to high-turbidity coastal waters. A simple approach
to estimate the CDOM concentration was also proposed based on the datasets derived
from in situ measurements during four cruise surveys over the Bohai Sea and Yellow Sea.
Eight band combination forms (using Xi as a delegate, where i denotes the numerical
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order of band combination forms), including single bands, band ratios, and other band
combinations by Rrs(λ) were trained to test the correlations with the CDOM concentra-
tions [186]. POC is an essential form of water carbon, taking part in various biogeochemical
processes and influencing both organic and inorganic carbon cycles [187–190]. A remote
sensing algorithm that can monitor and accurately estimate the changes in POC fluxes in
real-time at the Yangtze Estuary hydrological station was established using GOCI satellite
data [191,192]. DOC refers to various dissolved organic molecules ubiquitous in aquatic
systems. It is a dynamic reduced carbon pool with important ecological and geochemical
functions in inland and coastal waters [193,194]. A regional, red–blue ratio algorithm was
proposed to estimate Lake Taihu’s surface DOC and analyze its spatiotemporal variation
characteristics [195]. Accurate assessments of spatial and temporal changes in NPP in
the euphotic zone are critical to understanding the role of the ocean in regulating Earth’s
climate and assessing future fisheries’ production, as well as predicting the impacts of ocean
warming, hypoxia, and ocean acidification on marine ecosystems [196–198]. Wu [198] used
the Adsorption Based Productivity Model (ABPM) to monitor diurnal and daily surface
and euphotic-column integrated NPP. Global changes in SSS can simulate the variations in
the exchanges between the atmosphere and the ocean surface, as well as the ocean surface
and the deep sea. SSS is also involved in the intensification of the global water cycle. For
the estimation of SSS, a multi-layer perceptron neural network (MPNN) was employed to
train the nonlinear processes of GOCI-II spectral measurements as inputs and the SSS of
the Soil Moisture Active Passive (SMAP) satellite as the target [102]. SSCs are one of the
most important physical properties in ocean dynamics and are crucial for understanding
ocean physical and biogeochemical processes [69,199,200]. A method based on maximum
cross-correlation (MCC) was used to derive changes in SSCs in the highly turbid waters of
Hangzhou Bay to capture better tidal phase variations [77]. Sea ice monitoring is vital for
marine traffic, fisheries, ports, and weather forecasting. A simple method was proposed
that exploited the spatial variability of the sea ice surface and applied spatial convolu-
tion filtering, in which the center pixel within the window was replaced by the standard
deviation of all pixels within the window, effectively separating thin ice area from open
water [201]. Also, accurately detecting sea ice thickness (SIT) is crucial for understanding
climate change. Gu [202] proposed an SIT inversion method for Liaodong Bay based on
Rayleigh scattering corrected reflectance, which has practical advantages in estimation
accuracy and spatiotemporal resolution. This method can also be applied to the global
ocean. Also, an object-based feature extraction method and an albedo-based thickness
inversion model were used for estimating SIA and SIT, respectively, by Yan [203] to reach a
better effect. The emergence of sea fog leads to low visibility and seriously threatens the
safety of maritime activities. Therefore, monitoring changes in sea fog is particularly im-
portant [204]. Jeon [205] proposed a method to identify sea fog based on the convolutional
neural network transfer learning model (CNN-TL). Zhou [204] established a sea fog dataset
(SFDD) and a dual-branch sea fog detection network (DB-SFNet). Lake ice is one of the
essential climate variables of the cryosphere and is closely related to lake environments,
ecological regulation, and the safety of human activities [206–208]. Yang [209] used the
enhanced spatial and temporal adaptive reflection fusion model (ESTARFM) to merge
Landsat and GOCI images and extracted the length and angles of the linear structure to
monitor the hourly changes in the surface morphology of Lake Chagan. kd is an important
optical property of water, which describes the penetration of incident solar radiation in
the water column. kd is a quasi-inherent optical property since it depends on the water
constituents and the distribution of the ambient light field [210–213]. An improvement of
the parameterization equations in the inverse scheme of the 2Seacolor model was used in
the Yangtze Estuary to retrieve kd [214].

5. Discussions

This section discussed the limitations, uncertainties, and future directions of the GOCI
and other geostationary ocean color satellites.
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5.1. The Limitations and Uncertainties of Current Studies for the GOCI

Most water color sensors (e.g., MODIS, OLCI, MERIS, and VIIRS) observed the surface
water on Earth between the local time of 9:30 a.m. and 2:30 p.m. This is the ideal time
window for water color satellite observation. GOCI observation images before or after
this time window may face many issues. Firstly, ensuring a sufficient signal-to-noise ratio
(SNR) is essential for achieving stable and reliable satellite sensor AC and water quality
modeling [215,216]. GOCI images observed in the morning and dusk may have an insuffi-
cient SNR, especially in winter [217]. In addition to the SNR, higher observation angles can
interfere with the GOCI’s AC and water quality modeling processes. For the AC, a high
sun zenith angle will increase the residual errors in the satellite Rrs(λ) products by high at-
mospheric scattering effects and underestimation of the Rayleigh contribution [24,72]. For
water quality modeling, high solar zenith angles (for example, greater than 60◦) influence
the above-water Rrs(λ) when extrapolated from the in-water remote sensing ratio. It, in
turn, impacts the accuracy of downstream water color retrievals [218]. Until now, we have
only found a few papers about obtaining reliable GOCI atmospheric correction and water
quality parameter products under unsatisfactory observing conditions [85,131,219].

In addition to high observations, many other issues may reduce the image quality of
the GOCI. The sun’s glint reflectance of the GOCI is reported to be minor, even in sum-
mer [75]. However, GOCI observation images may also be affected by the sun glint through
the specular reflection phenomenon [220,221]. The satellite observation angles of the GOCI
can simply be assumed to be constant. The sun observation angles changed significantly in
one day. Under some specific sun, satellite observation angle combination, and water wave
conditions, there may be unignorable sun glint reflectance in some observation regions of
the GOCI image. The GOCI L2 data have various flags; one is “Bright_Pxl_Adj” (bright
pixel adjacency warn) [222]. We are unsure whether it can determine which water pixels are
affected by the adjacency effects. There are still too few studies on the impact of adjacency
effects on GOCI nearshore water monitoring [56,84,223]. The improved spatial resolution of
the GOCI-II (250 m) provides the possibility for monitoring smaller bays, lakes, reservoirs,
and rivers. Studying the adjacency effect removal method of the GOCI-II is significant for
its application in the areas above.

5.2. Integrating Geostationary Ocean Color Satellites, Unmanned Aerial Vehicles, and Ground
Collaborative Observation

Due to cloud interference, it is difficult for the GOCI to take advantage of its high
temporal resolution characteristics, especially in cloudy and humid areas [224]. With the
development of satellite remote sensing technology, unmanned aerial vehicles and ground
observation technology are also growing rapidly, as shown in Figure 9. The development
of unmanned aerial vehicles includes improved sensors and payloads, enhanced flight
control systems, miniaturization, lightweight design, and higher battery life [225–227].
Ground observation technology progress includes improving sensors and algorithms,
providing more accurate estimates of water quality parameters, and the ability to monitor
continuously, in the long term, in real time, and automatically [228,229]. The GOCI can be
used to produce water quality products in clear weather. In cloudy weather, unmanned
aerial vehicle observation results and point ground observation results for an area of interest
can be input into hydrodynamic models to generate a simulated numerical water quality
dataset [230,231]. The integration of technology can achieve all-weather water quality
monitoring of ICWs.
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5.3. Fusion of Geostationary Ocean Color Satellites with Other Satellite Products

Image fusion can combine the advantages of different temporal, spatial, and spectral
resolution sensors to improve the monitoring of water quality in ICWs [175,232]. Geosta-
tionary meteorological satellites (GMSTs) tend to have higher temporal resolution than
geostationary ocean color satellites (GOCSs). For example, Himawari 8/9 acquires data
every ten minutes, while the GOCI acquires data only once an hour. However, the low
signal-to-noise ratio (SNR) and spatial resolution limit the application of GMSTs in water
quality monitoring [233]. Taking GOCSs as a reference and fusing them can improve the
spatial resolution of GMSTs and enhance spectral information. The fused GMST may pro-
duce better water quality products in ICWs than the original images [234]. The schematic
diagram of image fusion is shown in Figure 10.
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Similarly, fusion can also improve GOCS products. The fusion of GOCSs and medium-
and high-resolution satellites can improve the spatial resolution of GOCSs, providing
more spatial details of ICW quality changes [18]. The fusion of GOCSs and hyperspectral
satellites will enhance the spectra of GOCSs, improving the accuracy of the water quality
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products of a GOCS [235]. In addition to multiple daily observations, a GOCS, like the
GOCI, can provide long-time series observation data. Developing technologies to integrate
GOCS products with other long-term series satellite products (SeaWiFS, MODIS, and VIIRS)
will contribute to long-term series of water quality assessments [236–239].

5.4. Improving Spectral, Spatial, and Temporal Resolution of Geostationary Ocean Color Sensors
5.4.1. Improving Spectral Resolution

The GOCI was equipped with eight bands (six for visible light and two for NIR). The
next generation of the GOCI (GOCI-II) increased the number of bands to thirteen (one for
UV, eight for visible, three for near-infrared, and one for broad bandwidth). The new 380
nm ultraviolet band can be used to retrieve parameters related to the absorption of CDOM
(e.g., DOC, carbon dioxide, or organic pollutants) [117,240]. It also allows for applying
ultraviolet AC methods to the GOCI to provide more reliable Rrs(λ) products [66,241]. The
510 nm band can potentially improve the performance of OC3G or other blue–green Chla al-
gorithms in relatively clear ICWs [242]. PC can characterize cyanobacterial biomass, which
has a distinct absorption peak at about 620 nm [243,244]. Many inland lakes on the Korean
Peninsula and East China have frequent occurrences of cyanobacterial blooms [245–248].
The newly added 620 nm band allows the GOCI-II to monitor cyanobacteria blooms quan-
titatively. The last new band of the GOCI-II is 709 nm. Many studies have illustrated this
band’s usefulness in Chla retrievals [249,250]. The GOCI-II has the potential to provide
more accurate Chla products in turbid ICWs.

The newly added five bands provide many advantages to the GOCI-II compared with
the GOCI. The GLIMR is a geostationary sensor funded by the NASA Earth Venture Instru-
ment program, which is anticipated to launch within this decade (around 2026–2027) [62].
The GLIMR is planned to provide 340–1025 nm hyperspectral data of aquatic ecosystems.
The hyperspectral characteristic of the GLIMR may provide more reliable atmospherically
corrected Rrs(λ) products and more accurate water quality products (e.g., Chla, SPM, or
SDD). By targeting absorption or backscatter characteristics at different wavelengths, the
GLIMR may provide more new water quality parameters (e.g., algae species, oil spills,
microplastics, or greenhouse gases). The GOCI, GOCI-II, and GLIMR (planned) have
only visible and NIR bands. The complex optical properties of ICWs require that Rrs(λ)
products are combined with different AC algorithms based on the bands’ wavelengths (e.g.,
UV, visible, NIR, and SWIR bands) [251]. The next-generation GOCSs should have more
band choices.

5.4.2. Improving Spatial Resolution

Most of the applications of the GOCI in inland waters have been carried out in Lake
Taihu, Lake Hongze, and Lake Chagan. The coarse spatial resolution of 500 m makes it
hard to use the GOCI to monitor water quality in small lakes. With an improved spatial
resolution of 250 m, the GOCI-II can monitor more inland waters than the GOCI. Inland
lakes with small sizes are more easily affected by human activities and global warming
than large lakes [252,253]. A higher spatial resolution allows future GOCSs to monitor the
water quality of small and medium-sized lakes.

5.4.3. Improving Temporal Resolution

The most significant advantage of a GOCS is its high temporal resolution. The obser-
vation times of GLIMR, the GOCI, and the GOCI-II are six (planned), eight, and ten per
day. Many water quality changes, such as AB vertical and horizontal movements [9,254],
lacustrine greenhouse gas emission fluxes [255], and estuary sediment fluxes [256,257],
tend to happen rapidly, at sub-hourly time scales. We partly summarize and provide some
possible future directions for the GOCI and other next-generation GOCSs in this study.
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5.5. Further Expansion of GOCI-II Products

Through better spatial and temporal resolution, observation area, optical perfor-
mance, etc., the GOCI-II has 26 types of official products rather than GOCI 13 types
(https://kosc.kiost.ac.kr/index.nm?menuCd=44&lang=en accessed on 20 March 2024).
The GOCI-II has the potential to provide more products to help protect the environment of
ICWs and coastal areas. The new 380 nm ultraviolet band can be used to retrieve parame-
ters related to the absorption of CDOM, DOC, carbon dioxide, organic pollutants, hypoxia,
or oil spills [117,240,258–261]. It also allows for applying ultraviolet AC methods to the
GOCI to provide more reliable Rrs(λ) products [66,241]. The 510 nm band can potentially
improve the performance of OC3G or other blue–green Chla algorithms in relatively clear
ICWs [242]. PC can characterize a cyanobacterial biomass with a distinct absorption peak
at about 620 nm [243,244]. Many inland lakes on the Korean Peninsula and East China
have frequent occurrences of cyanobacterial blooms [245–248]. The newly added 620 nm
band allows the GOCI-II to monitor cyanobacteria blooms quantitatively. The last new
band of the GOCI-II is 709 nm. Many studies have illustrated this band’s usefulness in Chla
retrievals [249,250]. The GOCI-II has the potential to provide more accurate Chla products
in turbid ICWs. As we tested, within one hour of observation, the GOCI-II released the
image on its official website for users to download. The quasi-real-time data can be used to
monitor many pollution events (e.g., blooms, oil spills, and hypoxia) in the ICWs. In addi-
tion to being in the water, the GOCI-II can also monitor intertidal zones where the ocean
meets the land between high and low tides [262]. They are home to diverse organisms (e.g.,
algae, mollusks, crustaceans, fish, and birds) specially adapted to survive in this dynamic
environment [263]. These zones experience drastic changes in environmental conditions
(e.g., fluctuations in temperature, salinity, and exposure to air and sunlight, depending on
the tide cycle) [264]. The higher temporal resolution and improved spatial resolution of the
GOCI-II can be used to identify and classify intertidal areas.

6. Conclusions

We reviewed the applications of the GOCI for AC and water quality parameter retrieval
in ICWs. First, we introduced the GOCI specifications and compared them with those of
other satellites, highlighting the advantages of the GOCI in high-temporal water quality
monitoring. Then, AC and water quality (such as ABs, Chla, SPM, SDD, and others)
algorithms for the GOCI were systematically introduced. The results of the bibliometric
analysis showed that many papers were published in the last thirteen years, starting in 2010.

A number of AC or water quality retrieval models for the GOCI have been proposed
over the years. These models form a GOCI algorithm library for monitoring water quality
in various ICWs. Due to the complex optical properties of ICWs, it is difficult to identify
one best performing model of AC or one specific water quality parameter (ABs, Chla, SPM,
SDD, or others), as they differ across ICW waterbodies or even across the seasons in the
same waterbody. The GOCI provides valuable experience for effectively using a GOCS to
monitor the water qualities of ICWs. So far, there is still no official GOCI product for water
quality monitoring in ICWs. Classifying the ICWs into different water types and retrieving
the water quality by the most suitable model for each type may provide an official, reliable,
and high-accuracy water color product for various ICWs.

We partly summarize and introduce future directions for GOCI technology and other
next-generation GOCSs to better serve the water quality monitoring of ICWs. Cloudy
weather limits the use of high-temporal GOCS satellites. Integrating GOCSs, unmanned
aerial vehicles, and ground collaborative observation can achieve all-weather water quality
monitoring of ICWs. A GMST tends to have higher temporal resolution than a GOCS
and lower spatial and spectral resolutions. The fusion of GOCSs with other GMSTs will
improve the spatial and spectral ability of the GMSTs. The fusion of GOCSs with other high
spatial or spectral sensors will enhance the image quality of the GOCS itself to monitor
ICWs. We suggest that the next generation of GOCSs improve their spatial, spectral, and
temporal resolution to better monitor the water quality of ICWs.

https://kosc.kiost.ac.kr/index.nm?menuCd=44&lang=en
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