
Citation: Kalliovaara, J.; Jokela, T.;

Asadi, M.; Majd, A.; Hallio, J.;

Auranen, J.; Seppänen, M.; Putkonen,

A.; Koskinen, J.; Tuomola, T.; et al.

Deep Learning Test Platform for

Maritime Applications: Development

of the eM/S Salama Unmanned

Surface Vessel and Its Remote

Operations Center for Sensor Data

Collection and Algorithm

Development. Remote Sens. 2024, 16,

1545. https://doi.org/10.3390/

rs16091545

Academic Editor: Gabriel Navarro

Received: 29 February 2024

Revised: 16 April 2024

Accepted: 25 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Deep Learning Test Platform for Maritime Applications:
Development of the eM/S Salama Unmanned Surface Vessel and
Its Remote Operations Center for Sensor Data Collection and
Algorithm Development
Juha Kalliovaara 1,2,* , Tero Jokela 1 , Mehdi Asadi 1 , Amin Majd 1 , Juhani Hallio 1 , Jani Auranen 1 ,
Mika Seppänen 1, Ari Putkonen 1 , Juho Koskinen 1 , Tommi Tuomola 1 , Reza Mohammadi Moghaddam 3

and Jarkko Paavola 1

1 School of ICT, Turku University of Applied Sciences, 20520 Turku, Finland; tero.jokela@turkuamk.fi (T.J.);
mehdi.asadi@turkuamk.fi (M.A.); amin.majd@turkuamk.fi (A.M.); juhani.hallio@turkuamk.fi (J.H.);
jani.auranen@turkuamk.fi (J.A.); mika.seppanen@turkuamk.fi (M.S.); ari.putkonen@turkuamk.fi (A.P.);
juho.koskinen@turkuamk.fi (J.K.); tommi.tuomola@turkuamk.fi (T.T.); jarkko.paavola@turkuamk.fi (J.P.)

2 Department of Computing, University of Turku, 20014 Turku, Finland
3 Independent Researcher, Mashhad 1696700, Iran; reza.mohammadi.me2@gmail.com
* Correspondence: juha.kalliovaara@turkuamk.fi

Abstract: In response to the global megatrends of digitalization and transportation automation,
Turku University of Applied Sciences has developed a test platform to advance autonomous mar-
itime operations. This platform includes the unmanned surface vessel eM/S Salama and a remote
operations center, both of which are detailed in this article. The article highlights the importance of
collecting and annotating multi-modal sensor data from the vessel. These data are vital for developing
deep learning algorithms that enhance situational awareness and guide autonomous navigation. By
securing relevant data from maritime environments, we aim to enhance the autonomous features of
unmanned surface vessels using deep learning techniques. The annotated sensor data will be made
available for further research through open access. An image dataset, which includes synthetically
generated weather conditions, is published alongside this article. While existing maritime datasets
predominantly rely on RGB cameras, our work underscores the need for multi-modal data to advance
autonomous capabilities in maritime applications.

Keywords: deep learning; multi-modal sensoring; datasets; unmanned surface vessel; remote operations
center; situational awareness; sensor fusion; open-access datasets; synthetic data; autonomous
navigation

1. Introduction

Digitalization and increased autonomy in transportation are expected to advance
significantly in the near future. This development has the potential to create more sus-
tainable, safer, more efficient, and more reliable service chains, in line with the two global
megatrends of digitalization and climate neutrality. With the constant growth of maritime
traffic, safety and security are also of paramount importance. The autonomous operation
of maritime vessels is globally recognized as a promising solution to address these safety
and security concerns.

Unmanned surface vehicles (USVs) are boats or ships that operate on the water without
a crew. They can be controlled remotely or autonomously and have various applications
in civil and military fields, such as environmental monitoring, search and rescue, mine
clearance, and anti-submarine warfare. USVs have several advantages over manned vessels,
such as lower cost, smaller size, and higher efficiency. USVs also require remote observation

Remote Sens. 2024, 16, 1545. https://doi.org/10.3390/rs16091545 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16091545
https://doi.org/10.3390/rs16091545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3096-3313
https://orcid.org/0000-0002-9953-7355
https://orcid.org/0000-0001-5834-4701
https://orcid.org/0009-0005-0615-0493
https://orcid.org/0009-0006-1034-6330
https://orcid.org/0009-0004-5779-5112
https://orcid.org/0000-0002-7369-0052
https://orcid.org/0009-0006-4219-6015
https://orcid.org/0000-0001-7033-7598
https://orcid.org/0000-0002-8891-7395
https://orcid.org/0000-0002-6322-3610
https://doi.org/10.3390/rs16091545
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16091545?type=check_update&version=3


Remote Sens. 2024, 16, 1545 2 of 35

and a mechanism for remote control. As such, a Remote Operations Center (ROC) is a
critical component of a USV.

This article describes the development of a test platform comprising a USV and an
ROC at Turku University of Applied Sciences (Turku UAS). Our USV, named eM/S Salama,
features an aluminum catamaran hull that measures 6.8 m in length and 3 m in width and
operates using electric propulsion. Our USV is larger than the typically available research
prototypes and can carry up to 10 persons. The catamaran hull provides a stable platform
and can stand waves up to 2 m in height. Our ROC enables the control and monitoring of
the USV remotely via wireless links, such as mobile networks or satellite connections, that
offer sufficient data rate and latency. We present in detail the whole process of building the
test platform.

The article highlights the challenges in enhancing autonomous features in maritime
environments and the need for distinct deep learning applications tailored to specific
settings. It also emphasizes the importance of securing adequate and relevant data for deep
learning algorithms, which remains a primary challenge in the domain of autonomous
maritime vessels. To address this, we introduce a multi-modal sensing and data collection
system integrated into the USV eM/S Salama. Each sensor type has unique advantages
and limitations, and no single sensor can guarantee sufficient reliability or accuracy in all
different situations. Therefore, sensor fusion, which combines data from different sensors,
is used to provide complementary information about the surrounding environment.

The aim is to create synchronized and annotated multi-modal datasets to be published
in open access. The article presents our first published dataset. The first version of our
sensing system includes RGB and thermal cameras, stereo vision camera, and a light
detection and ranging (LiDar) sensor. The data collected are stored in a data platform in a
format that is readily usable for the development of deep learning algorithms. These data
are crucial for the advancement of deep learning and computer vision techniques, which are
employed to gain situational awareness of the USV’s environment. The acquired situational
awareness plays a key role in providing decision support and facilitating autonomous
navigation decisions.

This paper is organized as follows. Section 2 reviews the existing research on USVs,
exploring established research prototypes and pertinent regulations governing USVs.
Section 3 gives a detailed description of our test platform and the construction of the
USV and its associated ROC. Section 4 provides an in-depth look at our data collection
system, data storage platform, and the data that we have collected. It also outlines the
methodologies we have employed for data annotation and showcases a selection of the
deep learning algorithms we have developed. Section 5 discusses the significance of our test
platform and outlines our ambitious plans for its future expansion. The paper concludes
with Section 6, which summarizes the key points and findings.

2. Background

Maritime transportation is currently undergoing a shift towards digitalization and
automation [1]. Digitalized and automated operations and autonomous navigation can
help in mitigating accidents due to human errors [2]. However, the role of humans is
constantly increasing in the design phase of autonomous shipping systems [3].

International Maritime Organization (IMO) has defined four levels of autonomy for
USVs [4]. The first level provides automated processes and decision support, while the
second is a remotely controlled ship with seafarers onboard and the third is a remotely
controlled ship without seafarers onboard. The fourth level is a fully autonomous surface
vehicle. To enable full autonomy, for example, methods to define the ship state, smart path
planning and navigation, collision avoidance, remote monitoring and control, wireless
communication systems, sensors, and deep learning algorithms to provide situational
awareness are needed. The development of autonomous shipping requires a delicate
balance between technological advancements and safety considerations, ensuring the
well-being of both seafarers and the environment [5].



Remote Sens. 2024, 16, 1545 3 of 35

2.1. USV Research and Projects

Many researchers and organizations around the world are working on improving
the performance and functionality of USVs, and many prototypes have been successfully
tested and deployed. The amount of research and trials conducted on USVs has increased
significantly, especially during the past 10 years, as we are now starting to have the
technologies to build USVs available at a reasonable cost [6–12].

However, USVs are not yet at a phase where they are in wide commercial use. The
automation of processes in shipping is constantly increasing, but remotely controlled or
autonomous vessels are not yet seen in normal traffic [13]. More trials are needed to see
if USVs are ready for industrial practice and if they can be used in a safe and efficient
manner. The trial results will also contribute to the development of the relevant regulation.
A comprehensive comparison on the past and recent USV surveys, projects and prototypes
is available at [14].

In Europe, the Partnership on Zero-Emission Waterborne Transport under Horizon
Europe aims at the large-scale introduction of resilient and secure autonomous operations
by 2050. In their vision, digitalization will lead to a higher degree of automation and
autonomy, automated and autonomous systems, ship operations (both maritime and
inland navigation), and remote control from the shore by 2030 [15].

The Advanced Autonomous Waterborne Applications Initiative (AAWA) [9] was a
project launched by Rolls-Royce to explore the economic, social, legal, regulatory, and
technological factors that need to be addressed to make autonomous ships a reality. The
project aimed to answer critical questions such as what technology is needed and how it
can best be combined to allow a vessel to operate autonomously, miles from shore. To make
the case for autonomous ships, it was important to consider how an autonomous vessel
can be made at least as safe as existing ships, what new risks it will face, and how they can
be mitigated.

The AAWA architecture is widely used in current USVs, and thus, we have also chosen
it as a basis for designing our own USV functional architecture, which is represented in
Figure 1.

USV sensor interfaces

Sensor fusion

Object detection

Collision
avoidance

module

Dynamic positioning
module

Dynamic control
unit

Route planning
module

Situational awareness module

Autonomous navigation system

Rudder and
electric pod

motors

Wireless communications
and remote operations

unit

Remote Operations
Center

Figure 1. The USV functional architecture.

The figure illustrates the main components that are required for autonomous and
remote operations. The autonomous navigation system exploits the vessel sensing system
for the observation of the vessel surroundings and has the intelligence that the vessel needs
to have to operate autonomously.

The detection of the obstacles is performed on fused sensor data using deep learning
algorithms. The route of the vessel is defined in the route planning module where the
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waypoints are defined, and the situational awareness module, together with the collision
avoidance module, applies changes to the route based on observations from the sensor
system. The dynamic positioning module automatically maintains the vessel’s position
and heading by using its own motors and rudders through a dynamic control unit (DCU)
we have developed.

A reliable wireless link between the vessel and the ROC is required to enable remote
monitoring and control. As vessels can move in diverse environments, hybrid connectivity
systems are considered the best solution. Hybrid connectivity translates into utilizing
several different connectivity networks (e.g., 4G, 5G, VHF Data Exchange System (VDES),
Satellite) for data transmission. The wireless communications module also contains the
intelligence needed to pass the control commands from the ROC to the DCU.

In light of the USV research developments [16], it is clear that the future of shipping
is on the verge of a major transformation. The advancements in USV technology and
the increasing automation of shipping processes are paving the way for a new era of
maritime operations. However, the journey toward the wide commercial use of USVs is still
ongoing. It requires not only technological innovation but also a thorough understanding
and revision of the existing regulatory framework [17].

The trials conducted on USVs and the research dedicated to improving their per-
formance and functionality are crucial steps toward this goal. They provide valuable
insights into the practical aspects of USV operation and highlight the areas where further
improvements are needed. The work performed by various researchers and organizations
worldwide, as well as initiatives like the AAWA, is essential in this field.

2.2. Regulation

Regulation is crucial to ensure the safety, efficiency, and standardization of the USVs.
The IMO is the United Nations specialized agency responsible for the safety and security
of shipping and the prevention of marine and atmospheric pollution by ships. The IMO is
the main body that needs to update its regulatory framework to facilitate the integration of
new technologies required for USVs. In their terminology, USVs are referred to as Maritime
Autonomous Surface Ships (MASS).

The integration of new technologies like USVs into existing regulatory frameworks ne-
cessitates Regulatory Scoping Exercises. These exercises ensure that as technology evolves,
so do the regulations governing their use, ensuring safety, security, and environmental
protection. The IMO has conducted a regulatory scoping exercise on MASS that aimed to
assess existing IMO instruments to see how they might apply to ships that utilize varying
degrees of automation. The scoping exercise concluded that the MASS can be accommo-
dated in the regulation with some modifications, the most critical issues being the role
and responsibility of the master and the remote operator, questions of liability, consistent
definitions of MASS, and the carriage of certificates [4].

Several committees within the IMO, including the Maritime Safety Committee, the
Facilitation Committee, the Legal Committee, and the Marine Environment Protection
Committee, are working on different aspects of USVs. The IMO plans to adopt a non-
mandatory goal-based MASS Code by 2025, which will form the foundation for a mandatory
goal-based MASS Code, expected to be enforced starting 1 January 2028.

The Convention on the International Regulations for Preventing Collisions at Sea
(COLREGs) [18] is a set of rules published by IMO that must be adhered to by the ships
to avoid collisions at sea. The USVs must thus also follow the COLREGS to ensure safety.
The International Convention for the Safety of Life at Sea (SOLAS) [19] is an international
maritime treaty established by the IMO. SOLAS sets out minimum safety standards in the
construction, equipment, and operation of merchant ships.

The International Association of Marine Aids to Navigation and Lighthouse Authori-
ties (IALA) is considering the introduction of MASS on the seas, as the autonomous vessels
may benefit from different kinds of aids to navigation than the traditional ships [20]. For
instance, digital announcements may be more suitable than voice-read navigational an-
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nouncements. The International Hydrographic Organization (IHO) ensures that all the
world’s navigable waters are surveyed and charted. They are instrumental in standardizing
the digitalization of charts and navigational information required for USV operations.

The United Nations Convention on the Law of the Sea (UNCLOS) provides the
legal framework governing all activities in oceans and seas. For USVs, adherence to
UNCLOS ensures that the vessels operate within internationally agreed-upon maritime
laws, respecting territorial waters and exclusive economic zones [21].

In conclusion, the development and operation of USVs are governed by a complex
web of international maritime laws and regulations. Adherence to these laws ensures the
safe, secure, and environmentally friendly operation of USVs, paving the way for their
increased use in research and other applications.

The establishment of USV test platforms is crucial in advancing these regulations.
These platforms provide a practical environment for testing USVs’ compliance with existing
laws and identifying areas where the laws may need to evolve to accommodate the unique
operational characteristics of USVs. ROCs, meanwhile, offer a controlled environment for
monitoring and managing USVs, thereby ensuring their safe and effective operation. USV
test platforms and ROCs are thus essential not just for the advancement of USVs but also
for the evolution of the regulatory framework that governs them.

3. Test Platform

The development of USVs has been driven by the advancement of science and technol-
ogy, as well as the increasing demand for marine vessels in different domains. USVs face
many technical challenges, such as autonomous navigation, wireless communication, and
collision avoidance. In this context, Turku University of Applied Sciences has designed
and built a test platform, consisting of a USV and ROC, to support the research commu-
nity and industry in efficiently utilizing deep learning to advance autonomous maritime
vessel development.

This real-world platform enables development and performance verification of deep
learning algorithms, helps bridge the digitalization skills gap, and fosters collaboration
between academia and industry. The initiative is anchored in the Applied Research Platform
for Autonomous Systems (ARPA), a testbed for maritime automation, autonomy, and
remote control, thereby supporting the blue growth sector in Southwest Finland [22].

In order to ensure the platform’s effectiveness, we have developed and built the test
platform ourselves, using and integrating commercial off-the-shelf equipment into the
overall system when available. A significant effort has been put into the development of
the DCU, as described in Section 3.2. The development process has allowed us to gain a
comprehensive understanding of every aspect of the operation of the USV. The goal has been
to establish a research platform rather than develop a product for commercial purposes. The
USV itself can currently be operated manually and remotely, while autonomous features
are under development, with trials planned for 2024. Compared to other USVs built for
research purposes, ours is the largest, to the best of our knowledge [14].

With this test platform in place, it is possible to research the challenges and opportuni-
ties of applying deep learning to remote sensing problems in complex marine environments.
Section 4 introduces our efforts in this area.

3.1. Unmanned Surface Vessel

This section outlines the development of our USV eM/S Salama. The USV is a
commercial craft with electric propulsion, the first in Finland.

In the following list, we go through the different phases of the vessel’s development.
The following sections give a more detailed description of the most relevant topics.
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1. Defining requirements and specifications. The physical characteristics of the vessel are,
for example, size, weight, speed, and powertrain. We chose an aluminum catamaran
hull, which is 6.8 m long and 3 m wide and has a cabin. The chosen hull is Alpo
Pro Boats MAX68 [23]. The boat has electric propulsion with two 10 kW electric
E-tech POD 10 motors [24] installed to the stern of the boat. There are also rules and
regulations that we must comply with to operate safely and legally. This also involves
the vessel certification process, which is explained in Section 3.1.4.

2. Design the electrical system. We have several different electronic devices requiring
12/24/48 Volts Direct Current (VDC) and 230 Volts Alternating Current (VAC) elec-
tricity. There are several non-trivial safety, interference, and grounding issues that
had to be solved to make the system work in a safe and efficient manner. We also
designed and built a charging system and procured a generator as a backup energy
option. The electricity systems are described in Section 3.1.1.

3. Designing the The Controller Area Network (CAN) bus architecture: CAN is a critical
component, which is essential for communication between the vessel devices. Our
devices use NMEA2000, J1939, and CANopen messages. We designed and built the
overall CAN architecture from scratch. The CAN bus architecture is described in
Section 3.1.3.

4. Simulations. Extensive simulations were performed for the overall vessel NMEA2000
system and the vessel’s physical properties, including friction resistance, wave-making
resistance, and air/wind resistance.

5. Procuring the hull, motors, and batteries. These were purchased from commercial
suppliers. Special attention was given to ensuring compatibility between the com-
ponents and the overall USV system design, including the remote and autonomous
operation modes. The acquired batteries are used to power the propulsion system,
as described in Section 3.1.1. The total capacity of the eight acquired lithium iron
phosphate batteries is 34 kWh.

6. Designing and implementing a DCU. The DCU allows us to control the motors and
the rudder with NMEA2000 messages to allow remote and autonomous operations.
Normally, the motors only take analog voltages as their input to change their speeds.
The DCU design is described in Section 3.2.

7. Selecting and integrating the sensors for situational awareness. This includes identi-
fying the appropriate sensors to capture relevant data for situational awareness for
both remote and autonomous operation of the vessel. The devices are described in
Section 3.1.2.

8. Designing and implementing the ICT subsystem. The ICT subsystem facilitates data
processing, storage, and communication within the vessel devices. The vessel Ethernet
architecture is described in Section 3.1.3.

9. Implementing the electrical system. During this phase, we installed and integrated the
electrical system components, including batteries, power distribution panels, wiring,
and safety devices. We followed electrical and safety standards during the installation
process. Thorough inspection measurements were conducted by a certified electrician.

10. Implementing the CAN bus and connecting all the relevant electronic systems, includ-
ing propulsion, navigation, sensors, and control systems.

11. Performing extensive system testing and ensuring that the vessel meets all relevant
safety regulations, certifications, and guidelines. This includes also preparing the
documentation for the vessel certification and registration. To our knowledge, this is
the first commercial craft in Finland using electric propulsion.

The USV is called eM/S Salama and is illustrated in Figure 2. The name “Salama” has
roots in Arabic and African languages, and it translates to safety and security, which aligns
well with the main aims of USVs. In Finnish it translates to lightning, which also aligns
well with our eco-friendly electric vessel. In the following sections, we describe the USV in
more detail.
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Figure 2. Unmanned Surface Vessel eM/S Salama.

3.1.1. Electricity

The USV is equipped with a sophisticated electrical system, as depicted in Figure 3.
The propulsion system of the vessel relies on 48 VDC engines, supported by a 48 VDC
battery system with a substantial storage capacity of 680 ampere-hours (Ah). To charge the
main batteries, a 230 VAC system is employed. Power is supplied to the vessel through
a specially designed inlet, which features an LED indicator for live voltage. This power
can be sourced from a standard power grid at the harbor or from the vessel’s onboard
3 kilovolt-ampere (kVA) generator. The existing charging system operates at a power of
3 kW, necessitating over 10 h to fully charge the battery from a completely depleted state.
Upgrades to the charging system will be implemented as required. With the current battery
setup, the electric propulsion system can maintain a speed of approximately 5 knots for
a range of roughly 35 nautical miles, or the equivalent of 65 km. In our current system,
we maintain a power reserve of 3 kW for the ICT subsystem and multimodal sensing.
To date, we have employed generic Intel architecture professional laptop machines for
data collection from the sensors. The overall power consumption during data collection
has remained below 1 kW. However, as we anticipate that future autonomous navigation
features will significantly increase power requirements, we are proactively planning to
expand our battery setup when the need arises. Additionally, when we commence the
autonomous navigation trials, we intend to augment the ICT subsystem with a 19-inch rack
containing substantial computing resources.
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Figure 3. The USV electricity system.

To ensure safety and efficiency, all incoming power is isolated using a transformer. The
230 VAC power is utilized within the vessel to charge both the main and auxiliary batteries.
In addition to this, power outlets have been installed inside the cabin to accommodate
other equipment. These outlets can be powered by a 48 VDC to 230 VAC inverter when the
external 230 VAC main is not connected. A change-over switch has been incorporated into
the system to prevent the inverter power from being used to charge the batteries.

The propulsion system of the vessel is powered by eight 12 VDC lithium iron phos-
phate (LiFePO4) batteries. These batteries are arranged in two serial sets of four, forming
48VDC circuits that are connected in parallel. These sets of batteries are strategically placed
on each side of the catamaran-type vessel housed within the pontoons. The batteries are
further divided into four compartments to optimize weight distribution and ensure vessel
stability. The compartment locations can be seen in Figure 4.
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Figure 4. Equipment placement on the roof and on the deck of eM/S Salama.

The 48 VDC power from the main batteries also serves to supply the vessel’s 12 VDC
auxiliary system. The 12 VDC auxiliary batteries power the navigational equipment
and other essential functionalities such as lighting, VHF radio, and heating systems. To
accommodate the use of external 230 VAC equipment onboard, an inverter has been
installed. This inverter utilizes the 48 VDC power when the vessel is offshore and the
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mainland power grid is inaccessible. This comprehensive electrical system ensures the
vessel’s efficient operation while maintaining safety standards.

3.1.2. USV Devices

The USV incorporates several devices that are necessary for different purposes. This
section describes the devices in the USV. The devices can roughly be divided into four
groups, that is, the equipment for power and propulsion, navigation and communication,
sensory and imaging, and safety, security and utility. The devices are listed in Tables 1 and 2,
and their locations on the USV are further illustrated in Figures 4 and 5.

The power and propulsion equipment includes the electric motors, batteries, and
related control systems. The navigation and communication equipment incorporates the
devices that are on one hand required by the regulation (e.g., VHF radio, navigational lights,
etc.) and on the other hand used for operating the vessel (autopilot, Global Positioning
System (GPS), wireless data connectivity, chart display, etc.). Sensory and imaging devices
are not strictly necessary for the manual operation of the vessel but are required for the
remote and autonomous operations (cameras, LiDAR, radar, etc.). Further, this equipment
is used for the data collection of datasets for deep learning purposes. Safety, security, and
utility devices include equipment such as cabin heaters and anchors.

Table 1. Equipment listing on the roof and on the deck of eM/S Salama.

Number Name

1 Electric motors
2 Propulsion batteries (×8)
3 Motor inverters
4 Main relay and battery interface box
5 Propulsion battery charger (230 VAC to 48 VDC)
6 Main 48 V power switch
7 12 V operating battery
8 12 V emergency battery
9 12 V operating battery current shunt
10 Diesel cabin heater
11 Windshield wipers
12 Navigation lights
13 Masthead light
14 Airmar 150WX Weather station [25]
15 Auxiliary Generator
16 Shore power plug (230 V)
17 Autopilot hydraulic pump
18 Horn
19 Deck light
20 Sonar transducer and speed meter
21 GPS antenna for VHF
22 Radar radome
23 VHF and AIS antenna
24 LTE and 5G communications antennas (×3)
25 GPS antennas for GNSS+IMU
26 SC33 GPS compass for navigation [26]
27 RGB camera array (×3)
28 Thermal camera array (×3)
29 Cameras for stereo (×2)
30 Camera array for ROC
31 Widefield cameras for ROC (×3)
32 LiDAR
33 Anchor
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Figure 5. Equipment placement in the cabin of eM/S Salama.

Table 2. Equipment placement for the cabin of eM/S Salama.

Number Name

1 Boat’s wheel
2 Motor throttles
3 Boat’s electrical switches
4 Motor power switches
5 Motor status displays
6 Tilt and trim switches
7 EPEC multifunctional display [27]
8 Furuno autopilot
9 Furuno multi display
10 Furuno sonar
11 Furuno interface box
12 Ethernet Switch for Furuno Navnet
13 Navigation 17” touchscreen display
14 Ethernet Switch for navigation/ROC PC
15 Marine VHF Radio
16 class-B AIS transceiver
17 FM Radio
18 Electrical switchboard for low voltage
19 12 V Main switches for cabin
20 12 V battery monitor
21 Battery charger AC-to-12 V
22 DC/DC 48 V-to-24 V
23 DC/DC 48 V-to-12 V
24 VHF antenna isolator
25 CANBUS switch/bridge
26 Electrical switchboard for mains AC
27 AC power outlet
28 USB charger outlet
29 Heater controller
30 48 V switches for cabin and sensoring equipment
31 AC Isolation transformer
32 Inverter 12 DCV-to-230 VAC
33 Computer and networking rack
34 Server space power switchboard
35 Server space power supplies
36 Smartbox for 4G/5G connectivity [28]
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3.1.3. Networking

The USV is equipped with a sophisticated network system based on Ethernet and
CAN based NMEA2000 bus, which are described in this section. The Ethernet networks
are used for the data exchange for the devices requiring high data rates, such as camera
sensors, while NMEA2000 is used for the interconnection of NMEA2000-capable devices
with lower data rate requirements. The Ethernet-based networks are primarily divided
into three separate, function-specific networks:

1. The Vessel Navigational Network: This network is designed for manual use and
comprises a switch connected to devices such as radar and sonar. It also includes
a computer running the navigation software. A touchscreen display is utilized for
controlling and viewing the navigation system. Additionally, the navigation system is
integrated with the vessel’s NMEA2000 bus, ensuring seamless communication and
data transfer.

2. The Remote Operation Network: This network is equipped with cameras connected
via a network switch that provides Power over Ethernet (PoE). These cameras offer a
comprehensive 360-degree view. The display of the navigation computer is duplicated
and transferred as a Real Time Streaming Protocol (RTSP) stream for remote operators’
observation. The network also includes a firewall and security gateway to create
a secure transmission tunnel to the ROC. Wireless connection modems create an
aggregated link over three commercial mobile network operators and, in the future,
also over satellite connectivity. The ROC is described in detail in Section 3.2.

3. The Sensor Network for Autonomy: This network comprises several different types of
cameras, LiDAR, and an OXTS Inertial Measurement Unit (IMU) [29] for deep learning
to create situational awareness for autonomous operation. The sensor network can
be connected to the ROC for control and security purposes. The sensor network
includes a LiDAR with a GPS-assisted IMU that produces a point cloud of the near
surroundings. Stereo cameras are used to detect objects and their distances. Three
RGB video cameras and three thermal cameras are stitched together to provide a
180-degree front view.

These networks collectively ensure the efficient operation and control of the USV,
whether it is under manual use, remote operation, or autonomous operation. The USV
Ethernet architecture is illustrated in Figure 6.

NMEA2000 is a communications standard used for connecting marine sensors and
display units within ships and boats. It allows any sensor to talk to any display unit or
other device compatible with NMEA2000 protocols. The communication is based on CAN
bus technology, widely used on vehicles and fuel engines.

Various instruments that meet the NMEA2000 standard are connected to one central
cable, i.e., a backbone. The backbone relays data among all of the instruments on the
network. This allows one display unit to show many different types of information and
allows the instruments to work together since they share data. NMEA2000 allows devices
made by different manufacturers to communicate with each other.

The vessel’s main NMEA2000 bus is illustrated in Figure 7. It connects these devices
for basic operation: Furuno Display, Furuno Autopilot, Automatic Identification System
(AIS) transceiver, VHF Radio, SC33 GPS Compass, Airmar 150WX Weather Station, two
Yacht Devices YDCC-04 Circuit controls[30], a computer that operates navigation software,
and EPEC multifunctional display. For autonomous and remote operation, the bus also
has a DCU that is NMEA2000-compatible. The DCU is designed and built in-house and
described in more detail in Section 3.2. The DCU has three devices: DCU commander,
which is a gateway/controller for ROC; DCU Motor, which controls the motors by replacing
throttle levers when in use; and the DCU Rudder, which controls the autopilot remotely.
Shipmodul Miniplex [31] is forwarding NMEA2000 messages to the ROC. NMEA2000 to
Robotic Operating System 2 (ROS2) bridge is used for adding NMEA2000 capabilities to
the ROS2 network, which is used for autonomous operations.
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Figure 6. The USV Ethernet architecture.

The vessel also has other CAN-based buses besides NMEA2000. CANopen is used
for the management of main batteries. One bus is used for controlling/using the battery
interface box (BIB), and the other is used for connecting individual batteries to the BIB.
There are also two point-to-point J1939 busses, which send motor information to the E-Tech
displays from the E-Tech motor inverters.

The BIB is connected to an EPEC multifunctional display, which functions as a battery
monitor in accordance with regulations. A user interface was developed using the Codesys
development environment and the OpenBridge Design Guideline [32]. The latter is a free
resource for user interface and workplace design, specifically adapted to the maritime
context and its regulations.
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Figure 7. The USV NMEA2000 bus architecture.

3.1.4. Commercial Craft Certification in Finland

To use the USV for research, it must first be certified and registered as a commercial
craft. This is performed by Eurofins in Finland. Each craft requires individual certification.
The Finnish commercial craft certification guidelines ensure safety and environmental
sustainability for work boats 5.5 to 24 m long [33].

The certification process involves checking compliance with rules using technical
drawings before construction, inspecting the ship hull during construction, and conducting
a test drive and stability test to determine the draft and center of gravity. An inspection
report is submitted to the Finnish Transport and Communications Agency (Traficom) for
commercial craft approval.

After certification, the vessel is registered as a commercial craft and inspected, and
a license for the VHF radio is obtained along with the Maritime Mobile Service Identity
(MMSI) for the radio station. The USV is then ready for research use.

Our USV is certified as a category C watercraft, which means it is designed for use
in coastal waters, large bays, estuaries, lakes and rivers where wind conditions up to and
including Beaufort force 6 and significant wave heights up to and including 2 m may be
experienced [34].

3.2. Remote Operations Center

A ROC for a USV, when integrated with deep learning algorithms, is a potent tool that
brings numerous advantages. Deep learning algorithms can analyze and process precise
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situational data collected from the USV multi-modal sensoring system and increase the
efficiency and safety of the USV. Efficiency improves by optimizing processes, and safety
improves when people can be removed from dangerous operating environments or when
human errors can be reduced in operations.

In the ROC, operators can monitor, support, assist, supervise, and control the USV.
The ROC can monitor the USV or directly control the USV’s systems. The key components
for the remote operation of the USV are the USV multi-modal censoring system, data
communication links, and the ROC itself. The USV multi-modal sensoring system provides
information about both the USV itself and its environment. The sensor data of the USV
transferred to the ROC can also be utilized directly in a digital twin of the vessel.

The ROC is shown in Figure 8. The display setup consists of five 55-inch screens and
three 24-inch screens for 180-degree front and back views, telemetry data, and map data.
Additional screens can be added, for example, to show information from other sensors,
such as side-view, thermal cameras, and LiDARs. Figure 8 shows that have two additional
screens to show the view from both sides of the vessel. Tablets are used to control the vessel,
as this allows an easier way to modify and test different control systems than having a
physical controller or an exact replica of the vessel dashboard. The telemetry data from the
vessel are transmitted with NMEA2000 messages and the video streams using RTSP.

Figure 8. Turku UAS Remote Operations Center.

The ROC software was procured from a commercial supplier. Our main focus and
contribution in the ROC development has been on the DCU, whose development is de-
scribed in more detail. The ROC itself is described in the article on a detail level, which
gives an understanding of how it functions and how the DCU is integrated into the overall
ROC system. Figure 9 shows a high-level schematic of the ROC implementation. The data
from vessel device interfaces, such as cameras, AIS, radar, LiDAR, and control systems,
are transmitted to a data processing and communication unit. The data are parsed and
transformed into a suitable format so that it can be visualized and used by the ROC soft-
ware. The communication unit transmits the data over a wireless link, such as a mobile
network or satellite connection, to the ROC. The wireless link telemetry and control data
are transmitted through Google Cloud services, while the vessel telemetry, control data,
and video streams are transmitted directly through a secure IP Security Architecture (IPsec)



Remote Sens. 2024, 16, 1545 15 of 35

tunnel. Both the vessel and the ROC have a firewall. The ROC central computer processes
the received data and shows it on the ROC display setup.

Unmanned Surface vessel - eM/S Salama

Vessel sensor
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control, propulsions)
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communication unit

Remote Operations Center

Remote Operations
Center Central
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and
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Figure 9. Remote Operations Center operational architecture.

The USV DCU system, as depicted in Figure 10, is composed of several compo-
nents: the ROC, the DCU Commander, the DCU Motor, the DCU Rudder, and other
NMEA2000 devices.

The ROC communicates with the DCU Commander via NMEA0183 messages, sending
commands to change the rotations per minute of the motors and the rudder angle. The
DCU Commander then communicates these NMEA2000 control messages to the DCU
Motor and DCU Rudder.

The DCU Motor and DCU Rudder are two devices with custom-printed circuit boards.
The DCU Motor controls the motors by mimicking throttle inputs, while the DCU Rudder
controls the rudder as a remote for the Furuno autopilot. Both devices incorporate a CAN
controller for NMEA2000, a digital-to-analog converter (DAC), and relays. The DACs
provide throttle input and the rudder remote input, while the relays are used for changing
the throttle input provider and as a switch for the autopilot.

Status messages are shared between the ROC and DCU Commander, DCU Comman-
der and DCU Motor, and DCU Commander and DCU Rudder. The DCU Motor sends the
motor status to the NMEA2000 network, and the Furuno autopilot sends the rudder status
to the NMEA2000 network. The NMEA2000 to UDP device captures NMEA2000 messages
and sends them to the ROC.

When the remote control system is in control, the DCU Motor disengages the actual
throttle input and acts as a throttle input, and the DCU Rudder starts acting as a remote con-
troller for the Furuno autopilot. The ROC has priority over autonomous operation through
the ROS2 Network, which can be overridden with either manual or remote operation.

The DCU includes several fail-safe functions. A heartbeat signal must be sent by the
commanding unit at set intervals to maintain operational mode. The vessel’s local operator
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can also revert to manual operating mode by moving the engine control lever from idle or
pressing an emergency button.

ROC
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UDP to NMEA2000
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NMEA2000 to UDP

DCU Motor DCU Rudder Furuno Autopilot

E-Tech Motor
Controller Unit Left

E-Tech Motor
Controller Unit
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NMEA2000 to
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Figure 10. USV dynamic controller unit architecture.

4. Collecting and Applying Multi-Modal Sensor Data for Deep Learning in
Maritime Environments

In the context of USVs, deep-learning-based autonomous navigation, guidance, and
control (NGC) systems play a pivotal role in enabling the vessel to fulfill its mission without
human intervention [35]. These systems perform tasks such as path planning, obstacle
avoidance, and decision-making, all of which heavily rely on situational awareness from
the USVs surroundings.

Deep learning algorithms not only facilitate the acquisition of situational awareness
but also serve a dual purpose in this context. Firstly, they act as a decision support system
for humans, whether they are stationed on board a USV or operating from an ROC. More
importantly, these algorithms are instrumental in providing autonomous NGC systems
with the necessary situational awareness. This awareness is crucial for the NGC algorithms
to carry out their tasks both effectively and safely.

The process of acquiring situational awareness is streamlined by the use of deep
learning and computer vision methods. These techniques are particularly useful for tasks
such as detecting and tracking objects in maritime environments [36]. However, object
detection in these environments presents a significant challenge due to factors such as
varying light conditions, view distances, weather conditions, and sea waves. These factors
can lead to false positive and false negative detections due to light reflection, camera
motion, and illumination changes.

To overcome these challenges and ensure reliable situational awareness, a variety
of sensors needs to be employed. Multi-modal sensor data are integral to the successful
operation of the deep learning algorithms and, by extension, the autonomous NGC systems
of the USV. In the following, we briefly discuss the modalities in our data collection setup.

Red, green, and blue (RGB) cameras capture color information and enable object
recognition based on the object’s color and shape. RGB cameras are crucial for situational
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awareness, where visual observation of the surroundings plays a significant role. The RGB
cameras also aid in mapping and localization by differentiating between various surfaces
visible from the water level. Using RGB cameras in stereo vision configuration allows us
further to capture depth information and enhance a USV’s spatial awareness and object
recognition capabilities. The depth perception is critical for tasks such as three-dimensional
maritime mapping and navigating effectively by recognizing the spatial arrangement of
maritime elements.

Thermal cameras capture heat signatures and are crucial for navigating in conditions
with compromised visibility like fog or darkness. They detect heat-emitting objects and
identify temperature variations in the sea surface, enhancing vehicle autonomy and relia-
bility. In addition to situational awareness, they are useful in tasks like search and rescue
missions and security measures. LiDAR sensors create detailed 3D point clouds, which are
essential for environmental mapping and navigation in the domain of USVs. A significant
issue with LiDARs is that the cloud presentations are difficult to reconstruct in poor weather
conditions.

However, no single sensor is able to guarantee sufficient reliability or accuracy in
all different situations. Sensor fusion can address this challenge by combining data from
different sensors and by providing complementary information about the surrounding en-
vironment. Previous work has concentrated on sensor fusion methods for visible light and
thermal cameras [37–39], as such cameras are cheap, and the data annotation is relatively
easy compared to LiDAR point clouds [40]. Even though the visible light cameras have
very high resolutions, poor weather and illumination changes can easily distort the image
they produce. To tackle this, their data can be fused with data from thermal cameras. Even
with the state-of-the-art methods for visible light and thermal camera sensor fusion, it is
still difficult to detect very small objects. LiDAR point clouds do not contain information on
the object’s color or fine surface details, but their data can still be effectively used for object
detection using neural networks [41]. The depth information from LiDAR produces a better
understanding of the environment of the vessel when fused with data from other sensors.

Enhancing autonomous features in maritime environments necessitates the develop-
ment of distinct deep learning applications tailored to their specific settings. While some
challenges overlap with those faced by other autonomous vehicles, unique hurdles arise
from dynamic and unpredictable environments, including open seas, ports, and congested
waterways. Another significant challenge emerges from the inherent limitations and delays
in the navigational responses of boats and ships when abruptly altering routes or directions.
Unlike autonomous cars, these limitations compel researchers to design algorithms with an
extended range for object detection. Moreover, the maritime domain presents a scarcity of
research in comparison to other autonomous fields.

Securing adequate and relevant data for deep learning algorithms remains a primary
challenge in the domain of autonomous maritime vessels. The scarcity and small scale of
publicly available datasets in the maritime domain present significant obstacles in the de-
velopment of deep learning algorithms for situational awareness in maritime environments.
A comprehensive survey of available maritime vision datasets compares datasets in terms
of data type, environment, ground authenticity, and applicable research directions [42]. If
they were to be used with our USV, datasets from the Singapore Maritime Dataset [43]
and SeaShips [44] differ substantially from the research environment in the Southwest of
Finland. While the Åboships [45] dataset bears some similarity, its size and quality are
inadequate. Also, these datasets are acquired using RGB cameras, and notably, no comple-
menting datasets from other sensor types, such as stereo vision cameras, thermal cameras,
or LiDAR, are currently available. Having access to multi-modal datasets is crucial for
advancing autonomous capabilities in maritime applications to enhance the ability of deep
learning algorithms to work in such environments in varying weather and time conditions.

In this section, we introduce the multi-modal sensoring and data collection system
integrated into our USV eM/S Salama. We aim to create synchronized and annotated
multi-modal datasets to be published in open access. The first version of the sensing system
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includes RGB and thermal cameras, a stereo vision camera, and a LiDAR. Radar and other
sensors will be added to the setup later on. We also present a data platformthat stores the
multi-modal sensor data in a format that is readily usable for the development of deep
learning algorithms. We introduce the data we already have collected, along with a brief
description of zero-shot labeling and synthetic data generation methods. The section also
describes examples of deep learning algorithms we have developed to provide situational
awareness for autonomous navigation algorithms.

4.1. Multi-Modal Sensoring and Data Collection System

The eM/S Salama sensor data collection setup, shown in Figure 11, comprises three
distinct RGB cameras oriented in different directions, three thermal cameras aligned with
the RGB cameras, and two stereo vision cameras positioned with a central distance of
150 cm. A LiDAR sensor, IMU, and GPS antenna are also incorporated into the configura-
tion. This setup enables the collection of diverse data types, enabling us to obtain situational
awareness from the vessel’s environment using deep learning and computer vision.

Figure 11. Sensoring setup at eM/S Salama.

The camera array consists of three weather-proofed RGB and thermal cameras, creating
an approximately 140-degree panoramic view for daylight and thermal imaging. For high-
resolution RGB imaging needs, we rely on the Allied Vision Prosilica GT 1930 [46] cameras.
For thermal imaging, the Teledyne Dalsa Calibir 640 [47] cameras offer high sensitivity and
a high 640 × 480 resolution.

Complementing our sensor array is a compact 360-degree Velodyne VLP-32C ultra-
puck LiDAR [48]. This LiDAR sensor generates a point cloud 3D map of the surroundings
of the vessel. The GPS coordinates and IMU data are also recorded, allowing us to know
the location and the pose of the vessel.

The sensor data collection system, as shown in Figure 12, consists of the RGB and ther-
mal cameras, the LiDAR, and software services. The data handler services are responsible
for acquiring the raw data from all of the sensor sources and preprocess the data to enable
further processing and data storage later in the pipeline.

Synchronized sensor data are needed for multi-modal sensor fusion. The process
orchestrator service is responsible for launching and synchronizing the data collection
between the handler services. A process orchestrator is also used to command the handler
services in situations where we need to change sensor configurations on the fly. The
software services use Message Queuing Telemetry Transport (MQTT) protocol over a
Mosquitto message broker for communication between each other. The software services
are deployed in separate Docker containers to enable a scalable, portable, and modular
system that complies well with a microservice architecture.
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Figure 12. Sensor data collection system architecture.

The raw data from RGB and thermal cameras is encoded with GStreamer and pub-
lished as RTSP streams. The LiDAR data are stored in Packet Capture (PCAP) [49] files,
which include timestamps that enable the synchronization with camera data.

Design and Implementation of the On-Shore Data platform

Local data storage capacity on eM/S Salama is limited. In addition, developing deep
learning models requires considerable computing resources. To solve this challenge, we
have developed an on-shore data platform that is designed to store the multi-modal data
collected on eM/S Salama. The data platform can also be used to enrich the data with
information collected from external sources. This includes, for example, accurate weather
data and AIS data concerning the other nearby maritime vessels.

Because of the multi-modal nature of the sensor data that need to be stored in the
system, we chose a hybrid data storage approach, where we combine different types of
databases best fit for different data formats and use cases. Our two main components are a
PostgreSQL relational database that is used to index all our data objects and their related
metadata and an Ambry object storage, which we can use to store all binary data types.

We utilize PostgreSQL to store AIS data, along with data object metadata. The
Structured Query Language (SQL) serves as the standard language for database cre-
ation and manipulation, and PostgreSQL adheres to SQL conventions as outlined in
the documentation [50]. As a mature and open-source object-relational database, Post-
greSQL offers high performance and reliability. As we progress with the deep learning
components and other sensor data, the relational database will be used to store other
structured data types.

For unstructured data, we needed object storage. We chose LinkedIn’s Ambry for this
purpose. It implements a REST front-end and a non-blocking I/O back-end. This provides
us with high-performing way to store immutable data that can be accessed via a HTTP API.

The data platform is deployed on the Turku UAS on-shore Proxmox-based cloud. This
provides us with an added layer of security, as the virtual machines on the platform are
isolated from the Internet by default. Only the machines where the gateway API services
are run are reachable from outside Proxmox.

Within Proxmox, we run a microservice architecture, as shown in Figure 13. The data
source gateway is the entry point for data into the system. The gateway consists of multiple
interfaces capable of ingesting data in different formats delivered via different protocols.
The first implemented protocols were MQTT and HTTPs. We use these to ingest both batch
and streaming data.
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Figure 13. Data platform services.

For communication between the microservices and to deliver data from the gateway
to the data storage handlers, we use Apache Pulsar. Pulsar’s publish–subscribe pattern
meets our requirements for performance, durability and multi-tenancy. We use Keycloak to
identify and access management throughout our system, the Pulsar endpoints being the
key points.

The storage handler services make sure that all data acquired from the gateway
are associated with metadata and first stored in the local hot storage that Ambry and
PostgreSQL form and later moved onto cold storage. The metadata related to all data
objects consist of fields describing the data object and where it is currently stored. This
enables the data search queries to only target the metadata.

4.2. Data for Deep Learning

In the summer of 2022, we established our first data collection framework and recorded
a total of 72 h of video over four days using our stereo vision camera and a LiDAR.
Following a thorough exploration of our data, we initiated the data annotation process
using MATLAB R2023a, covering 120,216 RGB images, 53,108 stereo images, 60,108 multi-
view images, and 36 h of LiDAR data. Subsequently, in 2023, we expanded our setup
by integrating three additional RGB cameras and three thermal cameras. This enhanced
configuration allowed us to gather over 93 h of video, with the data annotation process
currently in progress. We mainly collected data during the summer period because the sea
is frozen during the winter in Finland.

Samples from our collected data are shown in Figure 14.
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(a) (b)

(c)

Figure 14. Samples of our dataset from summer 2023. (a) Captured image from RGB camera.
(b) Captured image from thermal camera. Cold objects are black and hot objects white. Scales of gray
indicate variations between these two. (c) Captured and annotated image from stereo vision cameras.

4.2.1. Zero-Shot Labeling

We are currently developing an innovative framework aimed at mitigating the labor-
intensive task of annotating extensive datasets by utilizing the capabilities of zero-shot
object detection and object tracking. Given the wealth of data accumulated from diverse
sensors over numerous hours, the traditional approach of manual annotation becomes
impractical and time-intensive. Leveraging state-of-the-art techniques in zero-shot ob-
ject detection allows the system to generalize and identify objects even without specific
annotations, streamlining the annotation process significantly.

Additionally, our framework incorporates robust object-tracking mechanisms, ensur-
ing the continuity of object identification across frames. By integrating these advanced
technologies, we aim to enhance the efficiency of dataset annotation, making it more
feasible and scalable for large datasets generated from multi-sensor environments [51].

4.2.2. Synthetic Data Generation with GANs

Generating synthetic data that mimics, for instance, various weather and time of day
conditions could be more efficient than actually obtaining real data in all possible time and
weather combinations. While synthetic images can be generated manually [52], automated
tools make the process much faster and more straightforward. For this purpose, we propose
a concept to generate synthetic data using Generative Adversarial Networks (GANs) [53].

GANs are a class of deep learning algorithms, which can generate new data instances
that could pass for real data. This makes GANs particularly useful for tasks such as ours,
where we need to generate synthetic data that mimic various environmental conditions.

Creating a diverse dataset that includes novel, realistic scenarios is crucial for enhanc-
ing the robustness of deep learning models. In maritime environments, where weather
conditions can vary significantly, it is essential for our models to detect objects under
different circumstances. To address this need, the use of synthetic data is vital. By cre-
ating synthetic datasets that include a wide range of environmental conditions, we can
expose the model to various situations, ensuring its effective performance under different
scenarios. This not only aids the model in better adaptation but also fortifies it against
unexpected challenges. It is a key step in constructing a comprehensive and reliable object
detection system for maritime applications. In the future, we plan to use Transformer
algorithms [54,55] to solve for example the class imbalance issues by adding more objects
of each category.
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4.3. Enhancing Maritime Safety with Situational Awareness from Deep Learning Algorithms

This section explores the application of deep learning algorithms to enhance maritime
safety. This is a critical aspect of decision support and autonomous operations in USVs. Our
research focuses on refining these algorithms to improve their efficiency and integration
into existing systems, thereby providing crucial situational awareness for both human
operators and autonomous navigation algorithms.

We explore three key areas of deep learning that have been applied to our collected
data, each playing a pivotal role in maritime safety:

• Object detection in maritime environments: This involves the use of deep learning
algorithms to identify and classify objects in maritime settings, which is crucial for
avoiding obstacles and ensuring safe navigation.

• Object tracking in maritime environments: Once objects are detected, it is essential to
track their movements accurately. This allows for the better prediction of potential
collisions and assists in decision-making for course adjustments.

• Horizon line detection in maritime environments: The ability to identify the horizon
line is vital for maintaining orientation and stability, especially in rough sea conditions.
It also aids in the calibration of other detection and tracking algorithms.

Subsequent sections present a detailed examination of each research area. The over-
arching objective is to augment maritime operation safety and efficiency via the practical
implementation of these refined deep learning algorithms.

4.3.1. Object Detection in Maritime Environments

Our image datasets can benefit from the High-Resolution Daytime Translation (HiDT)
model [56], which enhances dataset diversity and performance. HiDT generates synthetic
data across various time-of-day scenarios. Notably, HiDT can simulate eighteen different
weather conditions. In this section, we demonstrate that additional synthetic images added
to a dataset can help in achieving better results in object detection.

In our experiments, we utilize and release the Turku UAS DeepSeaSalama-GAN
dataset 1 (TDSS-G1) [57]. Assembled in the Southwest Finnish archipelago area at Taalinte-
hdas, this dataset employed two stationary RGB cameras to collect data in August 2022.
TDSS-G1 comprises 199 original images and a substantial addition of 3582 synthetic images,
resulting in a total of 3781 annotated images. Table 3 shows the number of images in the
training, validation, and test sets. The number of images in a dataset and their diversity in
terms of, for example, different viewing angles, lighting conditions, occlusions, scales, and
hull parts is very important for the performance of object detection models [58]. It has to be
noted that the dataset published here is relatively small and mainly used to showcase how
the performance of object detection can be improved by generating additional synthetic
images to train the models.

Table 3. The number of images in the TDSS-G1 dataset.

Dataset Train Set Valid. Set Test Set

Real 199 49 50
Real + Synthetic 3781 49 50

These images feature high-quality annotations of maritime objects, categorized into
three classes: motorboats, sailing boats, and seamarks. The distribution of labels within
TDSS-G1 is as follows: motorboats (62.1%), sailing boats (16.8%), and seamarks (21.1%).
The number of instances in the original images is shown in Figure 15.
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Figure 15. Dataset class instances for real data.

Figure 16 showcases a selection of images produced by HiDT, effectively demonstrat-
ing its efficacy with our datasets. For a more detailed description of the dataset, refer to
Zenodo [57]. In the future, we can further enhance its image-generation ability by collect-
ing and utilizing additional training samples from specific scenarios, such as nighttime
maritime scenarios.

(a)

(b) (c)

(d) (e)

Figure 16. Cont.
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(f) (g)

(h) (i)

Figure 16. Selected sample from our synthetic image dataset TDSS-G1: side by side, (a) original
image, (b–d) three day images, (e,f) two sunset images, and (g–i) three night images.

In our object detection experiments [59], we utilize the YOLOv7 [60] model and
conduct an extensive analysis comparing YOLO results with and without the incorporation
of synthetic data. As detailed in Table 4, the inclusion of synthetic data leads to a significant
enhancement in the mean Average Precision (mAP), reaching an impressive mAP of 0.822.
In the maritime environment, detecting small objects is a critical challenge. To address this
issue, it is essential to evaluate deep learning models also for different sizes of objects [61].
The results for the evaluation of small, medium, and large objects in terms of size in pixels
can be seen in Table 5. We can note that the performance increases significantly when the
size of the object increases.

Table 4. mAP@0.5 results with YOLOv7 model trained and tested with real and synthetic data.

Train Set Test Set mAP@0.5

Real Real 0.788
Real + Synthetic Real 0.822
Real Real + Synthetic 0.518
Real + Synthetic Real + Synthetic 0.774

Table 5. mAP@0.50:0.95 results with the YOLOv7 model trained on real + synthetic data and tested
with real data for different object sizes. Note that the sizes are in pixels.

Average Precision Results mAP@0.50:0.95

Small (size < 32∗32) 0.145
Medium (32∗32 < size < 96∗96) 0.509
Large (size > 96∗96) 0.917

mAP is a metric to evaluate the performance of object detection models by averaging
precision over recall and classes. Precision is true positives over predicted positives, and
recall is true positives over actual positives. mAP@0.5 means that the intersection over
union (IoU) threshold for determining true positives is set to 0.5. IoU is the ratio of the
area of overlap between the predicted bounding box and the ground truth bounding box to
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the area of their union. Setting the IoU threshold to 0.5 means that only predictions that
have at least 50% overlap with the ground truth are considered true positives. A higher
mAP@0.5 value indicates a better performance in object detection.

Figure 17 illustrates the precision-recall curves, which show that models trained on
the combined dataset outperform those trained solely on real data. Due to the static nature
of the images, the seamarks present in them are always detected perfectly. This underscores
the value of integrating synthetic data to strengthen the object detection capabilities of
the models, thereby affirming the importance of our approach in achieving robust and
adaptable performance across diverse environmental conditions.
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Figure 17. Precision-Recall curve for YOLOV7 model (a) trained on real data + synthetic data,
(b) trained on real data.

4.3.2. Object Tracking in Maritime Environments

Object tracking is a crucial aspect of maritime safety, as it allows for the accurate
monitoring of detected objects’ movements. This is essential for predicting potential
collisions and assisting in decision-making for course adjustments.

Various approaches are employed by object-tracking algorithms to address the chal-
lenge of tracking object in different environments. Among these, the DeepSORT model [62]
stands out as one of the most efficient and accurate options in its class. DeepSORT uses a
deep learning model to generate appearance features for bounding box regions identified
by an object detection model. These features are then transformed into a cost matrix, with
its components representing cosine distances to the appearance features stored in the track,
facilitating data association.

The data association process employs the matching cascade algorithm, where match-
ing with detections occurs sequentially, starting with the most recently updated tracks.
Tracks that correspond with detections through data association store the corresponding
detection’s appearance features and state estimates updated by the Kalman filter.

Figure 18 illustrates the proposed object tracking architecture. Based on our proposed
architecture, to optimize DeepSORT’s performance in maritime environments, we made
slight adjustments. Initially, our custom YOLOv8 [63] model was employed. Subsequently,
we incorporated a lightweight MobileNet algorithm [64] for the tracking component. This
hybrid approach ensures effective object detection and swift tracking, a critical requirement
for real-time decision-making in maritime scenarios.
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Figure 18. Proposed network architecture for object tracking.

Despite these customizations, challenges persist in maritime environments due to
the instability of images captured by cameras on boats or ships. This variability poses a
challenge for the DeepSORT algorithm’s Kalman filter component in maintaining object
tracking. To address this issue, we have opted to tackle the problem with horizon line
detection, which is detailed in the subsequent section. This approach not only improves
object tracking but also enhances the overall situational awareness by providing a more
stable and accurate view of the maritime environment.

Figure 19 illustrates an example of our object tracking method applied to a video
sourced from the Singapore Maritime Dataset. This dataset comprises 81 existing and freely
accessible videos related to maritime scenarios [65]. These scenes often exhibit a tolerated
sight, resulting in significant variations in the angles from the horizon line. In the figure,
we can see that the algorithm has detected three different ships whose movement it is
continuously tracking.

Figure 19. Object tracking applied to data from Singapore Maritime dataset [65]. The yellow squares
show detected objects that the algorithm is tracking and the green texts show a unique ID given to
each object.

4.3.3. Horizon Line Detection in Maritime Environments

Semantic line detection, particularly the identification of the horizon line (sea line),
is crucial in maritime environments. It influences various decision-making processes and
aids in the calibration of other detection and tracking algorithms.
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Our research leverages a state-of-the-art algorithm as the baseline, which we subse-
quently tailor and optimize specifically for maritime settings. The foundational paper guid-
ing this optimization is titled “Deep Hough Transform for Semantic Line Detection” [66].
The architecture of this algorithm is detailed in Figure 20.
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Figure 20. Semantic line detection network architecture proposed in Deep Hough Transform for
Semantic Line Detection. Adapted from [66].

The semantic line detection network consists of three main components: a backbone
network, a Hough transform module, and a line detection head. The backbone network
is a convolutional neural network that extracts feature maps from the input image. The
Hough transform module performs a Deep Hough Transform (DHT) that aggregates the
features along candidate lines on the feature map plane and assigns them to corresponding
locations in the parametric space, where each location represents a line with a specific slope
and bias.

The algorithm in Figure 21 is employed to identify potential lines in the parametric
space. A line refinement network is then utilized to prioritize and select the most repre-
sentative horizon line among them. The line detection head is a fully connected layer that
predicts the confidence scores and offsets for each location in the parametric space. The
refinement network is powered by a Vision Transformer (ViT), introduced in the paper “An
Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale” [54].
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Figure 21. Proposed network architecture for horizon line detection.

Additionally, we incorporate a Feature Pyramid Network to extract a diverse set of
features from the backbone network. The final output is a set of semantic lines that have
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high confidence scores and refined parameters. The detected lines in the parametric space
are then converted back to the image space by a Reverse Hough Transform (RHT).

The coordinates, presented as a tuple (x1, y1, x2, y2), are also input into an embedding
layer. Ultimately, a fully connected network assesses the ranking of these coordinates,
determining the horizon line in the given input.

To evaluate our method, we have tested it on the Singapore maritime dataset and our
dataset from the Finnish archipelago. Figure 22 illustrates the output of our method.

(a) (b)

Figure 22. Sample results from the horizon line detection. The blue line is the detected horizon line.
(a) Singapore Maritime dataset [65]. (b) Finnish archipelago.

The horizon line detection is not only crucial for maintaining orientation and stability,
especially in rough sea conditions, but it also aids in the calibration of other detection and
tracking algorithms. By accurately detecting the horizon line, we can provide a more stable
and accurate view of the maritime environment, thereby improving object tracking and
enhancing overall situational awareness.

5. Discussion

Our journey in developing our USV, eM/S Salama, commenced in 2022. We have
now reached a point where the USV can be operated both manually and remotely. The
substantial size of the vessel equips us with the ability to operate under challenging weather
conditions and to gather data from a variety of weather scenarios. For instance, we can
collect data under heavy fog conditions and develop deep learning algorithms to gain
relevant situational awareness, even when human vision navigation is not feasible.

USVs necessitate precise situational awareness to ensure safe decision-making and
effective collision avoidance. Our USV utilizes a multi-modal sensing system, including
RGB cameras, thermal cameras, and LiDAR sensors. We have collected and annotated data,
enabling us to leverage them in deep learning algorithms and gain situational awareness of
the vessel’s environment. Ensuring accurate sensor measurements is critical for reliable op-
eration. Incorrect sensor and camera calibration [67] can lead to navigation errors, degrade
performance, and increase the risk for collision. We aim to develop sensor autocalibration
and registration methods so that the sensors can self-adjust and align multiple sensor’s
data automatically.

We need to gather a comprehensive dataset to enable precise vision-based trajectory-
tracking control and localization estimation for our USV [68,69]. Image data capturing
different lighting conditions and times of day are crucial for building a robust object detec-
tion model [58]. To ensure our dataset represents diverse weather conditions, this paper
showcases the benefits of integrating synthetic data into model training. As outlined in
Table 4, including synthetic data notably boosts the mean average precision (mAP@0.5),
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improving it from 0.788 to an impressive 0.822. This underscores the significance of incor-
porating synthetic data to enhance model performance across various weather conditions.

We currently leverage the obtained situational awareness information in the develop-
ment of autonomous NGC for our USV. This involves the creation of collision avoidance
methods in compliance with COLREG rules. COLREG compliance is a very challenging
task due to its ambiguous nature, which can lead to many different interpretations of
the rules [70]. The autonomous NGC system will be built on the ROS2 navigation stack,
which facilitates safe and efficient movement. The integration of RGB cameras, thermal
cameras, and LiDAR sensors for Simultaneous Localization and Mapping (SLAM) will
serve the fundamental purpose of creating a local map for precise navigation. RGB cameras
play a pivotal role in capturing visual information, aiding in feature extraction and visual
odometry to build a visual representation of the environment. Thermal cameras further
contribute by providing critical data that enhance navigation capabilities, especially in
challenging conditions where RGB cameras might face limitations. Meanwhile, LiDAR sen-
sors provide depth information, facilitating the creation of a comprehensive and accurate
map. The fusion of the data from these sensors in a SLAM framework enables the system
to construct and continuously update a local map, allowing our USV to autonomously
navigate through its surroundings with increased accuracy and adaptability. This approach
leverages the strengths of each sensor modality, overcoming individual limitations and
providing a robust foundation for effective and reliable autonomous NGC systems.

Looking ahead, we intend to augment the USV with integrated waterproof drones
and underwater drones, thereby creating a heterogeneous swarm [71]. This swarm will
enhance our understanding of the vessel’s surroundings. Drones at higher altitudes can
sense farther than the sensors on the vessel’s roof, while underwater drones offer a novel
perspective on underwater activities. The USV, equipped with substantial computing
and power resources, will function as the swarm’s master node, housing the primary
ICT infrastructure. The drones, acting as slave nodes, will connect to the master node,
receiving directives and supplying data to improve situational awareness. Leveraging
satellite imagery could enhance the USV situational awareness even further [72].

The marine regulations also mandate observation based on sound. The COLREGs [18]
specify several types of sound signals, which are used in different situations [73] and should
thus be observed. We are currently building an array with eight microphones on the USV
to be able to observe sounds and their directions. Audiosonic sensing could also be applied
for object and event detection and localization [73–75]. Fusing sound sensor data with
camera, LiDAR, and radar data would also offer improved reliability and accuracy for
situational awareness in different conditions.

Research on navigation in Global Navigation Satellite System (GNSS)-denied envi-
ronments is one of our current focus areas. Robust navigation is essential for safety when
GNSS signals are being jammed or spoofed. Methods of navigation based on vision, LiDAR,
and inertial sensors to maintain accurate position and trajectory need to be developed for
situations where GNSS signals can not be used.

The future integration of X-band radar data for object detection in adverse conditions,
such as darkness and fog, will enhance the robustness of our USV in the future. By
leveraging the ability of radar to penetrate environmental obstacles and its resistance
to interference from weather conditions, such as rain or fog, our system will maintain
reliable object detection capabilities even in challenging scenarios. Advanced sensor fusion
techniques, such as Kalman filtering or neural-network-based algorithms, will be used to
combine radar data with inputs from other sensors to provide a holistic understanding of
the surroundings.

Digitalization is currently transforming fairways and fairway services. Projects and
authorities are exploring and piloting the potential of digital services, such as those based on
the S-100 Universal Hydrographic Data Model [76], for delivering navigational warnings
and aids to navigation. These digital services are particularly advantageous for USVs,
ensuring they always have access to the most current navigational information. Among
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these initiatives is the MaDaMe project [77], coordinated by Turku University of Applied
Sciences, which is playing a pivotal role in this digital transformation.

Once the autonomous features of our USV have been further developed, it will open
up a wide range of applications for the use of our USV across various sectors. Below, we
list some potential use cases for the USV and the developed deep learning algorithms:

• Commercial : Our USV can serve as a sensor platform for detecting floating objects,
which can be crucial for shipping companies to avoid collisions and ensure safe
navigation. It can also monitor underwater objects, providing valuable data for
industries such as offshore wind farms.

• Civil Security: The USV can be used for surveillance and patrolling tasks, providing
an extra layer of security in ports, marinas, and coastal areas. It can also serve as a plat-
form for deploying aerial [78] or underwater drones for more detailed inspections [79].

• Defence: In the defence sector, our USV can be used for reconnaissance missions, mine
detection, and anti-submarine warfare. Its ability to operate autonomously reduces
the risk to human operators and allows for operations in hostile environments.

• Environment: The USV can play a significant role in environmental monitoring. It
can measure water quality parameters and detect hazardous gases, providing real-
time data for environmental agencies and researchers. It can also aid in wildlife
conservation efforts by tracking marine life and studying their habitats.

• Search and Rescue: In the future, our USV could be equipped with life-saving equip-
ment and used in search-and-rescue operations. Its ability to navigate autonomously
and cover large areas could prove invaluable in locating and assisting people in
distress at sea.

In addition to the deep learning research, our USV serves as a versatile tool for various
research applications. It plays a crucial role in investigating the compatibility of mobile
and satellite networks for remote vessel operations and data transmission from onboard
sensors. Additionally, the USV is instrumental in cybersecurity studies, which encompass
the identification and rectification of vulnerabilities, risk management, and the formulation
of safety protocols.

6. Conclusions

In this article, we detailed the development and application of a test platform com-
prising a USV and an ROC, designed to advance autonomous maritime operations. The
USV and ROC serve as a robust platform for collecting multi-modal sensor data, crucial
for developing deep learning algorithms that enhance situational awareness and facilitate
autonomous navigation decisions.

We developed a multi-modal sensing and data collection system integrated into the
USV eM/S Salama, which allows for sensor fusion to provide a comprehensive under-
standing of the environment surrounding the USV. We aim to contribute to the research
community by gathering and annotating sensor data related to various research topics as-
sociated with the presented test platform. These data will be made available as open-access
datasets, providing valuable resources for further research in the field of autonomous
maritime operations.

The deep learning algorithms we develop provide decision support to human op-
erators, both onboard and in the ROC. Our research also underscores the significant
contribution of synthetic data, generated by the HiDT model, in enhancing the performance
of object detection models. By integrating synthetic images into the TDSS-G1 dataset [57],
we achieved a notable improvement in mAP, highlighting the potential of our approach in
obtaining robust performance across diverse environmental conditions.

The onshore data platform, designed to store multi-modal data collected on eM/S
Salama, ensures secure and efficient data management and facilitates the development of
deep learning algorithms.

In conclusion, this article demonstrates the feasibility and potential of our test platform
for applying deep learning and computer vision methods to advance autonomous maritime
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operations. The challenges encountered and the solutions developed provide valuable
insights for other researchers and practitioners in the field. Our forthcoming contribution
to the scientific community will be a detailed description of the autonomous NGC system
currently under development.
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Abbreviations
The following abbreviations are used in this manuscript:

AAWA Advanced Autonomous Waterborne Applications Initiative
Ah ampere-hours
AIS Automatic Identification System
BIB Battery Interface Box
CAN Controller Area Network
COLREG Convention on the International Regulations for Preventing Collisions at Sea
DAC Digital to analog converter
DCU Dynamic control unit
DHT Deep Hough Transform
GAN Generative Adversarial Network
GNSS Global Navigation Satellite System
GPS Global Positioning System
IALA The International Association of Marine Aids to Navigation and Lighthouse Authorities
IHO International Hydrographic Organization
IoU intersection over union
IMO International Maritime Organization
IMU Inertial Measurement Unit
IPsec IP Security Architecture
kVA kilovolt-amperes
LiDAR Light detection and ranging
LiFePO4 Lithium Iron Phosphate
mAP mean Average Precision
MASS Maritime Autonomous Surface Ships
MMSI Maritime Mobile Service Identity
MQTT Message Queuing Telemetry Transport
NGC Navigation, guidance, and control
PCAP Packet Capture
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PoE Power over Ethernet
RGB Red, Green, and Blue
RHT Reverse Hough Transform
ROC Remote Operations Center
ROS2 Robotic Operating System 2
RTSP Real-Time Streaming Protocol
SLAM Simultaneous Localization and Mapping
SOLAS The International Convention for the Safety of Life at Sea
SQL Structured query language
Traficom Finnish Transport and Communications Agency
Turku UAS Turku University of Applied Science
TDSS-G1 The Turku UAS DeepSeaSalama—GAN dataset 1
UAV Unmanned aerial vehicle
UNCLOS The United Nations Convention on the Law of the Sea
USV Unmanned Surface Vessel
VAC Volts Alternating Current
VDC Volts Direct Current
VDES VHF Data Exchange System
ViT Vision Transformer
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