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Abstract: Research on wildlife monitoring methods is a crucial tool for the conservation of rare
wildlife in China. However, the fact that rare wildlife monitoring images in field scenes are easily
affected by complex scene information, poorly illuminated, obscured, and blurred limits their use.
This often results in unstable recognition and low accuracy levels. To address this issue, this paper
proposes a novel wildlife identification model for rare animals in Giant Panda National Park (GPNP).
We redesigned the C3 module of YOLOv5 using NAMAttention and the MemoryEfficientMish
activation function to decrease the weight of field scene features. Additionally, we integrated
the WIoU boundary loss function to mitigate the influence of low-quality images during training,
resulting in the development of the NMW-YOLOv5 model. Our model achieved 97.3% for mAP50
and 83.3% for mAP50:95 in the LoTE-Animal dataset. When comparing the model with some classical
YOLO models for the purpose of conducting comparison experiments, it surpasses the current
best-performing model by 1.6% for mAP50:95, showcasing a high level of recognition accuracy. In
the generalization ability test, the model has a low error rate for most rare wildlife species and is
generally able to identify wildlife in the wild environment of the GPNP with greater accuracy. It has
been demonstrated that NMW-YOLOv5 significantly enhances wildlife recognition accuracy in field
environments by eliminating irrelevant features and extracting deep, effective features. Furthermore,
it exhibits strong detection and recognition capabilities for rare wildlife in GPNP field environments.
This could offer a new and effective tool for rare wildlife monitoring in GPNP.

Keywords: computer vision; deep learning; target recognition; YOLOv5; wildlife conservation

1. Introduction

Drastic changes in the global environment have sparked an unprecedented decline in
biodiversity. The International Union for the Conservation of Nature assesses that over 28%
of the world’s species are now threatened with extinction [1,2]. As technology continues to
advance, wildlife monitoring techniques will be crucial for scientists to investigate, protect,
and care for rare wildlife and the natural world in the years ahead [3]. In China, wildlife
monitoring methods mainly rely on acoustic and imaging detection technologies. Acoustic
recording devices are equipped with classification algorithms that can recognize specific
acoustic events, allowing them to localize and identify animal sounds [4]. However, the
limited resources for data sharing still restrict the effectiveness of this method [5]. Trap
cameras are widely used in wildlife monitoring [6,7] and have become an increasingly
popular tool for collecting wildlife data [8,9]. They are effective and reliable in unobtru-
sively, continuously, and efficiently capturing large volumes of data on wildlife. This makes
them particularly effective in monitoring larger terrestrial species [10]. However, manually
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processing a large number of images is time consuming and labor intensive. Additionally,
the clutter of information in field images and the high levels of masking and body overlap
of rare wildlife pose significant obstacles to monitoring wildlife in open environments [11].
Automated recognition using AI algorithms can capture key feature information in images
extracted from samples [12] and enables the extraction of valuable information from a
rapidly growing amount of data to be continually accelerated [13,14]. This greatly benefits
rare wildlife conservation [15]. Therefore, the advancement of deep learning is crucial for
conducting high-precision research on the recognition of rare wildlife [14].

Deep learning mainly involves feedforward neural networks (FNNs), recurrent neural
networks (RNNs), convolutional neural networks (CNNs), and generative adversarial net-
works (GANs) [16]. Among these technologies, convolutional neural networks are the most
used for identifying and monitoring animals or plants in images [17]. They are also capable
for recognizing infrared images, which are widely used in wildlife monitoring [18], with
representative neural networks being AlexNet [19], VGG [20], GoogleNet [21], ResNet [22],
and DenseNet [23]. Willi, M. et al. utilized the ResNet18 model architecture trained on
four distinct trap camera image datasets, including Snapshot Serengeti. They demon-
strated that the CNN achieves a high level of accuracy in classifying camera trap im-
ages in datasets labeled by scientists [17]. M.S. Norouzzadeh and colleagues trained
deep convolutional neural networks using the Snapshot Serengeti dataset. They tested
four different models—AlexNet, VGG, GoogleNet, and ResNet. The final ResNet-152
model demonstrated the highest accuracy, automatically recognizing animals with over
93.8% accuracy [24].

Based on these convolutional neural network ideas, a series of target detection con-
volutional networks has been developed. This includes the R-CNN family of two-stage
target detection networks known for their high accuracy [25], as well as the YOLO family
of networks and SSDs [26], which are widely recognized for their fast detection speed as
one-stage target detection networks. In 2016, J. Redmon published the first generation of the
YOLO model [27]. The main concept is to extract features from the input image following
the backbone. These features are then divided into S × S grids. The grid where the center
of the object is located is responsible for predicting the object’s confidence level, category,
and coordinate position. YOLO, on the other hand, is known for its speed and its approach
to testing as a regression problem, making the testing process straightforward and efficient.
Secondly, YOLO thoroughly analyzes the image when making predictions and possesses
a strong generalization ability, making it superior to R-CNN [28]. Therefore, in recent
years, the YOLO series of models has been widely utilized in the field of wildlife identifica-
tion. Zhao, T. et al. have developed a wildlife detection model using MobileNet-YOLO,
achieving an average accuracy of 93.6% [29]. Bo Xiong et al. developed an image detection
model using an enhanced YOLOv5 model for polyphagous bugs and green leafhoppers in
the field, achieving an average accuracy of 95.9% [30]. The underlying YOLOv5s model
attained an average accuracy of 89.2% for each category, surpassing the 48.9% accuracy
of SSD networks by a significant margin. A.M. Roy et al. proposed WilDect-YOLO, an
automated high-performance detection model based on YOLOv4 for the real-time detection
of endangered wildlife in field environments, achieving an average accuracy of 96.9% [31].
This study compares the YOLO family of algorithms with other target detection neural
networks, such as the two-stage detection networks Faster R-CNN and Mask R-CNN,
and the one-stage detection network SSD. The accuracies of these networks were 73.17%,
80.7%, and 78.1%, respectively. In contrast, YOLOv4 achieved an accuracy of 91.95% and
demonstrated a shorter detection time. These results indicate that the YOLO series of
models outperforms other networks in the detection and identification of endangered
wildlife. Previous studies have shown that the YOLO family of models outperforms both
the two-stage detection network and the single-stage detection network SSD in tasks related
to animal recognition in wild scenes. The YOLO models are more suitable for studying rare
wildlife recognition models.
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In summary, to enhance the rare wildlife detection capability of GPNP and improve
the wildlife protection ability, we have enhanced the YOLO series of convolutional neural
networks and developed a recognition model for rare wildlife in GPNP. We compared the
improved method to the traditional YOLO model and applied it to rare wildlife monitoring
in GPNP. Furthermore, we utilized trap camera data from GPNP to conduct a study on
model generalization to confirm the validity of the model.

2. Materials and Methods
2.1. Dataset

The dataset we are using is LoTE-Animal [32]. The data collection area is primarily
located in the Wolong National Nature Reserve in Sichuan Province, Southwest China
(Figure 1), which is one of the major nature reserves within GPNP. Its geographic coor-
dinates are 102◦52′~103◦24′E and 30◦45′~31◦25′N, spanning an area of approximately
2000 square kilometers. The altitude range for data collection is from 1806 m to 4445 m,
encompassing the key distribution heights of endangered animals. Over 200 infrared trap
cameras were strategically placed for data collection purposes.
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In terms of species delineation, the authors use the Catalog of Mammals of China (2021)
as a basis to optimize the classification of animals into orders, genera, and families, which
effectively reflect the biological relationships among species. The dataset has been carefully
curated and annotated with 11 species of animals, all of which are rare and endangered
wildlife found within GPNP. It includes 10 k video sequences for the action recognition
task and 28 k images for tasks such as target detection, instance segmentation, and pose
estimation. Approximately 22 k images are specifically allocated for target detection and
recognition purposes.

In the format of the data annotation, the authors followed the COCO standard and
labeled several tasks, including target detection and instance segmentation. For the an-
notation process, consensus-based annotation was employed. This involved assigning
three annotators to each image and reaching a final annotation based on consensus among
the annotators. This ensured that the resulting dataset contained accurate and high-quality
annotations. Additionally, the collected data were annotated for rare wildlife behavior.
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The LoTE-Animal dataset gathers image data spanning up to 12 years, showcasing
changes across various time periods, seasons, weather conditions, and natural settings.
With a wide array of images, extensive spatial dimensions, and numerous scenarios, these
images contain rich and complex background information. Using real-world data from the
environment of GPNP is more conducive for the model to acquire the characteristics of
rare wildlife in the wild environment of GPNP during training. In this study, we selected
22 k images for target detection and target recognition. We then divided these images into
training, validation, and test sets at a ratio of 7:1:2.

2.2. Models and Methods
2.2.1. YOLOv5

We have utilized the YOLOv5 model as the base model for our study. The specific
version of YOLOv5 used in our research is V6.0, which was released in October 2021.
YOLOv5 has been upgraded from YOLOv3, inheriting the core idea of the YOLO series.
With YOLOv5, you can obtain the bounding box and category probability of all the targets
simultaneously in one run. By introducing adaptive training strategies and model opti-
mization techniques, YOLOv5 achieves improved inference speed while maintaining high
accuracy. Although previous target detectors have reused classifiers for detection, previous
models would continuously scan a box on the image and employ classifiers to determine
whether the box contained a target or not.

The YOLOv5 target detection algorithm model is mainly divided into three parts:
the feature extraction network (backbone), the feature fusion network (neck), and the
detection network (head). YOLOv5 still treats target detection as a single regression
problem, where the bounding box coordinates and category probabilities are obtained
directly from the image pixels. YOLOv5 also includes additional features, such as the
Mosaic data enhancement method, Focus, Conv, BottleneckCSP, SPP, and PANet modules,
which were not present in YOLOv3 [33]. The feature extraction network first slices the
original image using Focus, which fuses and stitches the information from the 2D planar
map into a 3D space with channel attributes. The Conv module is a standard convolution
module that includes a two-dimensional convolution (Conv2d), batch normalization (Bn),
and an activation function (Leaky ReLU). The SPP is the Spatial Pyramid Pooling module
that generates various feature maps to improve feature representation.

In version 6.0, the activation function in the Conv module has been changed from
Leaky ReLU to SiLU, and the Focus module has been replaced with a Conv layer, which
enhances the efficiency of the model and simplifies the process for exporting the model.
YOLOv5 borrows the idea of the cross-stage partial network from CSPNet (Cross-Stage
Partial Network) and incorporates it into its architecture. The convolution in the basic
module of CSPNet, known as the CSP Bottleneck, is renamed as C3 after being reduced to
three and then added to the network. The new version of the YOLOv5 algorithmic model
introduces a faster feature fusion method, SPPF, which is based on the SPP module. This
method achieves faster processing by reducing the number of network layers and placing
them at the end of the backbone network. The SPPF module utilizes a cascade of multiple
small-size pooling cores instead of a single large-size pooling core in the SPP module. The
original features have been preserved, allowing for the integration of various receptive
fields to produce feature maps at different scales. Shallow features are characterized by
small receptive fields, rich in detail but lacking in localization information. Deeper features
can then be enhanced with contextual semantic information to improve the representation
of lower-level features. SPPF utilizes 8×, 16×, and 32× downsampled feature maps
for the classification and bounding box localization of small, medium, and large targets,
respectively. This helps to enhance the runtime speed while improving the feature map
expressiveness. The accuracy, speed, and number of parameters of the V6.0 model were
optimized in the official data release.

To address the issue of varying sizes of input images, YOLOv5 implements gray scale
filling to standardize the input size and prevent target deformation. The main concept is to
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proportionally scale the length and width of the original image to fit a uniform size and
then fill in any blank areas with gray. In terms of the target detection loss function, YOLOv5
uses CIoU Loss for the bounding box regression, which considers the central distance
between the target and the anchor, the overlap rate, the scale, and the penalty term. This
helps to make the target frame regression more stable and avoids issues such as divergence
during training, as seen with IoU and GIoU. In YOLOv5 V6.0, there are five versions of
the model: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLO5vx. These different
variants make YOLOv5 a good tradeoff between accuracy and speed. The YOLOv5 series
models are widely used in the field of target recognition. The technology is relatively
mature and can be chosen according to different tasks for research on different base models.
To enhance the rare and endangered wildlife recognition ability of the GPNP, this paper
selects the YOLOv5x model as the base improvement model because of its higher accuracy.

2.2.2. Model Improvement Methods

NAMAttention is a parameter-free spatial channel attention mechanism [34]. NAMAt-
tention can assist the neural network in suppressing less important features in the channel
and space without adding more parameters. This can ultimately enhance the information
weight of the essential features, leading to more accurate detection results. In previous
studies on attention mechanisms, scholars have tried to enhance neural network perfor-
mance by capturing key features. Squeeze-and-Excitation Networks (SENets) integrate
spatial information into the channel features’ response using two multilayer perceptron
(MLP) layers to enhance the feature extraction. The Bottleneck Attention Module (BAM)
constructs separated spatial and channel submodules in parallel. The Convolutional Block
Attention Module (CBAM) provides a solution for sequentially embedding channel and
spatial attention submodules, allowing for more efficient and effective image recognition
and processing [35]. However, these studies fail to consider the phenomenon that adjusting
weights can further suppress less important channel and spatial features.

NAMAttention enhances the attention mechanism by emphasizing significant features
through the variance metric of the weights in the training model. This approach eliminates
the necessity for incorporating fully connected and convolutional layers, as seen in SE, BAM,
and CBAM methods. NAMAttention incorporates modules from CBAM and redesigns
the channel and spatial attention submodules. It is integrated at the end of the residual
structure in residual networks. In the channel attention submodule, a batch-normalized
(BN) scaling factor is utilized. NAMAttention assesses the variance in the channels through
scale factors and demonstrates their importance. The NAMAttention structure is depicted
in Figure 2.

In this structure, γ is the scaling factor for each channel in the channel attention
mechanism, λ is the scaling factor for spatial attention, and w is the corresponding weight,
calculated as shown in Figure 2.

NAMAttention adds a regularization term to the loss function to suppress less obvious
weights, as shown in Equation (1), where x denotes the input; y is the output; W denotes
the network weight; the first summed term, where the l(·) function is located, corresponds
to the normal loss function in model training; g(·) is the L1 norm and widely used to
achieve sparsity, taking g(γ) as an example, the formula is g(γ) =|γ|; and p is the penalty
that balances g(γ) and g(λ).

Loss = ∑
(x,y)

l( f (x, W), y) + p ∑ g(γ) + p ∑ g(λ) (1)

The MemoryEfficientMish activation function is an improved version of the Mish acti-
vation function. The Mish activation function (Equation (2)) was proposed in YOLOv4 [36]
and is characterized by low cost, smoothness, non-monotonicity, upper unboundedness,
and lower boundedness. Mish has shown improved performance compared to other com-
monly used functions, such as ReLU and SiLU. MemoryEfficientMish is essentially the
first-order derivative of the Mish activation function (Equation (3)) [37]. Compared to the
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Mish activation function, MemoryEfficientMish is more efficient because it does not use
automatic derivation, and it inherits the following features of Mish:

1. No upper bounds with lower bounds: no upper bounds prevent the sharp decrease in
training speed caused by gradient saturation, while having lower bounds helps to
provide a strong regularization effect similar to the properties of ReLU and SiLU;

2. Non-monotonic function: this property helps to maintain small negative values,
stabilizing the network’s gradient flow. Some commonly used activation functions,
such as Leaky ReLU, do not update for most neurons because of their inability to
maintain negative values;

3. Infinite order continuity and smoothness: MemoryEfficientMish is a smooth func-
tion that avoids singularities, offering better generalization and model optimization
abilities. It effectively enhances the quality of experimental results.

Mish(x) = xtanh[ln(1 + ex)] (2)

MemoryE f f icientMish(x) = Mish′(x) = {x · tanh[ln(1 + ex)]}′

= tanh[ln(1 + ex)] + [1 − tanh[ln(1 + ex)]2] · x·ex

1+ex
(3)
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The C3 module is the main component of the model for residual feature learning,
and enhancing the learning effect of the C3 module will have the most direct impact on
improving the model’s accuracy. To enhance the extraction of residual features for the C3
module, we redesigned the C3 module using the NAMAttention and MemoryEfficientMish
activation functions as a basis. We incorporate the NAMAttention attention module into
the Bottleneck module of C3 to enhance important features and suppress less important
ones. However, the addition of the MemoryEfficientMish function results in increased
computations, making it impractical to use throughout the entire model. Furthermore, a
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model that is too large may not improve the recognition accuracy. Therefore, we replaced
the activation function in the Conv module of C3 from SiLU to MemoryEfficientMish. With
the aforementioned method, we acquired the C3_MNAM module (Figure 3) and replaced
all the C3 modules in the YOLOv5 model.
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The default bounding box loss calculation method of YOLOv5 is CIoU, which is based
on DIoU and further considers the aspect ratio of the bounding box. DIoU takes into
account the distance between the predicted and actual boxes, the overlap rate, and the
scale, which helps to make the regression of the target frame more stable [38].

In target detection, the position of the prediction frame often differs significantly from
the real frame (Figure 4). To better align the prediction frame with the real frame, the target
detection task initially utilized IoU (Equation (4)) as a function to measure the degree of
overlap between the prediction frame and the real frame in the target detection task [39].

When the anchor box is designated as
→
B = [x y w h], the target box is referred to as

→
Bgt =

[
xgt ygt wgt hgt

]
. Wg and Hg represent the width and height of the minimum closed

frame, while Wi and Hi denote the width and height of the overlapping part, respectively.

LIoU = 1 − Wi Hi
Su

(4)

Wise-IoU (WIoU) was proposed by Tong et al. in 2023 [40]. Most recent studies on the
loss function of the bounding box regression (BBR), such as CIoU and DIoU, have made
the assumption that the examples in the training data are of high quality. This has led to
a focus on enhancing the fitting ability of the BBR loss. However, because the training
set includes some low-quality examples, metrics like the distance, aspect ratio, and other
geometric factors will increase the penalty for these examples. This will ultimately decrease
the model’s ability to generalize [41]. Spending all the effort on reinforcing the bounding
box for the regression of low-quality examples clearly jeopardizes the model’s detection
performance. The loss function should decrease the penalty of the geometric metric when
the anchor frame overlaps with the target frame more effectively. However, it should not
interfere too much with the training process to enhance the model’s generalization. This
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challenge is addressed by WIoU, which incorporates a dynamic non-monotonic focusing
mechanism [42].
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The WIoU utilizes the distance attention, RWIoU , (Equation (5)) to construct the
WIoU v1 (Equation (6)) using a dual attention mechanism. The range of RWIoU is [1, e),
which scales up the value of its LIoU for predicting boxes of ordinary quality. To prevent
RWIoU from generating a gradient that hinders convergence, Wg and Hg are separated from
the computational map (denoted by *), effectively eliminating obstacles to convergence.

RWIoU = exp (

(
x − xgt

)2
+

(
y − ygt

)2(
Wg

2 + Hg
2
)∗ ) (5)

LWIoUv1 = RWIoULIoU (6)

The Focal Loss incorporates a monotonic focusing mechanism in place of cross-entropy,
effectively reducing the impact of simpler examples on the loss value [43]. This allows
the model to concentrate on more challenging samples, ultimately enhancing the classi-
fication performance. WIoU combines a monotonic focusing mechanism to construct a
monotonic focusing coefficient, Lγ∗

IoU . This coefficient will decrease when the probability for
predicting a positive sample as being positive is higher and increase when the probability
for predicting a negative sample as being positive is higher. As a result, it controls the
model to prioritize samples with a lower probability of correct prediction to improve the
accuracy. To address the issue of Lγ∗

IoU decreasing as LIoU decreases, resulting in slower
convergence during the later stages of training, WIoU introduces the mean value of LIoU
as a normalization factor, resulting in the derivation of LWIoUv2 (Equation (7)).

LWIoUv2 = (
L∗

IoU

LIoU
)

γ

LWIoUv1, γ > 0 (7)

WIoU defines the outlier β (Equation (8)) to characterize the quality of the anchor
frame. The smaller the outlier, the higher the quality of the anchor frame. Assigning a
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smaller gradient gain to an anchor box with small values of β will help the bounding box
regression to focus back on the normal quality anchor box. Assigning a small gradient gain
to an anchor box with large β-values will effectively prevent low-quality examples from
generating large, harmful gradients. To achieve this, the authors created a nonmonotonic
focusing function ®that utilizes β and applied it to LWIoUv1 to generate a finalized version
of WIoU, LWIoUv3 (Equation (9)), and α and δ are hyperparameters.

β =
L∗

IoU

LIoU
∈ [0,+∞) (8)

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(9)

WIoU uses “outliers” as an alternative to IoU for the quality assessment of the anchor
box and provides a suitable gradient gain assignment strategy. This strategy reduces the
competitiveness of the high-quality anchor box while minimizing the harmful gradients
generated by low-quality examples. This allows WIoU to focus on the common quality
anchor box and improve the overall performance of the detector. When the authors applied
the WIoU to the state-of-the-art real-time detector (YOLOv7) at the time, the average
precision (AP-75) in the MS-COCO dataset increased from 53.03% to 54.50%. Consequently,
to mitigate the effects of poorly labeled data, we substituted the Bounding Box Regression
(BBR)-related loss function in the YOLOv5 model with WIoU.

3. Results
3.1. Experimental Environment

To evaluate our model, we conducted experiments on the LoTE-Animal dataset using
Python version 3.8 on the Ubuntu 20.04 operating system. We conducted experiments
on a remote server using the AutoDL platform. The model was trained on the PyTorch
platform (version 1.10.0), utilizing Cuda 11.3 as a virtual environment. The experiments
were performed on a GPU equipped with 1 RTX 4090 with 24 GB of RAM and a CPU
with a 16-core Intel® Xeon® Platinum 8352 V with 120 GB of RAM. The training took
approximately 10.5 h over 90 epochs. The NMW-YOLOv5 model used in the training
process comprised 492 layers with a total of 86,252,224 parameters and 204.0 GFLOPs
of computation.

3.2. Evaluation Metrics

We assessed the model based on precision (P) (Equation (10)), recall (R) (Equation (11)),
mean accuracy using a confidence threshold of 0.5 (mAP50), and mean mAP (mAP50:95)
across various IoU thresholds (ranging from 0.5 to 0.95 in increments of 0.05). These metrics
are crucial in determining the effectiveness of a target recognition model and its capacity to
accurately identify objects. The F1 Score is commonly used to evaluate the performance
of a classification task. However, in this paper, the model not only needs to assess the
classification ability but also needs to evaluate the detection task performance. Therefore,
mAP is used as the main evaluation index.

TP stands for true positives, which indicates the number of correct positive predictions
made by the model. FP stands for false positives, indicating the number of incorrect positive
predictions made by the model. FN stands for false negatives, which signifies the number
of positive instances not correctly predicted by the model.

P represents the proportion of correct samples predicted to be positive, while R
represents the proportion of true positive samples predicted to be positive. AP represents
the average of various P-values with different R-values, essentially measuring the area
under the PR Curve with respect to the axes. It is calculated using Equation (12), where
n represents the number of thresholds used. The mAP50 value represents the average
accuracy of all the categories at an IoU threshold of 0.5 and is frequently utilized as an
evaluation criterion for wildlife identification models. A higher mAP50 indicates better
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recognition and detection capabilities of the model, leading to improved performance. The
mAP50:95 value represents ten mAP values obtained from an IoU threshold of 0.5 to an
mAP threshold of 0.95 at intervals of 0.05, which are then averaged. Because of the more
stringent requirements from mAP80 through mAP95, achieving mAP50:95 demands greater
model accuracy and reliability than mAP50. The mAP is calculated using Equation (13),
where n represents the number of categories.

P =
TP

TP + FP
=

TP
All Detections

(10)

R =
TP

TP + FN
=

TP
All Ground Truths

(11)

AP =
n−1

∑
i=0

[R(i)− R(i + 1)]·P(i) (12)

mAP =
1
n

n

∑
i=1

APi (13)

3.3. Model Performance

To verify that the model has been adequately trained, we are showcasing the various
types of loss images of the NMW-YOLOv5 model in both the training and validation sets,
as displayed in Figure 5.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 

3.3. Model Performance 
To verify that the model has been adequately trained, we are showcasing the various 

types of loss images of the NMW-YOLOv5 model in both the training and validation sets, 
as displayed in Figure 5. 

 
Figure 5. Change in training loss values. 

Based on the experimental results, the model’s various types of losses showed an 
overall decreasing trend as the number of training rounds increased. The box_loss of the 
model exhibits a consistent downward trend in the training set, while in the validation 
set, it tends to stabilize after 50 rounds, suggesting that the model has been effectively 
trained for the localization task without any signs of overfitting. The obj_loss of the model 
in the objective function displays a decreasing trend in the training set but exhibits a slight 
increase after 50 rounds in the validation set. However, overall convergence is observed, 
suggesting a potential risk for overtraining and overfitting if a greater number of training 
rounds is implemented. The cls_loss demonstrates a rapid decrease and convergence in 
both the training and validation sets, indicating that the model is effectively trained after 
90 epochs. 

The precision, recall, mAP50, and mAP50:95 of the trained NMW-YOLOv5 model 
were evaluated. The results of the model for the validation set for various types of rare 
wildlife in GPNP, as well as the overall evaluation results, are shown in Table 1. 
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Based on the experimental results, the model’s various types of losses showed an
overall decreasing trend as the number of training rounds increased. The box_loss of the
model exhibits a consistent downward trend in the training set, while in the validation
set, it tends to stabilize after 50 rounds, suggesting that the model has been effectively
trained for the localization task without any signs of overfitting. The obj_loss of the model
in the objective function displays a decreasing trend in the training set but exhibits a slight
increase after 50 rounds in the validation set. However, overall convergence is observed,
suggesting a potential risk for overtraining and overfitting if a greater number of training
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rounds is implemented. The cls_loss demonstrates a rapid decrease and convergence in
both the training and validation sets, indicating that the model is effectively trained after
90 epochs.

The precision, recall, mAP50, and mAP50:95 of the trained NMW-YOLOv5 model
were evaluated. The results of the model for the validation set for various types of rare
wildlife in GPNP, as well as the overall evaluation results, are shown in Table 1.

Table 1. Validation results of NMW-YOLOv5 for the identification of individual species.

Species P R mAP50 mAP50:95

Giant Panda 0.994 0.990 0.986 0.884
Red Panda 0.970 0.990 0.993 0.875

Yellow-throated Marte 1.000 0.847 0.950 0.751
Tibetan Macaque 0.947 0.942 0.978 0.819

Golden Snub-nosed Monkey 0.954 0.894 0.939 0.738
Porcupine 0.957 0.949 0.955 0.712
Wild Boar 0.947 0.945 0.974 0.825

Sambar 0.982 0.956 0.990 0.912
Tufted Deer 0.981 0.979 0.994 0.889

Chinese Serow 0.952 0.920 0.973 0.888
Blue Sheep 0.955 0.931 0.971 0.867

All 0.967 0.940 0.973 0.833

Figure 6 illustrates the results of four different performance curves for the experimental
model: the F1–Confidence curve, Precision–Confidence curve, Recall–Confidence curve,
and Precision–Recall curve. The image shows that the model’s F1 score is 0.95, indicating
excellent performance. The model also performs well in Precision and Recall for various
confidence level variations. At the same time, the PR curve demonstrates that the model’s
mAP50 is higher.
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3.4. Modular Ablation

To evaluate the effectiveness of the enhancements, we carried out ablation experi-
ments on each experimental module. We utilized the benchmark model (YOLOv5x) as
a control and established models with only modified NAMAttention (C3_NAM), only
modified MemoryEfficientMish (C3_M), only a modified C3_MNAM module (C3_MNAM),
only modified WIoU (WIoU), and the NMW-YOLOv5 model proposed in the paper for
comparison. Each improvement method and its respective experimental data are detailed
in Table 2.

Table 2. Comparison of ablation experiments.

Model P R mAP50 mAP50:95

YOLOv5x 0.963 0.943 0.967 0.817
C3_NAM 0.963 0.945 0.970 0.826

C3_M 0.966 0.940 0.969 0.822
C3_MNAM 0.966 0.945 0.972 0.824

WIoU 0.965 0.939 0.971 0.828
NMW-YOLOv5 0.967 0.940 0.973 0.833

Based on the experimental data of the overall model metrics, comparing the base model
to the improved models at all the stages, it is evident that mAP50 and mAP50:95 show
varying levels of improvement. Specifically, the model with only NAMAttention added
exhibits a higher R-value. On the other hand, the models with only MemoryEfficientMish
or only WIoU added show higher P-values but a decrease in R-values. Furthermore, models
incorporating the C3_MNAM module demonstrate improved P and R. To demonstrate the
accuracy change of different species in the ablation experiments, we utilized mAP50:95 as a
metric and made Table 3.

Table 3. Comparison of mAP50:95 by species for ablation experiments.

Species YOLOv5x C3_NAM C3_M C3_MNAM WIoU NMW-YOLOv5

Giant Panda 0.878 0.880 0.877 0.878 0.879 0.884
Red Panda 0.873 0.870 0.881 0.879 0.853 0.875

Yellow-throated Marte 0.684 0.724 0.740 0.729 0.742 0.751
Tibetan Macaque 0.817 0.817 0.824 0.819 0.817 0.819

Golden Snub-nosed Monkey 0.705 0.700 0.697 0.702 0.735 0.738
Porcupine 0.669 0.683 0.675 0.679 0.711 0.712
Wild Boar 0.823 0.833 0.827 0.837 0.828 0.825

Sambar 0.909 0.911 0.910 0.912 0.911 0.912
Tufted Deer 0.884 0.889 0.886 0.884 0.887 0.889

Chinese Serow 0.878 0.884 0.887 0.886 0.879 0.888
Blue Sheep 0.862 0.862 0.866 0.863 0.862 0.867

All 0.817 0.824 0.825 0.824 0.828 0.833

Based on the mAP50:95 experimental data of various species, it is evident that the
NMW-YOLOv5 model achieved the highest mAP values in recognizing most species. Some
species, like the Giant Panda, showed varying degrees of improvement, particularly those
with an initially low base accuracy, such as the Yellow-throated Marte, Golden Snub-nosed
Monkey, and Porcupine. For some species, like the Red Panda, there were instances of both
improvement and decline. Overall, our model showed significant improvement for species
with poor performance in the base model, with varying degrees of enhancement for all the
other species.

3.5. Model Comparisons

To showcase the efficacy of the model improvement and its influence on the perfor-
mance of the YOLOv5 model, we carried out comparative experiments. Specifically, we
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opted to test the YOLOv5 series, YOLOv7 series, and YOLOv8 series models, utilizing
nearly identical parameter configurations and training them for 90 epochs. The outcomes
of these comparative experiments are presented in Table 4.

Table 4. Experimental results of NMW-YOLOv5 with other models.

Model p R mAP50 mAP50:95 Layers Parameters

YOLOv5x 0.963 0.943 0.967 0.817 322 86,240,704
YOLOv5s 0.945 0.905 0.947 0.713 157 9,039,792
YOLOv5m 0.944 0.923 0.954 0.775 212 20,905,467
YOLOv5l 0.946 0.948 0.969 0.814 267 46,162,128
YOLOv7 0.949 0.940 0.968 0.812 415 37,250,496

YOLOv7e6 0.951 0.941 0968 0.816 645 110,571,008
YOLOv8s 0.952 0.925 0.959 0.808 168 11,129,841
YOLOv8m 0.952 0.927 0.965 0.815 216 25,862,689
YOLOv8l 0.956 0.928 0.968 0.817 268 43,615,089

NMW-YOLOv5 0.967 0.940 0.973 0.833 492 86,252,224

In terms of the models’ accuracies, our proposed NMW-YOLOv5 model achieves
excellent results in Precision, mAP50, and mAP50:95. Except for the base model, YOLOv5x,
NMW-YOLOv5 improved by 1.1% over the best-performing YOLOv8l in the Precision
metric, by 0.4% over the best-performing YOLOv5l in the mAP50 metric, and by 1.6%
over the best-performing YOLOv8l in the mAP50:95 metric. However, the recall of the
proposed model is lower than those of YOLOv5l, YOLOv7e6, and YOLOv5x. In conclusion,
the model proposed in this study demonstrates high recognition accuracy and better
overall performance.

When it comes to the model’s volume, the improved model has a slightly higher
number of parameters compared to the base model. However, it also boasts 52.8% more
layers, positioning it as the second highest in terms of layers and parameters, just behind
the YOLOv7e6 model in terms of the volume and parameters.

3.6. Model Generalization

To further validate the generalization ability of the NMW-YOLOv5 model and its
recognition accuracy in real-world scenarios in national parks, we utilized rare wildlife
images that are entirely independent of the research presented in this paper for validation.
These images were captured in field scenes within GPNP. The data collection tools are
trap cameras, and the collection period is from 2020 to 2023. In the use of trap cameras for
wildlife monitoring, the phenomenon of empty shots often occurs. To determine whether
the model in this paper has a good screening ability for empty images, we have also selected
some empty images for verification. We apply the model to the images and use manual
counting methods to validate the recognition results for each image. This approach helps us
to evaluate the performance of the model in a real wildlife survival environment. Figure 7
shows some of the recognition results.

We manually counted the collected image data and found a total of 206 targets spread
across 9 categories. After running our model’s recognition process, it successfully identified
167 of the targets, achieving an accuracy rate of 81.1%. The lowest recognition accuracy was
for the Porcupine, with only 50% accuracy, while the highest were achieved by the Golden
Snub-nosed Monkey and Giant Panda, both with 100% accuracy. With the exception of the
Porcupine, Tibetan Macaque, and Sambar, all the other species achieved more than 70%
correct identification. The model screened out 90% of the 30 empty shot images. Overall,
the NMW-YOLOv5 model demonstrates a strong ability to generalize. The specific results
of the generalization experiments are detailed in Table 5.
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Table 5. Statistics on the number of correct identifications of each type of rare and unusual wildlife
species in the generalization test.

Species Actual Correct Estimate Correct Rate (%)

Giant Panda 30 30 100
Red Panda 22 21 95.5

Tibetan Macaque 21 13 61.9
Golden Snub-nosed Monkey 21 21 100

Porcupine 24 12 50
Sambar 22 14 63.6

Tufted Deer 21 15 71.4
Chinese Serow 21 15 71.4

Blue Sheep 22 20 90.9
All 206 169 82.0

Empty Shot 30 27 90

4. Discussion

We trained a convolutional neural network using YOLOv5 on the GPNP image dataset,
LoTE-Animal. We restructured the NMW-YOLOv5 recognition model and performed
performance experiments, comparison experiments, and generalization ability tests on the
model. In this section, we will analyze the modeling and limitations based on the entire
experimental process.

In this study, the YOLOv5 model was optimized using the NAMAttention, Memo-
ryEfficientMish, and WIoU boundary loss functions to account for the complexity of the
environmental information in images of rare wildlife captured in GPNP. The YOLOv5
network is optimized for both accuracy and efficiency, making it particularly well-suited
for wildlife monitoring in environments like animal sanctuaries [44]. Improved attention in
our C3_MNAM module effectively suppresses irrelevant image features while enhancing
the weights assigned to the features of rare wildlife. The MemoryEfficientMish activation
function has a smoother gradient and is easier to optimize, resulting in better generaliza-
tion capabilities. Because of our selection of a model with a larger number of parameters,
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implementing the replacement MemoryEfficientMish can assist in ensuring that feature
information can flow more deeply as the network increases in depth. Additionally, the
use of NAMAttention helps YOLOv5 to better maintain the translation invariance of the
convolution, improving wildlife image recognition. At the same time, the replacement of
the WIoU loss function helps to address the issue of poor image quality that often occurs
under field-monitoring conditions.

According to the four performance curves shown in Figure 3, the model has an F1 score
of 0.95, demonstrating its superiority in the classification task. The Precision–Confidence
curve indicates that at higher confidence thresholds, the model accurately recognizes rare
wild animals with high precision. The Recall–Confidence curve reveals that the model
maintains a high recall rate across various confidence thresholds, indicating a high number
of true positives. However, the recall rate decreases rapidly when the confidence threshold
exceeds 0.8. The Precision–Recall curve further confirms the model’s high recognition
precision. In conclusion, these results prove the model’s excellent performance overall.

After incorporating NAMAttention, MemoryEfficientMish, and WIoU into our experi-
mental models, we observed improvements in both mAP50 and mAP50:95. The analysis of
the experimental data revealed that although certain species exhibited high levels of initial
accuracy, the Yellow-throated Marte, Golden Snub-nosed Monkey, and Porcupine showed
poor fine-grained recognition abilities in terms of mAP50:95. After the introduction of
NAMAttention and MemoryEfficientMish, the Yellow-throated Marte and Porcupine saw a
significant improvement in mAP50:95, while the Golden Snub-nosed Monkey experienced
a slight decrease. Following the implementation of WIoU, all three species demonstrated
a marked enhancement in species recognition accuracy. Furthermore, the ablation exper-
iments indicated that the model’s enhancement primarily stemmed from species with a
lower initial recognition accuracy, subsequently leading to an overall improvement in
recognition accuracy for each species. Despite some fluctuations in the overall p-value and
R-value of the model during the experiment, the improvements in the overall recognition
accuracy remained evident.

With the incorporation of the C3_MNAM module, the model achieved mAP50 and
mAP50:95 values of 0.972 and 0.824, respectively. Subsequent to the addition of the
WIoU loss function to the model with C3_MNAM, there was a slight increase of 0.1%
in mAP50, while mAP50:95 improved to 0.833, representing a substantial enhancement.
This further underscores the effectiveness of the WIoU loss function in optimizing the
model’s performance when dealing with low-quality samples from field images.

We have selected some images to compare the visualization of different improved
models with the baseline model, and the comparison results are shown in Figure 8.

Figure 8a displays the wildlife images that can be identified by the base model. It
is evident that various methods for enhancing the model have increased the confidence
level in species recognition, demonstrating the effectiveness of the model improvement.
NMW-YOLOv5 shows significant improvement in recognition ability compared to the base
model, albeit slightly lower than the model solely incorporating MemoryEfficientMish.

Figure 8b shows the image of the base model where misdetection occurs. In this
instance, the base model incorrectly identifies the Yellow-throated Marte as a Tufted Deer.
However, with the improved NMW-YOLOv5 model, not only the misdetection situation is
eliminated compared to the base model but also a high detection confidence is achieved. The
model successfully eliminates the misdetection situation after integrating NAMAttention,
C3_MNAM, and WIoU. The inclusion of MemoryEfficientMish in the model did not resolve
the issue of misdetection, but it did have a positive impact by lowering the confidence level
for misidentifying it as a Tufted Deer.

Figure 8c contains both the missed and misdetected cases of the base model. It is
important to note that the base model is able to recognize an image in which only detection
boxes with different colors are visible because of masking, indicating that it experiences
misdetection and misses the immature Tibetan Macaque. In contrast to the base model,
NMW-YOLOv5 eliminates the misclassification case present in the base model. The models
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with NAMAttention, MemoryEfficientMish, C3_MNAM, and WIoU respectively did not
resolve the misclassification problem, but they did eliminate the misdetection cases and
improved the confidence level of the recognition.
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In many previous works, researchers, such as Roy et al., have demonstrated that the
YOLO family of algorithms exhibits superior detection and recognition capabilities when
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compared to traditional two-stage convolutional neural networks, like Faster R-CNN and
Mask R-CNN, and the one-stage convolutional neural network SSD [30,31]. Therefore, we
selected both classic models and the latest results in the YOLO series. We chose both large
and small models from these selections to conduct comparative experiments. Among them,
YOLOv5s, YOLOv5m, and YOLOv5l, which are the same version of deep-learning models
as the models studied in this paper, represent the tests of the ability to recognize images of
rare wild animals when the number of parameters is small and large, respectively. YOLOv7
and YOLOv8 are the latest achievements in the YOLO series over the past two years. In
addition, we have selected two different volume versions of YOLOv7 and YOLOv7e6 for
comparison. And we have chosen YOLOv8s, YOLOv8m, and YOLOv8l from YOLOv8 as
another set of experimental tests to assess the image recognition capabilities of rare wildlife
with varying numbers of parameters. Based on the experimental results, in terms of the
model’s accuracy, it is evident that NMW-YOLOv5 demonstrates improved recognition
accuracy and capability when compared to other parameterized recognition models. In
comparison to the latest models released in the last two years, the base model we chose,
YOLOv5x, already demonstrates a strong recognition ability, with the best mAP50:95
performance among them. The enhanced NMW-YOLOv5 model shows an improvement
of over 1.6% in mAP50:95 compared to the latest model, and mAP50 improves by more
than 0.4% across all the models, indicating a significant practical enhancement in our
model’s performance. This finding serves as a testament to the significance of our study.
Furthermore, the improved model boasts a greater number of parameters and achieves the
highest recognition accuracy among the models of a similar size. It has the advantage of
better accuracy as a large model. Therefore, our model is well-suited for deployment as a
large model on cloud-based recognition platforms.

During the test of the model’s generalization ability, errors were produced in the
generalization experiments for some species, ranging from 0% to 50%, with a wide range
of error values. Overall, the probability for correctly identifying most species aligns with
the results of the model performance experiments. For example, the Giant Panda and
Red Panda performed well in the evaluation metrics, the Chinese Serow was close to
the average, and the Porcupine fared poorly. On the other hand, the model displays
different characteristics. For example, although the Golden Snub-nosed Monkey detected
by NMW-YOLOv5 in the LoTE-Animal dataset did not rank at the top for detection, it
achieved a 100% correct recognition rate. In contrast, for the Tufted Deer, even though
the model achieved an mAP50 of 99.4%, it only displayed a 61.9% correct recognition
rate in testing. We hypothesize that this phenomenon occurs because of chance, triggered
by an insufficient number of samples of generalization test images and the complexity
of wildlife images. Additionally, the model possesses better screening ability for images
that do not contain wildlife, enabling it to accurately differentiate between environmental
information and rare species. This certainly does not exclude the possibility that the model
may be overfitting. Field image recognition of Yellow-throated Martens and Wild Boars
is not discussed herein because of the unavailability of sufficient data for these species.
Nevertheless, the generalization test showed that our model can be effectively utilized in
real-world wildlife monitoring endeavors.

There is no denying that our model has some shortcomings. First, although the model
showed improved detection and recognition results for most species in the performance
experiments, there is still a significant gap in the accuracy for the Yellow-throated Marten,
Porcupine, and Golden Snub-nosed Monkey. This indicates that further efforts are needed
to enhance the recognition of these three species. Second, in the comparison experiments,
our model did not perform the best in terms of the Recall. The Recall was lower by
0.8% compared to YOLOv5l, indicating that the model’s detection ability can still be
enhanced. Finally, the dataset used in this study, which includes only 11 rare wildlife
species, is comparable to the total number of rare wildlife categories in GPNP. Because of
the randomness of the data collection using trap cameras, the number of species images
collected varies greatly. Although most species have around 1000 images, there is some
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data skewing. The highest number of collected Blue Sheep images exceeded 9000, while the
lowest number of collected Yellow-throated Marten images was only 243. Finally, although
the model has some recognition ability for the same species in other environments, the
natural environment is complex and variable. Different regions have different plants and
other background environmental features. To better apply the model in wildlife recognition
in other regions, targeted training using different environmental data is needed.

5. Conclusions

Enhancing the wildlife monitoring capacity is a crucial component in the conserva-
tion of rare wild species and biodiversity. In this study, we introduce a novel wildlife
recognition model, NMW-YOLOv5, and conduct model training using LoTE-Animal, a
publicly available dataset of rare wildlife from GPNP. We showcase the effectiveness of the
NMW-YOLOv5 model for identifying rare wildlife in GPNP. The NMW-YOLOv5 model
proves to be more accurate in identifying rare wildlife in the natural environment of the
GPNP. First, we developed the NMW-YOLOv5 model incorporating NAMAttention, the
MemoryEfficientMish activation function, and WIoU. The model performed well in the
LoTE-Animal dataset, achieving 97.3% mAP50 and 83.3% mAP50:95 values. After compar-
ing experiments with some classic YOLO models as well as the latest YOLOv8 model, our
model shows an improvement of 0.4% over the best-performing YOLOv5l in the mAP50
metric and 1.6% over the best-performing YOLOv8l in the mAP50:95 metric. This indi-
cates a high level of recognition accuracy. Finally, we demonstrate the effectiveness of
the proposed model in practice by conducting a test to evaluate its generalization ability.
Although the model generated errors in the generalization experiments for some species,
ranging from 0% to 50%, it displayed smaller errors for the majority of the rare wildlife
and was able to identify wildlife in their natural habitat with greater accuracy. It has been
demonstrated that NMW-YOLOv5 exhibits a strong rare wildlife recognition capability
in the GPNP environment. This could serve as a valuable tool for the conservation and
monitoring of rare wildlife within the GPNP.
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