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Abstract: Machine learning models are used to identify crops in satellite data, which achieve high
classification accuracy but do not necessarily have a high degree of transferability to new regions. This
paper investigates the use of machine learning models for crop classification using Sentinel-2 imagery.
It proposes a new testing methodology that systematically analyzes the quality of the spatial transfer
of trained models. In this study, the classification results of Random Forest (RF), eXtreme Gradient
Boosting (XGBoost), Stochastic Gradient Descent (SGD), Multilayer Perceptron (MLP), Support Vector
Machines (SVM), and a Majority Voting of all models and their spatial transferability are assessed.
The proposed testing methodology comprises 18 test scenarios to investigate phenological, temporal,
spatial, and quantitative (quantitative regarding available training data) influences. Results show
that the model accuracies tend to decrease with increasing time due to the differences in phenological
phases in different regions, with a combined F1-score of 82% (XGBoost) when trained on a single
day, 72% (XGBoost) when trained on the half-season, and 61% when trained over the entire growing
season (Majority Voting).

Keywords: machine learning; spatial transferability; crop classification; Sentinel-2

1. Introduction

Increasing globalization and the simultaneous estimated population growth to about
10 billion by 2050 have intensified the competition for agricultural food, feed, and raw ma-
terials [1]. In this context, in order to meet agricultural needs, intensive farming is practiced,
which can contribute to environmental problems (e.g., the devastation of peat bogs, wind
and water erosion, decrease in groundwater level, the compaction and slacking of soils,
and the expenditure of arable land) [2]. The potential loss of ecosystems and biodiversity,
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as well as the risk of water and soil pollution from the use of agrochemicals, are arising
from the intensification of agricultural land. Additionally, intensive farming is linked to an
increase in greenhouse gas emissions [3]. To reduce adverse effects on the environment,
farmers are encouraged to use more climate-friendly solutions (e.g., improving sustainable
water management, increasing biodiversity, and minimizing wind erosion by inserting
landscape elements, such as hedges and tree lines) [4]. Incorporating comprehensive and
current data is essential to mitigating adverse effects on the environment.

The European Space Agency (ESA) and the National Aeronautics and Space Admin-
istration (NASA) have initiated a program to provide remote sensing data freely and
publicly [5,6]. The opening of the Copernicus program to the remote sensing research
community, in particular, has led to scientific contributions in many agricultural applica-
tion areas, such as crop identification, crop rotation analysis, yield estimation, irrigation
monitoring, and the generation of application maps for agrochemicals and yield assess-
ment [7–12]. Therefore, this work is based on freely available Sentinel-2 satellite data [5].
Remote sensing is an indirect method for delivering agricultural information. Thus, it is
necessary to supplement remote sensing data with in situ data for evaluation.

The technical developments in hardware (increasing computing power, larger main
memories) and processing technologies (deep learning) allow for the processing of big data
and the training of deep learning models [13–15]. Deep learning architectures are commonly
employed for crop classification in satellite remote sensing, offering advancements in
this field such as high classification accuracy and powerful feature extraction ability [16].
Common deep learning architectures employed for crop classification in satellite remote
sensing include CNNs and LSTMs. The CNN learning process is efficient and insensitive
to data shifts, enabling 2D pattern recognition [17].

Non-parametric machine learning models, such as Support Vector Machines (SVM),
are well-suited for handling high-dimensional data, such as large feature spaces consisting
of spectral data, while decision trees like Random Forest are advantageous in processing
large areas due to their efficiency, high performance, and low computational costs [18–22].
Most of the methods employ a pixel-based approach. By using radar, optical, and environ-
mental data, Random Forest models can achieve an accuracy range of 78% to 80%, whereas
the feature importance analysis shows that features from optical sensors are the most
important in achieving this accuracy [7]. Synthetic Aperture Radar (SAR) data can further
increase accuracy and are an interesting complement in cloud-prone areas in order to avoid
missing critical phenological development stages. More information can be obtained via
a high revisit frequency of the test area, as SAR can penetrate clouds. Additionally, SAR
allows for the capture of unique characteristics of various crops such as soil moisture and
vegetation height [23]. These features can offer insights for crop classification purposes.

Crop type mapping is the process of identifying the crop types and their spatial
distribution using classification methods such as machine learning and deep learning.
Large-scale crop type mapping often requires prediction beyond the environmental settings
of the training sites. Furthermore, shifts in crop phenology, field characteristics, or ecologi-
cal site conditions in the previously unseen area may reduce the classification performance
of machine learning classifiers that often overfit to training sites [24]. Using Sentinel-2
data, high variability in transferability performance was found in the models [25]. Efforts
have been made to transfer the models from regions with abundant in situ data to regions
with limited in situ data using augmentation and transfer learning (TTL). However, TTL
model performance was poor when significant phenological differences or differences in
plant composition were involved [26]. The study demonstrated that adapting the data
distribution to the specific conditions of the target areas of interest can compensate for
unfavorable phenological changes, thereby enhancing the model’s transferability. However,
the spectral characteristics of identical crops on the exact dates can vary, making it difficult
to transfer models to large-scale areas [27]. In this context, overfitting a classification model
to reference samples is one key reason for poor spatial transferability and generality. Over-
fitting can occur when machine learning algorithms are optimized for the training data
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acquired from certain localities [28]. To reduce spatial overfitting, a spatial cross-validation
(CV)-based feature selection can be performed to fit the model to samples from multiple
locations, leading to improved spatial transferability and generality [29,30]. Studies on
the quality metrics for transferring machine learning models are limited. For example, in
another study, the utilization of growing degree days (GDD) as an indicator was used to
evaluate the potential success of transferability [31].

In this work, the approach is to systematically and fundamentally, in terms of quantity,
phenology, and temporal and spatial influences, assess whether a model can be transferred
to a different region. The approach of this study is to develop a modeling strategy that
classifies crops by field rather than by pixel. Therefore, the derived features describe
and aggregate all pixel values within a field and do not relate them directly to each
individual pixel.

2. Materials and Methods
2.1. Study Area

Brandenburg is the fifth largest state in Germany with an area of 29,654 km2 and is
located in the northeast of the Federal Republic of Germany. Embedded in Brandenburg
is the German capital Berlin with an area of 891 km2. The land use of Brandenburg is
composed of agricultural land (49%), forest (35%), urban areas (7%), traffic infrastructure
(4%), water bodies (3%), and any other business (AOB) (3%) [32].

The difference between the northern study area and the southern study area plays a
role in the classification because hydrology, geology, soil, climate, and land use influence
the behavior of the vegetation and, thus, spectral properties (Table 1). The study areas are
located in predominantly rural and vegetation-rich regions and are, therefore, suitable for
the training of models for the classification of crops (Figure 1).

Table 1. Climate, geology, hydrology, soil, and vegetation characteristics of northwest and south-
east Brandenburg.

Characteristic Brandenburg Northwest Brandenburg Southeast

Climate

Maritime climate [33];
Average yearly precipitation is approximately 293 mm [33];
Increased humidity can influence the growth and distribution
of plant species [34,35].

Climate is classified as continental and the average annual pre-
cipitation is around 610 mm [33];
The humidity is lower in the southeast compared to the north-
west of Brandenburg [34,35];
This variance in humidity levels can impact the growth and
distribution of plant species.

Geology

Limestones and calcareous marls dominate the northwestern
part, indicating marine sedimentation [36,37];
Characterized by extensive lowlands, which are the result of
crustal subsidence [36,37].

Nutrient-poor sandy soils dominate [36,37].

Hydrology

Extensive lowlands with alternating wet conditions [34,35];
Lowlands influence the water balance and the formation of gley
and moor soils, which have a high water-storage capacity and
contribute to the formation of wetlands [34,35];
Numerous watercourses shape the landscape and the water
balance and contribute to the formation of flood plain land-
scapes [34,35].

Nutrient-poor sandy soils characterize the area. These have a
low water-storage capacity, which leads to the rapid runoff of
precipitation into the watercourses [34,35];
Watercourses are not very pronounced and their influence on
the water balance and landscape development is, therefore,
lower [34,35];
The groundwater table of some areas is lower than in the north-
west, which can lead to lower water availability and higher
drought vulnerability [34,35].

Soils Gleye; boggy soils; sandy soils [36,37]. Sandy soils, brown earth, pale earth, regosol, podsol [36,37].

Vegetation

Humid conditions due to the large number of lowlands and the
proximity of the Baltic Sea which favors the growth of wet and
boggy soils and wet and boggy meadows [37–39];
The weather regions of the northwest are dominated by decidu-
ous and mixed forests [37–39];
The main species are oak, beech, birch and pine [37–39].

The sandy soils and continental climate of southeastern Bran-
denburg result in drier conditions. This favors the growth of dry
and sandy soils as well as dry grasslands and heaths [37–39];
Pine forests dominate in the southeast of Brandenburg due to
the low water-holding capacity of the sandy soils [37–39].
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Figure 1. Pink are the crop fields for training and yellow are the crop fields for validation. The
intersecting part (black) was removed from the training and validation set (adapted and modified
from [40]).

The dry conditions warmed the soil so that, in some cases, soil temperature noticeably
exceeded air temperature. Many cereal crops became prematurely ripe. In some areas, there
was abundant but inhomogeneous rainfall. However, this did not stop the soil drought, as
the water quickly evaporated or was transported elsewhere as runoff. Due to the lack of
water, the heat went deep into the soil. This drought stress led to lower yields. Overall, the
intensity of extreme temperature events in the year 2018 has led to negative impacts on
crop growth (Table 2).

Table 2. Climate statistical report for the growing season of 2018 [41].

Month Description

April High contrast between daytime highs and nighttime lows (near frostline).

May
Growth was slowed down due to the temperature differences between day
and night. Sunshine was 120% to 160% above the typical value. Low precipitation and
heat severely dried out the topsoil.
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Table 2. Cont.

Month Description

June Winter barley matured too early. In some areas, soil temperature exceeded air tempera-
ture significantly.

July Many cereal crops became prematurely ripe. Drought stress led to lower yields.

2.2. Satellite Data

For the classification of crops, Sentinel-2 data from the year 2018 with a spatial resolu-
tion of 20 m was used as the input data. Each satellite has a ten-day revisit cycle, while the
entire constellation has a five-day revisit cycle [5]. For this study, the Sentinel-2 L2A product
was used, meaning that the atmospheric correction was already performed by the Sen2Core
processor [42]. Thus, a Level-2A Bottom-of-Atmosphere (BOA) product, containing all
13 spectral bands, is produced. Furthermore, the generated Scene Classification Layer
(SCL) simplifies the process of identifying vegetation pixels, while excluding cloud, cloud
shadow, invalid, and water pixels [40]. All 2018 scenes are used regardless of cloud cover,
as only cloud-free plot patches are extracted, meaning that even scenes with high cloud
cover can provide cloud-free parcel fields. Additionally, the parcel fields were filtered to
include only observations with NDVI values ranging from 0.28 to 0.87, as this range is is
indicative of vegetation presence [43,44].

2.3. Reference Data (Digital Field Block Cadastre)

The 2018 harvest data provided by the Brandenburg Survey and Geoinformation Office
were used as training data. These data are based on farmers’ declarations of applications
for agricultural subsidies (Common Agricultural Policy—CAP of the EU) for agricultural
land. They are managed by the Land Parcel Identification System (LPIS). The data are
based on the digital field block cadastre, which is anonymized and provides georeferenced
field boundaries in a geospatial vector format. They are available free of charge and cover a
large heterogeneous area (Table 1) [45]. In this work, classification was limited to five crops:
field grass, silage maize, winter oilseed rape, winter rye, and winter wheat (Tables 3–5).
This selection is intended to test how well the models can distinguish between two similar
crops (winter wheat and winter rye) and three different crops (agricultural grass, silage
maize, and winter oilseed rape). In addition, natural and cultivated crops (agricultural
grass versus all others) were selected to determine the impact on classification accuracy and
to investigate the influence of more constant reflectance as occurs in nature [40]. During
the pre-processing of the data, an attempt was made to discard non-plausible NDVI values
by setting thresholds [43,44].

In Table 4 the observations for agricultural grass, winter rapeseed, winter rye, winter
wheat, and silage maize for the year 2018 are listed separately according to the location of
the study/training area (north, south), the fields available in the respective area (number,
average field size), and the cloud-free observations. More observations per class were
collected in the north than in the south. The most observations over the whole training
data set (north, south) were collected for the class winter rye (28,208.82 ha + 6495.83 ha
= 34,704.65 ha) (Table 4), and the fewest observations were collected for silage maize
(14,712.93 ha + 3460.84 ha = 18,173.77 ha) (Table 4).

2.4. Approach to Crop Classification

The classification method is based on a parcel field approach, rather than the classical
pixel-based approach. The training data (all available cloud-free observations of a field
parcel over the entire growing period) are collected via a pre-processing procedure using
Sentinel L2A products. The pre-processing routine retains parcel fields as samples when
cloudless images of the parcels within the scenes are available. The changing cloud coverage
in the study area leads to fluctuations in the number of parcels with cloudless images at
different times. The training data were split into training, test, and validation datasets with
proportions of 80/10/10, respectively. The field was clipped to the field boundary across
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11 Sentinel-2 (Table 5) 20 m spatial resolution L2A input bands. Furthermore, the bands are
combined to the following vegetation indices: Atmospherically Resistant Vegetation Index
(ARVI) [46], Enhanced Vegetation Index 2 (EVI2) [47], Inverted Red-Edge Chlorophyll Index
(IRECI) [48], Normalized Difference Vegetation Index (NDVI) [49], Normalized Difference
Water Index (NDWI) [50], and Ratio Vegetation Index (RVI) [51] (for equations, see Table 3).
The vegetation indices’ phenological characteristics and spectral behavior were used to
deliver additional information for the machine learning models [52,53]. Furthermore,
they have proven to deliver satisfactory results in other works [54]. The VI values of
each clipped parcel were averaged and used by vegetation indices or were aggregated by
different mathematical equations (Table 3, column: Sentinel-2 Formula). Thus, 272 features
were derived for each parcel field, calculated as ((11+ 6) · 16) or (11 inputs (Table 5) + 6 VIs
(Table 3)) · 16 features (Table 5)). The features were calculated according to the equations in
Table 5.

Table 3. List of vegetation indices used.

Index Description Sentinel-2 Formula Resolution

ARVI [46] Atmospherically Resistant Vegetation Index
(B8 − (B4 − 1 · (B2 − B4)))
(B8 + (B4 − 1 · (B2 − B4)))

20 m

EVI2 [47] Enhanced Vegetation Index—Two-band
(2.5 · (B8 − B4))

(B8 + (2.4 · B4) + 1)
20 m

IRECI [48] Inverted Red-Edge Chlorophyll Index
((B7 − B4)÷ B5)

B6
20 m

NDVI [49] Normalized Difference Vegetation Index
(B8 − B4)
(B8 + B4)

20 m

NDWI [50] Normalized Difference Water Index
(B3 − B8)
(B03 + B08)

20 m

RVI [51] Ratio Vegetation Index
B8
B4

20 m

Table 4. Extracted specifications based on CAP data on the number, size in hectares (ha), and
percentage distribution of fields for the northern and southern area (Table 6) in the year 2018.

Crops Study
Area

Total Parcel
Fields

Mean Field
Size (ha)

Area
Std (ha)

Area
Sum (ha)

Cloud-Free
Observations

Cloud-Free
Observations
Per Class (%)

Cloud-Free
Observations

Total (%)

Agricultural
grass

N 1661 3.51 4.81 5839.65 6559 62.23 18.03
S 504 3.37 7.07 1702.76 3981 37.77 10.94

Winter
rapeseed

N 981 19.06 18.66 18,700.98 3182 71.33 8.75
S 168 16.30 14.41 2739.88 1279 28.67 3.51

Winter
rye

N 2563 11.00 12.58 28,208.82 8403 69.43 23.11
S 609 10.66 13.38 6495.83 3700 30.57 10.17

Winter
wheat

N 1168 16.10 17.67 18,808.89 3608 68.27 9.92
S 244 12.62 14.96 3080.39 1677 31.73 4.61

Silage
maize

N 1199 12.27 13.14 14,712.93 2551 64.26 7.01
S 291 11.89 13.90 3460.84 1419 35.74 3.90

Total training 7572 86,271.27 24,303
Total validation 1816 17,479.70 12,056

Total 9388 103,750.97 36,359

For the year 2018, a total number of 36,359 cloud-free parcel fields were collected from
Sentinel-2 satellite imagery. A particular feature type is the extraction of the three most
dominant reflectances (D1, D2, and D3). D1, D2, and D3 are calculated by using the k-means
clustering method that the OpenCV library provides [55]. The k-means method was used to
group similar reflectances, to create a reflectance palette through iterative centroid updates and
data point reassignments based on reflectance similarity. After assigning all the reflectances
to one of three clusters, the values of the centroids (named D1, D2, and D3) are then used
as features. These results represent the input data for the machine learning models. The
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models used were Random Forest, eXtreme Gradient Boosting (XGBoost), Stochastic Gradient
Descent (SGD), Multilayer Perceptron (MLP), and SVM. Random Forest combines multiple
tree predictors to solve classification or regression problems. A random selection of features to
split each node reduces noise and error rates while growing the forest [56]. SGD is a machine
learning algorithm that incorporates boosting and bagging by combining multiple weak
learners and building, at each iteration, a new decision tree based on a random sub-sample
of the training dataset to improve the initial model [57]. XGBoost improves the regular GBD
by using mechanisms such as regularization (supports in avoiding overfitting), tree pruning
(specifying tree depth), and parallelism [58]. A Support Vector Machine uses an iterative
process to split a dataset into a discrete number of classes by using a hyperlane. Due to many
non-linear real world problems, an SVM uses soft margins and the kernel trick to separate
overlapping data points from different clusters [59]. A Multilayer Perceptron (MLP) is a
feed-forward neural network with multiple layers consisting of perceptrons. An MLP can
be trained by using back propagation and is used for classification, regression, and pattern
recognition tasks [60].

Majority Voting was implemented to determine if the predictive accuracy and trans-
ferability of the models improve when they are voted on together. Each model classifies
the corresponding field parcel using the generated features (Table 6). If the Majority Voting
comes to a balanced or ambiguous vote, the last of the two vote sets is taken from the
previous iteration of the program, meaning that the last vote set is equally good or bad. The
case where all models voted differently did not occur and was, therefore, not considered
further. To train the model and extract the features, the Python Anaconda distribution and
its corresponding libraries are used [61]. The figures were created using QGIS [62] and
Excel [63]. The following Python packages were used for implementing the models and
creating figures: Numpy [64], SciPy [65], Matplotlib [66], Pandas [67], and scikit-learn [68].

Table 5. List of applied gray level co-occurrence matrices (GLCM), simple statistical metrics, complex
statistical metrics (explanation of D1, D2, and D3 in Section 2.4), and resolution (Res.).

Feature Formular Input Res.

Gray level co-occurrence matrices:
(1) Angular second moment (ASM) [69] ∑levels−1

i,j=0 P2
i,j

All features were applied to the following
inputs:
B02, B03, B04, B05, B06,
B07, B8A, B11, B12, Water Vapour (WVP) [5],
True Color Image (TCI) [5]
VIs: ARVI, EVI2,
IRECI, NDVI, NDWI, RVI

20 m

(2) Contrast [69] ∑levels−1
i,j=0 Pi,j(i − j)2 20 m

(3) Correlation [69] ∑levels−1
i,j=0 Pi,j

[
(i−µi) (j−µj)√

(σ2
i )(σ

2
j )

]
20 m

(4) Dissimilarity [69] ∑levels−1
i,j=0 Pi,j|i − j| 20 m

(5) Energy [69]
√

ASM 20 m

(6) Homogeneity [69] ∑levels−1
i,j=0

Pi,j

1 + (i − j)2
20 m

Complex statistical measurements:
(7–9) D1, D2, D3 (k-means [55]) ∑i ∥samplesi − centerslabelsi∥2 20 m

(10) Entropy −∑n
i=1 pilog2pi 20 m

Simple statistical measurements:
(11) Minimum min(x) 20 m

(12) Maximum max(x) 20 m

(13) Mean x =
∑ X

N
20 m

(14) Median med(x) 20 m

(15) Standard deviation σ =

√
∑(xi − x̄)2

n − 1
20 m

(16) Geometric mean x =
√

ab 20 m
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Table 6. Test scenarios according to the spatial and temporal training and testing data sets used [40].
A full season includes all months from April to June.

Number (T) Test Scenario Influence

1 Trained on north (full season)/tested on south (full season)
2 Trained on south (full season)/tested on north (full season) Spatial
3 Trained on mixed (full season)/tested on mixed (full season)

4 Trained on (April–May) north/tested on (April–May) south
5 Trained on (April–May) south/tested on (April–May) north
6 Trained on (April–May) mixed/tested on (April–May) mixed

Phenological7 Trained on April/tested on May
8 Trained on May/tested on April (retrospective)
9 Trained on June/tested on May (retrospective)

10 Trained on day north/tested on day south
11 Trained on day south/tested on day north
12 Trained on day mixed/tested on day mixed
13 Trained on April north/tested on April south
14 Trained on April south/tested on April north

Temporal15 Trained on May north/tested on May south
16 Trained on May south/tested on May north
17 Trained on June north/tested on June south
18 Trained on June south/tested on June north
19 Trained on Week north/tested on Week south
20 Trained on Week south/tested on Week north

2.5. Assessment of Accuracy and Generalization Capabilities

Naturally, vegetation is subject to high variability in its regional reflectance behavior
and is influenced by environmental conditions (Table 1). The study area was divided
into the north test site and the south test site to investigate the power of machine learning
models to classify crops by extrapolating the algorithms to regions which were not included
into the learning process [70]. Dividing the study area and performing 18 test scenarios
(Table 6), which were cross-validated with each other, allows for the assessment of envi-
ronmental influences on the temporal, spatial, and phenological behavior of vegetation
with consequences for quantities of training data [40,71]. The multi-temporal training
and testing datasets were resampled based on geographical area (north and south) and
time intervals (day, week, and month) and then used for training and testing the model
(Section 2.4).

A total of 18 test scenarios of different initial configurations in terms of the spatial and
temporal training and test datasets used were conducted to investigate how the evaluation
quality of the model responds to the selected training dataset and the environmental
region to which it is applied (Table 6). The temporally and spatially varying training
data are combined to analyze how well the model can distinguish between the different
phenological phases when data from a longer time period are included (test scenarios 4–9).
To investigate the influence of time variables, mean time windows of one day or one month
were added to the spatial test component to investigate the extent to which time plays a role
in classification (test scenarios 10–20). The day with the most cloud-free observations were
used for the T10–T12 tests, while datasets from weeks with the most cloud-free observations
were utilized for the T19 and T20 analyses (Table 6).

3. Results
3.1. Extracted Features

A negative skew can be seen for the distributions of the ARVI, EVI2, NDVI, and NDWI
(Figure 2). Only four of the 272 gathered features are analyzed and presented, since all
other vegetation indices have similar characteristics and these VIs are the most common
indices in the remote sensing field.
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Figure 2. Distribution of data collected for all crops with VIs aggregated over the growth period.
Skewness: (a) ARVI: −0.47, (b) EVI2: −0.33, (c) NDVI: −0.56, and (d) NDWI: −0.35 (adapted and
modified from [40]).

The negative skew can be explained by the time-filtered growth phase and the record-
ing time, meaning that most cloud-free observations were collected in April and May, which
correlates to the high reflectance values in Figure 3. In this growth phase, the reflection of
the crops is highest with the appearance of silage maize, since this growth phase starts late
(Figure 3). A similar reflectance behaviour can be observed between winter rye and winter
wheat, as these plants are part of the Poaceae plant family. In addition, the entire growth
phase of the plant from appearance to harvest can be observed. The cycle starts with the
sowing season (September to October) and a subsequent growth phase over the winter into
spring, with peak values in May and a subsequent harvest in June and July. A constant
reflection characterizes agricultural grass throughout the year [40].

Figure 3. Growth phase shown by the NDVI over the total period from sowing to harvest for each
field crop. For illustration purposes, a four-day interval was used.
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3.2. Interpretation of the Results

The reflectance characteristics of crops are subject to high variability due to envi-
ronmental influences. Therefore, the data were divided into north and south regions to
test the models based on the environmental variability in these regions. As shown in
Figure 4, the accuracy tends to decrease with increasing period. This means that the models
trained with a phenological mixed dataset (data from full growing season) had difficulties
attributing the different growth phases to the plant species. Each period was trained in
the north and tested in the south, since more observations are available in the north and,
thus, the spectral diversity can be better represented in the model. The half-season shows a
higher classification accuracy despite the increasing period. Studying the test cases T13
(Table A6) and T15 (Table A7), a high difference in the classification accuracy can be seen.
This can be primarily attributed to the fact that the crop’s phenology, influenced by water
availability, exhibits a more advanced phenological stage in May than in April, leading to
a higher spectral response of the plant. Therefore, they can be better distinguished from
each other in their reflection response (Figure 3). The development stage of the crops can
explain the higher classification accuracy of the half-season (T4, training in April and May
north/testing in April and May south), as the May data (T15, training in May north/testing
in May south) in the half-season noticeably improves the overall classification. The large
difference between the daily and seasonal data shows how big the phenological difference
is between north and south (Figure 4).

For the investigations of the spatial and temporal influence of used training data on
the trained models, the features are divided according to the northern and southern investi-
gation areas. The collected observations are limited to the study period from 1 January 2018
to 16 July 2018, as all studied crops have already been harvested (Figure 3). For the year
2018, 26,359 observations were collected, with 66.84% (24,303) in the north and 33.16%
(12,056) in the south. Apparent differences (Figure 2, skewness of −0.47, −0.33, −0.56, and
−0.35) are noticeable in the distribution of the collected observations within the classes
and between the different training areas. Figure 2 provides further explanations for the
behavior of the models by investigating the skewness of the data in a histogram. Due to
the indices’ negative skewness, many reflectances range within the vegetation spectrum
because the most cloud-free observations could be collected in April and May. During
these months, the vegetation reached a visually distinguishable growth phase, which aligns
with the high classification accuracy in Figure 4 of the test case T4 (half-season). Thus, the
classification’s temporal variability in accuracy can also be explained by investigating the
distribution and skewness of the reflectances.

Figure 5 shows the confusion matrices for the tested models including Majority Voting.
The models were trained in the north and applied to the test area in the south. For all
models except the SGD method, the accuracies are highest for the arable grass, silage
maize, and winter oilseed rape classes due to their biological differences. Winter rye and
winter wheat, on the other hand, were more difficult to separate due to their similarity in
phenology (Figure 3). In the transfer of the models, SGD performed worst, which could
be due to an overfitting of the data. Thus, the SGD model is neither able to distinguish
crops reliably nor to transfer them to other regions. However, all crops could best be
distinguished from winter oilseed rape, which was to be expected due to the biologically
conspicuous characteristics. Field grass was also well classified due to constant reflection
during the growing season, but there was increasing confusion with silage maize in all
models. The classification of silage maize was reliable in models XGBoost, Multilayer
Perceptron, Random forest, and Majority Voting. It is noticeable that SVM is particularly
well placed to separate winter rye and winter wheat from field grass but that all other crops
were confused with winter rye and winter wheat. The Majority Vote led to an equalization of
high and low scores, where high accuracy decreased and low accuracy increased. Majority
Voting is the best transferability model, with a combined F1-score and an accuracy of 0.65.
The results of all the trained models are presented in detail in Tables A1–A5. As shown
in Table 7, the classification precision and the recall of the models decreases when trained
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on the data of the northern test site and then transferred to the southern test site. The
exceptions for which an improvement can be observed are winter rape in precision and
silage maize in recall. Winter rape and arable grass are perfectly classifiable and transferable.
Winter wheat and winter rye were difficult to distinguish and transfer for all models
(Table 7).

Figure 4. F1-score (metric that measures accuracy by combining precision and recall [72]) of all
trained models over the different time periods T (Table 6).

Table 7. Results for precision and recall of the training dataset north (N) and the test area south (S) of
the Majority Voting model for test case T10 (Table 6).

Precision [72] Recall [72] F1-Score [72]
Crop N S ∆ N S ∆ N S ∆

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Agricultural
grass 79 72 −8.86 88 77 −12.50 83 75 −9.63

Silage
maize 82 50 −39.02 80 81 1.25 81 62 −23.45

Winter
wheat 82 61 −25.60 75 45 −40.00 78 52 −33.33

Winter
rye 75 57 −24.00 75 46 −38.66 75 51 −32.00

Winter
rapeseed 95 99 4.21 93 75 −19.35 94 85 −9.57
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Figure 5. Confusion matrices for test case T10 (Table 6) of all models trained in the north and applied
to the new region in the south that were not included in the training data: (a) XGBoost (Table A1), (b)
Random Forest (Table A2), (c) Support Vector Machine (Table A3), (d) Stochastic Gradient Descent
(Table A4), (e) Multilayer Perceptron (Table A5), (f) Majority Voting (Table 7).
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4. Discussion
4.1. Environmental Influencing Factors

The results were also influenced by the extreme weather conditions of 2018. Between
May and July, there is a slight dip in the reflection due to the drought called premature
ripening (Figure 3). April 2018 was too warm and sunny compared to the climate reference
value. The temperature differences at this time were notable, as daytime highs between
15 and 20 °C contrasted with nighttime lows near the frostline. Although the delayed
vegetation development from May could be compensated and the values were mostly in
the normal range, the growth was slowed due to the temperature differences between
day and night. In May, sunshine was above average and reached 120% to 160% of the
typical values with daily maximum temperatures up to 30 °C, so that May was too warm
and too dry. Precipitation distribution was variable, reaching 20% to 70% compared to
the 1981–2010 long-term average. Low precipitation, high evaporation rates, and a soil
temperature of around 20 °C in the upper layers severely dried out the topsoil. For the
third month in a row, June was too warm. In many places, the sunny weather caused a
further tense situation concerning the water supply for crops [41]. Thus, the crops were
exposed to heat and water stress, affecting the classification results and the transferability
as well.

4.2. Classification Results

The models can differentiate well between biologically different crops due to plant-
specific reflection and natural and unnatural vegetation due to the constant reflection
behavior of natural crops (Figure 3). Differentiating between similar crops like wheat
and rye is more complicated. For these similar crops, the classification results were lower
and the confusion was higher (Figure 5). The results show that regionally temporally
different phenological developments influence spectral characteristics and, thus, also
the classification accuracy. Spectral analyses have shown that in the different regions,
the phenological phases differ in start time and length (Figure 3). The training results
are comparable to those from other studies and range between 75% and 94% [7,54,73],
depending on the crop type and the location (Table 7). The models seem to specialize rather
than generalize to perform with the best classification accuracy possible, so parameters
must be adjusted for generalization. Furthermore, the processor classifies per field, not per
pixel, in which the pixel values are aggregated within the field. Field-based classification
has advantages in reduced computation times, and no polygon detection is needed to
derive the features per field. In order to ensure a reliable crop classification, sufficient
cloud-free observations must represent spectral diversity in the model.

4.3. Systematic Approach of the Testing Methodology

Referring back to the literature review, while the problems of transferability are known,
they have not been systematically analyzed [24,25,27–30]. Using the testing methodology
presented here (Table 6), spatial transferability problems can now be systematically inves-
tigated in hopes of gaining insight into the causes and effects of transferability. Table 6
provides information on the quality of the spatial transfer of trained machine learning
models (Figure 4), which is accomplished by including space, time, and the associated
different phenological growth phases as parameters (Table 6). As similar studies also
found [74], simple training on the entire data set is not sufficient to ensure the transfer-
ability of the model to other regions, and the classification accuracy varies significantly
when models are trained in different regions [75]. The benefit of this method is that it is a
systematic approach, meaning it can be used regardless of any machine learning model
that classifies crops. The test methodology allows for the validation and estimation of
the crop classification performance for various machine learning models. The presented
testing methodology allows for conclusions on the model’s generalization capabilities and
phenological, temporal, spatial, and quantitative influences to be drawn.
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5. Conclusions

This research aimed to investigate the transferability of machine learning models for
crop classification by using a new testing methodology. The methodology systematically
analyzes the quality of the spatial transfer of trained models (and, thus, the transferability
of the developed models to new application areas) to other test areas that differ from the
training areas in terms of topography and climatic characteristics (Table 1). It is shown that
the new testing methodology can be a reliable strategy to assess the applicability of machine
learning models in crop classification for application in new regions. The results show
that the models cannot be transferred to other areas without adaptation. The accuracy of
the classification results decreased when the training took place in the respective opposite
test areas (e.g., training in the south) and when the trained methods were applied to the
respective opposite test area (e.g., application in the north). Furthermore, the accuracies
tended to decrease with increasing period. The combined F1-score was 82% (XGBoost)
when trained on a single day, 72% (XGBoost) when trained on the half-season, and 61%
when trained over the entire growing season (Majority Voting) (Figure 4).

The testing methodology was developed to combine temporal and regional test cases,
enabling the identification of potential phenological, temporal, spatial, and quantitative
influences. The study area of Brandenburg was selected because it can be divided into two
test areas with differing geographies (Figure 1). Environmental factors such as phenology,
soil deposition, and groundwater can be expected to influence the transferability of machine
learning models (Table 1). The research clearly illustrates that the classification accuracy
decreases when the training and testing occur in opposite locations (Table 7). The question
arises as to whether machine learning models can account for variations in environmental
factors or if their performance may be limited in regions with similar environmental
conditions. Although they may achieve high classification accuracy, their transferability to
other areas may be low.

To develop transferable models and better understand their implications, it is essential
to have sufficient heterogeneous in situ data from various study areas in terms of both
quality and quantity. Analyzing weaknesses within models is only possible if large and
heterogeneous study areas are selected for investigation, which is in turn related to the
availability of reliable in situ data and, therefore, could be a limiting factor. Future studies
should investigate the influence of a systematic sampling strategy on local spectral diversity.
Additionally, future studies should explore the extent to which a universally applicable
model-fixing approach can be developed.

This research contributes to the development of more efficient and accurate methods
for crop monitoring and inventory, which are essential for ensuring food security in a
growing global population, by introducing a new test strategy. This study addressed the
knowledge gap regarding the consequences of transferring a model to different regions by
providing a systematic testing methodology that offers insights into quantitative, spatial,
and temporal conditions.
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Appendix A

Appendix A.1

Table A1. Results for precision and recall of the validation dataset (north) and the test area (south) of
the XGBoost model.

North South
Crop Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Agricultural
grass 81 89 85 74 62 68

Silage
maize 81 83 82 41 84 56

Winter
rapeseed 95 94 94 97 77 86

Winter
rye 76 74 75 64 38 48

Winter
wheat 82 76 79 60 45 51

Table A2. Results for precision and recall of the validation dataset (north) and the test area (south) of
the Random Forest model.

North South
Crop Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Agricultural
grass 77 84 80 68 72 70

Silage
maize 78 81 79 51 78 62

Winter
rapeseed 97 90 93 98 73 83

Winter
rye 68 73 70 58 40 47

Winter
wheat 79 69 74 54 54 54

Table A3. Results for precision and recall of the validation dataset (north) and the test area (south) of
the Support Vector Machine model.

North South
Crop Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Agricultural
grass 78 85 82 78 21 33

Silage
maize 79 81 80 33 52 40

Winter
rapeseed 96 93 95 99 65 78

Winter
rye 75 73 74 38 43 40

Winter
wheat 79 74 76 40 56 47
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Table A4. Results for precision and recall of the validation dataset (north) and the test area (south) of
the Stochastic Gradient Descent.

North South
Crop Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Agricultural
grass 78 81 80 87 20 32

Silage
maize 80 68 74 45 10 17

Winter
rapeseed 95 94 95 100 33 55

Winter
rye 65 61 63 23 98 38

Winter
wheat 63 74 68 15 0 0

Table A5. Results for precision and recall of the validation dataset (north) and the test area (south) of
the Multilayer Perceptron model.

North South
Crop Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Agricultural
grass 82 85 83 73 77 75

Silage
maize 78 76 77 48 79 60

Winter
rapeseed 90 95 92 97 72 83

Winter
rye 65 58 61 54 32 40

Winter
wheat 66 69 67 51 49 50

Table A6. The results for the test case T13 show the precision and recall of the XGBoost model on the
validation dataset (north) and the test area (south).

North South
Crop Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Agricultural
grass 81 81 81 70 76 73

Silage
maize 75 77 76 58 69 63

Winter
rapeseed 94 92 93 94 79 86

Winter
rye 71 70 70 57 53 55

Winter
wheat 75 77 76 61 60 60

Table A7. The results for the test case T15 show the precision and recall of the XGBoost model on the
validation dataset (north) and the test area (south).

North South
Crop Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Agricultural
grass 82 90 86 78 92 84

Silage
maize 93 90 91 94 74 83

Winter
rapeseed 98 98 98 98 95 97

Winter
rye 77 77 77 67 78 72

Winter
wheat 83 78 81 74 64 69
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