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Abstract: Although graph convolutional networks have found application in polarimetric synthetic
aperture radar (PolSAR) image classification tasks, the available approaches cannot operate on
multiple graphs, which hinders their potential to generalize effective feature representations across
different datasets. To overcome this limitation and achieve robust PolSAR image classification, this
paper proposes a novel end-to-end cross-level interaction graph U-Net (CLIGUNet), where weighted
max-relative spatial convolution is proposed to enable simultaneous learning of latent features from
batch input. Moreover, it integrates weighted adjacency matrices, derived from the symmetric re-
vised Wishart distance, to encode polarimetric similarity into weighted max-relative spatial graph
convolution. Employing end-to-end trainable residual transformers with multi-head attention, our
proposed cross-level interactions enable the decoder to fuse multi-scale graph feature representations,
enhancing effective features from various scales through a deep supervision strategy. Additionally,
multi-scale dynamic graphs are introduced to expand the receptive field, enabling trainable adjacency
matrices with refined connectivity relationships and edge weights within each resolution. Experi-
ments undertaken on real PolSAR datasets show the superiority of our CLIGUNet with respect to
state-of-the-art networks in classification accuracy and robustness in handling unknown imagery
with similar land covers.

Keywords: spatial graph convolution; dynamic graph; cross-level interaction; polarimetric synthetic
aperture radar (PolSAR); image segmentation

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) exhibits the potential to capture back-
scattering information of land covers, which enables richer feature extraction and better
image interpretation beyond the limitations of single-channel SAR. As a result, PolSAR has
found broader applications, including topographic mapping, resource exploration, disaster
monitoring, change detection, and land cover classification [1–7]. Meanwhile, the rapid
advancement of deep learning has significantly expanded the possibilities for discoveries
and advancements in PolSAR image classification.

Traditional approaches to PolSAR image classification primarily exploit the polari-
metric scattering characteristics [8–14] and statistical distributions [15–18] of PolSAR
data. These methods include the Complex Wishart classifier [19–25], statistical tech-
niques such as k-nearest neighbors [26], and kernel methods, like support vector ma-
chine (SVM) [27–29]. By incorporating additional feature information, such as regional
information [30,31], anisotropy, and total polarimetric power (SPAN) [23], these approaches
achieve enhanced performance in characterizing land covers from various perspectives.
Moreover, iterative Bayesian approaches based on matrix variate distribution assump-
tions [15,16,18,20,21,32], such as Markov random field (MRF) [20,21] and expectation maxi-
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mization (EM), can accurately model PolSAR scattering characteristics, while addressing the
duplication and degradation of feature representations due to polarimetric decomposition.

Over the last decade, there has been a significant increase in literature published on
PolSAR image classification with deep learning approaches. Early works include deep
belief networks (DBN) [33,34] and restricted Boltzmann machines (RBM) [35]. For in-
stance, Liu et al. [33] suggest stacking Wishart–Bernoulli RBM among the hidden layers of
DBN. Guo et al. [35] propose a Wishart Restricted Boltzmann Machine (WRBM), demon-
strating superior performance compared to the Gaussian RBM. Moreover, autoencoders
(AEs) [36–38] have shown remarkable effectiveness in PolSAR image classification. The
performance of convolutional neural networks (CNNs) in PolSAR image classification tasks
was first verified in [39–41]. Additionally, generative adversarial networks (GANs) [42]
and long short-term memory (LSTM) [43] have also found applications in PolSAR image
classification tasks.

For pixel-level image segmentation, U-Net [44–47] is an architecture that makes it
possible to encode and decode high-level features while preserving local spatial information
via a contracting path with pooling layers and an expansive path with unpooling layers.
Traditional U-Nets utilize skip connections between encoders and decoders at the same
semantic level to construct an image in the decoder part with fine-grained details learned
in the encoder part. However, their potential is heavily constrained due to the inability to
fuse latent features from multiple resolutions.

Nevertheless, the convolution layers in CNNs often exhibit a limited receptive field,
which hinders their capability to model the global relationships within an image, especially
in deeper architectures. Furthermore, CNNs are designed for Euclidean data, such as
regular images in a grid structure, where each pixel undergoes the same convolutional
operation, which may fail to fully capture the intricate relationships between pixels in
complex scenes. To overcome these limitations, there have been several attempts reported
in the literature to perform PolSAR image classification in the graph domain.

Early research includes spectral graph partitioning and fuzzy clustering techniques
that work on undirected symmetric graphs and construct the graph topology with nu-
merous similarity metrics [7,48–53]. For instance, Wei et al. [51] propose representing the
complex relationship among land covers with hypergraphs. Shi et al. [52] propose a super-
vised graph embedding (SGE) to learn a low-dimensional manifold and map the PolSAR
data into the graph domain. Yang et al. [54] present a kernel low-rank representation
graph for SAR image classification, which projects samples onto a feature space using a
kernel function and constructs the graph with a low-rank encoding sparse matrix. Hou
et al. [55] enhance the classification performance of multilayer autoencoders through a
novel probabilistic metric in k-nearest neighbors, which fully utilizes the spatial relations
between pixels and superpixels.

Recently, graph neural networks have exhibited considerable potential in the realm
of PolSAR image classification tasks [56–58]. Using a sparse reconstruction function,
Liu et al. [56] propose the processing of PolSAR data with spatial-anchor graphs. This
method clusters the PolSAR image with weighted feature vectors and defines the repre-
sentative centers as anchors. Later work [57] utilizes neighboring relations within super-
pixels to introduce feature weighting and mitigates the limitations of large-scale matrix
decomposition. By preselecting cluster centers as anchors, this approach facilitates refined
segmentation and rapid graph construction through border reassignment. Bi et al. [58]
propose a pixel-wise graph CNN that employs a label smoothness term, a CNN for feature
extraction, and a semi-supervision term to enforce label constraints in its energy function.
These studies use the Euclidean distance to model the dissimilarity of pair-wise nodes; thus,
the graph structure is not accurate enough. Ren et al. [7] propose a graph convolutional
network (GCN) that applies Wishart similarity to model the weighted graph edges in
multiple scales, thus obtaining better performance. However, the graph nodes are the
superpixels presegmented by spectral clustering, so pixel-wise PolSAR image segmentation
with GCNs remains to be exploited.
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The above literature shows that graph methods must focus on constructing an accurate
graph structure and deriving appropriate similarity measures for PolSAR data. Kersten
et al. [50] use EM clustering and fuzzy clustering for PolSAR image classification with five
distance measures, where the distance measures derived from the Wishart distribution
outperform the others. To make the non-symmetric Wishart distance work on undirected
graphs, Anfinsen et al. [59] derive the symmetric revised Wishart distance to initialize
the Wishart classifier for classification. Previous work on PolSAR image classification
with GCNs [7,53] proposed building adjacency matrices by pre-segmenting Pauli RGB
images into superpixels (SP) with simple linear iterative clustering (SLIC), and refining
the inaccurate graph structure via graph evolving modules, which associate learnable
hidden representation with kernel diffusion. However, the shallow networks together
with the first-order approximation of Chebyshev polynomials make it hard to incorporate
information from higher-order neighbors with the constant adjacency relationship through-
out the training process. Another problem is that previous GCN approaches reduce the
computational burden brought by spectral convolution by operating on superpixels with
mean feature vectors, which also makes it impossible to conduct training with batch-wise
processing and to fully utilize the features across different PolSAR images.

Due to the limitations of constant graph topology and edge weights, the generalization
capacity of traditional GCNs [7,53,60] is greatly hindered since they only aggregate node
embeddings within the same neighborhood at each training step. To address this deficiency,
dynamic graph convolution [61–63] has recently been proposed to allow graph structure
refinement in each layer, thus enabling better graph representations compared to traditional
GCNs. More notably, dynamic neighbors can effectively enlarge the receptive field and
greatly help alleviate the over-smoothing problem of deep GCNs. On the other hand, most
GCNs conduct node classification tasks with binary adjacency matrices, which means that
each neighboring node plays the same role in propagation. Recent studies [7,53] have
witnessed the improvement in classification performance brought by weighted graphs,
where the edge weights are more competitive in exploring effective feature representations
than binary adjacency matrices.

Combining the advantages of the methods above, the proposed CLIGUNet leverages
a k-NN (k-nearest neighbors) approach [64] to find the nearest neighbors for each node in
the latent feature space of each layer, where each patch is a unique graph with pixel-wise
features. Afterwards, our CLIGUNet encodes the symmetric revised Wishart distance
in weighted adjacency matrices, capturing essential polarimetric scattering information
in multiple resolutions. Compared to spectral GCNs [7,53], our CLIGUNet performs
weighted max-relative spatial graph convolution in multiple scales and across dynamic
graph patches, which greatly enhances its capacity to generalize across PolSAR images. To
address the weakness of U-Nets, this paper proposes cross-level interactions to enhance
feature discrimination by integrating multi-scale latent features with the help of residual
transformers. Moreover, it utilizes a deep supervision strategy to refine the feature maps
at higher resolutions and address the vanishing gradient problem. Compared with the
graph self-attention integration module in [7,53], the cross-level interactions presented in
this paper can better utilize graph representations across multiple resolutions and various
PolSAR image patches through the residual transformers with multi-head attention. Finally,
by leveraging the benefits of the U-Net architecture, residual transformers, weighted spatial
graph convolution, and dynamic graphs, this paper develops a cross-level interaction graph
U-Net (CLIGUNet) to achieve robust pixel-wise PolSAR image segmentation within and
across PolSAR image datasets. To the best of our knowledge, application of spatial GCNs in
PolSAR image classification has not been fully explored, making our proposed CLIGUNet
a pioneering effort in this field. In contrast to existing deep learning methodologies for
PolSAR image classification, our paper introduces several key innovations, including
the following:

(1) Compared with U-Net [47,65], which applies skip connections between encoders
and decoders only on the same level, our cross-level interactions take into account both the
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inter-connections between encoder and decoder blocks and the intra-connections among
the stacked feature maps within the decoder at each scale. Moreover, our cross-level in-
teractions utilize trainable residual transformers with multi-head attention to integrate
multi-scale graph feature representations and select effective features from various scales.
Afterwards, the refined latent features in previous layers of different resolutions serve as
the input to their next graph convolution module to achieve multi-scale graph representa-
tion learning.

(2) To bridge the gap between GCNs and multi-graph inputs, we propose a weighted
max-relative spatial convolution, which makes it possible to learn the latent feature maps
of different graphs at the same time. Moreover, traditional GCNs operate on undirected
graphs where all neighboring nodes have equal importance. However, the contribution of
each neighbor can vary significantly in the graph learning progress. Therefore, weighted
adjacency matrices derived from the revised Wishart distance are incorporated to encode
polarimetric similarity in the graph topology. Compared to previous GCN approaches that
operate on superpixels, our weighted max-relative spatial convolution also enables more
accurate pixel-wise image segmentation and better generalization capability across PolSAR
image datasets.

(3) Given that most GCNs have not considered the interaction between the feature
representation and graph structure, their adjacency matrices remain constant throughout
the training process. To address this deficiency, multi-scale dynamic graphs are defined
to make appropriate adjacency matrix refinements on the connectivity relationships and
edge weights within the neighborhoods of each resolution, which also enlarge the receptive
field of each node by reaching out for higher-order neighbors when each scale updates its
latent feature maps, thus providing significant boosts in classification performance and
generalization capacity with limited training samples.

The rest of this paper is organized as follows: Section 2 provides a comprehensive
overview of the methodologies employed in our proposed cross-level interaction graph
U-Net (CLIGUNet). Section 3 presents the experiments and analyses conducted on four
real PolSAR datasets. Finally, Section 4 summarizes the paper and provides insights into
our future work.

2. Theory and Methodology

This paper proposes a PolSAR image segmentation model based on the cross-level
interaction graph U-Net (CLIGUNet). First, Section 2.1 introduces PolSAR data preparation,
where a coherency matrix is adopted as the input features. Next, Section 2.2 gives an
overview of the network architecture and implementation of CLIGUNet. Then, Section 2.3
illustrates the motivation to propose the weighted max-relative spatial graph convolution
inspired by deep GCNs [64], which incorporates the advantages of both image features in
Euclidean space and polarimetric scattering similarity in the non-Euclidean graph domain,
and thus enables the network parameters to generalize well on unseen graphs. Section 2.4
provides insight into the theoretical derivation of multi-scale dynamic graphs using k-NN
and symmetric revised Wishart similarity, which is performed each iteration to map the
image patches into the graph domain. Afterwards, in Section 2.5, a residual transformer
with multi-head attention is proposed to interact between the bottleneck features and the
graph structure across multiple resolutions. Finally, in Section 2.6, a deep supervision
strategy is designated to fully utilize multi-scale information from neighbors in various
scales, thus obtaining better segmentation results.

2.1. PolSAR Data Preparation

PolSAR platforms, by virtue of their ability to transmit and receive various polarimetric
electromagnetic waves, can capture abundant scattering information from observed land
covers, with each resolution cell in the fundamental SLC format being represented by
a 2 × 2 complex scattering matrix. Here, H and V represent the horizontal and vertical
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polarization modes, respectively. Subsequently, a 2 × 2 complex polarimetric scattering
matrix can be expressed as

S =

[
SHH SHV
SVH SVV

]
, (1)

where the first and second subscripts denote the polarization modes of the received and
transmitted electromagnetic waves, respectively.

According to the reciprocity theorem, SHV equals SVH in monostatic SAR systems.
Consequently, the scattering vector in the Pauli basis can be written as

k =
1√
2
[SHH + SVV , SHH − SVV , 2SHV ]

T (2)

Therefore, the polarimetric coherence matrix T can be obtained by

T =
〈

k · kH
〉
=

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 (3)

2.2. Overall Network Architecture

Figure 1 illustrates the hierarchical structure of the proposed CLiGUNet, which starts
with an encoder backbone followed by a decoder sub-network. The detailed settings
of the encoder block and decoder block are shown in Table 1 and Table 2, respectively,
where NB denotes the batch size, H × W denotes the input image size, D denotes the
feature dimension, and L is the latent dimension (set to 16 in the experiments) of the stem
component. E denotes the hidden dimension ratio, which means the convolutional layer
number in FFN. K denotes the number of neighbors in the GC layer. The nine elements of
the coherence matrix are used as the initial feature vector of each node in the input graph.
Using two convolution layers with batch normalization, the input feature vectors are first
mapped into a high-dimensional representation. To bridge the gap between image patches
in the Euclidean grid structure and node feature representations in the graph domain, our
CLIGUNet uses a k-NN approach [62] to recompute and generate the graph topology with
learnable features in latent space in each iteration. To fully utilize the polarimetric scattering
information of the PolSAR data, the edge weights of each graph are obtained based on the
symmetric revised Wishart distance [50] and the thresholded weighting function.

Segmentation Result
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Figure 1. Architecture of the proposed CLIGUNet.
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Table 1. Detailed settings of encoder block.

Encoder Components Output Size Layer (s)

Stem NB × L × H/2 × W/2 2 × (Conv + BatchNorm)
GConv + FFN NB × L × H/2 × W/2 D = L, E = 2, K = 10
Downsample NB × 2L × H/4 × W/4 2 × 2 Strided-Conv
GConv + FFN NB × 2L × H/4 × W/4 D = 2L, E = 2, K = 10
Downsample NB × 4L × H/8 × W/8 2 × 2 Strided-Conv
GConv + FFN NB × 4L × H/8 × W/8 D = 4L, E = 2, K = 10
Downsample NB × 8L × H/16 × W/16 2 × 2 Strided-Conv
GConv + FFN NB × 8L × H/16 × W/16 D = 8L, E = 2, K = 10

Table 2. Detailed settings of decoder block.

Decoder Components Output Size Layer (s)

GConv + FFN NB × 15L × H/16 × W/16 D = 15L, E = 2, K = 10
Upsample NB × 15L × H/16 × W/16 2 × 2 Up-Conv

GConv + FFN NB × 15L × H/16 × W/16 D = 15L, E = 2, K = 10
Upsample NB × 15L × H/8 × W/8 2 × 2 Up-Conv

GConv + FFN NB × 15L × H/8 × W/8 D = 15L, E = 2, K = 10
Upsample NB × 15L × H/4 × W/4 2 × 2 Up-Conv

GConv + FFN NB × 15L × H/4 × W/4 D = 15L, E = 2, K = 10
Final Output NB × F × H × W 1 × 1 Conv + Softmax

The encoder section on the left comprises four stacked graph convolution (GC) blocks.
Each GC block consists of a multi-layer neural network, including a weighted max-relative
spatial graph convolutional layer with batch normalization and ReLU activation, as well
as a feed-forward network (FFN) module. The FFN module serves to enhance the feature
transformation capacity and alleviate the over-smoothing issue in the deeper graph con-
volutional layers. Then, a strided convolutional layer is applied to encode higher-level
graph representations and reduce the input graph size. Afterwards, residual transformers
are integrated to enhance the skip connections among the encoder features and decoder
features. With the exception of the last convolution block, the feature representations from
the preceding block are sub-sampled by a strided convolutional layer (depicted in green)
before being passed to the next block. The input image size is set to 128 × 128, where F
denotes the number of land cover types and N represents the batch size.

The decoder section on the right consists of four decoder blocks. Each decoder
block has a weighted max-relative spatial graph convolutional layer and a deconvolution
layer, which aggregate information from neighbors and restore the graph to a higher
resolution structure. The intra-connections among the stacked feature maps within the
decoder sub-network are designed to facilitate the flow of information across different
resolutions, enabling the network to capture both coarse-grained semantics and fine-grained
details. Meanwhile, the interconnections between the encoder and decoder blocks help
to establish skip connections, allowing the decoder to access and integrate multi-scale
feature representations from the encoder, which helps in preserving spatial information
and enhancing the performance of feature reconstruction. As a result, the skip connections
above integrate feature maps from both lower- and same-scale layers of the encoder, as
well as larger-scale feature maps from the decoder. Subsequently, softmax normalization is
applied after the last GC block at each resolution to produce the segmentation result for
each concatenated feature map, which comes in the form of multi-class probabilities for
each image patch. After that, the dice loss and cross-entropy (CE) at each scale are summed
up to perform deep supervision. Finally, PolSAR image segmentation is performed by
taking the column number with the highest probability value and merging the results of all
image patches.
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2.3. Weighted Max-Relative Spatial Graph Convolution

Compared with CNNs, GCNs are capable of extracting more extensive features by
aggregating node features from their neighborhood. The recent literature has witnessed
the application of spectral GCNs in PolSAR image classification tasks [7,53]. However,
spectral GCNs are often designed to operate on a specific graph structure with a fixed
adjacency matrix, which makes it struggle to generalize well on unseen graphs with a
different topology. This limitation arises because the feature representation in the spectral
domain is closely related to the graph Laplacian [66]. Thus, any change in the adjacency
matrix can substantially impact the spectral characteristics. Spatial GCN exhibits better
adaptability to varying graph structures and is exceptionally well-suited to deal with this
issue. This is because spatial convolutional operations depend on the local neighborhood,
making the model more robust to changes in the graph topology.

Suppose the PolSAR dataset is divided into N patches, and each patch is flattened
into a feature vector. Then, the graph nodes can be described as X = [x1, x2, · · · , xN ]. Then,
the k-NN [64] is utilized to establish connections between nodes. Therefore, the graph
representation of each image patch can be denoted as G = (V , E), where V denotes the
graph nodes and E denotes the graph edges.

For the graph representation G = G(X) and the input features X, a spatial graph
convolutional layer can be applied to aggregate node features from its neighbor nodes,
as follows:

G ′ = F(G,W)

= Update
(

Aggregate
(
G, Wagg

)
, Wupdate

)
,

(4)

where Wupdate and Wagg are the learnable weights of the update and aggregation opera-
tions, respectively. The Aggregate operator aggregates the neighboring node features, and
the Update operator merges the aggregated feature representation as follows:

x′i = h
(

xi, g
(
xi,N (xi), Wagg

)
, Wupdate

)
, (5)

where N (xi) are the neighboring nodes of xi.
Inspired by [64], weighted max-relative graph convolution X′ = GraphConv(X) is

proposed to fully leverage the edge weights derived from the PolSAR scattering character-
istics, which can be written as:

g(·) = x′′i =
[
xi, max

({
ωi,jxj − xi | j ∈ N (xi)

}]
,

h(·) = x′i = x′′i Wupdate + b,
(6)

where ωi,j is the edge weight between node i and node j and b is the bias term.
To enrich the feature diversity of spatial graph convolution, the multi-head update

operation is adopted in multiple feature subspaces by splitting the aggregated feature x′′i
into H heads, which is set to 4 by default. Then, these heads are updated with different
weights and concatenated to obtain the final representation, as follows:

x′i =
[

head 1W1
update + b1, head 2W2

update + b2, · · · , head hWh
update + bH

]
, (7)

where bi denotes the bias term of the ith attention head (i = 1, 2, · · · , H).
To alleviate over-fitting and thus enhance the generalization ability, a DropPath

layer [67] has been applied to stochastically deactivate some of the skip connections during
training. Thus, the final expression of the graph convolution module can be written as:

Y = DropPath(GELU(GraphConv(XWin ))Wout + bout ) + X, (8)

where GELU is the Gaussian error linear unit [68], which is differentiable in all ranges and
allows to have gradients in the negative range to prevent vanishing gradients. X denotes
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the input features, bout is the bias term, and Win and Wout are the fully connected (FC)
layer weights for input and output, respectively.

To further boost the feature transformation capability and relieve the over-smoothing
in deeper layers, a feed-forward module (FFN) is applied after graph convolution. It
consists of a multi-layer structure with two FC layers, i.e.,

Z = GELU(YW1 + b1)W2 + b2 + Y, (9)

where Z is the output of the graph convolution module, W1 and W2 are FC layer weights,
and b1 and b2 are the bias terms.

2.4. Multi-Scale Dynamic Graphs

After the application of a sliding window to slice the PolSAR dataset into image
patches, our CLIGUNet utilizes a k-NN approach [64] to generate the graph topology at
each scale. This strategy constructs a graph from an image patch by first representing each
pixel in the patch as a node in the graph. Then, the k-nearest neighbors of each node in
the feature space are selected to form the edges between the central pixel and its k-nearest
neighbors. Based on the Euclidean distance, this graph representation captures the local
spatial relationships within the image patch, thus facilitating effective feature extraction
and contextual information modeling in each iteration.

Afterwards, the k-NN approach encodes connected pixel groups in the ith PolSAR
image patch into an adjacency matrix Ai(i = 1, . . . , N), with N denoting the batch size
of CLIGUNet. To evaluate the relative importance of neighboring nodes, the symmetric
revised Wishart distance is applied to derive multi-scale weighted adjacency matrices
Wi(i = 1, . . . , N), as described below.

2.4.1. Weighted Adjacency Matrix

Our CLIGUNet focuses on weighted, connected, undirected graphs G = {V , E , W},
which are made up of node sets V , edge sets E , and a weighted adjacency matrix W. The
difference between the binary adjacency matrix A and W lies in their edge weights, which
can help the graph convolutional layers to address the neighbors with stronger relevance.

To alleviate the computational cost, sliding windows are utilized to slice the Pauli
RGB images into patches, where each pixel serves as a graph node. However, the revised
symmetric Wishart distance can take both negative and positive values, which cannot be
directly applied for graph construction. To cope with this problem, a thresholded Gaussian
kernel weighting function [69] normalizes the distance to a similarity value between 0 and
1. The pair-wise similarity, which indicates the edge weight of the neighboring node i and
node j, can be derived as:

Wi,j =

{
exp

(
−d2(i, j)

/
2σ2) when e(i, j) = 1

0 when e(i, j) = 0,
(10)

where e(i, j) denotes the connectivity between node i and node j (i ̸= j), which is equal to 1
for neighboring pixels, d(i, j) represents the Euclidean distance between the neighboring
nodes, and σ represents the Gaussian kernel standard deviation.

Recent research has validated the effectiveness of the symmetric revised Wishart
distance [7,49,53,59,70] in assessing the dissimilarity among complex coherency matrices.
It is defined as:

dSRW
(
Ti, Tj

)
=

1
2

tr
(

TiT−1
j + TjT−1

i

)
− 3, (11)

where Ti and Tj represent the coherence matrices for pixel i and pixel j, respectively.
Derived from the weighting function in (10) and the distance measure in (11), our

paper constructs the weighted adjacency matrix as:
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WSRW
ij =

 exp
(

−d2
SRW(Ti ,Tj)

2σiσj

)
when e(i, j) = 1

0 when e(i, j) = 0,
(12)

where e(i, j) indicates the node pair connectivity, σi denotes the local scaling parameter [48]
defined as the median distance between the current node i and its neighborhood, and dSRW
denotes the symmetric revised Wishart distance between two mean coherence matrices.

2.4.2. Graph Connectivity Augmentation via Graph Power

The kth power of graph Gk is applied to avoid possible isolated nodes and increase
graph connectivity, where k indicates that the neighbors are within k hops from the current
node. To sample the augmented graph with better connectivity, a self-loop is applied to
renormalize the adjacency matrix Ŵ = W + I. Since our proposed network deploys a
graph convolutional layer before strided convolution to aggregate the features of first-order
neighbors, it is safe to assume the graph order k as 2, thus obtaining the second power of
the graph, as follows:

Aℓ+1 = A2
l (idx, idx)

A2
l = AℓAℓ,

(13)

where A2 ∈ RN×N denotes the second power of the adjacency matrix Aℓ on layer ℓ, idx
ranges from 1 to N, and N denotes the batch number in graph G.

Considering that the feature vector of the current node itself should play a more
important role, a self-loop is applied to renormalize the adjacency matrix A, thus obtaining
an augmented graph Â = A + I with better connectivity.

2.4.3. Weighted Graphs and Ground Truth in Multiple Scales

The main advantage of our CLIGUNet lies in its ability to learn node features from
multiple scales weighted graphs. In the data preparation stage, the dense weighted adja-
cency matrices Ŵ l

n are saved in advance, assuming that all nodes are interconnected with
each other, where n (n = 1, 2, · · · , N) is the patch number and l (l = 1, 2, · · · , L) denotes
the lth scale. The multi-scale labels of each image patch are obtained by taking the first
value in the upper left corner every 2i × 2i(i = 0, 1, 2, 3) pixels, as shown in Figure 2, where
the label map with 36 pixels is coarsened to 9 pixels. During the training process, the
binary adjacency matrices Al

n are obtained by searching the k-nearest neighbors of each
node. Afterwards, the weighted adjacency matrices W l

n can be calculated by taking the dot
products of Ŵ l

n and Al
n.

6   7   6   1    7   5

3   7   7   4   2   1

9   2   2   9    5   1

0    4   6    3    6    2

4   4   6   5    8   8

3    6   1    2    9    2

6    6   7    

9   2   5   

4   6   8   

Figure 2. Illustration of the multi-scale label subsampling process.

2.5. Cross-Level Interactions with Residual Transformer

We introduce a novel approach to the integrated multi-scale features by leveraging
the concept of cross-level interactions with residual transformers to address the relative
importance of node features at different scales. Drawing inspiration from the graph
integration module [7,53] and the bottleneck attention module [71,72], a weighted max-
relative spatial graph convolution module is constructed at each resolution, facilitating the
extraction of features at the local scale. Then, pooling and unpooling layers are employed to
align feature vectors across scales. Afterwards, node feature representations in the decoder
are obtained by concatenating deep features from all scales, utilizing residual connections
between encoders and corresponding decoder blocks to transfer spatial information for
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better performance. Finally, in each resolution, the feature maps from multiple scales are
concatenated together and fed into a graph convolution layer to generate the segmentation
result for the corresponding scale and calculate the total loss in this batch.

The residual transformer module is a key component in our architecture, leveraging
self-attention to capture the global relationships between the encoder and decoder, as
shown in Figure 3. This mechanism, crucial for learning the relative importance of each
channel, is enhanced by residual connections across resolutions. Similar to other trans-
former modules, our residual transformer incorporates multi-head self-attention (MSA),
multi-layer perceptron (MLP), and layer normalization (LN). Compared with CNNs, which
rely on convolutional and pooling layers for feature extraction from local information, the
transformer excels in extracting global features. By employing the attention mechanism,
the model learns long-range dependencies, enabling the encoding of patches with global
contextual information. This capability enables to capture relationships between ordered
patches, ultimately enhancing the segmentation performance at each resolution.

Latent Feature Map

Embedded Sequence

Linear  Projection

Latent Feature 

Vectors
Latent Feature Map

Transformer Layer

Layer Norm

MSA

Layer Norm

MLP

Layer Norm

MSA

Layer Norm

MLP

Reshape

1 2 ,, , N

p p px x x

Figure 3. Architecture of the residual transformer module.

To preserve spatial location information among input patches, the latent feature map
X is flattened into a patch sequence

{
xi

p ∈ RP2·C | i = 1, . . . , Ns

}
, where Ns =

HW
P2 is the

input sequence length, which equals the number of image patches in a single batch, P is the
patch size, C is the number of channels, and H and W are the height and width of the input
image patch, respectively. Using a trainable linear projection, these vectorized patches xp
are then projected into a latent feature embedding subspace, which can be written as:

z0 =
[

x1
pE; x2

pE; · · · ; xN
p E

]
+ Epos, (14)

where Epos ∈ RN×D represents the position embedding and E denotes the patch embedding
projection.

Let us assume that each residual transformer module consists of L layers of MSA and
MLP. The output of the ℓ-th layer can be obtained as:

z′l = MSA(LN(zl−1)) + zl−1, l = 1, 2 . . . , L (15)

zl = MLP
(
LN

(
z′l
))

+ z′l , l = 1, 2 . . . , L (16)

where the MLP in (16) consists of two FC layers and a GELU activation function, and zl
denotes the latent feature representation in the ℓ-th layer.

Then, the three learnable weight matrices composed of query Q ∈ RDq , key K ∈ RDk ,
and value V ∈ RDv , are introduced to perform multiplication with the input image repre-
sentation sequence zl , written as [Q, K, V] = Z · WQKV, where WQKV ∈ Rd×3Dk , Dq, Dk,
and Dv denote the feature dimension of query, key, and value, respectively.
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The relative importance of each patch in the input image representation sequence zl
can be obtained by computing the dot product between the Q-vector and the K-vectors.
After that, a softmax function is applied to calculate the V values. Finally, each patch
embedding vector is multiplied by the V values to address the effective representations
with a higher attention score, as

Attention(Q, K, V) = softmax
(

QKT
√

Dk

)
V (17)

During the MSA phase, multiple dot-product attention is performed by iterating (17)
h times. Afterwards, each parallel attention map Headi is concatenated as follows:

MultiHead(Q, K, V) = concat(Head1, · · · , HeadH)WO (18)

Headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, i = 1, . . . , H (19)

where WO ∈ Rh×Dv×d denotes the relative importance of each attention head, and
WQ

i ∈ Rd×Dq , WK
i ∈ Rd×Dk , WV

i ∈ Rd×Dv are the three learnable attention weights for
the ith head.

As illustrated in Figure 3, both MSA and MLP utilize LN layers for normalization
and skip-connections for better gradient flow and alleviate the vanishing gradient problem
in the transformer module. The MSA block extracts rich semantic features from a patch
sequence by capturing data correlations and establishing dependencies among various
features. Then, the weights derived from MSA are directed to the MLP layer. Layer
normalization [73] is applied before the MLP layer to accelerate training and mitigate the
challenges posed by a vanishing gradient. The MLP layer consists of two FC layers, with
the nonlinearity between the layers being activated by the GELU function.

2.6. Joint Training of Multi-Scale Graphs

Taking inspiration from deeply supervised networks (DeepSup) [74], this paper lever-
ages multi-scale side outputs, multi-scale labels, and deep supervision to enhance the
discriminative capability of feature maps across multiple resolutions and alleviate potential
issues with gradient vanishing.

In contrast to conventional U-Nets and graph U-Nets, our CLIGUNet not only incorpo-
rates feature maps from different hierarchical levels via strided convolution and transposed
convolution, but also produces the segmentation map at each resolution. Figure 1 depicts
the process of collecting effective representations at all resolutions using a deep supervision
training strategy, employing side outputs across multiple scales. This technique facilitates
model pruning and yields improved or comparable performance, as opposed to relying
solely on the top layer’s output to calculate the loss function.

By integrating multi-scale residual connections in the decoder, our CLIGUNet pro-
duces feature maps and segmentation results across each semantic level, which are the
foundational conditions for implementing deep supervision.

The total loss function is composed of four parts, where each part is a combination of
both the dice loss and CE loss, as follows:

L=
L=3

∑
l=0

L(l) (20)

L(l)(y(l), ŷ(l))=− 1
NB

N

∑
i=1

{
2y(l)i ŷ(l)i

y(l)i + ŷ(l)i

+ y(l)i ln ŷ(l)i

}
+ λ∥w∥2, (21)

where L(l) represents the loss value of the lth side output, NB indicates the batch size,
and y(l)i and ŷ(l)i denote the flattened ground truth (class labels) and probability output
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(predictions) of the ith image patch at the lth scale, respectively. ∥w∥2 denotes the L2-norm
regularization term, with the regularization strength λ being a hyperparameter that adjusts
the tradeoff between having a low training loss and having low weights.

3. Experimental Results and Discussion

In this section, four PolSAR datasets are used to evaluate the performance of our
proposed CLIGUNet in PolSAR image segmentation tasks within the same dataset and
across datasets with similar land covers. Section 3.1 gives a brief introduction to the PolSAR
datasets and parameter settings. Section 3.2 presents the ablation studies to investigate
the effectiveness of weighted max-relative spatial graph convolution, multi-scale dynamic
graphs, cross-level interactions with residual transformers, and the deep supervision
training strategy. Sections 3.3 and 3.4 demonstrate the effectiveness of our CLIGUNet by
comparing its segmentation results with other state-of-the-art networks, including SVM [27],
UNet [41], WDBN [33], WCAE [38], CV-CNN [40], MDPL-SAE [37], GraphCNN [75], and
MEWGCN [7], where GraphCNN and MEWGCN are semi-supervised methods with graph
convolution, while the others are supervised methods.

3.1. Dataset Description and Experiment Settings

Figure 4 illustrates the four PolSAR datasets used to evaluate the classification perfor-
mance of our CLIGUNet. These datasets include different types of terrains and land covers,
including ocean, forest, agriculture areas, and buildings. To eliminate the negative impact
of imbalanced datasets on the experiments, the number of training samples is set the same
for each class. In the pre-processing stage, a refined Lee filter [76] is applied on all these
datasets to reduce speckle noise, with the window size set to 7 × 7 for all the comparative
tests. Detailed information about these PolSAR datasets can be found in Table 3.

(a) (b) (c) (d)

Built-up areas Wood land Open areasBuilt-up areas Wood land Open areasBuilt-up areas Wood land Open areas

(e)
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Figure 4. Datasets used in the experiments. Pauli RGB image of (a) Oberpfaffenhofen, (b) Flevoland,
(c) SF-RS2, and (d) SF-AIRSAR. Ground truth and legend of (e) Oberpfaffenhofen, (f) Flevoland,
(g) SF-RS2, and (h) SF-AIRSAR.

Table 3. Information about PolSAR datasets used in the experiments.

Dataset Name Radar Band Year Resolution Polarimetric Type Size Classes

Oberpfaffenhofen E-SAR L 1991 3 m × 2.2 m Full polarimetric 1300 × 1200 3
Flevoland AIRSAR L 2010 12.1 m × 6.7 m Full polarimetric 750 × 1024 15

San Francisco RS-2 RADARSAT-2 C 2008 10 m × 5 m Full polarimetric 1800 × 1380 5
San Francisco AIRSAR AIRSAR L 1989 12.1 m × 6.7 m Full polarimetric 900 × 1024 5
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3.1.1. Oberpfaffenhofen Dataset

The Oberpfaffenhofen dataset was recorded by ESAR L-band radar over Oberpfaffen-
hofen in Germany in 1991. The image has a size of 1300 × 1200. Its Pauli RGB composition
is shown in Figure 4a. Figure 4e shows the ground truth of this dataset, which consists of
woodland, open areas, and built-up areas.

3.1.2. Flevoland Dataset

This multi-look benchmark dataset has been widely employed in evaluating the
performance of PolSAR image classification approaches. It was acquired by NASA/JPL
AIRSAR L-band radar over the agriculture area of the Dutch province of Flevoland in 2010.
The Pauli RGB image has a size of 750 × 1024, and consists of 15 different classes, including
forests, crops, buildings, and water, with its ground truth illustrated in Figure 4f.

3.1.3. San Francisco Datasets

The RADARSAT-2 San Francisco (SF-RS2) dataset was acquired by RADARSAT-2
C-band radar over San Francisco in 2008. This dataset has a size of 1800 × 1380, which
consists of five classes, including ocean, vegetation, low-density urban, high-density ur-
ban, and developed. The Pauli RGB image and ground truth are shown in Figure 4c and
Figure 4g, respectively.

The AIRSAR San Francisco (SF-AIRSAR) dataset was recorded by AIRSAR L-band
radar in 1989. This dataset has a size of 900 × 1024, with its Pauli RGB image and ground
truth shown in Figure 4d and Figure 4h, respectively.

As these two San Francisco datasets share similar land covers, they are used together
to assess the capability to generalize across PolSAR datasets with similar scenes.

3.1.4. Experimental Settings

In order to strike a balance between better representation learning and less compu-
tational cost, the sliding window size and step size are set as 128 × 128 and 25 for both
CLIUNet and UNet [41], respectively. For the overlapping regions of the image patches,
the final classification result is determined by majority voting. After the PolSAR image is
split into patches, the coherence matrix vectors in each patch are rescaled using z-score
normalization. Finally, rotation and flips are applied to each image patch to augment
the datasets.

As a matter of experience, the initial neighboring pixel number for k-NN is set to
10 in the experiments. This is because a too few number of neighbors is insufficient for
developing an effective graph representation, thus resulting in inadequate feature learning,
slow convergence, and coarse segmentation results. On the contrary, larger neighbor
numbers provide more refined texture details at the cost of decreased computational
efficiency. Moreover, the performance of k-NN is also affected by the symmetry of the
adjacency matrix, which, in turn, is associated with the graph structure and significantly
impacts the classification results. As a solution, the weighted adjacency matrix W is
constructed and flipped. This can be achieved by taking the maximum elements of W and
W ′ in the final procedure.

Our CLIGUNet is implemented with PyTorch 1.10.0. The experiments are conducted
using a GeForce RTX 3090 GPU and an AMD Ryzen 9 5900X CPU. A Xavier uniform initial-
izer [77] is used to initialize the layer weights and biases. Early stopping is implemented as
a preventive measure against overfitting, which stops the training process if the validation
loss fails to decrease for a consecutive span of 20 epochs. The suggested learning rates
and droppath rates for CLIGUNet are 2 × 10−3∼5 × 10−2 and 0.1∼0.25, respectively. The
Adam SGD optimizer is applied to minimize the total loss, with the L2-norm regularization
strength λ fixed at 1 × 10−4.

Table 4 shows the percentage of ground truth samples used for the training and
validation of the comparative methods. Note that our CLIGUNet uses the smallest number
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of ground truth samples, as bolded in the last row of Table 4. The em dashes indicate the
experiments not implemented by the original reference works.

The experiments described in Sections 3.3–3.5 show that our CLIGUNet outperforms
other PolSAR image classification approaches on the Flevoland dataset, the SF-RS2 dataset,
and the SF-AIRSAR dataset. SVM is selected as the representative for traditional methods,
while UNet is used as the baseline for deep learning approaches. WCAE and MDPL-
SAE are chosen as the variants of AE. CV-CNN, WDBN, and MWGCN are used as the
representatives of CNNs, DBNs, and GCNs, respectively.

Table 4. Training+validation data used for the different methods in the experiments.

Method Flevoland SF-RS2 SF-AIRSAR SF-AIRSAR→SF-RS2

SVM [27] 9% 2% 2% 2%
UNet [41] 9% + 1% 2% + 1% 2% + 1% 2% + 1%

WCAE [38] 5% + 1% 10% + 1% — —
CV-CNN [40] 9% + 1% 2% + 1% 2%+1% 2% + 1%

MDPL-SAE [37] 9% 2% — —
WDBN [33,38] 5% 10% 2% 2%

GraphCNN [75] 5% — — —
MWGCN [7] 4% + 1% 1.5% + 0.5% 1.5% + 0.5% 1.5% + 0.5%
CLIGUNet 4% + 1% 1.5% + 0.5% 1.5% + 0.5% 1.5% + 0.5%

3.2. Ablation Studies

In this section, the ablation studies carried out on the Oberpfaffenhofen dataset to ana-
lyze the benefits of our mechanisms are described, which are proposed in Sections 2.3–2.6.
These mechanisms are evaluated with four variants of our CLIGUNet, namely, CLIGUNetws,
CLIGUNetdg, CLIGUNetrt, and CLIGUNetds, that one at a time introduce weighted spatial
graph convolution (ws), dynamic graphs (dg), residual transformer modules (rt), and deep
supervision (ds). The overall accuracy and class-by-class accuracies are chosen to validate
the effectiveness of the different variants, with the best segmentation maps obtained by
conducting five repeated experiments on each training set and validation set (10 random
splits in each case). Figure 5 shows the best segmentation results provided by the six
variants. Table 5 reports the mean values and standard deviation values of both the overall
accuracy and class-specific accuracy of each CLIGUNet variant.

(a) (b) (c)

(d) (e) (f)

Figure 5. Best segmentation results obtained on Oberpfaffenhofen dataset with (a) CLIGUNetno,
(b) CLIGUNetws, (c) CLIGUNetdg, (d) CLIGUNetrt, (e) CLIGUNetds, and (f) CLIGUNet.



Remote Sens. 2024, 16, 1428 15 of 24

Table 5. Classification accuracies and running time of CLIGUNet variants in the ablation study (pro-
vided by % and s).

Class No Mechanism CLIGUNetwm CLIGUNetdg CLIGUNetrt CLIGUNetds CLIGUNet

Built-up 82.36 ± 5.57 85.39 ± 4.24 85.73 ± 4.36 84.36 ± 3.28 88.62 ± 2.85 88.93 ± 1.78
Wood 83.27 ± 5.72 86.94 ± 4.85 92.56 ± 4.51 92.48 ± 2.72 91.31 ± 2.63 95.98 ± 1.53
Open 90.82 ± 4.31 93.83 ± 3.88 91.71 ± 4.14 96.87 ± 2.53 96.93 ± 2.14 96.95 ± 1.95
OA 87.63 ± 5.16 89.32 ± 4.47 91.06 ± 4.28 92.72 ± 2.85 93.04 ± 2.48 93.92 ± 1.84
Ttrain 161.55 ± 17.86 181.74 ± 12.43 217.63 ± 18.05 195.72 ± 18.49 183.17 ± 15.57 286.74 ± 16.82
Tpred 46.54 ± 1.81 48.27 ± 1.63 53.16 ± 1.16 58.74 ± 1.95 55.62 ± 1.79 67.03 ± 2.14

Figure 5a shows the segmentation map of CLIGUNet with no mechanism, which is
used as the baseline to analyze the improvements. Figure 5b,c illustrate the best results with
CLIGUNetws and CLIGUNetdg. Their improvements are not easy to identify, since the seg-
mentation maps are rough with a large number of misclassified pixel groups in the maps ob-
tained. Employing residual transformer modules and graph deep-supervision, Figure 5d,e
present smoother classification results. The removed misclassified spots, together with the
average accuracy values in Table 5, indicate that both the residual transformer modules
and deep-supervision contribute more to learning effective feature representations than the
weighted max-relative spatial graph convolution and dynamic graphs. Figure 5f presents
the best segmentation result of complete CLIGUNet, which considers all the above methods
at the same time.

From the accuracy mean values and standard deviation values in Table 5, one can
observe that each mechanism helps in improving and stabilizing the classification perfor-
mance. The mean accuracy values of CLIGUNetws and CLIGUNetdg in the third and fourth
columns indicate that initializing the weighted graph edges and revising inaccurate graph
representations can make a significant impact on the classification results. The standard
deviation values of CLIGUNetrt and CLIGUNetds in the fifth and sixth columns are smaller
than those of CLIGUNetwm and CLIGUNetdg, thanks to the higher-order adjacency matrices
and multi-scale labels with larger receptive fields, which not only boosts the classification
accuracy, but also helps in obtaining more stable segmentation results. Furthermore, one
can also observe the additional training and prediction time brought by each component
in the last two rows of Table 5. Considering the significant improvement in segmentation
performance, it is worth paying the price for these mechanisms.

3.3. Results on Flevoland Dataset

On the Flevoland dataset, the effectiveness of our CLIGUNet is demonstrated against
SVM and seven other deep learning methods. Figure 6b shows that SVM fails to properly
interpret the PolSAR image well, especially in the red squares. This is mainly due to the
incapacity of SVM to capture regional information, which can help to learn more effective
feature representations. The classification map in Figure 6c shows the poor performance
of U-Net on this PolSAR dataset. As highlighted in the red squares, UNet struggles to
discriminate land covers such as stembean, rapeseed, wheat 1, wheat 2, peas, and buildings.
This challenge arises due to the over-smoothing effect in classical UNets. The classification
map of WCAE in Figure 6d shows a large number of misclassified regions. Figure 6e,f
illustrate that CV-CNN and WDBN can produce much better maps than previous methods.
Figure 6g shows that MDPL-SAE generally performs well, except for the speckle noise
in the red rectangles. Figure 6h,i illustrates that GraphCNN and MWGCN demonstrates
better performance in the vast majority of regions. Finally, Figure 6j presents the best
classification map of our CLIGUNet, where few misclassified areas can be observed. While
our proposed CLUGUNet outperforms other approaches, the misclassified land covers in
the gray rectangles suggest potential improvements for our future research.
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Figure 6. Classification maps obtained on the Flevoland dataset. (a) Ground truth, (b) SVM [27],
(c) U-Net, (d) WCAE [38], (e) CV-CNN [40], (f) WDBN [33], (g) MDPL-SAE [37], (h) GraphCNN [75],
(i) MWGCN, and (j) CLIGUNet.

Table 6 presents the accuracy of each method, highlighting the best results in bold text.
The result of our CLUGUNet is shown in the last column, where one can find the majority of
the highest accuracy values. The training set and validation set ratios in Table 4 indicate that
our proposed CLUGUNet utilizes the smallest number of samples for training. The training
and prediction times in the last two rows indicate that our proposed CLIGUNet is also
competitive in time efficiency. Therefore, we can conclude that our proposed CLUGUNet
outperforms current state-of-the-art methods on the Flevoland dataset.

Table 6. Classification accuracies and running time of different methods on Flevoland dataset (pro-
vided by % and s).

Class SVM U-Net WCAE CV-CNN WDBN MDPL-SAE GCNN MWGCN CLIGUNet

Stem beans 90.71 93.33 88.09 99.62 96.71 98.45 98.76 99.07 99.85
Peas 85.23 99.37 96.11 98.38 98.68 98.46 99.62 96.58 99.78

Forest 96.05 99.10 97.89 95.93 96.45 99.37 99.93 96.31 99.89
Lucerne 94.89 97.55 97.42 99.34 98.47 97.95 97.66 99.88 99.94
Wheat 82.87 88.74 89.71 94.84 97.67 99.22 99.82 99.81 99.65
Beet 95.48 97.46 98.30 98.09 98.14 97.51 99.60 96.55 99.88

Potatoes 93.88 100.00 95.62 99.18 98.28 97.69 99.83 96.34 99.85
Bare soil 82.83 98.13 97.42 94.57 97.34 99.65 100.00 99.92 99.93

Grass 87.07 96.65 88.62 92.95 95.39 92.75 98.35 99.90 99.92
Rapeseed 90.02 99.72 77.83 95.69 95.90 97.66 98.21 97.89 99.26

Barley 73.30 92.91 99.27 91.80 99.49 98.84 97.44 99.80 99.88
Wheat2 81.38 86.08 88.11 96.30 94.79 98.56 92.52 96.14 99.56
Wheat3 88.07 59.86 98.05 96.60 98.55 99.04 97.93 98.70 99.39
Water 49.92 89.62 93.46 99.40 99.90 99.77 100.00 100.00 100.00

Buildings 82.04 98.26 75.25 83.20 88.56 94.83 85.14 97.96 97.14
OA 82.74 94.76 93.31 96.16 97.57 98.39 98.32 98.16 99.51

Ttrain 529.4 ± 32.41 21.89 ± 1.45 1.22k ± 61.49 77.85 ± 4.04 97.61 ± 14.37 1.01k ± 66.53 — 86.96 ± 1.47 165.58 ± 9.23
Tpred 285.9 ± 8.33 6.37 ± 0.79 138.84 ± 9.16 22.66 ± 1.32 89.15 ± 2.84 284.13 ± 7.83 — 0.15 ± 0.02 38.95 ± 1.46
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3.4. Results on RADARSAT-2 San Francisco Dataset

This section assesses the effectiveness of our CLIGUNet on the SF-RS2 dataset. Figure 7
shows the best classification maps obtained with SVM [27], UNet [41], WCAE [38], MDPL-
SAE [37], CV-CNN [40], MWGCN [7], and our proposed CLIGUNet—one can observe
that our CLIGUNet generally outperforms the others. Figure 7b–d illustrate that SVM,
UNet, and WCAE tend to misclassify low-density urban (red) and high-density urban
(yellow). Figure 7e,f show that both MDPL-SAE and CV-CNN suffer from the presence
of serve speckles, especially in the urban areas on the right. Figure 7g shows that GCNs
obtain better classification results, especially in vegetation and sea areas. However, it still
misclassifies some of the vegetation areas into low-density urban dots (see black circles).
This is mainly due to the restrictions of spectral GCNs, which rely on message passing
between neighboring superpixels to update their feature representations. Due to the over-
smoothing issues of deeper spectral GCNs, MWGCN cannot enlarge its receptive field by
stacking multiple layers. Thus, it is not possible to address this limitation by adjusting
the network structure into a deeper network. This drawback is more obvious for isolated
nodes, when superpixels of the same class are too distant from the current node. Compared
to MWGCN, the segmentation map of our CLIGUNet is further improved, especially in the
vegetation areas.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Classification maps obtained on the SF-RS2 dataset. (a) Ground truth, (b) SVM [27], (c) U-
Net [41], (d) WCAE [38], (e) MDPL-SAE [37], (f) CV-CNN [40], (g) MWGCN [53], and (h) CLIGUNet.

Table 7 reports the classification performance of all the methods, highlighting the best
results in bold text. The accuracy values show that our proposed CLIGUNet outperforms
the others in most classes. For instance, our CLIGUNet achieves 0.65% higher overall accu-
racy than CV-CNN, and 3.15% higher overall accuracy than the suboptimal MWGCN. The
last two rows indicate that our proposed CLIGUNet also performs better than traditional
methods and AE methods in time efficiency on this dataset.

3.5. Generalization Studies Across Datasets

The last decade has witnessed extensive research in PolSAR image classification with
deep learning. However, these networks are commonly trained and tested within the
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same scene, which makes it difficult to assess their performance on other datasets in real
applications. In response to this situation, this section analyzes the generalization capacity
of our CLIGUNet, together with four comparative deep learning approaches. The training
and validation rates are set as 2% and 1%, respectively.

Table 7. Classification accuracies and running time of different methods on SF-RS2 dataset (provided
by % and s).

Class SVM U-Net WCAE MDPL-SAE CV-CNN MWGCN CLIGUNet

Ocean 99.94 99.94 99.57 99.98 99.89 99.93 99.98
Vegetation 90.78 90.18 93.84 93.83 92.88 93.31 96.94

Low-density urban 88.66 89.77 91.70 92.01 94.13 98.34 98.28
High-density urban 79.65 80.93 92.89 89.70 92.16 99.02 99.17

Developed 84.07 83.96 86.29 90.61 86.27 97.28 99.36
OA 92.65 92.85 95.78 95.59 95.99 98.49 99.14

Ttrain 662.9 ± 40.55 27.42 ± 1.82 2.08k ± 167.31 2.14k ± 95.34 262.56 ± 13.05 93.46 ± 1.97 287.43 ± 14.40
Tpred 358.1 ± 9.43 8.98 ± 0.93 236.71 ± 16.23 579.82 ± 8.43 76.59 ± 3.04 0.17 ± 0.03 104.99 ± 3.18

In this section, experiments in the source scene, namely the SF-AIRSAR dataset,
are described with WDBN, U-Net, CV-CNN, MWGCN, and our CLIGUNet. Then, the
trained models are tested on the target domain, namely the SF-RS2 dataset, to test their
generalization performance. Considering that the ground truth in the target domain is not
available, a z-score is applied to normalize the unseen data before the generalization tests.
To ensure a fair comparison, repeated experiments with random splits are conducted to
fully assess the potential of WDBN, U-Net, CV-CNN, MWGCN, and our CLIGUNet.

Figure 8b–f illustrate the best maps obtained on the SF-AIRSAR dataset using WDBN,
U-Net, CV-CNN, MWGCN, and our CLIGUNet. One can observe that our CLIGUNet
generally outperforms the others. Figure 8b shows that WDBN fails to discriminate between
high-density urban (yellow) and low-density urban (red), and between developed (purple)
and vegetation (green). This is because DBNs typically have a substantial number of
parameters in deep architectures, which increases the risk of overfitting. Figure 8c,d
illustrate that both U-Net and CV-CNN generally perform better than WDBN, except for
the misclassified speckles. Figure 8e,f present smoother classification maps than U-Net
and CV-CNN. This demonstrates the superiority of GCNs over CNNs on this dataset. The
vegetation area on the bottom indicates that our CLIGUNet outperforms MWGCN. Table 8
reports the classification accuracies that demonstrate that our CLIGUNet outperforms the
other techniques on this dataset, where the best accuracy of each class has been highlighted
in bold.

Table 8. Classification accuracies and running time of different methods on SF-AIRSAR dataset
(provided by % and s).

Class WDBN U-Net CV-CNN MWGCN CLIGUNet

Ocean 96.87 98.73 99.88 99.98 99.98
Vegetation 78.46 95.59 97.52 96.43 97.91

Low-density urban 71.45 95.16 96.48 98.47 98.84
High-density urban 66.10 91.87 94.13 97.05 97.26

Developed 56.14 92.91 94.55 99.74 99.12
OA 81.75 96.27 97.65 98.76 99.02

Ttrain 129.32 ± 14.09 29.10 ± 1.92 103.19 ± 2.48 72.76 ± 1.51 159.36 ± 8.92
Tpred 118.16 ± 3.67 8.45 ± 1.05 29.88 ± 1.42 0.19 ± 0.02 53.86 ± 2.49

Figure 9b–f illustrate the best results for the generalization analysis. In Figure 9b,c,
one can observe that WDBN, CV-CNN, and MWGCN tend to misclassify high-density
urban into low-density urban. While U-Net tends to misclassify high-density urban into
developed. For WDBN, this is partially due to the fact that WDBN fails to learn an effective
representation in the source domain. Furthermore, Figure 9b shows that WDBN cannot
discriminate between sea (blue) and vegetation. Another possible reason for this behavior
may be that WDBN directly operates on raw PolSAR data, where z-score normalization in
U-Net, CV-CNN, MWGCN, and CLIGUNet alleviates the magnitude and data distribution
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variations on different platforms. Figure 9c,d show that U-Net and CV-CNN cannot
differentiate between vegetation and developed. Figure 9f indicates that our CLIGUNet
achieves the best performance compared to others, which suggests its superiority in terms
of generalization capability.

(a) (b) (c)

(d) (e) (f)

Figure 8. Classification maps obtained on SF-AIRSAR dataset. (a) Ground truth, (b) WDBN [33],
(c) U-Net [41], (d) CV-CNN [40], (e) MWGCN [53], and (f) CLIGUNet.

(a) (b) (c)

(d) (e) (f)

Figure 9. Best generalization results obtained on SF-RS2 dataset. (a) Ground truth, (b) WDBN [33],
(c) U-Net [41], (d) CV-CNN [40], (e) MWGCN [53], and (f) CLIGUNet.

Table 9 summarizes the classification performance on the target domain, with the
highest accuracy values emphasized in bold, indicating that our CLIGUNet outperforms
the other techniques in the literature. Thus, we can conclude that the proposed CLIGUNet
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not only captures more effective features within the same dataset, but also generalizes
better than DBNs, CNNs, and spectral GCNs.

Table 9. Best generalization results of different methods on SF-RS2 dataset (provided by %)

Class WDBN U-Net CV-CNN MWGCN CLIGUNet

Ocean 49.48 76.98 98.11 98.54 97.93
Vegetation 56.64 83.26 82.19 92.36 91.56

Low-density urban 85.57 79.63 79.71 91.38 96.14
High-density urban 2.96 1.08 10.71 5.49 72.69

Developed 71.06 33.02 17.40 98.37 80.85
OA 51.11 65.86 74.82 81.73 92.02

4. Conclusions and Future Work

To achieve robust pixel-wise PolSAR image semantic segmentation, this paper has
proposed a novel cross-level interaction graph U-Net, which exploits the rich multi-scale
features on both Euclidean domains and irregular graphs by combining the advantages
of both graph convolution and the U-Net structure. Our proposed architecture derives a
weighted max-relative graph convolution module to address the challenge of multi-graph
inputs. This innovation facilitates the simultaneous learning of latent feature maps from
different graphs. Furthermore, it incorporates the symmetric revised Wishart distance
to derive weighted adjacency matrices and encode polarimetric similarity into the graph
learning progress. By employing end-to-end trainable residual transformers with multi-
head attention, the proposed cross-level interactions enable the decoder to integrate multi-
scale graph feature representations and enhance effective features from various scales via a
deep supervision strategy. Additionally, this paper proposes multi-scale dynamic graphs
to enlarge the receptive field and allows for trainable adjacency matrices with appropriate
refinements in connectivity relationships and edge weights within each resolution. The
experiments on four real PolSAR datasets highlight the superiority of our CLIGUNet
towards many state-of-the-art networks in classification performance and robustness to
unseen datasets with similar land cover types. The observations on training and prediction
time shed light on the practical implications and real-world applicability of the comparative
methods. Future research endeavors could further explore optimization strategies to
enhance computational efficiency, thereby facilitating the deployment of these methods in
real-time applications.

Considering that the recording conditions of PolSAR platforms can have a significant
impact on scattering mechanisms and image characteristics, future work will focus on de-
veloping methodologies capable of accommodating PolSAR data to address the challenges
posed by diverse hyperparameters across different platforms and unseen scenarios, such as
frequency bands, resolution, radar incidence angles, weather conditions, and certain types
of terrain. One potential research direction is the application of transfer learning or domain
adaptation techniques, e.g., adversarial training or domain-specific regularization, to en-
hance model adaptability and improve the generalization capacity across datasets. Another
possible direction is to minimize or eliminate the need for speckle noise reduction, which
can be performed by accommodating robust frameworks capable of handling PolSAR data
that follow non-Gaussian distributions, thus enhancing the generalization and scalability
of pre-trained models.
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