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Abstract: Development of ocean measurement technologies can improve monitoring of the global
Ocean Heat Content (OHC) and Heat Storage Rate (HSR) that serve as early-warning indices for
climate-critical circulation processes such as the Atlantic Meridional Overturning Circulation and
provide real-time OHC assessments for tropical cyclone forecast models. This paper examines the
potential of remotely measuring ocean temperature profiles using a simulated Brillouin lidar for
calculating ocean HSR. A series of data analysis (‘Nature’) and Observational Systems Simulation
Experiments (OSSEs) were carried out using 26 years (1992–2017) of daily mean temperature and
salinity outputs from the ECCOv4r4 ocean circulation model. The focus of this study is to compare
various OSSEs carried out to measure the HSR using a simulated Brillouin lidar against the HSR
calculated from the ECCOv4r4 model results. Brillouin lidar simulations are used to predict the
probability of detecting a return lidar signal under varying sampling strategies. Correlations were
calculated for the difference between sampling strategies. These comparisons ignore the measurement
errors inherent in a Brillouin lidar. Brillouin lidar technology and instruments are known to contain
numerous, instrument-dependent errors and remain an engineering challenge. A significant decrease
in the ability to measuring global ocean HSRs is a consequence of measuring ocean temperature from
nadir-pointing instruments that can only take measurements along-track. Other sources of errors
include the inability to fully profile ocean regions with deep mixed layers, such as the Southern
Ocean and North Atlantic, and ocean regions with high light attenuation levels.

Keywords: lidar; ocean; temperature profiles; heat storage; climate change

1. Introduction

The Earth’s oceans have stored away more than 90 percent of the additional heat ab-
sorbed by the planet due to anthropogenic changes to Earth, primarily from elevated levels
of greenhouse gases [1,2]. The resulting alterations in ocean temperature and associated
heat content has and will continue to influence global climate [3], alter ocean circulation and
biogeochemistry [4,5], and impact ocean ecosystems [6–8] until at least 2300 [5]. How ocean
temperatures respond to global warming is the topic of numerous scientific papers [3], field
studies such as the global Argo network [9,10], the National Oceanic and Atmospheric
(NOAA) surface drifter [11,12] and high-density eXpendable BathyThermograph (XBT)
programs [13], and numerical simulations [14].

The ability to measure the vertical structure of physical features, such as tempera-
ture and optical properties continues to evolve with the development of new laser and
measurement technologies. Fielding of such instruments could provide the necessary
measurements required to monitor important physical, biological, and climate-related
indices of the global ocean. Sea surface temperature and salinity measurements have been
demonstrated [14] to be useful as early warning signals for the collapse of the current
strong to weak mode of the Atlantic Meridional Overturning Circulation (AMOC), an
important ocean circulation feature whose collapse would have far reaching impacts on
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the world climate. Near real-time measurements of ocean Mixed Layer Depth (MLD) are
important for providing information on ocean heat content that fuels hurricanes [15]. Yet
the sparseness in the temperature observations necessary for adequate MLD estimation
has necessitated the development of alternative methods to measure MLDs in indirect
ways [16], as opposed to the more direct method that a remote sensing instrument, such as
a Brillouin Lidar [17], could provide.

Prior to satellite technology, the state of the global ocean temperature field was ob-
tained by direct in situ measurements. Historical observations from these measurements
have been used for analysis of ocean heat storage [2,18–20] and heat storage rates [21], and
the influence of temperature on ocean pH [22], alkalinity [23], oxygen [24,25], inorganic
carbon [26], phytoplankton growth rates [27–29], and other biogeochemical and metabolic
processes [30]. The introduction of satellite sensors to measure sea surface temperature [31]
provide additional data for analysis of ocean heat dynamics at climate scale. However,
assessing the subsurface ocean temperature field continues to require in situ measurements.
Yet, despite the deployment of large numbers of autonomous profiling instruments [9–11],
the ocean’s subsurface temperature field remains under sampled. And, while models that
assimilate satellite and in situ measurements of the ocean predict the evolution of the
subsurface temperature fields [32], comparisons of their predictions show inconsistencies,
yielding uncertainty in forecasts of ocean temperatures [20].

Noted nearly a half century ago [33], it was observed that the wavelength of the energy
obtained from Brillouin scattering [nm], λB, varies as a function of the product of the index
of refraction, the speed of sound in water, and the backscattering angle such that,

λB = λ0

(
1 ± 2n(S, T, p, λ)

υs(S, T, p)
C

sin
(
θ

2

))
, (1)

where S is practical salinity (PSU), T is temperature (deg. C), p is pressure (dbar), λ0 is the
wavelength [nm] of the incident light, n is the refractive index of water (n.d.), υs is the speed
of sound in water [m/s], and θ is the backscattering angle [34], which for nadir pointing
lidar instruments is 180 degrees. Later studies on Brillouin scattering [35,36] present
this phenomenon in terms of Brillouin frequency shift. Equation (5) in [37] presents a
clarification between the various representations and removes some of the ambiguity in the
terms encountered within the literature. Since both the index of refraction [38] and the speed
of sound in the ocean [34,39,40] (Figure 1a) varies as a function of temperature, salinity and
pressure, measurements of Brillouin scattering from a lidar can be used to obtain water
temperatures (Figure 1b) and ocean mixed layer depths. Because Brillouin scattering at a
given wavelength is a function of temperature, salinity, and pressure (Figure 1b), estimates
of pressure from lidar return times and historical salinity measurements can be used to
estimate temperature profiles with acceptable levels of accuracy [35].

In addition to the Brillouin wavenumber shift, a second feature of Brillouin scattering
is the variability of the linewidth as a function of salinity, temperature, and pressure [41].
Several recent efforts have capitalized on using these two Brillouin scattering measure-
ments, wavenumber shift and linewidth, to measure both temperature and salinity [42–44].
Meanwhile, another effort has demonstrated a multi-lidar technique to perform inversions
using two wavenumber shift observations [45] to estimate both temperature and salinity.

Airborne lidars can retrieve data down to 3–4 optical depths, effectively allowing for
profiling through the ocean thermocline in 70% of the ocean [46]. Such lidar systems have
already been proposed for aircraft [17,36,46] and satellite [47] remote sensing applications
to detect Brillouin scattering at depth. Theoretical estimates of ocean sound velocity profiles
obtained using World Ocean Atlas 2018 data [48] and an empirical expression for sound
velocity [49] compared well (difference 1–2 m/s) with direct laboratory measurements of
Brillouin scattering using a benchtop lidar instrument in several studies [50,51]. Brillouin
lidar instruments could potentially be developed for either ship-based, aircraft, or satellite
to carry out large scale observations of the upper ocean thermal and salinity structures and
mixed layer depths [17,47].
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a spatial resolution of 1 m and a mean accuracy of 0.07 deg. C [36], while another lab study 
demonstrated Brillouin lidar can retrieve sound velocity profiles with accuracy of 1–2 m/s 
[51]. Another instrument simulation study concluded that the detection of ocean MLDs 
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Figure 1. The dependence of speed of sound (a) and Brillouin wavenumber shift (b) as a function of
salinity and temperature. Panel (a) shows individual temperature versus speed of sound relationship
over a range of practical salinity (PSU, 0–40 g/kg), with pressure set to a constant 0.0, and is adapted
from Figure 2 in [39]. Panel (b) demonstrates the sensitivity of the Brillouin wavenumber shift over
the expected range of ocean temperature and salinity values and is adapted from Figure 2 in [35].

The advantage of using lidar technology to measure ocean temperature profiles over
traditional methods such as ship-based CTD or profiling Argo floats, is that lidar measure-
ments can be done rapidly from a ship, aircraft, or possibly a satellite. Lidar enables rapid
measurement of sub-mesoscale features which has not been possible to date with either
in situ, aircraft, or satellite technology. One disadvantage is that lidar instruments obtain
point measurements of single profiles in time, which must be analyzed with consideration
to their inability to obtain the larger scale synoptic scale measurements that are obtained by
passive scanning satellite instruments such as AVHRR, MODIS, SeaWiFS, etc.

Using Brillouin lidar for measuring ocean temperature and salinity has been the topic
of numerous studies, the majority of which have been instrument simulations. A lab
study was carried out to demonstrate that Brillouin lidar can measure temperature profiles
with a spatial resolution of 1 m and a mean accuracy of 0.07 deg. C [36], while another
lab study demonstrated Brillouin lidar can retrieve sound velocity profiles with accuracy
of 1–2 m/s [51]. Another instrument simulation study concluded that the detection of
ocean MLDs using Brillouin lidar was feasible and reliable [17]. The expected global ocean
variability of Brillouin lidar frequency shift was calculated using World Ocean Atlas 2018
data and a simulated Brillouin lidar [50]. And another simulated lidar study demonstrated
the potential of obtaining optical profiles that extended deeper than the ocean MLD [47].

This paper presents results from several OSSEs that were carried out to quantify
the capability of using a Brillouin lidar system to measure OHC and HSR. The OSSEs
simulated the measurement of the ocean’s temperature fields with a Brillouin lidar in a Low
Earth Orbit (LEO). Comparisons are made between the OHC and NHF calculated from the
OSSEs with those obtained from an ocean circulation model. The correlation between the
OSSEs and the model solutions are presented to demonstrate several measurement issues
that would be encountered by an actual LEO instrument. The sections in the remainder
of this manuscript include the following: a methods section that presents the numerical
circulation model output used for the data set for the OSSE; the numerical calculations
used to predict the probability of Brillouin lidar shot returns as a function of depth and
ocean light attenuation coefficient; and, the OSSE technique for measuring the global ocean
temperature profiles, upper ocean heat content, and heat storage rates using simulated
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LEO satellite trajectories. This is followed with a results section that presents the spatial
and temporal variability of the observed OHS and NHF compared to the model solutions,
and a discussion section that provides a summary of the results in the context of the needs
for near-real-time ocean observations, and comments on potential observing solutions.

2. Materials and Methods
2.1. ECCO Model Solutions

The ECCOv4r4 model solutions were chosen as the ‘nature’ inputs for carrying out the
OSSEs. Daily mean values of ocean potential temperature, θ, salinity, S, and MLDs were
obtained from the Estimating the Circulation and Climate of the Ocean (ECCO) model,
Version 4, Release 4, [52–54] (hereafter ECCOv4r4) run that simulated the global ocean
from 1992 to 2017. The data were obtained from NASA’s PO-DAAC and made available
after interpolation onto a uniform 0.5◦ resolution orthogonal grid [latitude bands: 89.75◦S
to 89.75◦N; longitude bands: 179.75◦W to 179.75◦E] with 50 vertical grid levels that have
higher resolution in the upper ocean domain. The model MLDs were also obtained at
similar time and grid resolution.

The ECCOv4r4 model was developed to bring together a thorough set of heteroge-
neously sampled observations with a high-resolution ocean circulation model to serve as
the data integration platform. ECCOv4r4 is a data assimilative model that makes use of
ocean observations including sea level observed from satellite, global mean sea level, ocean
temperature and salinity profiles obtained from CTDs, XBTs, Argo floats, glider, moorings,
marine mammals, sea surface temperature, sea surface salinity, sea-ice concentration, ocean
bottom temperature, and temperature/salinity climatology of the World Ocean Atlas 2009.
See Table 2 in [53] for a complete list of observations used in the ECCOv4r4 solutions. The
model solutions result in global predictions of temperature, salinity, velocities, etc. that are
dynamically consistent with the often spatially and temporally under-sampled observa-
tions [53]. For instance, the resulting OHC from the ECCO model solutions compares well
with the OHC analysis from various observational and reanalysis data (Figure 2), showing
the long-term trends in the ocean’s energy imbalance.
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Figure 2. A comparison of the ECCOv4r4 global 0–300 m Ocean Heat Content (OHC) anomalies (red
curve) relative to the 2005–2020 climatology, calculated between 60◦S and 60◦N, with the resulting
OHC anomalies [55] from the ensemble mean of various OHC analysis. Individual curves show the
OHC anomalies obtained from integrating over various depth ranges (see figure legend). Vertical
bars denote the 95% confidence interval (±2 standard deviations).
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2.2. Ocean Mixed Layer Depths

One aspect of the OSSEs was to quantify the probability of measuring ocean temper-
ature profiles down to the deepest observed MLD for a given region. Accurate real-time
measurements of MLDs provide critical information on the upper ocean heat capacity
necessary for improving hurricane forecasts [15]. In addition, temperature profiles obtained
down to these depths can be used to calculate the upper ocean HSR. Previous work [28]
has demonstrated that a threshold criteria temperature value of 1.0 ◦C provides the best
isotherm for tracking the seasonal cycles of ocean HSR.

Two MLD climatology datasets [56–58] were obtained to calculate the spatially varying
deepest MLDs at a 2◦ latitude × 2◦ longitude spatial resolution. The first MLD dataset [56]
utilized nearly 4.5 million hydrographic profiles and a 0.2 ◦C temperature criterion to create
a monthly mean MLD product. The second MLD dataset [57,58] was generated using more
than 2.45 million Argo float profiles [10] with an improved hybrid algorithm rather than the
standard threshold methods, resulting in more accurate and shallower MLDs. Even with
different MLD depth selection criteria, the two MLD climatologies compared well with
each other, with Pearson sample correlation coefficients (r) greater than 0.8 for nearly 70%
of the MLD climatology’s. These two MLD climatology estimates were compared to the
ECCOv4r4 MLD product, which uses a 0.8 ◦C temperature criterion for estimation of the
MLDs [59,60]. The criteria values used for MLD determination studies using temperature-
or density-based criteria varies between MLD studies (see Table 1 in [59] for a summary of
the various T or density criteria).

Of the three MLD products, the MLD product obtained using Argo profiling floats
data [57] was selected (Figure 3) for use in the Brillouin lidar return probability analysis
presented below. The ECCOv4r4 MLD product showed much deeper winter MLDs in the
North Atlantic and Southern Ocean areas than the actual MLD observations. The nature of
the time varying climatologies of the MLD are not relevant for this study. Only the depth
of the deepest MLD is required for setting the depths to which the temperature profiles
were integrated for calculating the OHC and HSR.
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2.3. Brillouin Lidar Signal to Noise Ratio (SNR) Calculations

The SNR analysis that was completed for this study was based on prior work on
Brillouin scatter collection efficiency estimations [37]. The calculation for the strength of
the return signal was estimated based on a modification of the basic link analysis equation
that was modified for transmission through an optical medium with a different index
of refraction:

Npe = N1 σB ∆z dΩ εpm εos Tλ
2 (2)

where Npe and N1 are the number of detected and transmitted photons, σB is the Brillouin
backscattering coefficient, ∆z is the range bin for collecting return signal and dΩ is the solid
angle of the receiver, εpm and εos are the efficiency of the detector and the optical system,
and Tλ is the one-way transmission through the water. For this application the solid angle
of the receiver, dΩ, is calculated in such a way to account for the index of refraction of the
water medium such that

dΩ =
Ad

(z + n Hr)
2 (3)

where Ad is the area of the receiver, z is the depth of penetration into the water, n is the index
of refraction of the water medium, and Hr is the height of the receiver. The calculation of
the transmission through the water was based on the input parameters for the attenuation
coefficient (Kd) as well as the depth through the water. For simulation scenarios in which
the receiver was positioned above the ocean surface an addition term for atmospheric
transmission was provided as well to accurately account for losses of the optical path.

Atmospheric transmission as well as solar background was calculated by utilizing
Py6s, which is a Python interface to the 6S radiative transfer model [61]. A solar elevation
angle of 30◦, an atmospheric profile of mid-latitude summer, and an aerosol profile of
maritime were utilized for all transmission and solar radiation calculations. It was assumed
for these calculations that the instrument of investigation was making a spectral analysis of
the collected scatter light. This was done because of the previous work that has shown that
water temperature and salinity can be calculated based on the measurement of Brillouin
scatter peak separation as well as spectral width [62]. The collected scattered signal was
assumed to be spectrally spread across a linear detector array that contained 32 elements
and had spectral spacing of 1 p.m. A simulated Brillouin return spectrum was created with
two gaussian peaks with Full Width at Half Maximum (FWHM) of 0.5 p.m. and a total
separation between the two peaks of 16 p.m. This spectrum was then normalized by the
total number of detected photons calculated in the return.

The strength of the signal for the SNR calculation was assumed to be the maximum
value from this estimated spectrum. The SNR that was used in further calculations was
estimated by the following equation [62]:

SNR =
Ns√

Ns + Nsolar + Ndark
, (4)

where Ns is the calculated maximum number of detected photons from the estimated spec-
trum, Nsolar is the estimated number of detected solar photons, and Ndark is the number of
dark counts. For these estimates several assumptions were made for the instrument design.
A 50 µJ, 532 nm, 100 kHz laser transmitter as well as a receiver telescope with a diameter
of 0.3 m was utilized for the ocean surface return calculations. For LEO calculations, the
laser energy was increased by a factor of 10 and the receiver aperture was increased by a
factor of 4. The receiver system was estimated to have a quantum efficiency of 0.4 and a
dark count rate of 20 kHz.

Signal to Noise Ratios (SNR) were calculated for a broad range of ocean attenuation
levels ranging from 1.0 × 10−4 to 0.5 m−1 and for depths ranging from 1 to 349 m, at
1 m intervals. A laser pulse frequency of 100 kHz was used and SNR calculations were
carried out with the laser situated at the ocean surface (0 m) and at LEO altitudes (400 km).
The SNR levels ranged from 1.63 × 10+4 to 9.8 × 10−148 for the surface ocean calculations
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(Figure 4a), and 5.97 × 10−3 to 8.4 × 10−154 for the LEO calculations (Figure 4b). These
SNR calculated values were extrapolated down to 1000 m depth by linear extrapolation of
the Log10(SNR) values from the deepest calculated levels (349 m). The Log10(SNR) values
are highly linear at ocean levels greater than 100 m.
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2.4. Lidar Return Probability, and Standard Error Calculations

Lidar return probabilities (LRPN) for N lidar shots were calculated using the SNR
results according to [63], such that

LRPN = 1.0 −
(

1.0 −
(

0.5
(

1.0 + er f
(

SNR − TNR√
2

))))N
(5)

where N is the number of individual lidar shots, and TNR is the Threshold to Noise Ratio
of the lidar, which for this study was set to 3, and er f is the ‘error function’. The simulations
in this study used a lidar pulse frequency of 100 kHz and an integration time of 1 s. The
levels of LRPN range from 0 to 1 for the surface ocean calculations (Figure 5a), and 0.0 to
0.9 for the LEO calculations (Figure 5b).

The parameter errors calculated for the lidar instrument were shown to be a function
of the SNR values for both temperature and salinity. The errors were fitted to a power
function and that equation was used to calculate the expected Standard Error (SE) from a
one second integration of a 100 kHz instrument such that the

SE = error/
√

NshotsLRPN , (6)

where error is the value of the parameter error, Nshots are the total number of lidar shots.
The plotted SE values (Figure 6) are masked to exclude regions where SE values that
were higher than 1.5 deg. C, which is a reasonable level of instrument error of 1.0–1.5.
Lower errors are possible by increasing the integration time of the measurement. However,
note that these errors are derived from model estimates of the instrument error; these are
simulated errors.
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of a 100 kHz Brillouin lidar. Errors greater than 1.5 deg. C are masked to denote regions where
observations cannot yet be retrieved with sufficient accuracy. The calculated errors as a function of
the SNR for both salinity and temperature are shown as the inset figure in (b).

2.5. Global Ocean Diffuse Attenuation Coefficients at 490 nm

The 2020 annual mean diffuse attenuation coefficient, Kd(λ = 490nm), was obtained
from the NASA/GSFC Ocean Biology Processing Group archive (Figure 7) and used in the
Brillouin lidar OSSEs to estimate the LRP for specific regions in the global ocean. The data
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were used with an SNR lookup table (see Section 2.3), where SNR values varied as a function
of attenuation coefficient (m−1) and depth [m]. Using the diffuse attenuation coefficient
rather than an estimate of the beam attenuation coefficient is appropriate for the instrument
design used in this study. The “effective” attenuation of the lidar system in ocean water
approaches that of the diffuse attenuation coefficient when the instrument has a wide field of
view for the receiver [37,64]. It should be noted also that multiple scattering should not be an
issue since Brillouin scattering features are inelastic events that are dominated by singular
events. The use of return spectra to determine Brillouin scattering features (temperature,
salinity, speed of sound) is possible under multiple scattering because Brillouin scattering
is limited to single scattering events [65]. In addition, the use of Kd estimates at λ = 490 nm
for a lidar instrument with a laser wavelength of 532 nm is appropriate as Kd spectra tend
to be flat or show a minimum region in that region of the visible spectra [66].
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2.6. OSSE Satellite Simulations

Daily outputs of the full 3D mean temperature and salinity values from the ECCOv4r4
model solutions spanning from 1992 to 2017 (26 years) were used as the ‘nature’ component
for the OSSEs. A simple Low Earth Orbit (LEO) for a satellite was simulated with a 60◦

inclination. Standard orbital equations for calculating the latitude (lat, [deg.]) and longitude
(lon, [deg.]) positions of the satellite were employed such that,

x = cos
(

2π

PS
(t − t0)

)
(7)

y = sin
(

2π

PS
(t − t0)

)
cos(θ) (8)

z = sin
(

2π

PS
(t − t0)

)
sin(θ) (9)

lat = sin−1(z)
360
2π

(10)
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lon =

(
mod

(
2π

PE
(t − t0), 2π

)
+ atan2(x, y)

)
360
2π

(11)

where PS and PE are the satellite’s and Earth’s orbital periods [s], respectively, t0 and t are
the initial and the independent variable, time [s], respectively, and θ is the satellite’s orbit
inclination [rad.]. The values used in this study are given in Table 1.

Table 1. The values used to calculate the simulated satellite trajectory as a function of time, t [s].

Parameter Symbol Parameter Name [units] Value

Earth Orbital Period PE [s] 86,400
Satellite Orbital Period PS [s] 5988.4

Initial Time t0 [s] 0
Satellite orbital inclination θ [radians] π

3

The trajectory of the simulated LEO satellite detailed above was used in all the OSSE
experiments. These types of trajectories typically sample less over equatorial regions
(Figure 8) due to the peak in its meridional speed as it crosses over the equator. As the
satellite travels past the extremes in its latitudinal range its track becomes more zonal, re-
sulting in a higher number of possible observations at the zonal extremes of its orbit. Using
simulated satellite trajectories in the OSSE experiments provides information on how the
sampling strategy, in this case a satellite orbit, impacts measuring ocean HSRs. Measuring
the errors from the sampling strategies gives a relative sense to the additional errors caused
by the Brillouin lidar instrument’s limitations of sampling the ocean temperature field.
Sampling strategies and measurement technologies are both sources of error for remote
ocean measurements.
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Figure 8. Bitmap plot of the shot count for a month of flight of a simulated satellite on a trajectory
defined by Equations (7)–(11) and coefficients in Table 1, with a 1 Hz shot frequency. Binning occurred
on a 1◦ longitude by 1◦ latitude grid. A single day trajectory is shown as a thick black curve.

2.7. Brillouin Lidar Mixed Layer Depth Measurement Probabilities

The Brillouin lidar probability solutions (Section 2.3) were used as a lookup table with
the MODIS-A 2020 annual mean global ocean diffuse attenuation coefficient, Kd(λ = 490)
(Section 2.3) to calculate the probability of a return Brillouin lidar signal as a function of
geolocation and depth. These return probability profiles were compared with the calculated
deepest MLD values obtained from the SIO Argo float data set (Section 2.2) to determine
the probability of a lidar return signal from the deepest MLD being observable throughout
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the year for various ocean locations and for two different OSSEs, one a ship-mounted and
the other a LEO satellite instrument. Note that the ship-mounted OSSE samples the ocean
along the same trajectory as the LEO satellite. While this is not realistic, the solutions
suggested by it demonstrate the impact of observing at LEO without an atmosphere.

2.8. Ocean Heat Content (OHC) and Heat Storage Rates (HSR) Calculations

The OSSEs were carried out by sampling the daily temperature and salinity fields
from the ECCOv4r4 data set (Section 2.1) along the time/space trajectory of the simulated
Brillouin lidar satellite (Section 2.6) from 1992 through 2017. The time step for the OSSE
was set to 1 s, which coincided with the solutions from the Brillouin lidar probability
calculations (Section 2.3). The observed temperature and salinity profiles were binned into
2◦ longitude by 2◦ latitude and 5◦ longitude by 5◦ latitude grids for the heat storage rate
(HSR) calculations.

Ocean Heat Content (OHC) is the measure of the total amount of heat contained within
a volume of ocean water, while the Heat Storage Rate (HSR) is the time rate of change of the
OHC. The OHC and HSR calculations followed the method outlined in [21], such that the

OHC = cp

∫ h

0
ρ(z)T(z) dz (12)

HSR = cp
∂

∂t

(∫ h

0
ρ(z)T(z) dz

)
(13)

where cp is the specific heat of seawater, h is the depth of integration, ρ is the density
of seawater, and T is the mothly mean temperature. Unlike [21], where the depth of
integration was chosen to track the depth of an isotherm located just below the winter
mixed layer, the integration depth, h, for this study was set as a constant value. This allows
for characterizing the capability of the HSR results obtained by depth-limited measuring
devices, such as a Brillouin lidar, to the HSR obtained from full or partial integrations of the
water column’s temperature field. It should be noted that the experiments present results
related to estimating the ocean HSRs rather than OHC. Estimating ocean HSRs is the more
difficult and is more prone to errors that the more direct OHC measurements. The results
focus on presenting the ability of a Brillouin lidar instrument to measure this more difficult,
and error prone heat estimate.

Several ‘Nature’ and OSSE experiments were carried out to provide comparisons
between the sampling strategies, measurement strategies and instrument measurement
capabilities (Table 2). The first experiment (No. 1) estimated the HSR from the model by
integrating the daily individual temperature fields to the bottom of the ocean model using
the gridded 0.5◦ longitude by 0.5◦ latitude grid. This first experiment will be referred to
in this paper as a baseline solution, against which the other experiments are compared.
A series of three additional ‘Nature’ experiments were carried out by altering the depth
to which the temperature profiles were integrated to estimate the HSRs. Experiments 2–4
used integration depths that were set by the (No. 2) depth of the deepest SIO Argo MLD,
(No. 3) ECCO model deepest MLD, and (No. 4) ECCO model deepest climatology mean
plus 2 standard deviations MLD. All these experiments sampled the ECCO temperature
fields by directly measuring each of the available daily model output fields. The daily
temperature field were binned into monthly mean temperature fields at both 2◦ longitude
by 2◦ latitude and 2◦ longitude by 2◦ latitude grids from which monthly mean HSRs fields
were calculated. Similar monthly binning, gridding and finite differencing was carried out
on all experiments to calculate OHC and HSRs.

A series of four OSSE experiments (Nos. 5–8) were carried out to compare the impact
of sampling the model solutions by using the trajectory of the simulated satellite trajectory
to sample over time and space. In these experiments it was assumed that the satellite was
able to measure the full top to bottom temperature profile of the model every second over
the 1992–2017 period of the model solutions. So, while the Nature experiments were able
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to sample all the 3D model’s temperature fields, the OSSE experiments were limited by the
simulated satellite’s trajectory.

Table 2. List of various HSR ‘Nature’ or OSSE experiments.

Experiment No. ‘Nature’ vs. OSSE Gridded vs. Flight
Sampling Simulation Integration Depth Criteria

1 Nature
Baseline Solution Gridded ECCO model bottom

2 Nature Gridded SIO Argo deepest climatology MLD

3 Nature Gridded ECCO deepest MLD

4 Nature Gridded ECCO deepest climatology
mean + 2 std. dev. MLD *

5 OSSE Flight sampling simulation ECCO model bottom

6 OSSE Flight sampling simulation SIO Argo deepest climatology MLD

7 OSSE Flight sampling simulation ECCO deepest MLD

8 OSSE Flight sampling simulation ECCO deepest climatology
mean + 2 std. dev. MLD *

9 OSSE Ship-mounted [0 m]
flight simulation

SIO Argo deepest climatology MLD with
Brillouin lidar probability-limited

10 OSSE LEO
flight simulation

SIO Argo deepest climatology MLD with
Brillouin lidar probability-limited

* std. dev.: standard deviation.

Finally, two OSSE experiments (Nos. 9 and 10) were carried out to investigate the
impact of using a Brillouin lidar instrument to measure ocean temperature profiles. The
probability solutions were estimated for a Brillouin lidar instrument operated at the ocean
surface (No. 9) and at a LEO elevation (No. 10). These simulations make use of the
probability lookup tables (Section 2.3) and the 2020 annual mean global ocean diffuse
attenuation coefficients, Kd(λ = 490 nm) (Section 2.4). Note that it is not feasible to measure
ocean’s temperature fields such as was carried out in experiments 1–9, only experiment 10
is a near realistic estimate of a possible observing strategy for a Brillouin lidar instrument.
Experiments 1–9 provide a baseline for understanding the errors encountered in developing
such an observing system. All the solutions to the experiments were binned using both a
2◦ longitude by 2◦ latitude and 5◦ longitude by 5◦ latitude grids.

All of the Fortran software used for simulation, analysis and creating figures is avail-
able for download as Supplementary Materials per NASA’s Open Science Policy.

3. Results

The results below present information from this study that are framed to shed light
onto the various issues that were encountered in simulating a Brillouin lidar instrument
for operation at LEO. Both SNR degradation from operating the Brillouin lidar at in-
creased elevations (ocean surface vs. LEO) and errors obtained from sampling along a
LEO orbit reduced the ability to correctly monitor the HSR of the ocean at a monthly time
scale. The results from analysis of various components of this measurement system are
presented below.

3.1. Probability of Profiling to Mixed Layer Depth Measurements

Global maps of the probability of lidar returns from the MLD were calculated for the
0 m (Figure 9a) and LEO (Figure 9b) deployment scenarious using the SNRs for the two
operation solutions (Section 2.4), the mean 2020 MODIS-A diffuse attenuation coefficient
(Section 2.5) and the MLDs from the SIO Argo MLD climatology (Section 2.2). Low
probabilities are observed in both cases in regions where the MLDs are deepest, such as in
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the Southern Ocean and North Atlantic (Figure 5). But for the LEO estimates, low values
occur as a result of both higher light attenuation and deeper MLDs. The dramatic shift into
lower lidar returns for most of the ocean is a significant source of errors in the resulting
HSR estimates.
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Figure 9. The lidar return probability (LRP) of a Brillouin lidar return signal from the observed SIO
Argo deepest climatology mixed layer depth from the simulated Brillouin lidar instrument operated
at the ocean surface (a) and at LEO (b).

3.2. ‘Nature’ and OSSE Solutions: ECCOv4r4 Heat Storage Rates (HSRs)
3.2.1. HSR from Integration to the ECCO Ocean Bottom

Daily, monthly, and long term mean OHC fields were calculated by integration of
the ECCO temperature profiles down to the model’s deepest level. The long term mean
OHC (Figure 10) shows the influence that the ocean’s variable bathymetry has on the OHC
fields, deeper waters contain more heat. For instance, the shallowing along the mid-ocean
ridges, the 90-degree line in the Indian Ocean, and along the Philippine Sea Plate region in
the western Pacific all show lower levels of OHC from the shallower depths. This spatial
variability does not create errors in the Nature HSR calculations because the bathymetry
in each grid cell remains constant. But in the OSSE that integrated the temperature to the
bottom of the ocean, binning the integrated profiles of temperature obtained along the
satellite trajectory introduces errors by sampling in ocean areas that have different depths.
Because of this, the Nature experiment (No. 1) that calculated the HSRs by integration to
the ocean bottom was used in this study for comparison against the various Nature and
OSSE experiments.
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3.2.2. HSRs from Integration to the SIO Argo Deepest MLD

Monthly mean HSRs were obtained at both the 2.0◦ × 2.0◦ and 5.0◦ × 5.0◦ spatial
resolution by integrating the sampled ECCO temperature profiles down to the deepest
depths observed MLD in the SIO Argo MLD climatology. On a global scale, both the
Nature- and OSSE-derived HSR fields showed the expected distribution of values at both
the 5.0◦ × 5.0◦ (Figure 11a; panels A & B) and 2.0◦ × 2.0◦ (Figure 11b; panels A & B)
averaging scales. The large-scale zonal distributions agree with expectations regarding
the global seasonal ocean heating, with large positive values in ocean areas influenced
by expected seasonal heating co-varying with the large negative values in areas under
cooling conditions. Few notable anomalous regions are noted in either the Nature or OSSE
solutions. However, the OSSE 2.0◦ × 2.0◦ resolution solutions (Figure 11b, panel B) show
obvious errors due to the satellite track causing under-sampling of the ocean temperature
fields. Under-sampling of the ocean remains an issue for all of ocean science. In a previous
a study it was found that estimates of HSR at 5.0◦ × 5.0◦ resolution provide the optimal
HSR solutions, with the least impact from errors due to mesoscale variability [21]. Because
of this, and the noted under-sampling, the results presented below focus on the 5.0◦ × 5.0◦

resolution grid solutions.
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Figure 11. The July 2017 monthly mean Heat Storage Rates (HSR) obtained from integration of the
ECCO daily temperature fields down to the SIO ARGO deepest climatology MLD (A,B), the ECCO
mean MLD (C,D), and the ECCO mean + 2 standard deviations MLD (E,F) for the ‘Nature’ (A,C,F)
and OSSE (B,D,F) calculations using the (a) 5◦ longitude by 5◦ latitude and (b) 2◦ longitude by 2◦

latitude resolution binning solutions. The small red points off the eastern U.S. denote the location
from where the time series of results (Figure 12) was obtained. All monthly images are available for
download as Supplementary Materials.
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by 2° latitude resolution binning solutions. The small red points off the eastern U.S. denote the lo-
cation from where the time series of results (Figure 12) was obtained. 

  
(a) (b) 

Figure 12. The monthly mean HSR (1997–2017) for the various (a) Nature experiments which calcu-
lated the HSR by integrating temperature profiles down to the ARGO deepest MLD climatology 
(blue curve), the ECCO deepest MLD (green), the ECCO mean + 2 standard deviations MLD (red), 

Figure 12. The monthly mean HSR (1997–2017) for the various (a) Nature experiments which
calculated the HSR by integrating temperature profiles down to the ARGO deepest MLD climatology
(blue curve), the ECCO deepest MLD (green), the ECCO mean + 2 standard deviations MLD (red),
and the model bottom (black), and (b) OSSE experiments which calculated the HSR by integrating
temperature profiles down to the ARGO deepest MLD climatology (blue curve), the ECCO mean
MLD (black) and ECCO mean + 2 standard deviations MLD (red).

3.2.3. HSR from Integration to the ECCO Deepest MLD

Monthly mean HSRs were calculated at both the 2.0◦ × 2.0◦ and 5.0◦ × 5.0◦ spatial
resolution by integrating the ECCO temperature profiles down to the deepest MLD from
the ECCO model. Both the ‘Nature’- and OSSE-derived HSRs showed spatial patterns
like the SIO Argo MLD integrated solutions, at both 5.0◦ × 5.0◦ (Figure 11a; panels C & D)
and 2.0◦ × 2.0◦ (Figure 11b; panels C & D) resolution grids. The map of the monthly
mean HSRs showed regions of increased HSR variability in the North Atlantic and North
Pacific Western Boundary Currents and in the Southern Ocean frontal regions, all regions
of increased mesoscale activity, sharp thermal fronts, and deeper mixed layers.

3.2.4. HSR from Integration to the ECCO Deepest Mean + 2 std. dev. MLD Climatology

The final set of HSR calculations integrated the ECCO temperature profiles down
to the deepest climatology mean plus 2 standard deviations of the ECCO MLD. HSR cal-
culations were carried out by binning at both 5.0◦ × 5.0◦ (Figure 11a; panels E & F) and
2.0◦ × 2.0◦ (Figure 11b; panels E & F) resolution grids. While the depths for integration
in these calculations was deeper than the SIO Argo and ECCO deepest MLD, the solu-
tions showed strong agreements with the ECCO HSR solutions from integrating to the
ocean bottom.

3.2.5. HSR Time Series Comparisons and Global Correlations

A comparison of the HSR time series from the grid cell representing 35◦N to 37◦N
and 60◦W to 62◦W (See Figure 11 for red-dot locations) shows that the time series of the
three ‘Nature’ experiments (No. 2–4) that integrated the temperature profiles to different
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ocean depths compare very well at that ocean location with the ‘Nature’ experiment (No. 1)
that integrated the temperature profiles to the ocean bottom (Figure 12a). A similar strong
correlation is observed when comparing the time series of the three OSSE experiments for
that same region (Figure 12b).

The strength of the correlations between the baseline ‘Nature’ experiment (No. 1) and
those of the three Nature (Nos. 2–5) and the three OSSE experiments (Nos. 6–8) varies
with ocean regions (Figure 13). Regions of high correlation appear in zonal midlatitude
bands, with lower correlations in the low-latitude regions near the equator for the SIO
Argo MLD (No. 2 and 6), likely due to the Argo MLD being too shallow to capture thermal
structures below the equatorial region that seem to be captured by the experiments that
integrated the temperature profiles based on the ECCO MLDs. In addition, there are areas
in the equatorial region of the Argo MLD integrated experiments where the correlations are
below the threshold of significance, as determined by the t-test on the Pearson Correlation
coefficients. The low correlations at low latitudes correspond to the high variability in the
OHC due to the equatorial waveguide and the westward propagating Rossby waves, which
are constant and prominent features in the ECCO model solutions. For those experiments
that used the ECCO MLD fields to calculate the HSRs, there exists two zonal areas of low
correlation in the regions just to the north and south of the equator and where the main
thermocline has the highest spatial variability due to its doming to shallow levels near
the equator.
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gration solutions showed lower correlations near the equatorial regions, the solutions had 
the largest pixel number (>50%) with greater than 0.8 correlation values. In addition, the 
HSRs for the three Nature and OSSE experiments that integrated the sampled tempera-
tures profiles using different MLD choices (Figure 14) showed very strong correlations, 
with the best from the SIO Argo MLD solutions. This observed strong correlation between 
the Nature and OSSE HSR solutions was why the SIO Argo depth integration criteria was 
chosen for the two Brillouin lidar OSSEs whose results are presented below. The choice of 

Figure 13. The Nature HSRs calculated by integrating to the bottom of the ocean model (Experiment
No. 1) and the various Nature and OSSE HSR experiments (Experiments 2–7). Shown are HSR
correlations for (A,B) Experiment 1 vs. 2 and 5, for the Nature (A) and OSSE (B) experiments that
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integrate to the SIO ARGO deepest climatology MLD, (C,D) Experiment 1 vs. 3 and 6, for the Nature
(C) and OSSE (D) experiments integrating to the ECCO deepest MLD, and (E,F) Experiment 1 vs.
3 and 7, for the Nature (D) and OSSE (F) experiments integrating to the ECCO mean + 2 standard
deviations MLD. The left side panels are the results for the ‘Nature’ (A,C,F) and right-side panels
are for the OSSE (B,D,F) calculations. The solutions are carried out using 5◦ longitude by 5◦ latitude.
Correlations that fail the student t-test (t < t0.5(2),298 = 1.968) are colored in olive.

Comparing the level to which each of these Nature and OSSE solutions (Nos. 2–4,
and Nos. 6–8) correlate to the baseline ‘Nature’ experiment (No. 1) provides a clear
understanding of how satellite sampling errors can impact the HSR solutions. Also, it
is noteworthy that for most of the mid-latitude regions the correlations are strong with
much (38–50%) of the ocean regions having correlations above 0.8. While the Argo MLD
integration solutions showed lower correlations near the equatorial regions, the solutions
had the largest pixel number (>50%) with greater than 0.8 correlation values. In addition, the
HSRs for the three Nature and OSSE experiments that integrated the sampled temperatures
profiles using different MLD choices (Figure 14) showed very strong correlations, with
the best from the SIO Argo MLD solutions. This observed strong correlation between the
Nature and OSSE HSR solutions was why the SIO Argo depth integration criteria was
chosen for the two Brillouin lidar OSSEs whose results are presented below. The choice of
the depth integration criteria had a significant impact on the accuracy of the HSR solutions,
with the SIO Argo MLD criteria yielding the best HSR solutions relative to the Nature
base experiment.
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MLDs for the integration criteria (Figure 15C,D). In these latter two experiments, the prob-
ability of measuring the temperature profile was 1. What is noticeable in comparing these 
three solutions is that the Brillouin lidar OSSE has anomalously high and low HSRs in 
regions of low lidar return probability for this 0 m deployment case (Figure 9a), such as 
the region along the Southern Ocean, and several points in the North Atlantic. 

Figure 14. Correlation of the Nature vs. OSSE calculations from integrating the temperature fields
using the same integration depth selection. Results shown are for integrating to (A) the ECCO
deepest MLD, (B) the ECCO deepest climatology + 2 s.d. MLD, and (C) the SIO ARGO climatology
deepest MLD. These correlations reflect comparisons from the experiments outline in Table 2 for
(A) experiments 3 vs. 7, (B) experiments 4 vs. 8, and (C) experiments 2 vs. 6.

3.3. OSSE: Brillouin Lidar Heat Storage Rate (HSR)
3.3.1. Brillouin Lidar OSSE Flown at 0 m (Ocean Surface) with HSR Integration to SIO
Argo Deepest MLD

The resulting HSR fields obtained by incorporating the Brillouin lidar instrument
return probabilities calculated for an altitude of 0 m (Figure 5a) with the SIO Argo deepest
MLDs for temperature profile integration depth criteria (Experiment No. 9) provided a
solution that demonstrated how the optical conditions of the ocean impact the resulting
HSRs. This experiment does not contain errors that would result from deploying the Bril-



Remote Sens. 2024, 16, 1236 18 of 28

louin lidar instrument at higher elevations nor from the influence of an atmosphere. They
are a useful for understanding the impact of the ocean’s optical properties on the resulting
HSRs, especially considering the satellite track sampling errors already demonstrated in
the earlier sections.

Overall, the monthly mean HSRs for this 0 m Brillouin lidar OSSE (Figure 15A) agree
well with the Nature and OSSE experiments (Nos. 2 and 6) that also used the SIO Argo
MLDs for the integration criteria (Figure 15C,D). In these latter two experiments, the
probability of measuring the temperature profile was 1. What is noticeable in comparing
these three solutions is that the Brillouin lidar OSSE has anomalously high and low HSRs
in regions of low lidar return probability for this 0 m deployment case (Figure 9a), such as
the region along the Southern Ocean, and several points in the North Atlantic.
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Figure 15. December 2017 monthly mean HSR from the (A) Brillouin lidar OSSE flown at 0 m using
the SIO Argo MLD integration criteria, (B) Brillouin lidar OSSE flown at LEO using the SIO Argo
MLD integration criteria, (C) Nature solution using the SIO Argo MLD integration criteria, (D) OSSE
solution with SIO Argo MLD integration criteria, (E) Nature experiment with integration to the
bottom, and (F) OSSE with integration to the bottom. The small red points off the eastern U.S. denote
the location from where the time series of results (Figure 16) was obtained. All monthly images are
available for download as Supplementary Materials.
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MODIS-A Kd(λ = 490) field (Figure 6), which further reduces the probability of a lidar 
return. 

Figure 16. The monthly mean time series (1997–2017) of the Nature HSR calculations that integrated
the temperature profiles to the bottom of the model (black) and the OSSE calculations that integrated
down to the SIO ARGO deepest MLD and flown at 0 m (red) and LEO (blue).

The HSR time series of the 0 m Brillouin lidar OSSE (Figure 16, red curve) from the
grid cell representing 35◦N to 37◦N and 60◦W to 62◦W (See Figure 15 for red-dot locations)
compares well with the baseline Nature experiment (Exp. No. 1, Figure 16, black curve).
The direct comparison between the baseline Nature (Exp. No. 1) and the 0 m Brillouin lidar
OSSE HSR solutions shows strong agreement. This is encouraging when considering the
capability and observing potentials of deploying a Brillouin lidar instrument from a ship or
low-flying aircraft.

The correlation between the Nature and OSSE HSR estimates that used the SIO Argo
MLD integration criteria (Exp. Nos. 2 and 6, Figure 17A) is very high for all regions of
the ocean, with lower correlations occurring those regions of ocean mesoscale variability,
such as along the Southern Ocean frontal region. These are also regions that contain lower
lidar return probabilities (Figure 8). Lower lidar return probabilities reduce the number
of observations which elevates the uncertainty in the HSR solutions. These ocean regions
are where there are elevated levels of mean diffuse light attenuation, as estimated from
the MODIS-A Kd(λ = 490) field (Figure 6), which further reduces the probability of a
lidar return.
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temperature profiles were integrated down to the SIO ARGO deepest climatology MLD. 
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probability of lidar return was impacted by the inclusion of an atmospheric layer in the 
calculation of the SNR values (Figure 4b) which significantly decreased the probability of 
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Figure 17. Correlation of the Nature vs. OSSE calculations that integrated the temperature fields
down to the SIO ARGO climatology deepest MLD for (A) experiments 2 vs. 6, (B) experiments 2 vs.
9, and (C) experiments 2 vs. 10. These correlations compare the OSSE experiments that sampled the
temperature profiles with a sampling probability profile of (A) 1, (B) determined using the Brillouin
lidar return probabilities for operations at the ocean surface (0 m), and (C) determined using the
Brillouin lidar return probabilities for operations at LEO (400 km). When possible, all measured
temperature profiles were integrated down to the SIO ARGO deepest climatology MLD.

In comparison, the correlations between the Nature and 0 m Brillouin OSSE, also
using the SIO Argo MLD integration criteria (Exp. Nos. 2 and 9, Figure 17B) show that the
reduction in the correlations again occurs primarily in those regions that contain lower lidar
return probabilities (Figure 8). These areas of lower correlation cover a much larger ocean
region. These results demonstrate the impact of the reduction in lidar return probabilities
on the HSR estimates and the influence deep mixed layer regions have on the capability
of obtaining ocean temperature profiles using a Brillouin lidar. Strong declines in the
correlations are observed in the Southern Ocean and along the western boundary current
region of the North Atlantic, where deeper mixed layers are observed.

3.3.2. OHC Brillouin Lidar Flown at LEO with HSRs from Integration to SIO Argo
Deepest MLD

The final OSSE experiment (No. 10) obtained HSR estimates from simulating a Bril-
louin lidar flown in a LEO satellite simulation at the elevation of 400 km. This experiment’s
probability of lidar return was impacted by the inclusion of an atmospheric layer in the
calculation of the SNR values (Figure 4b) which significantly decreased the probability of
light pulse returns as a function of depth and light attenuation in the ocean (Figure 5b).
It is because of this that the solutions to the HSRs show regions with high levels of noise
(Figure 15B). Overall, the bitmap of daily HSR shows good agreement with the Nature
and OSSE experiments that did not estimate the HSR by integration to the ocean bottom
but rather integrated through an upper ocean layer, such as some determined MLD field.
The HSR time series of the LEO Brillouin lidar OSSE (Figure 16, blue curve) from the grid
cell representing 35◦N to 37◦N and 60◦W to 62◦W (See Figure 15 for red-dot locations)
compares very well with the baseline Nature experiment (Exp. No. 1, Figure 15, black
curve). That the direct comparison between the baseline Nature (Exp. No. 1) and the LEO
HSR time series compares well even with the addition of an atmospheric layer shows the
level of promise that this technology has for fielding as a satellite instrument. There are
several points of time where the LEO Brillouin lidar simulation shows a mismatch with the
Nature experiment. All these mismatches appear as a set of large positive and negative
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anomaly pairs, which suggests a single time point error in the OHC calculation impacting
the time derivative HSRs.

3.4. Comparison of OSSE Brillouin Lidar Flights with Other HSR Calculations

The correlations between the various Nature and OSSE experiments are useful for
demonstrating the level of spatial agreements between the experiments. One such correla-
tion between the Nature and the OSSE experiments that integrated the temperature profiles
down to the SIO Argo MLDs (Figure 14C and shown again in Figure 17A for direct compar-
ison) showed that the fixed versus satellite track sampling techniques produce comparable
HSR solutions. For the Brillouin lidar 0 m flight simulation (Figure 17B), the regions where
the correlations drop coincides with regions of deep MLDs (Figure 3). When the Brillouin
lidar simulation is performed with a LEO satellite (Exp. 10), the HSR correlations with the
Nature experiment decreased significantly (Figure 17C). The regions of reduced correlation
coincide with regions of deep MLDs and increased light attenuation (Figure 7).

A comparison of the histograms of the Coefficient of Determination (r2) obtained by
correlations between the various Nature and OSSE HSR experiments (see Figure 13 as an
example) provides a summary of the two main sources of errors in estimating the HSRs
with a space-based Brillouin lidar instrument (Figure 18). The histograms obtained by
correlating the baseline Nature calculation (Exp. No. 1) with each of the other Nature and
OSSE experiments (Exp. Nos. 2–10) shows the difficulty in obtaining high correlations
between the fully integrated water column HSRs and other estimation methods that sample
using both a grid or a satellite flight track, and a variety of depth-integration criteria
(Figure 18a). In fact, the Brillouin lidar LEO HSRs (Figure 18a, I) shows very poor histogram
of correlations.
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Correlations between the Nature calculation that used the SIO Argo deepest MLD
integration criteria (Exp. No. 2) and the other HSR Nature and OSSE calculations show a
significant improvement in their level of skill (Figure 18b). The histograms of the correla-
tions between the Nature HSR calculations that used different MLD fields to integrate down
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to (Exp. Nos.: 2 vs. 3, and 2 vs. 4) demonstrate that the surface HSRs do not vary greatly
by changing the MLD integration criteria. More important is that correlations between
the Nature and OSSE experiments with MLD integration criteria showed high levels of
correlation (Figure 16). As an example, the histogram between the Nature and OSSE HSR
calculations that used the SIO Argo deepest MLD integration criteria (Figure 17A; Exp.
Nos. 2 vs. 6) show very good agreement (Figure 18b, E). These strong correlations are only
slightly diminished in the Brillouin lidar 0 m flight probability calculations (Figure 17B,
Figure 18b, H). For the Brillouin lidar LEO flight probability calculations the histogram of
the correlations (Figure 17C) is reduced because of the significant loss in retrieval probabili-
ties rather than inability to measure the HSRs, which yielded a bi-modal distributions in
the histogram (Figure 18b, I). Presently, low to mid-latitude ocean regions are likely areas
where a space-based Brillouin lidar instrument can retrieve adequate measurements to
obtain profiles of ocean temperature.

4. Discussion

Observing the ocean temperature fields, even with perfect instrumentation for mea-
suring temperature profiles to the ocean bottom, introduces errors through the way the
observations are collected in time and space. For point-wise remote-sensing instruments,
such as a laser instrument that is limited in its observing a singular ocean spot, as opposed
to a swath or image, these errors can be significant impediments to an observing system.
This research used numerical ‘Nature’ calculations and OSSEs to calculate monthly mean
maps of the OHC and HSRs. These are difficult measurements to make and are tradition-
ally calculated using coupled ocean-atmosphere models [55,67], altimeter observations
smoothed over long time and space scales [68], or through tedious analysis of the available
in situ measurements [69,70]. Even with the present high number (~4 K) of profiling Argo
floats providing more than 100 K of ocean temperature profiles each year, estimating the
OHC and HSR remains a challenge because of the sparseness and irregular coverage in the
collected data [55]. This paper used the challenge of making OHC and HSR observations
to assess the limitations that a Brillouin lidar instrument would need to overcome.

A main result in this study is that the Brillouin lidar satellite sampling strategies are
significantly impacted by spatially varying ocean features (MLDs, diffuse attenuation)
which alter the ability to obtain quality observations for measuring OHC and HSR. These
differences are demonstrated by the histogram of the correlations between the HSR time
series from the Nature and OSSE experiments, both of which use full surface to ocean
bottom temperatures (Figure 18). Even a hypothetical instrument capable of measuring
the entire ocean temperature profile would encounter errors by measuring along the track
of a satellite’s orbit. This is mainly due to the limited ability to obtain a good estimate of
the mean temperature profiles from the sparse measurements obtained within the highly
dynamic ocean. The introduction of flight-induced bias is well-known [71]. It is likely
that these types of observational errors can be minimized by developing an error-reducing
strategy that considers the time and location of the observations within the grid to which
the observations are being averaged over.

The second result from this study confirms that estimates of the upper ocean’s OHC
and HSR fields are resilient regardless of the selected integration depth criteria. The
correlations between the various Nature and OSSE solutions were high between any of the
experiments, Nature or OSSEs, that did not integrate down to the ocean bottom (examples
are shown in Figure 14; Figure 18a, panels B, C, D). This result also provides further support
to the paper’s first findings regarding the sampling bias errors.

While it is encouraging that the second result shows the resilience of using upper
ocean temperature observations for OHC and HSRs, there is still a need for developing a
methodology that can use upper ocean measurements to assess the entire water column’s
heat content.

The third result from this study is that a surface deployed Brillouin lidar instrument
can observe the upper ocean temperature profiles adequately enough to estimate OHC
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and HSRs. While the operation of a satellite at the ocean surface is not possible, deploying
such as lidar instrument from a ship or a low-flying aircraft is. Deployments from a ship
could serve to make automated temperature profiles such as those that have been carried
out for nearly 55 years [72] using eXpendable BathyThermograph (XBTs). Repeat transects
of subsurface temperature profiles have been applied for a wide range of upper ocean
studies, such as estimates of western boundary currents [73] and have shown that weekly
subsurface temperature measurements have a large impact on simulating the mean and
subsurface circulation fields. Other studies have shown their importance in estimating
circulation patterns and heat content in dynamic western boundary current regions [74] and
improve model predictions when available for assimilation into regional ocean circulation
models [75]. Deployment of Brillouin lidar instruments on ships of opportunity and
possibly to replace or augment the XBT repeat survey lines would greatly increase the
number of temperature and salinity observations in the upper ocean at a time when accurate
global ocean temperature predictions are critical.

Deployments on a low flying aircraft or Unmanned Airborne Vehicle (UAV) could
support oceanographic field surveys that target important physical processes such as map-
ping of the thermal and density structure of sub-mesoscale features along a frontal zone or
eddies. These types of process studies are presently out of reach for many physical oceanog-
raphers who continue to wrestle to understand the rapidly evolving sub-mesoscale features
using information obtained from slow moving profiling glider, floats, and research vessels.

While the results show that a Brillouin lidar flown at LEO can observe the evolving
OHC in the upper ocean for the lower to mid-latitude regions, it is the higher latitudinal
ocean regions that require greater observing because those regions play a significant role
in controlling the Earth’s climate and weather patterns and are the most vulnerable in
Earth’s present state of climate change. As the technology for Brillouin lidar will continue
to develop and achieving those observations will become more feasible, there may be value
in having a rough comparison of the costs and benefits of a dedicated LEO Brillouin lidar
mission to the present Argo Program for observing the upper ocean temperature field.
Assume that a 100 kHz Brillouin lidar instrument could collect one temperature/salinity
profile per second and was deployed over a five-year flight mission. This would yield
approximately 110 million observations (assuming 70% ocean hits but not accounting for
clouds), which for a $1 billion mission would average $9/profile. Compare that estimate to
the Argo Program [9] which profiles the upper 2000 m of the ocean with ~3000 profiling
floats at the cost of ~$20 million per year to collect ~100 k profiles or $200 per profile.
Beyond the need to improve the technology is the need to obtain the observations, which
will require completion of OSSEs to assess the benefits and an evaluation by the ocean
observing science community for assessing those findings.

Ocean regions with deep mixed layers and high light attenuation ocean water are
areas that hold significant impediment to obtaining full upper ocean temperature and
salinity profiles. It is those regions that poor HSR solutions were anticipated from the lidar
return probability calculations. And those regions were where the HSR calculations failed
(Figure 17C). The North Atlantic region is one specific region of interest that is impacted by
both deep mixed layers and high light attenuation. It is a region where there is a need for
obtaining accurate measurements of OHC and HSR measurements to assist in modeling
and monitoring the AMOC, especially in terms of developing a possible early-warning
indicator capability [14]. While it may be an area that remains out of reach for a satellite-
deployed Brillouin lidar instrument, ship and/or aircraft-deployed instruments could
obtain those observations if such a lidar instrument was ready for such use.

The OSSE retrievals in this study did not consider the impact of clouds on the retrievals
of the Brillouin scattering signals. Clouds will be more of an issue along the equatorial
regions and in the higher latitudes, where passive remote sensing retrievals are already
difficult. Future OSSEs should consider taking this into account. Clouds will not impact
any ship or likely aircraft deployed lidar systems.
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While this Brillouin lidar technique for measuring ocean water features was proposed
nearly a half century ago [30], a recent flurry of work [30–34,38–45] has been done on the
ability of using Brillouin lidar to measure temperature, salinity, and sound speed. Various
laboratories are developing benchtop instrumentation and testing the capability using
select samples of ocean water. What is now required is for the laboratory benchtop systems
to parameterize and confirm the capability of these benchtop instruments using a broad
range of seawater samples with varying salinities, temperatures, and pressures. In addition,
realistic models of the various Brillouin lidar instruments should be interfaced with ocean
models to carry out additional OSSEs that can provide further evidence on the impact that
these measurements can have of ocean modeling and predictions.

It is anticipated that Brillouin lidar technology will soon become available for deploy-
ment as an aircraft instrument for research and for possible ocean monitoring to aid in
weather forecasting, for instance, tropical storms. That moment will likely open a new
era into scientific observations on sub-mesoscale ocean features and processes, an aspect
of ocean research that continues to elude ocean science even in this era of satellites and
autonomous instruments.

Improving the use of Brillouin lidar measurements for OHC and HSR studies will
requires additional OSSE experiments to quantify the errors in the measurement process
and to include quantification of the errors introduced by the sampling strategy. In addition,
OSSEs should be developed in such a way as to embed more realistic models of the lidar
instruments, for instance, a digital twin. This study did not simulate the lidar instrument
measurement errors, this will need to be done as the instrument becomes further devel-
oped. These new methods of developing simulations offer up a tremendous advantage to
understanding instrument and measurement errors for any instrument in development
and testing.
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dataset for the data set used in this effort was dated 14 April 2022. IFREMER MLD Data: The MLD
dataset developed by [56] is made available from https://cerweb.ifremer.fr/deboyer/mld/Surface_
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from the NASA/GSFC Ocean Biology Processing Group’s MODIS-Aqua Level-3 Standard Mapped
Image archive. https://oceancolor.gsfc.nasa.gov/l3/. Observations are at a 1/12th degree (9 km)
spatial resolution. Filename: A20200012020366.L3m_-YR_KD490_Kd_490_9km.nc Date created 22
February 2021.
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