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Kaczan, W.; Zięba, M.; Wilgucki, M.

MineCam: Application of Combined

Remote Sensing and Machine

Learning for Segmentation and

Change Detection of Mining Areas

Enabling Multi-Purpose Monitoring.

Remote Sens. 2024, 16, 955. https://

doi.org/10.3390/rs16060955

Academic Editors: Jukka Heikkonen,

Fahimeh Farahnakian, Pouya

Jafarzadeh and Farshad Farahnakian

Received: 12 February 2024

Revised: 5 March 2024

Accepted: 7 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

MineCam: Application of Combined Remote Sensing and
Machine Learning for Segmentation and Change Detection
of Mining Areas Enabling Multi-Purpose Monitoring
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Abstract: Our study addresses the need for universal monitoring solutions given the diverse envi-
ronmental impacts of surface mining operations. We present a solution combining remote sensing
and machine learning techniques, utilizing a dataset of over 2000 satellite images annotated with
ten distinct labels indicating mining area components. We tested various approaches to develop
comprehensive yet universal machine learning models for mining area segmentation. This involved
considering different types of mines, raw materials, and geographical locations. We evaluated
multiple satellite data set combinations to determine optimal outcomes. The results suggest that
radar and multispectral data fusion did not significantly improve the models’ performance, and the
addition of further channels led to the degradation of the metrics. Despite variations in mine type
or extracted material, the models’ effectiveness remained within an Intersection over Union value
range of 0.65–0.75. Further, in this research, we conducted a detailed visual analysis of the models’
outcomes to identify areas requiring additional attention, contributing to the discourse on effective
mining area monitoring and management methodologies. The visual examination of models’ outputs
provides insights for future model enhancement and highlights unique segmentation challenges
within mining areas.

Keywords: surface mining; mining area monitoring; machine learning; land use; change detection;
classification task; semantic segmentation; deep learning; EO data fusion

1. Introduction
1.1. Background of the Research

The mining industry plays a significant role in supplying mineral resources for energy
transition efforts [1]. The rising challenge is therefore to mine natural resources in a sustainable
manner. High-tech and modern artificial intelligence methods can help to achieve this goal [2].
Mining is one of the major industrial activities that lead to land surface transformation.
Among the two main mining methods—underground and surface—the latter has a greater
impact on the environment due to the direct transformation of the surface and scale of
material movement. As a result, an area is transformed at every stage of the mining cycle,
from exploration, through deposit development, production, and mineral processing, up to
mine closure and reclamation of the post-mining area. During these stages, activities such as
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pit creation, excavation, infrastructure construction, and waste rock disposal are responsible
for the largest transformations of land surface [3].

Land use is one of the biggest environmental impacts of surface mining; hence, there
is a high demand for precise and up-to-date information on land cover changes in mining
areas [4]. Surface mining leads to land use that remains significant for a very long period,
which underscores the significance of remote sensing methods for effective environmental
monitoring. By combining remote sensing with machine learning, it is possible to create
tools for automated, near-real-time monitoring of surface mining activities [5–8]. Thanks
to the latest remote sensing techniques, it is possible to assess vast areas with low costs
and high temporal frequency. It allows for land use monitoring, long-term mining plan
verification, and detection of illegal mining activities, among other uses. Combining space-
borne remote sensing data with other remote sensing data sources and machine learning
can further improve the efficiency and effectiveness of these methods [9,10].

1.2. Challenges

In this research, we confronted significant challenges in the field of mining area
detection and segmentation using machine learning.

Diversity of surface mining: The diversity of surface mining areas, each influenced by
the type of extracted raw material, geological setting, type of mine, and the standards
adopted within different countries, resulted in varied mining landscapes. The differentia-
tion between sites creates a challenge for the development of worldwide universal machine
learning models for mining area detection and segmentation [11].

The insufficiency of current segmentation approaches: Models previously published com-
monly resort to a limited number of land cover classes, which lack the requisite detail to
capture the intricacies of mining environments [12]. To distinguish more details within the
mining sites, the development of comprehensive segmentation approaches is necessary.

The difficulty in machine learning model optimization: The effectiveness of these models is
contingent upon the types of satellite datasets employed and the specificity of the mine area.
Determining the optimal combination of input data presents a complex task, indicative of a
substantial challenge within the field [13].

In previous studies, authors have addressed these challenges by developing universal
worldwide datasets with low levels of detail or very specific models that are limited to
being useful for specific categories of mining-related issues. A good example would be
a developed global-scale dataset of mining areas consisting of almost 45,000 polygons,
or a developed index for the detection of coal mining areas that were found to be region-
ally specific [14]. Nevertheless, some authors combined remote sensing with machine
learning for land cover classification of surface mining areas. Our review reveals that
defining the number and type of land cover classes for classification algorithms can be very
subjective. Depending on the goals pursued, researchers selected appropriate land cover
classes concerning components of mining and post-mining areas or elements of the natural
environment. Our literature review shows that mining areas are most often divided into
two to six land cover classes, such as active mining area and reclaimed area, exploitation
area, dumping area [15], open-pit, raw material processing area, dump [16], or area of active
exploitation, wooded and bushy areas, rehabilitated areas, waste, water management, other [17].

Addressing the mentioned challenges, our study revolves around the development of
universal and precision machine learning models for mining area segmentation, offering a
potential solution to the issues identified above. For this work, we decided to define as many
as 10 classes in total, including excavation, dumping ground, stockpile, infrastructure, and
tiling storage facility, among others. To advance this objective, we embarked on a threefold
approach. Firstly, we determined the optimal configuration of bands. We then conducted
a comparative analysis of two distinct data splits. Finally, we focused on fine-tuning the
hyperparameters.

The specific challenges faced by this study included the following: (1) defining several
land cover classes of mining areas and creating proper datasets for models, which would
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be useful in multipurpose mining area segmentation tasks; (2) proposing a dataset that
splits the criteria to optimize models’ performances; (3) applying machine learning models
to multidimensional data; (4) training machine learning models on a very large dataset.

2. Materials and Methods
2.1. Training Data

The initial version of the machine learning dataset was created utilizing the Earth Ob-
servation (EO) data derived from Sentinel satellites’ optical and radar sensors. The Sentinel-
2 (S2) MSI (Multispectral Imagery) Level-2A product was employed, containing 12 spectral
bands of spatial resolution varying between 10, 20, and 60 m, along with a superficial
classification layer, as depicted in Figure 1. In addition, we included Sentinel-1 (S1) high-
resolution Level-1 Ground Range Detected scenes, featuring dual-band cross-polarization
(vertical transmit/horizontal and vertical receive, i.e., VV + VH) and their combination
(VV/(10 × VH)). The radar data values were transformed to decibels using the logarithmic
scaling method (10 × log10 (x)). Due to the discrepancy in spatial resolution, we resampled
all S1 and S2 scenes to 10 m Ground Sample Distance (GSD) utilizing the nearest neighbor
interpolation technique. The final step was merging all of them into the fused product of
optical and radar data.

Figure 1. A schematic diagram of the data fusion workflow in a semantic segmentation task.

We have collected and prepared an EO dataset consisting of more than 2000 images
from over 400 mining areas located across 5 continents and over 40 countries (Figure 2).
To improve the generalization capabilities of the dataset, we have differentiated the mining
areas based on the extracted raw material (rock raw materials, metallic ores, coal and
lignite), among others. We utilized multiple satellite images of each area, covering the
time series from 2016 to 2022. Notably, the selection of this time range is motivated by the
availability of Sentinel-2 (S2) data from 2016 onwards. For each year within this period, we
selected one cloudless representative image. This allowed us to include the variability of
individual mining area components over time and thereby optimize the labeling process,
in addition. The main criterion for label definition was to annotate all the parts of the
surface mining areas while avoiding rather unique or site-specific labels to be able to
provide a sufficient number of ground truth data. The ground truth labels for the datasets
were manually annotated by a group of mining engineers. These annotations were later
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compared and reviewed, establishing target labels for datasets. Our objective was to
identify the most common and significant components of mining areas. However, due to
the variability of surface mines, certain components were specific to their types, which
could have posed the risk of having an insufficient number of training samples. Therefore,
the annotation process required us to compromise and simplify certain definitions to avoid
defining numerous cover classes while labeling almost the entire area transformed by
mining. As a result of the compromises made, we removed, among others, labels such as
deposit outcrop and overburden.

Figure 2. Locations of mining areas used for dataset preparation.

Furthermore, we had to take into account the limitations of machine learning in object
recognition. Therefore, we did not include reclaimed areas in our analysis, as the deep learn-
ing model might encounter difficulty in recognizing lakes, croplands, or forests that result
from the reclamation process, rather than from other natural or anthropogenic processes.

Based on the aforementioned considerations, we selected 10 classes of mining area
coverage. The assumed definitions of the defined land cover classes for this research are
presented in Table 1.

The unlabeled portions of the image were designated as background for use in machine
learning model training tasks. To enhance the metrics of our ML models, we introduced a
blank label to better differentiate between unaltered or reclaimed regions and transformed
areas. The annotated data for the chosen satellite image are exemplified in Figure 3. Particu-
lar attention should be paid to the level of accuracy and precision of the annotation process.

Figure 3. Exemplary annotation of mining area land cover classes used for machine learning model
training. Aquablanca Mine, Spain.
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Table 1. Label descriptions (description of labels used for annotation of mining area land cover classes).

Label Authors Description

excavation
A pit or simply a space created due to excavation works. Sometimes includes an internal dump or
other infrastructure. Watertables of flooded final excavations are considered reclaimed and remain
unlabeled. The same applies to parts of old excavations covered with vegetation.

dumping ground
A site where waste/overburdened materials are disposed of. Both solid and slurry wastes are
considered in this class. Both internal and external dumps are labeled. Sometimes includes a whole
TSF. Already revegetated/redeveloped parts of dumps remain unlabeled.

stockpile Storage area of useful mineral. Depending on the type of extracted material, it may take on different
forms and be located both inside and outside the excavation.

settling pond Relatively small ponds designed for settling the waste material from process water. It is
characteristic of some types of minerals.

infrastructure All the infrastructure in the mining area, especially processing plants and infrastructure associated
with them.

preparatory work area The area on the overburden, in the foreground of the exploitation front, where access works such as
deforestation or topsoil removal are visible.

exploitation slope
A slope associated with the progress of the exploitation. Distinguishable only for some types of
surface mines. Can be associated with both useful mineral and overburden extraction. Always
within the excavation label.

transportation slope A slope associated with material haulage. Distinguishable only for some types of surface mines.
Always within the excavation label.

dam Dams in mining areas, including earthen dams on larger waste ponds.

tailing storage facility (TSF)
The slurry/water component of a structure consisting of one or several embankments built to store
waste materials from mineral processing. In the form of a slurry containing finely ground rock
particles, water, and chemicals. Typically associated with metal ores.

2.2. Subsets of Training Data

Components of mining areas frequently fall into multiple defined classes simultane-
ously. For example, both the exploitation slope and transport slope are always integral parts
of the excavation. Furthermore, certain objects may occur multiple times within the area
(e.g., tailing storage facilities (TSFs) or dumping grounds, as in Figure 3). For these reasons,
multi-label semantic segmentation represents the most suitable approach for segmenting
mining areas. However, it is also considerably more complex than other segmentation
techniques, requiring a greater amount of computational power and potentially making
training more challenging. Furthermore, well-balanced data are required, which can be
difficult to achieve in the context of mining areas where certain classes are much more
prevalent than others. This can result in imbalanced data and ultimately lead to reduced
model accuracy. Consequently, we opted to train two multi-class segmentation models and
two binary models.

We separated the designated label group into sets in a manner such that labels within
each set describe mutually exclusive objects in terms of their area. As a result, three sets
were created which grouped the labels into the following categories:

1. excavation, preparatory work area.
2. dumping ground.
3. stockpile, settling pond, infrastructure, exploitation slope, transport slope, dam, tailing

storage facilities (TSF).

Additionally, we created a fourth set by combining all the labels to provide information
on the total transformed area. This set includes all the mining area components, regardless
of their specific purpose or function.

The first and second set together provide generalized information about 3 major and
most common components of mining areas (excavation, dumping ground, and preparatory
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work area). The third one provides more detailed information i.e., objects and components
(typically smaller ones) that can be located both within and outside the major ones.

The first set includes excavation and preparatory work area labels, which comprise major
components associated with excavation and preparation works. Since dumping can be
both internal and external, the dumping ground label was singled out into the second set;
hence, in some cases, a dumping ground can constitute a large part of the excavation itself.
We assumed this split to be helpful for distinguishing excavations from dumping grounds.

The third set consists of labels for other objects integral to the mining process, such
as stockpiles, settling ponds, processing plants, infrastructure (mainly processing plants),
dams, TSFs, as well as exploitation slopes and transportation slopes (functional parts of
large excavations).

For each of these subsets, individual machine learning models for image segmentation
(Section 2.3) were developed, referred to as Model 1 based on subset 1, Model 2 based on
subset 2, Model 3 based on subset 3, and Model 4 based on merged subsets.

During our research, we encountered a significant degree of heterogeneity among the
mining regions that we selected to label. Despite having a limited number of defined classes,
we found that individual objects labeled as the same class still exhibited a considerable
amount of variation in terms of their features. Nonetheless, we did identify certain classes
that displayed less differentiation. They were dependent on factors such as the type of
extracted raw material or the type of surface mine. To address this issue, we proposed the
following splits of the basic version of the dataset:

1. Split by type of extracted raw material: The labeled satellite data were grouped into the
following categories: coal and lignite (CL), metallic ores (MO), rock raw materials (RR);

2. Split by surface mine type: The labeled satellite data were grouped into the following
categories: opencast (OC), open-pit (OP), and mountain-top (MT).

The datasets’ split by the extracted raw material type may provide significant advan-
tages for the classification process. Different raw materials have different depositions and
features. They are also associated with overburden and waste materials of different features.
They require different extraction, haulage, and processing technologies. We decided to split
the dataset into coal and lignite, metallic ores, and rock raw materials because components
of mining areas within each of the groups have similar features. By grouping the labeled
satellite data according to the type of extracted raw material, the classification algorithm
can be tailored to the specific features of the mining areas and provide more accurate results.
This approach also enables us to study the environmental impact of mining activities for
specific types of raw materials.

We assume the split of the dataset by surface mine type is also highly beneficial for the
land cover classification process. Opencast, open-pit, and mountain-top mining operations
exhibit significant differences in mining area components’ features and spatial distribution.
For instance, opencast mining operations are typically associated with extensive and shal-
low excavations as well as large dumping grounds caused by the volumes of overburden
to be removed. On the other hand, open pits are generally much deeper with a greater
slope angle. Mountain-top operations are always associated with the existing slope of the
mountain being mined. By grouping the labeled satellite data according to the surface
mine type, the classification algorithm can be optimized to detect specific patterns. This
approach additionally enables us to investigate the differences in ecological consequences
between different types of surface mines.

2.3. Segmentation Task

Supervised image segmentation was conducted to detect mining area components in
remote-sensing images by classifying each pixel into the categories listed in Table 1. Given
the complexity and multidimensionality of spectral data, we opted for a deep learning
approach, which groups similar image regions. The general architecture we employed
consists of an encoder network followed by a decoder, as depicted in Figure 4. The encoder’s
role is to classify objects hierarchically, so it is usually a pre-trained classification network,
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while the decoder semantically projects the high-dimensional features generated by the
encoder onto the higher-resolution pixel space. Additionally, semantic segmentation
algorithms require a mechanism that projects the discriminative features learned at different
stages of the encoder onto the decoder stages to share information.

Figure 4. An illustration of encoder–decoder network for semantic segmentation using multidimen-
sional, satellite images.

Supervised image segmentation using deep learning requires a substantial amount of
labeled data. To address this, we partitioned the set of labels into three non-overlapping
subsets mentioned in Section 2.2, thereby avoiding the need for more complex multi-label
segmentation. We also developed a general model capable of detecting areas covered by
any label, i.e., total transformed area. Table 2 presents the number of datasets created,
with Models 1, 2, and 3 consisting of detailed labels, and Model 4 comprising a single
general label. We begin by selecting the optimal band configuration for each model using
semantic segmentation metrics. Once we have determined the best configuration, we
proceed to conduct tests using this configuration to select the most suitable dataset split.

Each location in the dataset was labeled with a time series consisting of around five
examples. To ensure the integrity of our results and prevent data leakage, we divided
the training, validation, and test datasets based on mine location using a 70:15:15 ratio.
During the data splitting process, all examples of the time series for each mine location were
included in the training dataset. This decision was made to provide our machine learning
models with a comprehensive understanding of the temporal patterns and dynamics
associated with each mine location. However, in order to evaluate the performance of our
models objectively, we included only one image from the time series for each mine location
in the validation and test datasets.
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Table 2. A comparative analysis of dataset size using splits based on the type of extracted raw
material, including coal and lignite (CL), metallic ores (MO), and rock raw materials (RR), as well as
splits based on surface mine types, such as opencast (OC), open-pit (OP), and mountain-top (MT).

Split Model 1 Model 2 Model 3 Model 4
Test Val Train Test Val Train Test Val Train Test Val Train

All 38 41 1095 39 35 1019 39 37 1020 39 41 1127

RR 21 21 588 19 17 502 33 33 378 21 22 595
MO 11 12 308 11 12 320 12 12 293 11 12 320
CL 7 7 167 7 8 175 6 8 166 7 8 175

MT 15 16 172 13 13 146 13 13 151 15 16 172
OC 7 6 162 7 5 162 5 5 156 7 7 168
OP 24 23 639 22 22 594 22 22 610 24 24 638

2.4. Experiments

All models were trained using the transfer learning method, a widely used approach
in deep learning. Specifically, we used the well-known Unet++ [18] architecture with
ResNet − 50 [19] backbone. During training, we set the batch size to 4, the learning rate to
3 × 10−4, and the image size to 512 × 512 pixels. Each model was trained for 150 epochs to
ensure convergence and optimal performance. We employed various data augmentation
techniques during training to improve the model’s ability to generalize to new data. Specif-
ically, all images were normalized, randomly cropped, and augmented three times using
horizontal and vertical flips, as well as 90-degree rotations. During testing, images were
normalized and center-cropped to maintain consistency with the training process.

2.4.1. Band Configuration

To determine the most informative spectral bands, we investigated input band config-
uration, comparing five different configurations:

• RGB: Three-dimensional input, corresponds to red, green, and blue channels.
• R + N: Four-dimensional input, corresponds to RGB and near-infrared channels.
• M: Twelve-dimensional input, corresponds to all Sentinel-2 multispectral channels.
• M + S: Fifteen-dimensional input, corresponds to all Sentinel-2 multispectral bands

and 3 Sentinel-1 radar channels.
• R + N + S: Seven-dimensional input, corresponds to RGB, near-infrared, and Sentinel-1

radar channels.

2.4.2. Dataset Split

Next, after selecting the optimal band configuration for each model, we conducted a
comparison between two distinct data splits based on the type of extracted material: rock
raw materials (RR), metal ores (MO), coal/lignite (CL), and surface mine type: open-pit
(OP), opencast (OC), and mountain-top (MT). We accordingly split the dataset, trained new
models, and tested on a shrunken test set. To compare general models with corresponding
splits, we created two models (GM, GS) as a merge of relevant sets into one e.g., for surface
mine type, we merged MT, OC, and OP datasets. Consequently, the models were trained
on the entire set but exclusively tested on specific test subsets.

2.4.3. Hyperparameter Tuning

Finally, for better architecture parameter estimation, we used hyperparameter tuning.
We estimated various parameter values:

• Learning rate (lr): 1 × 10−4, 3 × 10−4, 6 × 10−4.
• Batch size (bs): 4, 8, 16.
• Epochs (epc): 100, 150, 200.
• Input image size (is): 128, 256, 512.
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• Optimizer (opt): sgd described in [20], adam described in [21], adamw described in [22].
• Backbone (enc): resnet50, which is a 50-layer convolutional neural network (48 con-

volutional layers, one MaxPool layer, and one average pool layer), vgg16 described
in [23], efficientnet described in [24].

• Architectures (arc): linknet described in [25], Unet++ described in [18], deeplabv3plus
described in [26], fpn described in [27], unet described in [28].

• Loss: jaccard, known as Jaccard Index, tversky described in [29], focal described in [30],
crossentropy described in [31].

3. Results

We conducted a comparative analysis of four distinct performance evaluation metrics.
Specifically, Intersection over Union (IoU) was employed as a measure of the accuracy
of object detection on a given dataset. This metric is calculated by taking the ratio of the
area of overlap between the predicted mask and the ground truth mask, and the area of
their union. In addition, we considered the commonly used binary classification metrics of
accuracy, recall, and precision. To account for class-specific variations in metric values, we
calculated the mean values of each metric across all classes.

3.1. Band Configuration

The results of our evaluation metrics for varying input band configurations are pre-
sented in Table 3. We observed significant variability in metric values across different band
configurations. Initially, we hypothesized that the R + N configuration would perform best
due to its higher resolution. However, our results revealed that this configuration only
outperformed the others in the binary segmentation models (2 and 4), with the addition of
the near-infrared channel to the standard RGB minimally impacting the results. Differences
in the metric values were generally observed only in the third decimal place.

Table 3. A comparative analysis of selected metrics’ values for each model, trained and tested using
different band configurations, including RGB (red, green, and blue channels), R+N (red, green, blue,
and near-infrared channels), R + N + S (red, green, blue, near-infrared, and Sentinel-1 radar channels),
M (all twelve Sentinel-2 multispectral channels), and M + S (all twelve Sentinel-2 multispectral and
Sentinel-1 radar channels).

Split Model 1 Model 2 Model 3 Model 4
IoU Rec Prec Acc IoU Rec Prec Acc IoU Rec Prec Acc IoU Rec Prec Acc

RGB 0.694 0.574 0.604 0.977 0.644 0.694 0.744 0.968 0.720 0.311 0.489 0.987 0.848 0.910 0.899 0.978
R + N 0.657 0.556 0.567 0.977 0.643 0.697 0.735 0.966 0.703 0.316 0.452 0.988 0.843 0.928 0.900 0.963
R + N + S 0.699 0.580 0.554 0.972 0.625 0.675 0.743 0.964 0.716 0.271 0.461 0.987 0.786 0.931 0.840 0.945
M 0.710 0.579 0.564 0.972 0.636 0.685 0.787 0.966 0.718 0.272 0.467 0.985 0.807 0.938 0.852 0.958
M+S 0.648 0.579 0.565 0.970 0.631 0.695 0.740 0.963 0.726 0.328 0.561 0.986 0.828 0.926 0.887 0.964

In Models 1 and 3, the inclusion of additional channels was necessary to accommodate
the higher number of classes being predicted. Model 1, which predicts three classes, yielded
the best results for IoU values with all multispectral band configurations. Differences in
other metrics, such as accuracy, were either minor or non-existent.

In contrast, for Model 3, which predicts the highest number of classes (eight), we
observed that utilizing the maximum number of channels available led to superior per-
formance. This effect was observed across nearly all metrics, except accuracy, where
differences were negligible.

3.2. Dataset Splits

Table 4 presents our metric results for varying data splits. In nearly all cases, we ob-
served that the general models outperformed the targeted ones across all the metrics. To ob-
tain a better understanding of the partitioning requirement, we compared AVGRR+MO+CL
with AVGGM, and AVGMT+OC+OP with AVGGS. The average values represent the conse-
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quences of employing three models as an alternative to a singular model. In all instances, it
was observed that utilizing a singular model was superior.

Table 4. A comparative analysis of selected metric values for each model trained and tested on splits
based on the type of extracted raw material, including coal and lignite (CL), metallic ores (MO),
and rock raw materials (RR), as well as splits based on surface mine types, such as opencast (OC),
open-pit (OP), and mountain-top (MT). Additionally, the table shows the results for general models,
trained on the combined data from splits based on the type of extracted raw material (CL+MO+RR),
and tested on rock raw materials (GRR), coal and lignite (GCL), metallic ores (GMO), as well as
splits based on surface mine types (OC+OP+MT), and tested on opencast (GOC), open-pit (GOP),
and mountain-top (GMT).

Split Model 1 Model 2 Model 3 Model 4
IoU Rec Prec Acc IoU Rec Prec Acc IoU Rec Prec Acc IoU Rec Prec Acc

Type of extracted raw material

RR 0.746 0.668 0.608 0.973 0.558 0.593 0.593 0.976 0.728 0.318 0.417 0.984 0.851 0.932 0.903 0.978
GRR 0.630 0.614 0.711 0.970 0.578 0.711 0.636 0.963 0.732 0.347 0.374 0.984 0.858 0.945 0.899 0.979

MO 0.666 0.489 0.532 0.976 0.697 0.738 0.879 0.956 0.710 0.445 0.621 0.985 0.814 0.937 0.866 0.935
GMO 0.752 0.842 0.830 0.985 0.755 0.837 0.870 0.963 0.723 0.561 0.610 0.985 0.823 0.940 0.872 0.941

CL 0.604 0.509 0.553 0.971 0.790 0.874 0.869 0.966 0.689 0.348 0.647 0.991 0.820 0.931 0.866 0.961
GCL 0.634 0.628 0.684 0.968 0.804 0.871 0.902 0.973 0.725 0.533 0.638 0.992 0.821 0.953 0.852 0.959

AVGRR+MO+CL 0.672 0.555 0.564 0.973 0.681 0.735 0.780 0.966 0.709 0.370 0.561 0.987 0.828 0.933 0.878 0.958
AVGGM 0.672 0.695 0.742 0.974 0.712 0.806 0.803 0.966 0.727 0.480 0.541 0.987 0.834 0.946 0.874 0.960

Surface mine type

MT 0.707 0.537 0.566 0.965 0.547 0.618 0.642 0.979 0.709 0.622 0.695 0.983 0.828 0.942 0.870 0.976
GMT 0.811 0.912 0.827 0.975 0.605 0.646 0.638 0.989 0.729 0.423 0.568 0.986 0.818 0.942 0.858 0.972

OC 0.529 0.498 0.489 0.963 0.635 0.670 0.865 0.964 0.643 0.288 0.412 0.983 0.756 0.928 0.814 0.945
GOC 0.605 0.561 0.535 0.956 0.675 0.751 0.805 0.964 0.777 0.459 0.695 0.993 0.796 0.931 0.844 0.952

OP 0.739 0.563 0.631 0.979 0.640 0.711 0.775 0.961 0.746 0.353 0.439 0.990 0.816 0.914 0.881 0.946
GOP 0.711 0.564 0.549 0.971 0.647 0.715 0.754 0.963 0.756 0.557 0.597 0.985 0.838 0.922 0.896 0.963

AVGMT+OC+OP 0.658 0.533 0.562 0.969 0.607 0.666 0.761 0.968 0.699 0.421 0.515 0.985 0.800 0.928 0.855 0.956
AVGGS 0.709 0.679 0.637 0.967 0.642 0.704 0.732 0.972 0.754 0.480 0.620 0.988 0.817 0.932 0.866 0.962

However, two exceptions were noted: RR and OP. In these instances, the results were
either comparable or superior to those of the general models. We speculate that these
splits may have been more effective for optimizing network parameters due to their larger
sample sizes (Table 2). For Model 1, both smaller models yielded better results, while
for Models 2 and 3, the most significant differences were observed in the recall metrics.
Model 4 displayed negligible differences across all the metrics, leading us to conclude that
increased data volume leads to improved model performance. We speculate that, with even
more extensive data volumes, smaller models may outperform the general model.

3.3. Hyperparameter Tuning

After analyzing the optimal band configuration and recognizing the positive corre-
lation between increased data volume and improved model performance, we proceeded
to fine-tune our models through a rigorous process of 200 trials across all the datasets.
The resulting hyperparameter values, optimized for maximum Intersection over Union
(IoU) metric values on the test set, are presented in Table 5.

Our experiments revealed that increasing the number of epochs and decreasing the
learning rate consistently led to superior outcomes. However, we observed significant vari-
ances in model performance based on the specific network architecture employed. Hence,
fine-tuning the hyperparameter is a critical step in achieving optimal model performance,
with the complexity of the model determining the appropriate values required to maximize
metric values.
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Table 5. The optimal hyperparameters, including learning rate (lr), batch size (bs), number of epochs
(epc), input image size (is), optimizer (opt), backbone (bcb), architecture (arc), and loss for comparing
models with the optimal band configuration using Intersection over Union values.

Hyparam Model 1 Model 2 Model 3 Model 1

learning rate 1 × 10−4 1 × 10−4 1 × 10−4 6 × 10−4

batch size 4 16 4 16
epochs 200 200 200 200

image size 128 512 128 512
optimizer adam adamw adamw adam
backbone vgg16 resnet50 resnet50 vgg16

architecture linknet Unet++ fpn linknet
loss focal focal crossentropy crossentropy

4. Qualitative Analysis of the Results

In our study, we assessed machine learning model predictions for different locations
using test datasets and compared them to ground truth segmentation masks.

We individually examined each label category, analyzing metric values. Below, we
share notable examples that encourage discussions and conclusions, focusing extensively
on key classes like excavation and dumping ground i.e., excavation and dumping ground.

4.1. Model 1 Assessment: Excavation and Preparatory Works Area

Table 6 presents metrics for Model 1, which was designed to predict excavation and
preparatory work area. We analyzed these across five chosen areas for insights into factors
influencing the metrics. Model 1 used the full dataset, without splitting, utilizing all
MSI bands.

Table 6. The selected metric values for chosen classes in Model 1, trained on the entire dataset,
evaluated on 5 specific locations from the test set.

Location Label IoU Rec Prec Acc

Cordero Rojo Excav 0.616 0.864 0.681 0.616
Prep. area 0.219 0.249 0.641 0.219

Agarak Excav 0.674 0.920 0.7161 0.674

Tunstead Excav 0.493 0.522 0.899 0.493

Cerovo Excav 0.019 0.589 0.020 0.020

Noranda Excav 0.231 0.606 0.272 0.231

The initial predictions for the excavation class in the Cordero Rojo Mine and Agarak
Mine locations (Figures 5 and 6) seemed accurate, despite relatively low metrics due to
notable false positives. These metrics, however, remained relatively high compared to
other locations. False positives stem from ground truth mask disparities, possibly due
to flexible boundaries from object heterogeneity. Data labeling relied on human-visible
imagery, with minimal use of external tools like Google Earth’s high-resolution Digital
Elevation Models (DEMs) [32]. Contrastingly, the MSI-trained model used a broader band
range. The training dataset covered both clearly distinguishable and challenging excava-
tions. Interestingly, the model’s predictions sometimes outperformed manual labeling,
yielding lower metrics. Notably, the excavation category exhibited false positives mainly
in other transformed areas like dumping grounds. These areas share features like land
transformation, topographical variations, and vegetation absence. Furthermore, dumping
grounds often coexist with excavations (internal dumps). This caused false positives when
labeling excavations that contained dumping ground attributes, causing predictions on
other dumping grounds (external dumps).
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Figure 5. Comparison of Model 1’s prediction of the excavation in the Agarak Mine, Karchevan,
Armenia, against the provided ground truth mask.

Figure 6. Comparison of Model 1’s prediction of the excavation in the Cordero Rojo Mine, Wyoming,
USA, against the provided ground truth mask.

Model 1, aside from the excavation class, was trained to predict the distinct preparatory
work area class. We revealed notable false negatives in these predictions. These false
negatives corresponded to simultaneous false positives in distinct excavation classes, as seen
in the Cordero Rojo Mine (Figures 6 and 7). Several factors could contribute to this pattern.
Preparatory work areas are generally smaller than excavations, covering a thin forefront
strip. Given the 10 m resolution for ground truth labeling and model training, delineation
inaccuracies for excavations could span from tens to a few tens of meters, including
inaccurately delineated adjacent thin preparatory work areas. Another factor could be the
significant heterogeneity of the marked preparatory work areas, due to made assumptions
and necessary class balance impacting prediction accuracy. Predictions often contained
false positives due to earthworks or ongoing deforestation unrelated to mining, which had
not been labeled as ground truth in training data.

The Tunstead Quarry (Figure 8) provides a compelling case for analysis, represent-
ing a multi-pit mining site. The model accurately predicts the easternmost excavation,
demonstrating alignment with the ground truth mask. Initial observations indicate accurate
predictions for the other two excavations. Notably, the model correctly avoids predicting
the reclaimed, water-flooded portions, in line with our assumptions. However, this area
contains significant false negatives. These can be attributed in part to experts occasionally
relying on external sources like Google Earth’s DEMs for annotation. Such data allowed
for the identification of excavation boundaries, encompassing historic excavations with
various features not prevalent in the training dataset. These features include small internal
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dumping grounds, resource stockpiles, and substantial infrastructure associated with min-
eral processing, which dominate the excavation interior. The model’s inaccurate predictions
compared to the expert annotations reduced the model metrics. In this instance, human
expertise, supplemented by external data, more precisely delineated excavations than the
MSI-trained model. Notably, if we hypothetically replaced the excavation label with an
active mining area label, predictions for this location would be nearly flawless.

Figure 7. Comparison of Model 1’s prediction of the preparatory work area in the Cordero Rojo Mine,
Wyoming, USA, against the provided ground truth mask.

Figure 8. Comparison of Model 1’s prediction of the excavation in the Tunstead Quarry, Buxton, UK,
against the provided ground truth mask.

While assessing the results, we seldom found highly inaccurate or absent predictions,
yielding IoU values close to 0 (3 out of 38 areas of the test dataset). Particularly, when analyz-
ing the Cerovo Mine location, such cases were linked to snow presence in images. Notably,
our training dataset lacked images with snow or cloud cover. Nonetheless, the recall metric
remained high for this location, as the actual excavation was accurately inferred.

Our goal was to encompass a wide array of object diversity, notably, excavations, span-
ning large coal or metallic ore pits to smaller sandpits and distinctive bauxite excavations.
Each type was deliberately included in our dataset. The model effectively inferred bauxite
excavations in the Noranda Mine (Figure 9), yielding a notable recall metric. However,
including these varied excavation types in the training dataset likely led to false positives
in other test locations, consequently affecting the metric values.
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Figure 9. Comparison of Model 1’s prediction of the excavation in the Noranda Mine, Jamaica, against
the provided ground truth mask.

4.2. Model 2 Assessment: Dumping Ground

Table 7 presents metrics for Model 2, which was designed to predict dumping grounds.
We analyzed these across four chosen areas for insights into factors influencing metrics.
Model 2 used the full dataset, without splitting, utilizing RGB + NIR bands.

Table 7. The selected metric values for chosen classes in Model 2, trained on the entire dataset,
evaluated on 5 specific locations from the test set.

Location Label IoU Rec Prec Acc

Novotroitsk Dump 0.337 0.425 0.621 0.337

Kostolac Dump 0.436 0.471 0.856 0.436

Kovdor Dump 0.507 0.775 0.595 0.507

Rudnichny Dump 0.712 0.816 0.848 0.712

The Rudnichny Mine (Figure 10) exhibited the most favorable metric values. Notably, it
accurately captured boundaries between dumping grounds and reclaimed/untransformed
areas, mostly covered by trees in this location. This precision is evident in the external
dump towards the east, where forested portions coexist. While the predictions are accu-
rate, our visual assessment identified a notable false positive within the inner dumping
ground. However, this is not a model prediction error but stems from an internal dumping
ground omission during dataset creation. Similar to Model 1’s approach to excavations,
Model 2’s training dataset encompassed distinguishable dumping grounds and challenging
cases. Consequently, we observe that predictions sometimes better align with reality than
manually labeled ground truth, albeit leading to decreased model metrics for such cases.

The Novotroitsk Quarries (Figure 11) location displays relatively low metrics, at-
tributed to expert labeling that classified reclaimed sections of dumps as dumping ground.
Conversely, the model identified revegetated dumping grounds missed by experts and
did not mark them. Our assumptions focused on not-yet vegetated dump sections, aiming
to avoid potential problems of predicting undisturbed forested areas as dumps at a later
stage. Also, in this case, additional false positives emerged, such as incorrect predictions of
dumping grounds within excavations, likely due to shared features between dumps and
excavations, as discussed in Section 4.1.
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Figure 10. Comparison of Model 2’s prediction of the dumping ground in the Rudnichny Mine,
Kemerovo Oblast, Russia, against the provided ground truth mask.

Figure 11. Comparison of Model 2’s prediction of the dumping ground in the Novotroitsk Quarries,
Donetsk Oblast, Ukraine, against the provided ground truth mask.

The Kostolac Mine location (Figure 12) presents notably low metrics. Two main
observations arise. Firstly, a high-precision metric indicates most of the predictions within
ground truth masks. Nonetheless, a significant false positive occurs in the excavation area
due to shared features between dumping grounds and the excavation in this location. This
is especially relevant in overburden removal regions where the extracted material goes
directly to the dump. Secondly, numerous false negatives pertain to old TSFs, labeled by
experts as dumping grounds. The scarcity of such instances in the training dataset explains
the lack of prediction in these kinds of areas.

Model 2’s inference on non-solid wastes presents challenges due to the interplay
between TSFs and dumping grounds. Experts labeled satellite images as dumping grounds,
often encompassing TSFs with embankments, as both are waste and can involve overburden
material from excavations. Despite varying forms, this relationship significantly impacted
the metrics, exemplified by the Kovdor Mine location (Figure 13). Model 2 performed well
for classic solid waste material dumps. However, a substantial false positive area emerged,
possibly attributable to expert labeling subjectivity. This is compounded by the potential
overlap with TSF and dam labels in Model 3’s training dataset.
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Figure 12. Comparison of Model 2’s prediction of the dumping ground in the Kostolac Mine, Braničevo,
Serbia, against the provided ground truth mask.

Figure 13. Comparison of Model 2’s prediction of the dumping ground in the location of the Kovdor
Mine, Murmansk Oblast, Russia, against the provided ground truth mask.

4.3. Model 3 Assessment: Other Components of Mining Areas

Table 8 presents metrics for Model 3, which was designed to predict tailing storage facil-
ity (TSF), settling pond, infrastructure (Infra), dam, stockpile exploitation slope, and transportation
slope. We analyzed these across three chosen areas for insights into factors influencing the
metrics. Model 3 used the full dataset, without splitting, utilizing MSI + SAR bands.

Table 8. The selected metric values for chosen classes in Model 3, trained on the entire dataset,
evaluated on 3 specific locations from the test set.

Location Label IoU Rec Prec Acc

Globe-Miami Infra 0.464 0.549 0.750 0.464
TSF 0.731 0.987 0.739 0.731

Bor Mine
Infra 0.513 0.586 0.805 0.513
TSF 0.651 0.861 0.727 0.651
Dam 0.464 0.464 0.999 0.464

Buenavista
Infra 0.509 0.589 0.787 0.509
TSF 0.610 0.659 0.896 0.610
Dam 0.012 0.019 0.029 0.012

Model 3 was devised for predicting mining area components, less prevalent than excava-
tions and dumping grounds. Importantly, not all Model 3 classes correspond to each mining
area. The Buenavista Mine (Figure 14) location illustrates this, with experts labeling compo-
nents such as TSF, infrastructure, settling pond, and dam, mirrored in Model 3’s predictions.
The absence of other designated land cover classes is a notable observation. In our training
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dataset, some Model 3-specific classes, like exploitation slope and transportation slope, occurred
infrequently, mainly relevant for certain types of surface mines like opencast coal mines.

At the Buenavista Mine location (Figure 14), numerous false negatives occurred for the
TSF class. This could be due to waste material’s diverse composition and aggregation states,
encompassing liquid and sludge phases. Additionally, a substantial false positive emerged
in the southern region, where a PV panel-equipped dumping ground was misclassified
as a TSF. The infrastructure class exhibited excellent precision, marred only by a minor
false positive, attributed to non-mining-related infrastructure that had not been marked
by experts. For the entire test set, this type of false positive was the primary reason for
decreased metrics for the infrastructure label and the overall model. At Buenavista Mine,
false negatives were predominantly due to experts labeling diverse objects as infrastructure,
while the model’s predictions targeted evident infrastructure elements recurring in the
training dataset. Similarly, the settling pond class yielded numerous false negatives, as these
small objects often went unrecognized by the model. Problematically, the dam class exhib-
ited a large false positive in untransformed areas. This could stem from many dams in the
training dataset being earth dams, sharing features with completely untransformed regions.

Figure 14. Comparison of Model 3’s prediction of infrastructure, TSF, and dam in the location of the
Buenavista Mine, Cananea, Mexico, against the provided ground truth mask.

The Globe–Miami Mining District (Figure 15) shows false positives of the TSF class.
The model’s prediction also includes a dam on the tailings. We find the reasons for this
model inference lies in the difficulties of experts in correctly determining the boundary
between the real water table of a TSF and its dam on 10 × 10 m resolution images.

Figure 15. Comparison of Model 3’s prediction of the infrastructure and TSF in the Globe–Miami
Mining District, Arizona, USA, against the provided ground truth mask.
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We observed similar prediction results in the Bor Mine (Figure 16) location, where for
the infrastructure and TSF classes, the causes of both false positives and false negatives are
similar to previous examples. At this location, however, the prediction for the dam class
seems to be very good, with a precision metric close to 1. This is the type of earth dam that
appeared most often in the training set, which resulted in better metrics.

Figure 16. Comparison of Model 3’s prediction of the infrastructure, TSF, and dam in the Bor Mine,
Bor, Serbia, against the provided ground truth mask.

4.4. Visual Check of the Results

As we expect our models to be useful for several use cases (land use monitoring,
detection of illegal mining, and mining plans verification). We carefully analyzed some
prediction examples in terms of their factual correctness. In most cases, the predictions
are not perfect but remain promising. In Figures 17 and 18 we present a comparison of
predictions for the chosen area, on satellite images separated by a two-year interval.

(a) (b)

Figure 17. Example predictions of mining area components within the Bengala Coal Mine (Australia)
of Model 1, Model 2, and Model 3 for 2019 (a) and 2021 (b).
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(a) (b)

Figure 18. Example predictions of the total transformed area within the Bengala Coal Mine (Australia)
of Model 4 for 2019 (a) and 2021 (b).

Although not ideal, the obtained results are often sufficient for their general interpre-
tation in terms of the verification of long-term mining plans. The presented predictions
describe the mining area of the Bengala Coal Mine in Australia. In 2021, we see a significant
increase in the area of the excavation and dumping ground in the northeastern direction,
compared to 2019. This is the result of the creation of a new excavation and the progress of
mining works. There is also a significant increase in the area of dumps as a result of both
external and internal dumping.

A visual inspection confirms the good metrics for Model 4 in almost all the cases,
correctly predicting the total transformed area. This confirms the possibility of using the
results for mining land use monitoring as well as for illegal mining detection.

5. Discussion

Based on the metric values obtained throughout the entire research and later quali-
tative analysis of the results, we find several topics worth discussing before stating our
final conclusions.

5.1. The Approach to Label Selection and Definition

Each mining area is unique, making it challenging to create universal models for
predicting such diverse objects. The obtained models’ metrics were influenced by the
heterogeneity of the objects. In some cases, there were other defined classes present
within the excavations or dumping grounds, such as internal dumping grounds, stockpiles,
and infrastructure. Consequently, the models considered the characteristic features of these
internal components, sometimes leading to false positives when these components were
outside the excavation in the test dataset. One potential solution is to optimize the selection
and definition of mining land cover classes, such as using labels like active exploitation area
and active dumping area instead of excavation and dumping ground, respectively. This approach
would prevent objects from exhibiting features related to multiple classes simultaneously.
Alternatively, a less comprehensive approach could be considered, allowing for more
specific labels by not aiming to mark every smallest fragment of the transformed area,
particularly in Models 1 and 2.

5.2. Universal vs. Split Datasets

Developing universal models for all surface mines and related facilities is debatable.
Our research neither confirms nor excludes this possibility. Balancing models’ accuracy
and universality is crucial. Clearly defining available resources during research is essential.
In our study, assumptions and compromises influenced the obtained models’ metrics.
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One assumption was capturing the entire mining-transformed area during satellite image
labeling to assess the total mining land use. As one of the compromises, we can point
to the approach to TSF labeling, where TSF itself treated the water/sludge surface of the
tailings, while the entire facility was still treated as a dumping ground. In some specific cases
(when the tailings were dammed only on one side), the dam class was used. To reduce
heterogeneity, we split the training data by raw material type and surface mine type.
Although the new models did not significantly improve prediction quality, the validity of
dataset splitting cannot be disregarded.

5.3. Heterogenity of Mining Areas vs. Randomness of Test Dataset Locations

The random selection of mining areas for the test dataset significantly influenced
the metrics due to class diversity. Our research heavily relies on metric values, which
could vary significantly with a different test dataset. Including typical mining areas
may yield significantly higher or lower metrics. Model 3’s metrics were affected by the
presence or absence of specific mining land cover classes in the locations. Classes like dam,
exploitation slope, transportation slope, and stockpile were optional and applicable only to
specific mining areas.

5.4. Incorporation of Satellite Data with Higher Spatial Resolution

Our qualitative analysis revealed that the spatial resolution of the images posed
limitations on the experts’ ability to accurately delineate boundaries between different
mining components. Problematic areas included the borders between dumping grounds
and untransformed/reclaimed areas, excavations, and preparatory work areas, and TSFs
and dams. The utilization of improved spatial resolution data in similar studies would
significantly reduce subjectivity among experts and provide more precise markings. Addi-
tionally, we observed that the models faced challenges (lower metrics confirmed by visual
analysis) in capturing objects with very small surface areas, such as rock quarries, which
have smaller transformed areas compared to metallic ore or coal mines. Conducting similar
studies using satellite data of a higher spatial resolution could potentially enhance the
object recognition accuracy. This proposition, however, necessitates further investigation.

5.5. Application of Additional Conditions

We see several possibilities to improve the operation and practical application of
the developed models. One option is to set specific conditions for model predictions,
such as limiting the area prediction to the preparatory works adjacent to the excavation
or considering a dam as a polygon adjacent to the TSF. Integrating our models with
conventional land use and land cover (LULC) models is another idea that can help reduce
false positives outside transformed areas. These strategies hold promise for improving the
overall performance and applicability of our models.

5.6. Limitations of the Presented Study

The research and testing of machine learning models for the segmentation of mining
facilities focused exclusively on images depicting large mines and their adjacent areas.
There was no evaluation of these models on images featuring earthworks unrelated to
mining, such as archaeological sites, construction sites, etc. Consequently, the assessments
and conclusions drawn do not extend to the models’ effectiveness in non-mining contexts.

6. Conclusions

In the task of mining area segmentation using machine learning techniques, for our
assumptions, data, and techniques, we explored various approaches and arrived at the
following conclusions.

Different machine learning models were employed to identify individual components
of mining areas, RGB achieving the best metrics with specific band combinations. For the
binary models (Models 2 and 4), the RGB + NIR band combination yielded the best results,
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whereas, for the multiclass models, the composition of all the multispectral bands (Model 1)
or the composition of the multispectral and radar bands (Model 3) proved more effective.
However, none of the tested combinations demonstrated a clear advantage over the others,
with the differences often being marginal. This could imply that as the number of labels
in the dataset increases, there is a corresponding need for a greater number of bands.
Nevertheless, in this context, data fusion did not significantly enhance the segmentation
process. Given that some of the defined classes in the Model 3 are associated with water
(TSF, settling pond), the advantage of the model using radar data seems to be justified.

The dataset splits based on extracted raw material type and surface mine type did
not substantially improve the models’ performance metrics. In contrast to the models
designed for particular mine types and extracted raw material types, the general model
exhibited better performance. However, Model 1, dedicated to rock row material type (RR)
and opencast type (OC) mining, demonstrated a significant improvement over the general
model, which may be attributed to the availability of a larger sample size. It is important to
mention that despite the variations in mining areas, models trained exclusively for specific
mine types did not outperform the general model. However, we cannot deny or confirm
the pertinence of splitting datasets in this way and we recommend repeating similar studies
on a larger sample of training data.

Model 4, which we created to predict an entire transformed area, performs effectively,
as demonstrated by the metrics. This indicates that the combination of satellite imagery
and machine learning models offers a viable approach to developing a robust tool for
monitoring land transformations caused by mining operations. Our findings suggest that
the current iteration of the model can detect illegal mining activities and facilitate the
comprehensive monitoring of land use. The authors in [9,10] utilized a model with an
accuracy of 88.4% to construct the global dataset of mining areas. In contrast, our best
model achieved a significantly higher accuracy of 96%.

Although separating the individual components of a mining area remains a challenge,
the existing models dedicated to this task are not yet suitable for operational activities. Nev-
ertheless, it is essential to acknowledge the potential of existing models and the possibility
of improving their performance by expanding and diversifying the dataset. Consistent
efforts toward expanding the self-prepared dataset can increase the training set, thereby
resulting in positive outcomes for the models. Also, conducting a similar study on higher-
spatial-resolution satellite data may significantly improve the results.

The need for effective land use monitoring in mining areas is emphasized due to
increased raw material demand and growing environmental awareness. Understanding
land transformation in mining leads to sustainable resource management and operational
optimization. This study contributes to the area of space-borne data analysis using machine
learning methods and has shown that utilizing RGB channels in satellite images is sufficient
for the precise identification and monitoring of mining areas. Our findings suggest that the
incorporation of all multispectral bands or division of the dataset based on surface mine
type or extracted materials is not necessary, and a generalized model can achieve optimal
accuracy and efficiency. Moreover, our research highlights the potential of employing
machine learning models and satellite data in monitoring mining areas. These powerful
tools can provide invaluable insights into mining operations and their impact on the
environment. The implications of our findings are significant for both the mining industry
and professionals in remote sensing and machine learning research.
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Michał Wierzbiński for advising on machine learning model training, and Agnieszka Mazurkiewicz
and Edyta Lewicka for creating graphics. This research was supported by the European Fund. The
developed models were implemented into the TerraEye application, owned by Remote Sensing
Business Solutions [33].

Conflicts of Interest: Authors Katarzyna Jabłońska, Wojciech Kaczan and Marek Wilgucki are
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