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Abstract: Remote sensing (RS) techniques are essential for studying hazardous landslide events
because they capture information and monitor sites at scale. They enable analyzing causes and
impacts of ongoing events for disaster management. There has been a plethora of work in the
literature mostly discussing (1) applications to detect, monitor, and predict landslides using various
instruments and image analysis techniques, (2) methodological mechanics in using optical and
microwave sensing, and (3) quantification of surface geological and geotechnical changes using 2D
images. Recently, studies have shown that the degree of hazard is mostly influenced by speed, type,
and volume of surface deformation. Despite available techniques to process lidar and image/radar-
derived 3D geometry, prior works mostly focus on using 2D images, which generally lack details
on the 3D aspects of assessment. Thus, assessing the 3D geometry of terrain using elevation/depth
information is crucial to determine its cover, geometry, and 3D displacements. In this review, we
focus on 3D landslide analysis using RS data. We include (1) a discussion on sources, types, benefits,
and limitations of 3D data, (2) the recent processing methods, including conventional, fusion-based,
and artificial intelligence (AI)-based methods, and (3) the latest applications.

Keywords: 3D data; 3D geometric analysis; lidar; elevation maps; DEM; DSM; DTM

1. Introduction
1.1. Background about the History of Landslides and Remote Sensing

Landslides are caused by earth masses (such as rock, soil, and debris) falling downs-
lope due to the different actions of gravitational forces on segregated layers [1]. These
deadly geohazards frequently occur worldwide on local, regional, and global scales. They
are often triggered by natural forces such as rainfall, glacier melt, and seismic activity.
(Figure 1), or human activities such as deforestation, construction, and excavation [2,3].
Landslides can have substantial socioeconomic and environmental impacts when they
lead to fatalities, injuries, and damage to property and infrastructure. Preventing natural
disasters such as landslides is impossible; however, mitigating the risks and negative
impact through informed planning and evacuation is extremely effective at mitigating
landslide risks. This can be achieved by identifying danger zones and continuously moni-
toring and updating the progress of subtle surface movement before it turns into a life and
infrastructure-threatening landslide [2–4].

Remote sensing (RS) techniques have played a major role in studying landslides. By
gathering earth observations (EO) from a distance in real-time or near real-time, scientists
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and authorities may detect, monitor, and predict these deadly events without expensive and
time-consuming field surveys like boreholes or in-site measurements of dimensions and
slope [5]. This facilitates obtaining a detailed inventory of landslides on local, regional, and
global scales to indicate their state (i.e., active or inactive), location, distribution, movement
speed and type, etc. Studying landslides using RS technology requires knowledge of
the complex nature of landslides and the types of RS sensors, platforms, and data used
to study them. The complex nature of landslides refers to understanding the causes,
mechanisms, topological changes, and surface deformations. The leading causes can be
divided into natural events (e.g., rain and earthquakes), human activities (e.g., construction
and excavation), and morphological (e.g., waves) or geological (e.g., lithology and layers
materials) causes [1–3,6,7]. The mechanism and kinematics of landslides describe the speed
and style of movement of earth masses. According to [1], there are five types of movement:
flow, slide, fall, topple, and spread, which can have varying speeds and can be used to
determine the hazard level. The topological changes refer to the vertical displacement,
terrain profile changes, and the volume of eroded or deposited materials. Figure 1 shows
four examples of landslides by different causes (i.e., trigger factors, failure mechanism,
etc.). For instance, Turkey’s earthquake in February 2023 triggered thousands of landslides
due to co-seismic ground movement [8]. Figure 1a shows one of the biggest landslides
(near Islahıye, Gaziantep, Turkey) blocking the river channels due to a rockslide from the
snowmelt that fell on limestone after ground shaking. The landslide in Shovi, Georgia,
also occurred due to glacial/snowmelt; however, this was triggered by heavy rainfall that
led to a large mudflow down the valley (Figure 1b). On the other hand, the landslide
in the Three Gorges Reservoirs in China resulted from an increased water level from
heavy rainfall, leading to steep slopes along the valley (Figure 1c). Figure 1d shows a
rockslide and rockfall from a cliff in Red Beach, Greece, due to coastal erosion of weak
unconsolidated soils and volcanic materials. Effective investigation of the landslides’
variations requires knowledge of the depth or elevation, which should be computed from
the scene (Figure 1c,d). Understanding the 3D motion by the landslides can be beneficial
to recognize surface deformations over time, which may include changes in size, shape,
volume, content (e.g., land use land cover (LULC)), and properties of the surface (e.g.,
soil moisture).
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Figure 1. Examples of landslides where (a) a landslide triggered by an earthquake in Turkey [9];
(b) GeoEye images (Copyright 2023 Maxar) show a mudflow site in a mountainous area in Shovi,
Georgia; (c) Shipborne lidar and 3D model showing a landslide in Three Gorges reservoir China due
to heavy rainfall [10]; and (d) A DSM and 3D point clouds showing rock slide in Red Beach, Greece
that occurred due to lithology and coastal erosion [11].

Remote sensing technology can collect data from spaceborne, airborne, or terrestrial
platform sensors. The choice of RS data, sensor, and processing method is based on the
unique characteristics of a given landslide or landslide-prone region. For example, an
indicator of landslides in rainy areas is an increase in soil moisture content, which can
weaken soil strength due to water pressure and lead to slope failures [12]. RS, optical,
thermal, or microwave images can record soil moisture content and indicate saturated
areas with potential slope failure [12–14]. Optical images, such as multispectral images, can
compute the normalized difference vegetation index (NDVI) and normalized difference
water index (NDWI), indicating strongly vegetated and wet areas. Thermal imaging
devices installed on unmanned aerial vehicles (UAVs) can correlate the wetness levels by
inspecting the temperature of areas because warmer soils are often more saturated than
colder soils. Radar images obtained from satellites (such as the Advanced Microwave
Scanning Radiometer) offer direct measurements of soil moisture content by operating
on different frequency levels, where they can penetrate the soil (and vegetation cover)
at varying depths and measure the variations in soil water content. In general, there are
numerous ways to examine landslides through RS technology.

1.2. The Importance of 3D Data for Studying Landslides in Remote Sensing

Remote sensing data can be categorized based on their structure and encapsulated
physical information into two types, two-dimensional (2D) or three-dimensional (3D) data,
where both have advanced landslide studies [3,6,7] (Table 1). In RS, 2D data are derived
from optical images that capture panchromatic, multispectral, or hyperspectral images
from space and airborne sensors, including UAV devices (Figure 2). In landslide research,
2D data are often used to determine apparent spatial, spectral, and temporal changes on
the surface, such as vegetation removal, cracks, and inconsistency in the distribution of
materials (e.g., deposition) [3,15–18]. Processing 2D data has been established for decades
because of its low cost, simple 2D analysis, frequency of data collection, and large area
coverage [3,15–17]. However, as 2D data analysis relies only on color information, they can
be limited by spectral distortions from varying acquisition conditions (e.g., atmospheric
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or sun angle) [19,20]. This can lead to noisy and spectrally heterogeneous images that
result in difficulty separating landslide areas from the surrounding environment and in-
accurate comparison of multitemporal images. Most sensors collecting this type of 2D
data are restricted in their viewing angles, scale, and temporal and spatial resolutions,
which may prevent the analysis from capturing intricate or subtle cues related to landslides.
For example, medium-resolution (15–30 m) Landsat 8 images cannot be used to identify
small-scale changes or fine details like small cracks that help detect landslides [13,21,22].
Finally, 2D data cannot obtain information about the sub-surface deformations of a terrain,
which can indicate the severity of slope failures [17,20,23]. Conversely, 3D data has proven
more effective in studying landslides over the years [24–32]. This is because of their ability
to compute the 3D geometric information of terrains (i.e., elevation/depth) and use it as
the main parameter to detect and inform the severity and extent of landslides [18,33–37].
The 3D data can be generated directly from the light detection and ranging (lidar) and
radar sensors or processed using photogrammetric stereo methods [20]. These approaches
can provide full or partial representation of the 3D data. For example, point clouds are
considered full 3D data. In contrast, digital elevation models (DEMs), digital surface mod-
els (DSMs), and digital terrain models (DTMs) are considered a simplified representation
of the 3D data and are often referred to as 2.5D (Figure 2). 3D data are more consistent,
robust, and less susceptible to unwanted changes (e.g., radiometric artifacts) over time
than 2D data [20,23,38]. Moreover, studies have shown that the 3D geometric and topo-
graphic features are strongly associated with landslides [33,35,39,40]. These features can be
measured directly from point clouds and elevation maps such as 2.5D DEMs, including
elevation, slope, aspect, hill shade, curvature, etc. [33,35,39,40]. Therefore, they can be used
to compute more meaningful metrics such as volume of deposition or erosion, vertical
displacements, steep slopes, etc., improving the detection and assessment of landslide areas.
Sensors collecting 3D data can be installed on various platforms, including spaceborne,
airborne, or terrestrial. They can be calibrated or set up based on the characteristics of the
study area and the intended applications. For example, the accuracy of data generated by
microwave satellite sensors (i.e., RADAR) can be impacted by densely vegetated areas [41],
so using terrestrial lidar can be more suitable for accessing these areas and collecting 3D
data [26,31,42]. Unfortunately, 3D data can be very expensive and complex to collect. Their
area coverage can also be limited in terms of space and time. They may be unavailable in
some areas worldwide, such as in developing countries. Other studies have also noted that
collecting 3D data can be difficult in unreachable and inaccessible regions such as deep
valleys and high mountains [43–45].
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Table 1. A comparison between 2D and 3D data for landslide studies.

Type of Data 2D Data 3D Data

Description

Refers to data produced by imaging sensors
installed on a more sensing platform, such as
airborne, UAV-borne, and spaceborne
platforms. The data of interest may have
panchromatic, multispectral, or
hyperspectral optical image data and 2D
microwave images.

Refers to data containing 3D geometric
information like depth or elevations acquired
from RADAR, lidar, or photogrammetric
stereo methods.

Metrics to study landslides

• Change in spectral information (e.g.,
NDVI, NDWI, and MSI)

• Brightness and intensity differences
• Texture differences (e.g., entropy)
• Planimetric 2D shapes

• Vertical displacement
• Volumetric differences
• Changes in topographic features, e.g.,

slope, aspect, and hill-shade
• Full 3D geometric change

Advantages

• Wide area coverage
• Large availability of data over time with

a variety of costs
• Simple 2D analysis approaches, e.g.,

image differencing
• Capture surface changes, e.g., LULC

changes, surface cracks, and deposited
materials

• Consistent measurements of 3D data
over time

• Determination of mechanism (i.e.,
movement type) and kinematics (i.e.,
speed and volume) of landslides to
indicate danger level.

• Detect sub-surface deformations, e.g.,
topography, terrain profile, and 3D
displacements.

Challenges

• Radiometric distortions due to
acquisition conditions, e.g., weather,
sun angle, and season.

• Restricted angle of view, coverage, and
spatial resolution

• Cannot detect sub-surface deformations,
e.g., vertical displacements.

• Difficult to separate between landslide
areas and the surrounding
environment.

• Costly and time-consuming to collect
and process.

• Complex processing algorithms.
• Limited archive
• Small area coverage
• Difficult to assess uncertainties in

inaccessible areas such as high
mountains.

In general, the analysis of 2D data is suited to detecting landslides at a large granular
level, e.g., binary detection of significant landslides at coarse resolution. However, due
to the many challenges of using 2D image data (Table 1), researchers have combined 2D
and 3D data to understand landslide events better and potentially develop more effective
strategies to monitor them [24,46–50]. The 3D geometric analysis can provide detailed
estimates of the terrain’s surface and sub-surface characteristics. This includes elevation,
slope, change in volume, speed of fall, type of vertical movements, 3D displacements in the
vertical and horizontal directions, 3D deformations, and change in geometry in areas that
have exhibited or are prone to landslides [3,4,6,7].

1.3. Scope of the Review and Paper Organization

This review focuses on the 3D geometric analysis of landslides in RS, emphasizing the
full or partial use of 3D data. These 3D data could be collected from laser scanning sensors
(i.e., lidar) or generated using a pair of images and photogrammetric stereo methods. The
review is divided into three parts, as depicted in Figure 3. First, we present a thorough
description of the latest advancements in 3D data, where we discuss their sources, types,
benefits, and limitations (Section 2). Second, we discuss the most recent processing methods
and algorithms to detect, monitor, and predict landslides (Section 3). These include conven-
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tional 3D geometric analysis, fusion, and state-of-the-art learning methods, i.e., artificial
intelligence (AI). Third, we describe the latest landslide applications that benefit from 3D
data and their geometric analysis, which can be used for either qualitative or quantitative
3D geometric assessment of landslides (Section 4). The qualitative assessment is concerned
with landslide existence, state, and type [51], whereas the quantitative assessment applies
mathematical modeling to estimate the 3D displacement, change in volume, and speed of
falls [22,52,53]. Finally, Section 5 summarizes this review by discussing the opportunities,
challenges, and suggestions for future work in the 3D geometric assessment of landslides.
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Figure 3. The workflow of this review.

2. The 3D Data Used for Landslide Studies

The choice of 3D data is critical to landslide investigation in RS due to the variety
of landslide patterns, causes, areas, types, and impact periods. Therefore, determining
the suitable type of 3D data is necessary. Factors of concern can be data availability, cost,
coverage, occlusions (e.g., mountains), level of data uncertainty, etc. Typically, two forms
of 3D data are used for 3D geometric analysis: image-derived elevation maps (i.e., DEMs,
DSMs, and DTMs) and lidar-based 3D point clouds [3]. Point clouds record the X, Y, and Z
coordinates of objects and surfaces, which can be acquired from lidar or stereo matching.
Lidar can be installed on various platforms; the most common for landslide studies are
airborne and terrestrial platforms. Spaceborne lidar, on the other hand, is rarely used for
landslides or general topographical and geomorphological studies. This is because flying
at high altitudes limits the characterization of internal structures, thus not being able to
separate between ground and non-ground points (i.e., DTM) [54,55]. Photogrammetric
elevation data are generally preferred due to their relatively low cost and availability from
all platforms, including satellite, aerial, UAV, and terrestrial systems. Methods used to study
landslides can drastically vary based on the data collection platform. Table 2 summarizes
different photogrammetry and lidar data characteristics lidar for use in landslide studies.

2.1. 3D Data from Photogrammetry

Photogrammetry can generate both 3D point clouds and 2.5D elevation data. It relies
on stereo-matching methods, which require at least two overlapping images acquired
from optical sensors. The process of photogrammetry follows georeferencing and dense
matching steps to generate point clouds. Elevation maps can then be derived [38,56–58].
As mentioned earlier, photogrammetry is preferred because images are much cheaper to
capture and available on all platforms. However, as shown in Table 2, the generated point
clouds’ granularity and accuracy level significantly vary with the platform. Thus, in the
following subsections, we entail their respective characteristics.
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Table 2. Sources and characteristics of 3D data for 3D geometric analysis of landslides.

Source of 3D Data Photogrammetry Lidar

Platform Spaceborne Airborne Terrestrial Airborne Terrestrial

Type of 3D data Derived point clouds
Derived DEM, DSM, DTM

Point clouds
Derived DEM, DSM, DTM

Spatial
resolution

Several meters to
tens of meters Several meters to Sub meters (<1 m) Several meters to Sub meters (<1 m)

Temporal
resolution

Frequent (daily,
weekly, monthly) By demand By demand

Area coverage Large Small Small

Cost Low-high Low-high High

Setup Fixed Flexible Flexible

Viewing angle Vertical Vertical to oblique Side view Vertical to oblique Side view

Areas best suited
for

-Open areas
without
obstructions from
buildings or
vegetation

-Hazardous areas
-Mountains
-High-relief areas
-Urban areas

-Obscured areas
(e.g., mines, sea
notches, and caves)
-Dense vegetated
or forested areas

-Hazardous areas
-Mountains
-Urban areas

-Obscured areas
and side views
(e.g., mines, sea
notches, and caves)

Preprocessing

-Radiometric
correction
-Geometric
correction
-Photogrammetry
methods

-Geometric
correction
-Photogrammetry
methods
-Mosaic/image
stitching

-Geometric
correction
-Photogrammetry
methods
-Mosaic
-GCPs setup

-Projection of point clouds to
image-derived elevation maps
-Registration and alignment of point
clouds
-GCPs setup

Factors influencing
the accuracy of 3D

data

-Radiometric
distortions
-Spatial resolutions
-Type of
photogrammetry
algorithm

-Terrain
complexity and
occlusions
-Sensor type
-Type of
photogrammetry
algorithm

-Radiometric
distortions
-Terrain complexity
and occlusions
-Type of
photogrammetry
algorithm
-Sensor type and
motion

-Terrain complexity and occlusions
-Sensor type and motion

Generation time Fast Fairly slow Slow Fairly slow Slow

2.1.1. Spaceborne Sensors

Spaceborne sensors capture images with large area coverage due to orbiting the Earth
at high altitudes, and they provide repeating observations, sometimes almost daily. For
landslide studies, obtaining high-resolution and reliable 3D data is necessary to extract the
terrain’s detailed and precise topographical and morphological variation over time. The
spaceborne sensors can provide images with resolution ranging at the sub-meter level (e.g.,
QuickBird, Worldview-3, and Pleiades) [16,33,59–74]. The cost of 3D data from these sensors
varies with the number of images required to generate accurate 3D models. Choosing
the images for use in generating 3D data may be a sophisticated process, and it may
leverage orbital factors that lead to certain intersection angles and sun radiometry to decide
the number of overlaps for accurate 3D modeling [75]. Moreover, the photogrammetry
algorithms used for dense matching (or stereo matching) may also be a concern [38,75].
For example, a study by [38] indicates that deep learning methods (such as MC-CNN,
GCNet, and PSMNet) are robust in handling variations in sun and viewing angles but may
be slower to process large-scale satellite images. On the other hand, non-learning-based
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methods such as Census semi-global matching are less demanding in terms of time and data
requirement, thus providing 3D data at a lower cost, but are more sensitive to variations
among stereo images, thus requiring more images.

2.1.2. Airborne Sensors

Sensors installed on UAVs and aircraft have a high potential to detect and characterize
landslides [55,76–79]. Early studies used their 3D data as ground truth reference data to
validate the results through visual inspection or to extract training and testing features
for machine and deep learning methods [7,38,56,57,80]. The lower flight altitudes and
very high spatial resolution (<0.5 m) of UAVs result in data that captures features such
as fissures and small deformations and provides better spectral separation between the
landslide area and its surrounding environment [78]. Images captured using airborne
platforms are flexible due to flexible air-platform maneuvers and flight designs. Thus,
the airborne acquisition system can provide data with access to difficult regions, such as
mountains with high reliefs, and can be acquired under cloud cover [78,81]. The airborne
platform also has full control over the viewing angle of cameras, providing vertical or
oblique views of the scene [78,79]. The level of flexibility of the airborne platform enables
landslide detection and identification of its types, for example, falls, slides, flows, etc.
Nevertheless, flying airborne sensors must be scheduled ahead of time and can be costly;
thus, their data are not always available for a given area of interest [55,76–79]. They may
also require expertise to operate the sensors and calibrate the sensors and data to ensure
accurate acquisition of the 3D data. Compared to satellite images, aerial images can provide
images with area coverage at a medium to large site level, which is often sufficient in
landslide studies [55,76–79]. Similar to satellite sensors, images from airborne sensors may
require preprocessing to minimize geometric and radiometric distortions before applying
photogrammetry to generate 3D data.

2.1.3. Terrestrial Sensors

At various costs, cameras can be installed on terrestrial platforms, including vehi-
cles, tripods, and handheld devices such as mobile phones [28,42,44,76,82–84]. Terrestrial
platforms allow capturing images in real-time at close range, thus gaining a clear and
detailed view of a landslide area [28,44]. They are ideal for determining the mechanism of
landslides, i.e., movement direction and type, with high accuracy and precision. However,
they may require a longer time to collect data due to their small area coverage. Thus, it is
only suitable for investigation at sampled locations or persistent monitoring (i.e., stationary
cameras). The choice and setup of terrestrial sensors require strategic planning to reduce
errors and uncertainties in deformation detection [15,82]. For instance, the number and
location of cameras are determined based on the size of the region or object of interest,
expected displacement size, and occlusions on site to provide comprehensive coverage
with a clear line of sight [82]. Moreover, stationary sensors are likely to develop geometric
and radiometric distortions caused by inevitable sensor motion (e.g., due to wind) and
variations in illumination [15]. Consequently, these distortions can impact the detection of
the precise location and shape of the surface deformation and the geometric properties of
the object being monitored/tracked (e.g., fracture). Mitigating these distortions requires
post-configuration and processing of the images to radiometrically normalize and geo-
metrically align them according to the positioning systems, such as the global positioning
system (GPS) and ground control points (GCPs) installed on site.

2.2. 3D Data from Lidar

Over the last few decades, lidar systems, such as aerial laser scanning or terrestrial laser
scanning devices, have become powerful and reliable tools for collecting high-resolution
three-dimensional structural data [29,31,42,84–90]. Many studies use lidar data as a ground
truth reference for elevations because of their high accuracy [38,56,91]. Lidar data have
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been used to detect and analyze natural disasters like landslides [77,87,92]. In comparison
to the photogrammetry-based method, it features several advantages described as follows:

• Direct measurement of the 3D data: Lidar is an active sensor emitting and receiving
laser pulses from objects and surfaces, thus directly computing 3D information by
evaluating the time of flight. For landslide studies, the point clouds can be used
directly or rasterized 2D elevation maps (e.g., DEMs, DSMs, or DTMs) [29,87]. In
contrast, the accuracy of photogrammetry point cloud may be scene-dependent and
vary spatially.

• High-resolution 3D data: Elevation maps derived from lidar can have high spatial
resolution [85,87,89,93], which is important for extracting small-scale 3D geometric
features to map landslides and provide detailed and accurate terrain representation
and detection of the fine surface and sub-surface deformations [24,27,29,85,94].

• Vegetation penetration: Many landslides occur in densely vegetated or forested areas;
unfortunately, these cannot be inspected well using classic optical sensors. Lidar, on
the other hand, can penetrate these difficult regions to provide information about
vegetation conditions (e.g., type, height, structure, volume, and texture) and changes
in bare-ground elevations, which are critical factors of landslide [26,31,55,88].

• Improved accuracy and precision of 3D data: Lidar collects 3D data using laser
pulses, which are robust to varying acquisition conditions such as season, weather,
and low-light conditions like night-time [87]. Therefore, they can provide more
accurate 3D data, often used for validation as ground truth data for landslide-related
research [37,94–98] or for 3D modeling and reconstruction of terrains [24,27].

• Numerous types and costs of lidar sensors exist, lidar ranging from basic to profes-
sional sensors. Nevertheless, their performance may vary based on the landslide
application, region, and selected platform. Therefore, as in the previous section, we
compare lidar’s 3D data for landslide studies based on the most used platforms, i.e.,
airborne and terrestrial.

2.2.1. Airborne Sensors

Airborne lidar collects data using UAVs and aircraft, which are available by demand
and are mostly efficient for rapid assessment of post-landslide events [26,29–31,77,85,88,89,94].
It provides smaller area coverage than spaceborne sensors due to flying at lower altitudes,
and thus, it is suitable for mapping landslides on local and regional scales. The flight’s
parameters, such as route, altitude, and the sensor’s viewing angle, can be controlled based
on the characteristics of the examined terrain. Therefore, airborne lidar can map unreachable,
hazardous, remote areas such as valleys, volcanoes, and mountains. Nevertheless, mapping
using airborne sensors requires rigorous georeferencing and positioning of every point cloud
collected, which can be achieved by integrating lidar with GPS. One of the critical issues
impacting the overall accuracy of 3D data is the platform’s motion, which can be compensated
using an inertial measurement unit (IMU) to provide information about the movement and
orientation of the sensor. Integrating lidar with GPS and IMU can provide highly accurate 3D
data at the sub-meter level. Precise positioning allows accurate calculation of the landslide’s
geometric features such as slope, volume, and horizontal and vertical displacements. However,
airborne lidar requires a clear line of sight to avoid occlusions, missing data, and erroneous
measurements, which can be beneficial for accurate separation between bare-ground and
off-ground objects.

2.2.2. Terrestrial Sensors

Compared to the previously discussed methods, terrestrial lidar can provide the most
accurate 3D data (at the sub-meter level) with a high level of precision because of data
collection at a closer range. The highly accurate data allows the identification of fine details
and small geomorphological changes on topographic slopes [42,44,83,84]. For example,
landslides in coastal regions can occur due to waves crafting underneath cliffs leading to sea
notches, which cannot be detected using airborne lidar because of the vertical viewing angle.
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Terrestrial lidar moving along the shore can capture these geomorphological features and
signs of a landslide [45]. However, the closer range limits the field of view and coverage to
small areas, leading to slower data acquisition time. They are often preferred as stationary
ground-based monitoring sensors on site. Moreover, terrestrial lidar can freely choose
their installment position and orientation to provide a clear line of sight with minimum
occlusions. The flexible set up provides more accurate information and quantification of
the horizontal and vertical displacements [45,87]. Similar to airborne lidar, terrestrial lidar
requires GPS and IMU to provide accurate georeferencing and motion information of the
platform and sensor, which can enhance 3D data positioning and accurate comparison to
detect changes over time. In some cases, GCPs must also be installed on-site for better
spatial linkage and georeferencing of 3D data concerning known reference points.

Using 3D data for landslide studies depends on the project’s characteristics and the
sensor type [93]. The project’s characteristics determine the extent of the area under the
study, the project’s cost and time, the terrain’s complexity, the type of application, etc.
On the other hand, the sensor type determines the spatial and temporal resolution that
controls the level of detail and data availability over time. The resolution plays a major
role in the accuracy of the 3D data, where the higher the resolution, the more accuracy
and information we can gain about a terrain. Critical obtained information may include
landslide parameters like slope, fine-level features and signs (e.g., cracks), and internal
characteristics such as topographical, geological, and hydrological conditions. Therefore,
high-resolution 3D data are better for mapping small-scale landslide areas, whereas low-
resolution 3D data are sufficient to capture changes on large scales [93,99]. Georeferencing
is also crucial because most landslide studies compare data over time; thus, 3D data must be
geometrically and spatially well-aligned. Combining lidar with data from optical sensors
has been shown to boost performance and provide better accuracy for mapping landslides
based on color, texture, changes in slope, etc. [43,54,100]. Other studies have noted that
combining data from both platforms, i.e., airborne and terrestrial, can provide a broader
perspective and better analysis of the landslide-prone area [45], thus providing a complete
terrain profile with information about the vertical and horizontal deformations.

3. 3D Geometric Analysis for Landslide Studies

Investigating landslides is complex due to their numerous natural variations (i.e.,
triggering factors, processes, and implications). As mentioned in Section 1, 3D geometric
analysis can effectively assess landslides through geometry, deformations, and kinemat-
ics [35]. The 3D geometric features are more robust and consistent over time than spectral
features [22,23,52,53]. Today, more research focuses on 3D geometric analysis to detect, mon-
itor, and predict landslides (e.g., 3D change detection to compute volume or slope changes).
In this section, we will describe the most common strategies to investigate landslides
using 3D geometric analysis, including the conventional methods [3,18,43,80], fusion-based
methods [24,46–49], and artificial intelligence (AI)-based methods [17,65,80,96,97,101–106].
Conventional methods are based on field surveys, manual calculation, visual interpretation
of 3D data, and statistical and mathematical calculations of 3D data [3,18,43,80]. Fusion-
based methods, on the other hand, integrate information from multiple sensors, platforms,
viewing angles, and data types to provide comprehensive and more accurate information
about the surface subject to landslide hazards [24,46–49]. Meanwhile, AI-based methods
are based on automatically analyzing geometric features extracted directly from 3D data.
AI-based methods, including machine learning (ML) and deep learning (DL), dominate
today’s research and are heavily investigated. They often apply 3D geometric analysis
through classification, object-based image analysis (OBIA) [47,51,107,108], and time series
analysis [79,82,106]. Their methods are mostly based on feature-level operations to extract
and analyze 3D geometric features over time.
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3.1. Conventional 3D Geometric Analysis Methods

Field surveys are the oldest means to investigate landslides [3,18,43,80,109]. They
include in situ measurements of elevations and slopes using traditional surveying tools
(e.g., total station) [87,109]. Moreover, surveyors inspect terrain conditions to find signs of
surface and sub-surface deformations and displacements for manual calculation [87,109].
Field surveys provide direct access to concealed areas such as densely vegetated forests,
which allows real-time monitoring and accurate inspection of small-scale features [109].
Nevertheless, fieldwork has many limitations, such as being expensive in terms of time
and cost, may be subject to human mistakes or errors from instrumental, and can provide
very limited data over time. On the other hand, remote sensing technology facilitated
visual inspection and analysis of 3D data for small and large-scale mapping of landslide
areas. The visual inspection identifies signs of terrain deformations (e.g., fracture, crack,
and displacement) using elevation maps, slopes, aspect, surface roughness, topographic
wetness index, etc. (Figure 4). However, visual inspection can be impacted by the low
spatial resolution of the 3D data (e.g., DEM and DSM) to show small details. Topographic
and geomorphological analysis is performed to calculate critical 3D geometric features
of landslides, such as slopes, hill shade, curvature, etc., which can be directly computed
from the elevation data. These geometric features can be used directly in the visual
inspection or further processed to provide more details on the terrain’s past and present
conditions. Their analysis can include arithmetic calculations, statical and probabilistic
analysis, or numerical modeling. Arithmetic calculations involve simple calculations such
as differencing of elevation or slope maps; thus, they can be used to calculate volume and
changes in elevation and slopes. Statistical and probabilistic methods are used for detection,
prediction, and correlating triggering factors. They include Bayesian, Dempster–Shafer
methods, fuzzy logic, bivariate, and multivariate analysis [110,111]. Numerical methods
are used to reduce the uncertainty in the data, model, and parameters for landslide studies,
where they use methods such as linear regression, least squares, optimization, etc.
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3.2. Fusion-Based Methods

Data fusion is one of the most common approaches applied in RS and landslide studies,
where auxiliary information is used to improve interpretation and analysis. For 3D geomet-
ric assessment of landslides, data fusion has been applied to combine 3D data from multiple
sources, dates, angles, and different modalities (e.g., spectral images) [24,46–49,113,114].
Data fusion can support low-accuracy data due to complex terrains (e.g., hilly regions) and
low-cost sensors, thus providing a comprehensive and more accurate 3D representation
of landslide regions and their geometric information [24,46–49,113,114]. For example, the
sensor’s viewing and sun illumination angles have been proven to impact the quality
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and accuracy of the generated DSMs using photogrammetric methods [38,75]. Multi-
view images contributing to DSM generation can provide more details and information
on landslide-prone areas by viewing the scene from different perspectives [45], whereas
integrating point clouds from airborne and terrestrial lidar in complex regions such as
hilly regions can improve topographic mapping [45]. Multiview 3D data fusion provides
an opportunity to cover occluded and shadowed regions between objects and sensors,
improving 3D data collection and quality. On the other hand, multisource 3D data fusion
can enhance the accuracy and precision of 3D input data by addressing the limitations
of individual sensors [24]. For instance, combining a pair of DSMs derived from pho-
togrammetry and airborne lidar, with the latter providing a high-resolution elevation map,
can improve the details and identify small-fine features related to landslides. Neverthe-
less, combining multisource 3D data can be problematic due to the varying uncertainties
from different sensors, their calibration procedures, and preprocessing algorithms [45,113].
These uncertainties must be considered during the fusion process to reduce the effect of
these sensor differences [45,113,115]. Some researchers have emphasized the importance of
spectral image-guided data fusion with 3D geometric data to enhance landslide detection
and recognition. The 3D data provides information on the terrain’s geometry, such as the
steepness of slope and depth of fractures. In contrast, spectral images encapsulate infor-
mation about surface properties such as color, texture, LULC, vegetation indices, moisture
indices, etc. [48,107]. Integrating multimodality data, i.e., elevation and color information,
requires feature-level fusion, where features from different data types are extracted and
transformed to be equivalent and compatible to perform data fusion. The color information
is extremely useful in completing and enriching 3D terrain models and profiles. It can
describe important features of the surrounding landslide environment, including existing
vegetation, soil type, sediments, etc.

Although data fusion can enhance the accuracy and precision of topographic mapping
of landslides, it still faces some challenges and limitations that can impact its performance.
One significant challenge of data fusion is the timing in which data are acquired or gener-
ated. On many occasions, spatiotemporal inconsistencies are likely to occur due to natural
or human actions on the surface over time. Spatiotemporal inconsistency may impact
multitemporal data comparison and change analysis of 3D data to assess landslides over
time, providing inaccurate information. Additionally, fusion-based methods are sensitive
to geometric distortions in the data. Thus, they must apply rigorous georeferencing and
data registration before fusion to ensure data overlap precisely in space.

3.3. Artificial Intelligence (AI)-Based Methods

The growing demand for automated and accurate landslide mapping led to the de-
velopment of AI-based methods, including ML and DL methods. These methods are
considered data-driven approaches to learning data association and patterns through com-
plex models. They have been intensively used in landslide studies for their remarkable
performance [37,65,94,98,103,116]. They can process 3D data and extract relevant 3D geo-
metric features to provide information about the terrain characteristics (i.e., topography)
and surface conditions (e.g., precipitation patterns and land cover changes) [37,94,96].
Popular ML methods include support vector machine (SVM), random forest, decision
trees, clustering, etc. [37,94,96]. In contrast, DL methods use convolutional neural net-
works (CNN), generative adversarial networks (GANs), recurrent neural networks (RNN),
long short-term memory (LSTM), attention, and transformers [65,95,104,116–118]. Studies
comparing the performance of ML and DL models for landslide detection have found
that ML approaches have limited capabilities in handling complex spatial, spectral, and
geometric features and can only achieve moderate accuracies [65,95]. On the contrary, DL
approaches are more sophisticated because of their network structures, which allow them
to extract more complex features and provide high accuracy and precision on the location
and existence of landslides [65,95]. DL methods have generally outperformed ML methods
in landslide investigation [65,80,105]. In general, the performance of AI approaches varies
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by their ability to extract complex features, process large-scale datasets, explore spatiotem-
poral patterns, and generalize across different datasets and landslide areas [80,95]. After
reviewing the works of 3D geometric analysis of landslides, AI approaches can efficiently
perform object-based image analysis (OBIA) and time series analysis to detect and compare
critical features of landslides, which will be discussed in the following:

• OBIA methods group data into unique segments based on their spatial, spectral,
temporal, and geometric characteristics [47,51,108]. For 3D geometric analysis of
landslides, the classic pipeline of OBIA involves three-step segmentation [119,120], 3D
geometric feature extraction [47], and classification to predefined categories (e.g., type
of landslide) [108]. Postprocessing (e.g., filtering) can also be used to enhance segments.
OBIA allows efficient decision-making capabilities, such as change detection (e.g.,
slope or volume changes) [107] or identification of critical signs of landslides (e.g.,
steep slopes or deposited materials) and their properties (e.g., area and shape). OBIA
can improve landslide detection and evaluation. Nevertheless, a significant challenge
is to provide a precise and accurate separation of distinct classes to avoid over or
under-definition of the landslide areas. The performance of OBIA depends on data
quality, surface complexity, and the choice segmentation and classification algorithms
and their input parameters. 3D data will likely have noise and errors due to sensor
limitations, acquisition conditions, and pre-processing algorithms, which can directly
impact OBIA and produce misclassifications. The spatial resolution can impact the
quality by allowing more detailed analysis of fine features and, most importantly,
can reduce inter- and intra-class variability [32,107,119]. These distortions are usually
impossible to avoid and will likely influence the accuracy and precision of landslide
mapping [108,121]. Furthermore, the performances of OBIA can vary based on surface
or terrain complexity. For example, terrestrial lidar can be limited in urban areas due
to occlusions from high buildings, trees, and shadows, which may result in low-quality
3D data in these areas [19]. Finally, there are many algorithms for classification and
segmentation. Still, the choice of algorithm and input parameters may vary based on
data and may require trial and error to determine the best parameters. For example,
scale plays a major role in segmentation and may require several scales to determine
the best representation of the landslide area.

• Time series analysis is highly important for 3D geometric analysis of landslides as
it allows continuous and real-time monitoring of the event. DL methods perform
exceptionally when processing time series data and finding spatiotemporal patterns.
Methods such as LSTM and RNN show a remarkable ability to capture time dependen-
cies between data and, thus, are suitable for analyzing the change in the multitemporal
and time series 3D data [104,106,122,123]. For instance, the authors in [110] have
proposed a modified version of LSTMs called cascade-parallel LSTM-CRF to predict
landslides by modeling the relationship between environmental factors such as topog-
raphy, land cover, hydrology, and geology. Attention and transformer mechanisms
have recently shown superior performance in many RS environmental applications,
including landslide studies [50,104]. For example, the work in [50] uses an attention
mechanism in the network to detect landslides in forested areas, where they integrate
multimodal data such as optical images, DEMs, and hill-shade images. They com-
pared two aspects: (1) the inclusion of 3D geometric features like elevation data and
hill-shade images with color information versus only color information, and (2) the
performance of the attention network compared to other networks (e.g., HRNet, Seg-
Net, and ResUNet). They found that 3D geometric features can enhance the accuracy
and precision of landslide detection in forested areas for all networks. They have also
shown that their proposed attention network can achieve the best detection accuracy.
Unfortunately, only a few studies have explored the use of attention and transformers
in RS-based landslide investigations, and they are good candidates for future research.

Whereas AI methods offer great potential for landslide studies, two main challenges
arise from using these approaches, which can be summarized as follows:
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• Data quantity, quality, and distribution:

AI methods are data-hungry approaches; they require large amounts of training data
with high quality. Training data must be well-distributed to equally cover all sorts of varia-
tions and compositions of landslides, including the triggering factors (e.g., soil moisture
and rainfalls), signs (e.g., steep slopes, shallow or deep landslides, roughness, vegetation
covers), geometric properties (e.g., shape and size), etc. Compared to the total global land
surface area, landslide events are relatively rare, resulting in imbalanced data where land-
slide occurrences are significantly outnumbered by non-landslide instances [124,125]. This
data imbalance is a common issue when dealing with classification problems, especially
on DL models. The imbalanced data can limit the model’s ability to generalize and accu-
rately predict landslide occurrences. There are several ways to mitigate the effects of data
imbalance, the most common of which is [124]. Furthermore, landslide inventories and
ground truth information are necessary to train and validate ML and DL models. However,
obtaining high-quality data for training is very challenging due to uncertainties arising
from processing algorithms, surface cover (e.g., dense vegetation), acquisition conditions
like weather, or inaccessible regions like high mountains where GCPs cannot be set up.

• Feature representation and model generalization:

Because landslides can be influenced by a single factor or even multiple factors leading
to different types of land deformation, selecting the most representative features (vari-
ables) for either ML or DL models can be very challenging. These features include terrain
attributes, land cover, rainfall patterns, and geological data. Selecting proper features,
determining which features contribute the most to landslide occurrence, and incorporating
them effectively into the model’s architecture are critical steps that usually require domain
knowledge [94,95]. Transfer learning (by transferring knowledge from past experiences to
new scenarios) is one of the most challenging tasks in model generalization using ML or
DL models on landslide studies [114]. However, models trained on data from a specific
area may not generalize well to other areas with different geological and environmental
conditions [97,98,126]. Thus, developing a model that can transfer landslide knowledge
across different geographical areas is a significant challenge. A few solutions exist to im-
prove the results, albeit with limited success, such as increasing the number of training data,
controlling patch size based on the detail level required, data augmentation, regularization,
transfer learning, etc. [60,97].

4. Landslides Applications Using 3D Data from Remote Sensing Techniques

Most RS and landslide reviews focus on three main applications: detection, moni-
toring, and prediction, which have been discussed under the context of 2D image anal-
ysis [2,3,18,127]. On the other hand, we have not yet discussed the role of 3D geometric
analysis in improving landslide applications. This section will discuss examples that bene-
fit from 3D geometric analysis for landslide studies. A summary of these applications is
shown in Table 3.

1. Landslide inventory mapping refers to systematic data collection and continuous
recording of information about landslides in specific regions. Research centers and
local authorities often perform this to create a complete profile on the area’s history of
or upcoming landslide disasters. 3D geometric analysis facilitates and enhances sev-
eral applications in this context, including detection and recognition [62,80,108,127],
monitoring and tracking [6,28,32,64,70,79,82,90,128–130], and classification of land-
slides [1,130]. Detection and recognition collect information about landslides’ status,
causing factors, and signs [62,80,108,127] (Table 3). In contrast, monitoring and track-
ing the evolution of landslides is essential for decision-making and control of the
disaster [6,28,32,64,70,79,82,90,128–130]. On the other hand, the classification is often
performed to determine the type of movement associated with these disasters and their
direction [1,130]. 3D geometric analysis has generally enhanced feature extraction of
more stable and meaningful 3D features strongly correlated to landslides. Besides, the
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recent development of platforms, sensors, and algorithms provides various means to
collect 3D data to monitor landslides in real-time or on-site and identify changes over
time. An additional benefit of 3D data is that varying acquisition conditions influence
them less than 2D data collected from optical sensors.

Table 3. Landslide applications in the remote sensing field.

Applications Examples Highlights

Landslide
inventory
mapping

Detection and recognition:

• Status: past or active
• Influencing factors: rainfalls, earthquakes,

soil moisture content, lithology, etc.
• Signs: scarps, cracks, vegetation removal,

volume changes, etc.

Monitoring and tracking the progress
Classification:

• Type of movement: flow, fall, slide, etc.
• Depth: shallow or deep
• Direction of movement: rotational,

translational, or both

• Enhanced feature extraction of more stable
features related to landslides, e.g., steep
slopes, height variations, and land cover
changes

• 3D data is more robust to acquisition
conditions compared to optical data.

• Current advances in platforms, sensors,
and algorithms provide various means to
collect 3D data.

• Real-time and on-site monitoring
• Time series analysis for change detection

3D modeling and
reconstruction

3D Reconstruction of damaged areas

• Infrastructure
• Cities
• Roads
• Heritage areas
3D Visualization

• Surface changes
• Sub-surface deformations
• Terrain profile

• Accurate and precise representation of the
terrain.

• Understand the terrain’s topographical and
morphological changes.

• Estimating changes in the volume
• Allow 3D time-series analysis

Disaster
prediction,

assessment, and
management

Pre- and post-disaster evaluation and simulation

• Disaster evaluation
• Depth
• Volume estimation
• Calculation of speed of fall
• Failure direction

Environmental management and conservation

• Early detection and warning of landslides
• Effective danger level determination
• Evaluate losses and renovation plans.
• Direct calculation of the deposited or

depleted material
• Ecosystem and biodiversity preservation
• Rapid disaster response due to airborne

and terrestrial platforms

2. 3D modeling and reconstruction are prime endeavors for landslide studies in
RS [24,27]. It can provide a fairly realistic 3D visualization of the terrain and its topo-
graphic characteristics [24,26,27,67]. The 3D model and visualization of landslides
enable the identification of surface changes (e.g., deposited or eroded materials),
sub-surface deformations (e.g., 3D displacements), and the terrain profile. 3D time
series analysis enables quantifying losses, visualizing 3D deformations, and creating
a detailed terrain profile. It is possible to evaluate the extent of a hazard and its
implications on urban and natural areas through accurate volume computation. Nev-
ertheless, documenting the details of urban areas using 3D data can be beneficial to
reconstruct cities, infrastructures, and heritage locations after a devastating disaster.

3. Disaster prediction, assessment, and management are the main reasons for landslide
investigation in the RS field [2,33,59,70,114,127,131]. The prediction of landslides is
the pre-disaster measurement, essential to prevent and minimize losses in lives and
the economy. It facilitates the preparation and, if possible, mitigation of the landslide
disaster in advance. On the other hand, the assessment is a step taken during and
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after the landslide disaster to monitor its progress, speed of fall (happening in the
short or long term), failure direction, and extent of the disaster. All these measures
can be achieved effectively through 3D geometric analysis to accurately measure
horizontal and vertical displacements, evaluate the rate/speed of deformation, and
identify pre-failure signs (e.g., cracks, scarp, and changes in slopes). Airborne and
terrestrial platforms have facilitated rapid responses to disasters because they can be
operated at any time and place, facilitating close and timely event monitoring.

Overall, 3D geometric analysis is crucial in landslide studies, providing comprehensive
and accurate information on topography, disaster severity, impacts, etc. Analyzing 3D data
in RS contributes to more efficient responses and evaluations of landslides to provide safer
and more resilient communities in regions susceptible to landslides.

5. Summary and Future Directions

Remote sensing technologies are effective tools for investigating disastrous landslide
events. The 3D data from lidar or photogrammetry methods have significantly improved
research on understanding and responding to landslide hazards. It helps applications
contribute to landslide inventory mapping, 3D modeling and reconstruction, disaster
prediction, assessment, and management. The 3D data are a valuable source of information
to understand the various causes and dynamics of terrain failures. The 3D geometric
analysis of landslides primarily relies on geometric features extracted from 3D data such
as elevations, slope, aspect, hill-shade, etc. These features are more robust and consistent
over time than conventional spectral features. The 3D geometric analysis allows effective
assessment of landslide signs and hazard levels. This can be achieved by evaluating
changes in surface cover, geometry, and kinematics. In contrast, the danger level is assessed
by estimating changes in volume, horizontal and vertical displacements, and speed and
direction of the terrain failure. Although 3D data can provide higher accuracy and precision
for landslide applications, their quality may be impacted by several factors, including the
type of sensor and platform, scene complexity, acquisition conditions, and temporal and
spatial resolutions. The 3D geometric analysis methods are designed to consider these
variations in 3D data concerning landslide regions.

Improving the efficiency of 3D geometric assessment of landslides requires being
familiar with (1) 3D data properties and generation methods, (2) landslide causes, mech-
anisms, and implications, and (3) the 3D geometric analysis methods and their intended
applications. In the following, we summarize some of the main benefits, challenges, and
opportunities for future works related to 3D geometric analysis of landslides:

• Selecting the type of 3D data is a critical decision due to the diversity of sensors,
platforms, and landslides occurring in nature. The choice of sensor and platform are
often based on the budget, data availability in time, landslide area characteristics (e.g.,
scale, extent, surface content, obstructions, size, etc.), and application (i.e., detection,
monitoring, or prediction). For example, real-time and continuous monitoring of
landslides often requires stationary sensors on terrestrial platforms to record and
collect 3D data continuously. In contrast, it is recommended to use 3D data from
spaceborne sensors that can provide large area coverage for mapping large-scale
areas for landslides. However, this may compromise the spatial resolution of the
elevation maps, thus reducing the level of detail and precision of the geometric
features extracted from the data. Therefore, it is important to understand and consider
the limitations of each sensor and platform and the type of 3D data they generate in
complex landslide regions. This understanding enables encapsulating their unique
uncertainties to improve the accuracy and precision of the landslide application, for
example, multisource data fusion to enrich the detail level.

• The selection of the 3D geometric analysis method is a key factor for an effective
landslide investigation. As mentioned in Section 3, there are three groups of methods:
conventional, fusion-based, and AI-based. Each method operates differently to explore
3D data and geometric information with unique benefits and limitations that control
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the precision and accuracy of landslide applications. Conventional methods (e.g.,
field surveys, visual inspection, and topographical calculations) provide rapid, direct,
and simple 3D geometric analysis of landslides. However, they may include model
uncertainties, human errors, and high processing costs and times. Fusion-based
methods are considered powerful approaches to combine multitemporal, multisource,
multiview, and multimodal data to enrich the 3D geometric analysis. They can leverage
limitations and advantages from individual sensors and provide a valuable and
complete terrain profile for landslide 3D geometric assessment. However, they can
be sensitive to geometric distortions and unique sensor uncertainties, which require
special considerations. AI-based methods can perform better in 3D geometric analysis
of landslides due to the automatic processing of large-scale areas and amounts of
data with high accuracy. However, they may be challenging in terms of the effective
exploitation of spatiotemporal patterns and generalization.

• Automated detection, monitoring, and prediction of landslides can be achieved ef-
fectively using AI-based methods. ML and DL methods offer the following advantages:
First, their models can capture spatiotemporal patterns from 3D data, thus relating
data in space and time. Second, they are trained on real instances and events of
landslide data and, thus, can provide high accuracy when detecting and predicting
landslides due to learning from previous knowledge. Third, 3D geometric features
can be automatically extracted from 3D data such as slope, hill shade, curvature,
roughness, etc. These features can be used for landslide applications such as classifica-
tion based on type, size, hazard level, etc., and quantify important 3D parameters of
landslides, including 3D displacements and changes in volume. AI-based methods,
specifically DL methods, are becoming increasingly available and constantly improv-
ing performance. However, some challenges still exist, limiting the performance of
AI-based methods for landslide studies. For example, there is a lack of training and
ground truth data to capture all variations and extents of landslides as they exist in
nature. This also causes the issue of an unbalanced distribution of the training data
and biased models toward the learned instances and features. Moreover, this limits
the generalization and transfer learning across different landslide sites. Finally, state-
of-the-art methods such as attention and transformers deserve more recognition in the
field of 3D geometric assessment for landslide studies. Attention and transformers
have shown superior performance and ability to capture long-term time dependencies
using complex features.

• 3D geometric analysis considerations can enhance the landslide application. For
example, preprocessing of 3D data such as geometric registration and filtering. The
registration is intended for the geometric alignment of 3D data in space and time,
crucial for accurate data comparison over time. On the other hand, data filtering
can reduce noise and errors in 3D data before applying the 3D geometric analysis
method, reducing inherited errors and enhancing data quality. Another factor that
can be considered is the spatial resolution for optical images used in photogrammetry
or image-derived elevation maps. Spatial resolution is highly correlated with the
accuracy and precision of geospatial data, where high resolution can better represent
the terrain, its features, and the level of detail extracted from 3D data. As a result, the
high resolution can enhance the overall 3D geometric analysis of landslides.

In summary, landslides occur primarily due to changes in the internal structure of
terrain layers. Analyzing the geometry of 3D data can significantly improve landslide
applications. The 3D data introduces many 3D geometric features (e.g., elevations, slopes,
aspects, etc.) that can be analyzed and integrated to boost the performance of landslide
detection, monitoring, and prediction. Nonetheless, investigating landslides entails a com-
prehensive understanding of the cause-and-effect relationships in nature. The ongoing
development in RS technologies provides countless means to acquire 3D data; however,
choosing the appropriate data source can be challenging, as it involves determining the
level of detail and uncertainties introduced in each type of 3D data. Similarly, 3D geometric
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analysis methods are vast and are developing rapidly; some methods, such as those incor-
porating attention and transformer mechanisms, appear promising and deserve further
notice in landslide detection, monitoring, and prediction. Knowing the opportunities and
challenges in these areas can provide insights for the RS community to improve landslide
applications and risk assessment and management, thus providing better decision-making
capabilities to mitigate the disaster.
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