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Abstract: Benggang is a type of erosion landform that commonly occurs in the southern regions of
China, posing significant threats to local farmland and human safety. Object-based classification
(OBC) can be applied with high-resolution (HR) remote sensing images for detecting Benggang
areas on a large spatial scale, offering essential data for aiding in the remediation efforts for these
areas. Nevertheless, traditional image segmentation methods may face challenges in accurately
delineating Benggang areas. Consequently, the extraction of spatial and textural features from
these areas can be susceptible to inaccuracies, potentially compromising the detection accuracy
of Benggang areas. To address this issue, this study proposed a novel approach that integrates
Segment Anything Model (SAM) and OBC for Benggang detection. The SAM was used to segment
HR remote sensing imagery to delineate the boundaries of Benggang areas. After that, the OBC
was employed to identify Benggang areas based on spectral, geometrical, and textural features. In
comparison to traditional pixel-based classification using the random forest classifier (RFC-PBC) and
OBC based on the multi-resolution segmentation (MRS-OBC), the proposed SAM-OBC exhibited
superior performance, achieving a detection accuracy of 85.46%, a false alarm rate of 2.19%, and
an overall accuracy of 96.48%. The feature importance analysis conducted with random forests
highlighted the GLDV Entropy, GLDV Angular Second Moment (ASM), and GLCM ASM as the
most pivotal features for the identification of Benggang areas. Due to its inability to extract and
utilize these textural features, the PBC yielded suboptimal results compared to both the SAM-OBC
and MRS-OBC. In contrast to the MRS, the SAM demonstrated superior capabilities in the precise
delineation of Benggang areas, ensuring the extraction of accurate textural and spatial features. As
a result, the SAM-OBC significantly enhanced detection accuracy by 34.12% and reduced the false
alarm rate by 2.06% compared to the MRS-OBC. The results indicate that the SAM-OBC performs
well in Benggang detection, holding significant implications for the monitoring and remediation of
Benggang areas.

Keywords: Benggang; soil erosion; remote sensing monitoring; segment anything model

1. Introduction

Benggang (Figure 1), a special type of erosion landform caused by surface currency
and gravity, is prevalent in the southern regions of China and has been often referred to as
an “ecological ulcer” [1]. There are some similar erosion landforms, such as “Calanchi” in
Italy, “Crumbling” in Japan, and “Lavaka” in Madagascar in southern Africa [2]. Although
these landforms are not completely consistent with Benggang in the material conditions
and development mechanisms [3], this water-driven soil erosion poses a serious threat to
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global land degradation [4]. Fine particles in the accumulated material within Benggang
areas are susceptible to runoff erosion during precipitation [5,6]. Consequently, Benggang
is at risk of collapse during heavy rainfall, leading to significant harm to both personnel
and land resources. The Chinese government has placed significant emphasis on the
prevention and control of Benggang erosion. The notice issued by the Office of the Ministry
of Water Resources of China in 2021 concerning the implementation plan for soil and
water conservation during the “14th Five-Year Plan” period explicitly underscores the
establishment of a prevention belt in the southern mountainous and hilly areas [7]. This
strategy places a particular emphasis on the control of Benggang and the comprehensive
management of soil erosion in small watersheds [8].
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The identification of Benggang areas is the primary task in preventing and controlling
Benggang, as well as mitigating its associated ecological and environmental issues. While
there is a substantial body of research focused on on-site measurements using technologies
such as 3D laser scanning and Real-Time Kinematic (RTK) positioning systems [10–14], the
number of studies employing remote sensing methods for large-scale monitoring of these
collapses is significantly fewer in comparison. Traditional Benggang survey techniques
primarily involve manual surveys, which are straightforward but time-consuming and
resource-intensive, making them unsuitable for long-term monitoring [15,16]. Remote
sensing techniques can repetitively monitor land surfaces at a large spatial scale, holding
great potential for detecting Benggang areas. Many researchers have investigated the
capability of remotely sensed images for the detection of Benggang area [17–20]. These
investigations collectively demonstrate that high-resolution (HR) images acquired by satel-
lites and unmanned aerial vehicles (UAVs) offer an abundance of spatial details, enabling
accurate identification of Benggang areas [21].

Traditional methods for Benggang detection in HR images rely on visual interpre-
tation [17,18,22,23]. While this approach can yield high accuracy, it is extremely time-
consuming and labor-intensive, presenting significant challenges for large-scale Benggang
detection. In response to the challenges posed by visual interpretation, automatic classifica-
tion techniques have been applied to automate the identification of Benggang areas in HR
images [22]. Nevertheless, these classifiers were usually operated at a pixel level, suffering
from the salt-and-pepper noise [24], and solely relying on the spectral information of HR
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images. Due to the analogous spectral features shared between Benggang areas and other
land cover types such as barren land, harvested farmland, and mining zones, pixel-based
classification (PBC) is highly likely to encounter challenges in effectively discriminating
Benggang from these land cover categories [25].

To tackle the problems of PBC, object-based classification (OBC) has been used to
detect Benggang areas [22]. Typical Benggang systems generally consist of five parts [26],
which are, from top to bottom: upper catchment, collapsing wall, colluvial deposit, scour
channel, and alluvial fans. Among these, the collapsing wall is the most active part of
mass movements, characterized by a concentrated distribution of severe slides, collapses,
and slumps. The scour channel, on the other hand, is the site for transporting sediments
and runoff erosion [27]. Due to their dynamic factors and physical properties, these two
areas exhibit distinct gully shapes [28], and the deeper the main gully, the more high-angle
joints there are along the same trend [29]. This results in collapsing gullies displaying
distinct textural features in remote sensing images, which is a key feature that aids in their
identification in high-resolution images [30].

Leveraging OBC allows for the extraction and utilization of textural and spatial fea-
tures, which can yield superior results compared to pixel-based approaches [25]. However,
accurately delineating an entire Benggang area as a single image object remains a signifi-
cant challenge, restricting the extraction of accurate textural information. Commonly used
image segmentation methods such as multi-resolution segmentation (MRS) frequently pro-
duce fragmented segmentation results to delineate accurate boundaries of land parcels [31].
This inadvertent division of Benggang areas into multiple objects undermines the compre-
hensiveness and accuracy of textural information, ultimately constraining the accuracy of
Benggang area detection.

Recently, META AI. introduced a cutting-edge model known as the Segment Anything
Model (SAM) [32]. The SAM stands out as a state-of-the-art solution, showcasing its ability
to effectively segment individual objects from their background while also demonstrating
zero-shot generalization capabilities. Despite the absence of remote sensing images in its
training dataset, the SAM has demonstrated remarkable performance in the segmentation
of remote sensing imagery [33]. The SAM has been applied in several remote sensing
applications, including an improvement in the Cropland Data Layer by applying Sentinel-2
data [34], universal crater detection [35], etc. Therefore, SAM holds immense potential for
achieving precise Benggang area delineation without necessitating additional specialized
training, which can be the most time-consuming part of traditional methods to extract
Benggang [36]. The objective of this study was to propose a novel approach that combines
the SAM with OBC to detect Benggang areas in HR images.

2. Study Area and Data

The study area is Wuhua County, which is located in Meizhou City, Guangdong
Province, China. Guangdong province hosts a significant number of Benggang sites,
totaling 107,900, covering 82,760 hectares, which represents 53.6% of all Benggang sites
in the southern China red soil region [37,38]. In this region, Wuhua County stands out
as a classical Benggang distribution area, the severity of Benggang erosion of which is
extremely rare in the southern region and even in the entire country [39]. The climate in
this area is a subtropical maritime monsoon climate, with an average annual temperature
of 20.5 ◦C and an average annual precipitation of 1496.5 mm, providing favorable climatic
conditions for Benggang development. The granite weathering crust is thick, ranging from
40 to 60 m in thickness, and is densely distributed, providing ample material basis for
Benggang development [40]. Additionally, this area is characterized by hills below 500 m
in altitude, with a widespread distribution of red soil [41]. Human activities are frequent
in this area, leading to intensive Benggang development and severe soil erosion. The area
affected by Benggang erosion is 190 km2, with a total of 22,117 Benggangs, among which
38% of the Benggangs have a depth and width of more than 10 m, with a Benggang density
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of approximately 116 per km2, making it one of the most densely distributed areas of
Benggang in southern China [42].

A HR satellite imagery from Google Maps, captured on 20 October 2022, was obtained
showing the concentrated distribution of Benggang in Wuhua County (Figure 2). The data
source is Image 2023 CNES/Airbus, with a spatial resolution of 2.18 m, featuring RGB
three spectral bands. There are also a certain number of mining areas, bare land, dirt roads,
and high soil content water with similar spectral information to Benggang included in the
image, making it an ideal area for developing and testing Benggang detection methods.
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3. Methodology

A new approach that integrates the SAM and OBC was proposed for detecting Beng-
gang areas in HR images. The proposed approach consists of three main parts (Figure 3):
image segmentation, feature extraction, and classifications based on random forests. Firstly,
in the segmentation stage, the images were imported into the SAM, and six parameters
were adjusted to achieve the best segmentation results while preserving the integrity of the
Benggang objects as much as possible. Secondly, the segmentation results yielded by the
SAM were converted to vector polygon format and for image segmentation in eCognition
software (Version 9.0.1; Build 2543 × 64) [43], which is commonly used to conduct OBC [44].
A variety of textural, geometrical, and spectral features were extracted using the eCognition
software from all the image objects. Finally, these features were then input into a random
forest classifier to develop binary classification, resulting in Benggang detection results.

3.1. Image Segmentation Using the SAM

The architecture of SAM mainly consists of three parts [32]. The first part is the
image encoder, which is used to compute image embeddings. Masked Autoencoders are
employed in this part, pre-trained with Vision Transformer, to handle HR inputs minimally.
The second part is the prompt encoder, responsible for computing prompt embeddings.
Lastly, the mask decoder is utilized for real-time mask prediction. The mask decoder
effectively maps image embeddings, prompt embeddings, and output tokens to masks.
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There are two optional modes of this model. The first mode is interactive segmen-
tation, which allows users to input bounding boxes, points, or text prompts to perform
segmentation. It differs from the sample selection in eCognition classification, where se-
lecting a certain number of samples can divide all objects of that category. In interactive
segmentation, only the specified object is segmented, without segmenting other objects
of the same category. Therefore, when dealing with large amounts of data and numer-
ous objects in remote sensing images, the interactive supervised method is not suitable
for segmentation. The second mode is fully automatic segmentation, where the model
performs segmentation on all identified objects in the entire image after setting the given
six parameters to reasonable values. In the experiments, the parameters were iteratively
adjusted to their optimal values using variable step size (Table 1). If the optimal parameter
values yielded results like the default values, the default values were preferred.

Table 1. Detailed parameters set for the SAM.

Parameter Name Final Parameters

Sampling-point-density 360
IOU-threshold 0.86

Stability-score-threshold 0.92
Number-of-layers 1
Downscale-factor 2

Minimum-mask-area 100

The sampling point density was tested with a step of 20, ranging from 100 to 500
in 21 different results. The more sampling points used, the denser and more detailed
the segmented masks became, but the computation time increased. In the experiment,
when the value was less than 300, a significant number of details were lost. The range
between 300 and 400 showed good results, with minor differences in segmentation between
adjacent images. When the sampling point density reached 360, the saturation point was
basically achieved. Therefore, a value of 360 was chosen for subsequent experiments. The
IOU threshold was tested with a step of 0.05, ranging from 0.50 to 1.00 in 10 different
results. Prior to 0.85, there were many fragmented and inaccurate masks. At a threshold of
0.90, many valid masks were already lost, while a threshold of 0.85 retained a few invalid
masks. By decreasing the step size to 0.01 and experimenting between 0.85 and 0.9, the
best results were observed at 0.86 and 0.87, with a loss of valid masks starting at 0.88.
Therefore, a default value of 0.86 was chosen for the next experiments. The stability score
threshold was tested with a step of 0.05, ranging from 0.50 to 1.00 in 10 different results.
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As the stability score threshold increased, the overall size of the masks decreased. When
it reached 1.00, only a few small area masks were left. Results before 0.85 had poorly
fitting mask boundaries, while good performance was observed between 0.9 and 0.95. By
decreasing the step size to 0.01 and experimenting between 0.9 and 0.95, a value of 0.92
was chosen for subsequent experiments. The number of layers was set to 1 in this study.
This parameter was used to store segmented results at different scales. However, since only
one layer of precise segmentation of rockfall boundaries was needed, this parameter was
set to 1 and no further optimization was performed. The default value of the downscale
factor was 2. Values of 1 and 4 were also tested, but no significant effects were observed.
Therefore, the default value of 2 was used. The minimum mask region area was tested
with a step of 10, ranging from 0 to 450. When the minimum area was set to 0, masks
were not discarded due to fragmentation, resulting in a large number of invalid masks
with fragmented edges. When the minimum mask area was set to 300, some smaller
rockfall areas were already classified as background and could not be segmented. This
phenomenon became even more severe at an area of 400. Based on the characteristics of this
image, a balance between the number of fragmented masks and the number of undetected
objects, a value of 200 was chosen for the subsequent experimental group. Finally, the
optimal segmentation parameters were determined through iterative optimization and
visual interpretation (Table 1).

The SAM experiment was conducted on a remote server GPU with the following
operating environment: Driver Version: 470.94, CUDA Version: 11.4, Python: 3.8.16,
PyTorch: 1.7, torchvision: 0.8. The input data was the HR satellite imagery, and the output
result was a dictionary containing mask information, including the region and ID of each
mask. The segmentation result could be directly viewed using the plot function in PyCharm.
To segment Benggang area in eCognition, the dictionary was outputted as a raster file.
Each mask had independent pixel values, with a background value of zero. In ArcGIS, the
raster image was georeferenced with the satellite imagery to ensure pixel alignment and
converted to vector polygons for easier import and further classification in eCognition.

3.2. Feature Extraction

To obtain SAM-based segmentation result, the vector polygons file was imported
into eCognition as a thematic layer to conduct chessboard segmentation on the HR image.
Based on the objects segmented, we selected 3 types of features from 11 major categories:
spectral features, geometrical features, and textural features, totaling 42 kinds of ones.
Spectral features are primarily used to distinguish bare soil (such as landslides, dirt roads,
mining areas, etc.) from other types of land surface (vegetation, water bodies, impermeable
surfaces, etc.); textural and geometrical features are then utilized to differentiate Benggang
from other types of bare land. These features were the inherent parameters of eCognition
and are briefly listed as follows:

• 8 (3 bands × 2 + 2) features related to the spectrum (e.g., Mean of each layer, Standard
Deviation of each layer and Max. Diff.);

• 22 features related to geometry (e.g., area, border, length, and shape index);
• 12 features related to texture (e.g., gray level co-occurrence matrix (GLCM) Homo-

geneity, GLCM Contrast, gray-level difference vector (GLDV) Entropy, GLDV Mean).

For a complete list of the features, please refer to Appendix A.

3.3. Benggang Identification Using the Random Forest Algorithm

Random Forest (RF) is a decision tree ensemble model that has high interpretability
and reliability. It is constructed by randomly selecting feature sets and using training data
bootstrapping [45]. RF has been applied in land cover classification using multispectral and
hyperspectral remote sensing data. Compared to individual decision trees, RF is relatively
stable when dealing with insufficient training data and noise. Moreover, the variables
identified as most important for classification by RF are consistent with expectations [46].
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In eCognition, Benggang object samples and non-Benggang object samples (including
bare soil, mines, roads, farmland, forests, grasslands, and water bodies) were selected. For
specific quantities, please refer to Table 2. Features of all sample objects were calculated and
extracted. Then, the random forest classifier was used, and features including 8 spectral-
related, 22 geometry-related and 12 texture-related ones were used for training the classifier
and classifying the segmentation results.

Table 2. Number of the objects and pixels of each class in the training and validation samples.

Class
Training Samples Validation Samples

Objects Pixels Objects Pixels

Benggang 50 182,453 73 212,530
Non-Benggang 250 1,149,857 / 1,753,550

4. Results
4.1. Benggang Detection Results Obtained with the Proposed Method

To assess the accuracy of Benggang detection, we generated a binary image as the
ground truth (Figure 4a). This image was generated through visual interpretation and
manual delineation, aiming to align the boundary of the Benggang areas as closely as
possible to the actual surface collapse edges. The delineation process aimed for the most
refined Benggang outlines to achieve the most rigorous accuracy evaluation results.
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Benggang areas detected with the proposed method are shown in Figure 4b. The
classification results were compared with the ground truth, and a confusion matrix was
generated to calculate detection accuracy, false alarm rate, and overall accuracy. The
detection accuracy measures the proportion of correctly identified positive instances in a
dataset. It represents how well a model can identify the positive cases correctly. The false
alarm rate measures the proportion of negative instances that are incorrectly classified as
positive. It indicates the rate at which false positives occur. The overall accuracy is a general
measure that calculates the proportion of correctly classified instances, both positive and
negative, in a dataset. It represents the overall correctness of a classification model. In
addition, the Kappa coefficient was also calculated to measure the agreement between
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predicted and actual values in Benggang detection results. The results produced by the
SAM-OBC achieved 85.46% detection accuracy, a false alarm rate of only 2.19%, an overall
accuracy of 96.48%, and a Kappa coefficient of 0.82 (Table 3).

Table 3. Accuracy assessment of different Benggang detection methods.

Accuracy Statistics RFC-PBC MRS-OBC SAM-OBC

Detection accuracy 36.83% 51.34% 85.46%
False alarm rate 8.84% 4.25% 2.19%
Overall accuracy 85.29% 90.95% 96.48%
Kappa coefficient 0.26 0.50 0.82

4.2. Comparison between the Proposed Method with Other Commonly Used Methods

The proposed SAM-OBC was compared with two commonly used methods: the OBC
based on MRS (MRS-OBC) and the PBC based on random forest classifier (RFC-PBC). In
the MRS-OBC, the image segmentation was performed using the MRS, in which three
parameters (scale parameter, shape, and compactness) were adjusted to ensure the best
segmentation results of the MRS as well. The MRS is one of the most popular segmentation
algorithms, which is performed by analogy with segmentation evaluation [47]. The MRS
has three adjustable parameters: scale parameter, shape, and compactness. The scale
parameter controls the size of the segmentation objects. The choice of this parameter, in
relation to the size of the study area, affects the accuracy of the segmentation results [48].
In this study, we tried different scale values between 100 and 400 with a step size of 50
and found that a scale value of 200 produced the most reasonable object sizes. The shape
parameter is used to adjust the weighting of shape and pixel values. A higher shape
value assigns more weight to the shape and less weight to pixel values. We set the default
value for shape as 0.1 to achieve the best segmentation differentiating bare land, including
Benggang, from non-bare land. The compactness parameter is used to adjust the degree of
shape fragmentation in the segmentation results. A larger value produces more complete
shapes, while a smaller value produces more fragmented shapes. We experimented with
9 values for compactness, ranging from 0.1 to 0.9 with a step size of 0.1, and found that a
value of 0.5 resulted in the best segmentation of Benggang. We used the Random Forest
model to perform classification for all three methods. For the two OBC methods, we
employed the RFC in eCognition on the scale of objects, while for the PBC method, we
used the RFC tool in ENVI on the scale of pixels [49].

The results of the three methods (i.e., RFC-PBC, MRS-OBC, and SAM-OBC) are pre-
sented in Figure 4. The SAM-OBC exhibited a close resemblance to the ground truth
(Figure 4b), with a few small Benggang areas being missed while most misclassifications
were due to slight misalignments between the detected Benggang edges and the actual
boundaries. In contrast, the results from the other two methods were notably inferior. The
MRS-OBC achieved a detection accuracy of only 51.34%, with numerous Benggang areas
being missed, including some large ones. Despite correctly identifying most dirt roads,
dirt paths, and mining areas with similar spectral features to Benggang, a considerable
number of false positives were observed, leading to a false alarm rate of 4.25%. The result of
RFC-PBC suffered from a serious “salt and pepper” effect, as shown in Figure 4d, resulting
in a detection accuracy of only 36.83%. Most instances of missed detection were attributed
to sparse vegetation interference within the Benggang areas, where pixels along the Beng-
gang edges were misclassified as non-Benggang. However, nearly all land parcels (e.g.,
bare land, mining area, dirt path, and water bodies with high soil content) with spectral
characteristics like Benggang were misclassified as Benggang, resulting in a false alarm rate
of 8.84%.

4.3. Importance of Features Used in Classification

To reveal the contribution of the various features to the Benggang detection, the feature
importance was evaluated using RF which provides variable importance measures related



Remote Sens. 2024, 16, 428 9 of 16

to the ensemble tree structure and offers stable variable ranking using a voting strategy [50].
The importance of features used in classification was calculated using the RF module in the
R language, and it was evaluated based on mean decrease accuracy (MDA) provided by
the model. This metric measures the importance of features by averaging the decrease in
prediction accuracy when the features are permuted. A higher MDA value indicates that
the feature plays a significant role in improving the model performance. If permuting a
feature leads to a significant decrease in the model’s prediction accuracy, it suggests that
the feature is important for accurate predictions. This metric provides rankings of feature
importance in the RF, which can be applied to identify the features that contribute the most
to model performance and select the most relevant features for further classification tasks.

To evaluate the importance of different features in classification and verify the sig-
nificance of texture as a feature for classification, we selected some Benggang samples in
ground truth, generated by visual interpretation and manual delineation, and extracted
their features. The RF was used to calculate their MDA. In the MDA top 35 feature ranking
chart (Figure 5) output by the RF, there were 12 textural features, 16 geometrical features,
and 7 spectral features. Among them, the top three features were all textural features, two
of which were the GLDV features under the eCognition texture after haralick directory, and
the other one was GLCM features.
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GLDV is a feature descriptor vector obtained through statistical calculations on the
gray-level co-occurrence matrix (GLCM). GLCM is a statistical tool used to describe the
relationship between different pixel gray levels in an image. It captures the spatial rela-
tionship between gray levels by calculating the frequency of occurrence of pixel pairs with
specific gray-level differences [51]. Each element in GLCM represents the frequency of
occurrence of pixel pairs with a specific gray-level difference. Although GLCM provides
information about the direction, spacing, and magnitude of changes in image gray levels, it
does not directly provide distinctive texture characteristics. Therefore, statistical properties
are extracted from the gray-level co-occurrence matrix to quantitatively describe textural
features. Haralick defined 14 textural features [51], including Entropy and Angular Second
Moment (ASM).
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The features we used were calculated in eCognition, in which the GLCM and GLDV
were calculated based on the pixels of an object and were computed for each input layer.
The calculation formula and the interpretation of its parameters are as follows:

GLDV Eentropy =
N−1

∑
k=0

Vk(−lnV k) (1)

GLDV ASM =
N−1

∑
k=0

Vk
2 (2)

GLCM ASM =
N−1

∑
i,j=0

(
Pi,j

)2 (3)

• i is the row number;
• j is the column number;
• Pi,j is the normalized value in the cell i, j;
• N is the number of rows or columns;
• Vk is the image object level, k = 1,. . .n.

4.4. Contribution of Textural and Geometrical Features in Benggang Detection

To more vividly demonstrate the significance of textural and geometrical features in
classification, another set of comparative experiments was conducted. Both MRS and SAM
were used to segment the same image, but during classification, textural and geometrical
features were not utilized; instead, only spectral features were employed to classify the
segmented objects, as shown in Figure 6. Compared to the classification results that
incorporated textural and geometrical features (Figure 4b,c), more Benggang instances
were missed, and more background areas were mistakenly classified as Benggang, leading
to a marked decline in various accuracy metrics (Table 4). Notably, the accuracy of MRS-
OBC actually increased when only spectral features were used, and this phenomenon will
be discussed in Section 5.1.
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Table 4. Accuracy assessment of results used different features.

Accuracy Statistics MRS-OBC MRS-OBC Spectral
Features Used Only SAM-OBC SAM-OBC Spectral

Features Used Only

Detection accuracy 51.34% 63.48% 85.46% 75.59%
False alarm rate 4.25% 8.65% 2.19% 8.65%
Overall accuracy 90.95% 88.34% 96.48% 89.60%
Kappa coefficient 0.50 0.48 0.82 0.55
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5. Discussion
5.1. Contribution of the SAM to Benggang Identification

Compared with the MRS-OBC, the SAM-OBC produced much higher accuracy. The
improvement was created by the utilization of the SAM. As elaborated before, the utilization
of textural features played an important role in Benggang identification. There were
noticeable differences between the segmentation results provided by the SAM (Figure 7a)
and MRS (Figure 7b). The MRS segmented Benggang edges very strictly, for example,
judging each pixel as Benggang or non-Benggang. As a result, the contour lines became
very sharp. However, as Benggangs were formed by erosion, there were many distributed
grooves on the surface, forming a radiating texture that appears relatively uniform from the
center to the periphery. Some Benggangs were located on one side of the slope, resulting
in only half of the radiating texture, forming a parallel texture crossing the Benggang.
Additionally, the texture was usually linear as mentioned in Section 5.2 later. Due to the
deep linear gullies present in Benggang, it was difficult for MRS to distinguish between
gullies inside Benggang and the edges. As a result, when the MRS attempted to accurately
segment the Benggang edges, it often ended up dividing one Benggang into multiple small
pieces along the gullies (Figure 7e). This could disrupt the internal textural features of
Benggang and made the geometrical features of the contour less uniform and distinct. We
believe that this is the reason why the accuracy of MRS-OBC using only spectral features
was paradoxically higher than that of MRS-OBC utilizing both textural and geometrical
features. To be specific, these small pieces had smaller ranges and exhibited fewer or no
textures. Moreover, most dirt roads have parallel textures much longer than usual Benggang
along their directions, which might be the reason why the MRS-OBC misclassified a large
number of dirt roads as Benggangs.
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In contrast, the SAM produced smoother edges for Benggang, focusing on segmenting
the entire Benggang object rather than the precise delineation of the edges. It demonstrated
excellent segmentation performance, capturing almost all Benggangs in their entirety and
preserving the integrity of the Benggang objects, including their textural, and geometrical
characteristics. The SAM retained the uniform linear texture as much as possible, leading
to a significant improvement in identification accuracy.
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5.2. Improvement Created by Textural Features in Identifying Benggang Areas

Compared with the PBC, the SAM-OBC, and MRS-OBC produced higher accuracy.
Given that the PBC only utilized spectral information, this improvement was created by
the utilization of textural or geometrical features in the OBC. In Figure 5, spectral-related
features were generally ranked lower, with band value standard deviation being more
closely associated with image texture, ranking higher; whereas band value mean was only
related to surface reflectance characteristics and tended to rank lower. This explains why
the accuracy of PBC, relying solely on spectral features for classification, was low and could
not distinguish Benggang from other land features with similar spectral characteristics
(Figure 4d), such as dirt road (Figure 2c) and mining area (Figure 2e). Moreover, the top 8
features ranked are all object-based textural and geometrical features, indicating that these
features significantly contribute to the accuracy of classification.

When comparing the two OBC methods, the accuracy of SAM-OBC has further im-
proved over MRS-OBC. This improvement is due to the enhanced ability SAM-OBC to
utilize textural features. To be specific, Entropy, ranked first as GLDV Entropy in Figure 5,
measures the amount of information in the image and indicates its complexity. A smaller
value indicates similar value and less texture, while a larger value indicates more complex
texture. ASM, ranked second in Figure 5 as GLDV Angular Second Moment and ranked
third as GLCM Angular Second Moment, describes the uniformity of gray-level distribu-
tion and the coarseness of texture in an image. A smaller value suggests less variation
in the gray-level matrix elements, indicating finer texture, while a larger value suggests
more variations, indicating coarser texture. We examined the features extracted from all
samples and calculated their average values. The average GLDV Entropy value was 4.48,
which was significantly higher than the 2.37 average in non-Benggang areas. This indicated
that within individual Benggang objects, the pixel value differences were relatively larger
compared to non-Benggang areas, thus exhibiting more pronounced textural features. The
average GLDV ASM was 0.014, while the average GLCM ASM was 0.00012. In comparison
to the non-Benggang areas, which had values of 0.034 and 0.00062, respectively, these
features were considerably lower. This suggests that the texture, while distincted in its
spectral value, was fine in its structural details, making it linear. We hypothesize that due
to this characteristic, the linear textures of Benggang were easily identified by the MRS as
boundaries for segmentation, leading to fragment objects.

The results indicated that the textural features were crucial in Benggang identification.
Since the PBC could not extract and utilize textural information, it yielded poor results in
comparison with the OBC. Additionally, the key to improving accuracy in OBC lay in the
effective incorporation of these textural features.

6. Conclusions

This study proposed a new method that integrates the SAM and OBC for Benggang
detection. Initially, HR imagery was input into the SAM to obtain a segmented dictionary.
After converting the results into a polygon file, it was imported into eCognition as a thematic
layer for chessboard segmentation, producing segmented HR imagery. Subsequently, a
quantity of samples was chosen, features of objects were extracted, and an RF classifier
was utilized for classification, resulting in Benggang identification. The proposed SAM-
OBC exhibited significant improvements in all accuracy metrics when compared to the
traditional RFC-PBC and MRS-OBC. Its detection accuracy reached 85.46%, which was
an increase of 48.63% from RFC-PBC’s 36.83%, and an improvement of 34.12% over MRS-
OBC’s 51.34%. The false alarm rate was only 2.19%, a decrease of 6.65% from RFC-PBC and
2.06% lower than MRS-OBC. The overall accuracy achieved was 96.48%, representing an
increase of 11.19% over RFC-PBC’s 85.29% and 5.53% higher than MRS-OBC’s 90.95%. The
Kappa coefficient reached 0.82, which was an improvement of 0.56 over RFC-PBC’s 0.26
and 0.32 higher than MRS-OBC’s 0.50.

The study identified a series of features that are important for Benggang detection,
including the textural features GLDV Entropy, GLDV ASM, and GLCM ASM, highlighting
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the necessity of using OBC for Benggang recognition. Since the RFC-PBC could not extract
and utilize these features, relying on the spectral information of pixels solely, it yielded
suboptimal results with severe salt-and-pepper noise compared to the OBC methods.
Although the MRS-OBC could extract and utilize these features, it still faced challenges in
accurately delineating Benggang areas. More specifically, the deep ravines on the Benggang
surface manifest as linear textures in high-resolution remote sensing images. We extracted
textural features of Benggang objects and found them to have high Entropy values and low
ASM values. Mathematically, this indicates that the textures of Benggang possess distinct
spectral characteristics and are fine-grained, contributing to the linearity of a texture. These
linear textures were often mistakenly identified by MRS as Benggang boundaries, leading
to the fragmentation of a single Benggang object into multiple segments. Consequently, the
extraction of spatial and textural features from these areas was susceptible to inaccuracies,
potentially compromising the detection accuracy of Benggang areas. Due to the SAM’s
ability to preserve complete Benggang objects during segmentation, the textural features of
Benggang were effectively utilized. As a result, the SAM-OBC outperformed the MRS-OBC,
with all the accuracy metrics improved. Further evidence suggests that gullies are common
features in Benggang due to its developing process [52,53], implying that these textural
characteristics apply to all Benggang instances. Therefore, our proposed SAM-OBC method
is applicable for the extraction of Benggang. Moreover, the SAM model used in this method
is a pre-trained model that can be easily integrated into OBC without additional training,
making it user-friendly and practical.

In this experiment, the SAM has shown its potential for application in Benggang
detection. Future research will further combine the SAM with deep learning techniques to
achieve more accurate Benggang recognition.
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Appendix A

In identifying Benggang objects, all the features used are listed in Table A1, which
includes 8 spectral-related, 22 geometry-related, and 12 texture-related features. Their
explanations and formulas can be found in the eCognition Professional User Guide [43].

Table A1. Full list of features used in Benggang identification.

Type Name

Spectral Feature

Max. diff.
Standard deviation (Layer 3)
Standard deviation (Layer 2)
Standard deviation (Layer 1)

Mean (Layer 3)
Mean (Layer 2)
Mean (Layer 1)

Brightness
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Table A1. Cont.

Type Name

Geometrical Feature

Border length
Width

Asymmetry
Rel. Border to Image Border

Elliptic Fit
Density

Average length of edges (polygon)
Radius of smallest enclosing ellipse

Rectangular Fit
Length

Length/Width
Compactness (polygon)

Volume
Radius of largest enclosed ellipse

Main direction
Shape index

Thickness
Compactness
Roundness

Border index
Area

Number of edges

Textural Feature *

GLCM Correlation
GLDV Contrast

GLCM Homogeneity
GLCM Contrast
GLCM StdDev
GLDV Mean

GLDV Ang. 2nd moment
GLCM Ang. 2nd moment

GLCM Dissimilarity
GLCM Mean

GLDV Entropy
GLCM Entropy

* Textural features offer options in different directions, such as direction 45, direction 90, etc. The study utilizes all
direction textural features.
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