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Abstract: Vision transformers (ViTs) are increasingly utilized for HSI classification due to their out-
standing performance. However, ViTs encounter challenges in capturing global dependencies among
objects of varying sizes, and fail to effectively exploit the spatial–spectral information inherent in
HSI. In response to this limitation, we propose a novel solution: the multi-scale spatial–spectral
transformer (MSST). Within the MSST framework, we introduce a spatial–spectral token generator
(SSTG) and a token fusion self-attention (TFSA) module. Serving as the feature extractor for the
MSST, the SSTG incorporates a dual-branch multi-dimensional convolutional structure, enabling
the extraction of semantic characteristics that encompass spatial–spectral information from HSI and
subsequently tokenizing them. TFSA is a multi-head attention module with the ability to encode
attention to features across various scales. We integrated TFSA with cross-covariance attention (CCA)
to construct the transformer encoder (TE) for the MSST. Utilizing this TE to perform attention model-
ing on tokens derived from the SSTG, the network effectively simulates global dependencies among
multi-scale features in the data, concurrently making optimal use of spatial–spectral information
in HSI. Finally, the output of the TE is fed into a linear mapping layer to obtain the classification
results. Experiments conducted on three popular public datasets demonstrate that the MSST method
achieved higher classification accuracy compared to state-of-the-art (SOTA) methods.

Keywords: attention mechanism; convolutional neural networks; hyperspectral image classification;
hybrid network; transformer

1. Introduction

Hyperspectral imagery (HSI) consists of numerous spectral bands that reflect the
spatial and spectral characteristics of objects, revealing their chemical and physical infor-
mation [1,2]. This technology has many applications in geological research, environmental
protection, plant disease monitoring, fine agriculture, food detection, and military recon-
naissance [3–5]. Pixel-wise HSI classification is crucial for the effective utilization of HSI
data. Researchers have devoted considerable attention to this area. However, the increas-
ing resolution and number of bands pose challenges to HSI classification, including high
spectral redundancy, increased spectral variability within similar features, and difficulties
in fully exploiting spatial–spectral data [6].

Early HSI classification was based on classification features designed by experts, which
were simple and easy to use; however, they were shallow features, and the classification
accuracy was inadequate [7–10]. Later, machine learning methods were adopted by re-
searchers, with representative studies including principal component analysis (PCA) [11],
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random forests (RFs) [12], support vector machines (SVMs) [13], sparse representation
(SR) [14], morphological profiles (MPs) [15–17], and extreme learning machine (ELM) [18,19].
However, the majority of machine learning methods primarily focus on the spectral in-
formation of HSI, neglecting the spatial dimension. This limitation can lead to inaccurate
classification, especially when dealing with targets that have spectrally similar but spatially
distinct objects.

In recent years, deep learning has been widely used in image processing tasks due to
its powerful feature extraction capabilities [20–22], attracting many researchers to introduce
deep learning methods into HSI classification tasks [23–27]. The most studied among these
is the convolutional neural network (CNN) [28–30]. CNN-based methods typically extract
patches from HSI and feed them into the network, which is used to learn characteristics
of the patches, and finally predict the category of the query pixel within each patch. Roy
et al. [31] proposed a spatial–spectral hybrid network consisting of 2DCNN and 3DCNN to
extract the spatial–spectral joint features from stacked spectra. To obtain more discrimina-
tive features, Zhong et al. [32] utilized two successive residual modules to learn spatial and
spectral representations. Liu et al. [33] enhanced informative features that proved beneficial
for classification and suppressing irrelevant information by constructing an interaction
attention module. GAF-NAU [34] departs from the conventional practice of classifying
patches, and instead represents one-dimensional spectral features as two-dimensional fea-
ture maps using the Gramian angular field (GAF). Subsequently, these GAF representations
are embedded into a deep network to generate classification results. Such CNN-based hy-
perspectral classification networks have greatly improved classification accuracy. However,
research in the past few years has shown that such methods are consistently limited by fixed
convolutional kernel sizes, leading to unreliability in classifying multi-scale targets [35].
Furthermore, the monotonous sliding window mechanism prevents these networks from
modeling the global dependencies among different image elements [36,37].

BERT [38] and GPT [39], among other NLP models, have demonstrated the powerful
learning capabilities of transformer, which has also attracted researchers to explore the
application of transformer in computer vision tasks. The emergence of vision transformers
has effectively contested the supremacy of CNNs in computer vision, opening up new
possibilities for HSI classification [40,41]. He et al. [42] proposed a method to use a convolu-
tional network to extract spatial features fromHSI, and constructed a dense transformer to
capture the spectral correlations within the HSI. Finally, they employed a multilayer percep-
tron for classification. Roy et al. [43] introduced a morphological block before computing
multi-head attention, enhancing the information interaction performance of HSI tokens
and class tokens through the utilization of dilation and erosion operators. Also, Roy [44]
proposed a multimodal fusion transformer in another paper, where multiple sources of
remote sensing data such as LiDAR and SAR were used to generate class tokens for better
model generalization. Mei et al. [45] constructed grouped pixel embedding to comple-
ment the over-separated features extracted by MHSA, which controls the attention in the
local–global range and effectively solves the feature dispersion problem of MHSA. Ouyang
et al. [37] proposed a transformer encoder with spatial–spectral attention mechanism to
capture global dependencies between different tokens, enabling the model to focus on more
differentiated channels and spatial locations.

These transformer-based HSI classification methods can capture high-level semantic
features that incorporate global dependencies, effectively improving classification perfor-
mance. However, since the tokens used for attention modeling in the transformer are
derived from patches with fixed scales, this framework largely ignores the multi-scale
nature of the targets in the images. This lack of multi-scale features can lead to distortions
in the classification of objects of different sizes in the images [46,47]. Additionally, the
transformer network cannot directly exploit the rich spatial and spectral information in
HSI, which also constrains its classification accuracy.

In this paper, we propose a multi-scale spatial–spectral transformer (MSST) specifically
designed for HSI classification tasks. The goal is to enhance the transformer’s ability to
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model global dependencies across multiple scales while fully leveraging the spatial–spectral
features of HSI. The MSST is a non-hierarchical network structure primarily consisting
of a spatial–spectral token generator (SSTG), a transformer encoder (TE), and a classifier.
The SSTG is a novel multi-dimensional convolutional feature extractor. Departing from
the conventional token generator, SSTG extracts spatial–spectral information from patches,
while also incorporating an additional branch to retrieve spectral features from query
pixels. This extra branch supplements damaged spectral features during the convolution
process. The semantic features extracted by SSTG are transformed into tokens and fed
into a TE, which is composed of a cross-covariance attention (CCA) module [48] and a
token fusion self-attention (TFSA) module for attention modeling. CCA is employed to
capture correlations among spectral sequences. TFSA is a novel attention mechanism that
aggregates tokens to varying extents before feeding them into different attention heads
within the same attention layer. Through these distinct attention heads, attention encoding
is performed on features of different scales, allowing the encoder to globally model the
dependencies of multi-scale features in HSI. Finally, the output of the encoder is directed to
a classifier to obtain the ultimate result.

The main contributions of this research are listed below.

1. To tackle the challenge of the transformer inadequately leveraging spatial–spectral
features, we redesigned the feature extractor—SSTG. SSTG incorporates a dense
multi-dimensional convolutional structure, adeptly extracting HSI spatial–spectral
features. Additionally, it introduces a branch to extract spectral features of query
pixels, compensating for damaged spectral features during the convolution process.
Attention encoding on features from SSTG enables the expression of spatial–spectral
semantic characteristics of HSI during classification.

2. To simulate global dependencies among multi-scale features during attention mod-
eling, we innovatively introduce TFSA. This module, after subsampling tokens to
varying extents, generates keys and values of different sizes. Subsequently, different
attention heads compute attention outputs by operating on the corresponding-sized
keys, values, and queries. This novel attention mechanism effectively simulates global
dependencies among multi-scale features, demonstrating enhanced capabilities in
classifying multi-scale targets.

3. We employed SSTG and TFSA, introducing CCA to construct the MSST HSI classi-
fication network. This hybrid network effectively integrates both global and local
modeling capabilities, enabling the consideration of multi-scale characteristics of
targets in HSI and the effective utilization of spatial–spectral features.

2. Related Research
2.1. Applying Spatial–Spectral Information to Transformer

To leverage the spatial–spectral information of HSI in transformer architecture, re-
searchers often construct hybrid networks combining CNN and transformers, such as
HybridFormer [37], HiT [49], and FusionNet [50]. In these approaches, spatial–spectral
features are extracted using CNN, and then embedded into transformers for attention mod-
eling. This strategy effectively expresses the spatial–spectral characteristics of HSI within
the transformer framework. In the SSTFF proposed by Sun et al. [51], a feature extraction
module was designed using both two-dimensional and three-dimensional convolutions to
extract spatial–spectral features. These features are subsequently input into the transformer
for representation and learning. However, current methods apply multi-dimensional con-
volution directly to HSI patches. This can distort the spectral characteristics of the query
pixel, which plays a crucial role in determining land cover categories. Such distortion is
highly detrimental for HSI classification.

2.2. Multi-Scale Attention Modeling in Transformer

To address the single-scale problem in transformers, Swin transformer [47], 3D Swin
transformer [52], and PVT [53] have been developed. In these approaches, researchers ex-
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tract multi-scale features through a hierarchical network structure with gradual contraction.
Ren et al. [54] proposed shunted self-attention, which unifies multi-scale feature extraction
within a self-attention layer through multi-scale token aggregation, and then adopts a hier-
archical structure to model the attention of multi-scale features. While these studies have,
to some extent, enhanced the transformer’s ability to capture global dependencies across
multi-scale features, the introduction of such multi-level structures inevitably leads to an
increase in network complexity. Additionally, certain methods such as Swin transformer
impose limitations on the network’s globality. This elevated complexity poses challenges,
particularly for intricate HSI data, and may even result in a decrease rather than an increase
in classification accuracy. Consequently, it becomes imperative to develop multi-scale ViT
networks specifically tailored for HSI data.

3. Methods
3.1. Proposed MSST Architecture

Figure 1 illustrates the overall structure and operational flow of the proposed MSST
architecture, which forsakes complex cascaded structures for a lightweight single-stage
mode. Initially, dimensionality reduction is performed on HSI using PCA. Subsequently, a
patch of query pixels is segmented from the HSI and input into the SSTG module, generating
tokens with deep spatial–spectral features. Then, these tokens are fed into the transformer
encoder, which contains a TFSA branch, a CCA branch, and a feedforward network; the
TFSA module is used to learn the dependencies between features of different sizes, while
the CCA branch can capture correlations between spectral sequences, and the feedforward
network can enhance local information through convolutional structures. Ultimately, the
network output utilizes the highest probability value from the linear mapping result.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 21 
 

 

2.2. Multi-Scale Attention Modeling in Transformer 
To address the single-scale problem in transformers, Swin transformer [47], 3D Swin 

transformer [52], and PVT [53] have been developed. In these approaches, researchers ex-
tract multi-scale features through a hierarchical network structure with gradual contrac-
tion. Ren et al. [54] proposed shunted self-attention, which unifies multi-scale feature ex-
traction within a self-attention layer through multi-scale token aggregation, and then 
adopts a hierarchical structure to model the attention of multi-scale features. While these 
studies have, to some extent, enhanced the transformer’s ability to capture global depend-
encies across multi-scale features, the introduction of such multi-level structures inevita-
bly leads to an increase in network complexity. Additionally, certain methods such as Swin 
transformer impose limitations on the network’s globality. This elevated complexity poses 
challenges, particularly for intricate HSI data, and may even result in a decrease rather 
than an increase in classification accuracy. Consequently, it becomes imperative to develop 
multi-scale ViT networks specifically tailored for HSI data. 

3. Methods 
3.1. Proposed MSST Architecture 

Figure 1 illustrates the overall structure and operational flow of the proposed MSST 
architecture, which forsakes complex cascaded structures for a lightweight single-stage 
mode. Initially, dimensionality reduction is performed on HSI using PCA. Subsequently, 
a patch of query pixels is segmented from the HSI and input into the SSTG module, gen-
erating tokens with deep spatial–spectral features. Then, these tokens are fed into the 
transformer encoder, which contains a TFSA branch, a CCA branch, and a feedforward 
network; the TFSA module is used to learn the dependencies between features of different 
sizes, while the CCA branch can capture correlations between spectral sequences, and the 
feedforward network can enhance local information through convolutional structures. Ul-
timately, the network output utilizes the highest probability value from the linear map-
ping result. 

 
Figure 1. Overall framework of the proposed MSST network for HSI classification. The MSST net-
work comprises a token generator, a transformer encoder, and a classifier. The transformer encoder 
features token fusion self-attention, cross-covariance attention, and a feedforward network. 

3.2. Spatial–Spectral Token Generator 
For transformer-based HSI classification tasks, researchers often employ convolu-

tional networks to extract spatial–spectral semantic features from HSI patches, which are 
then mapped to tokens and fed into the transformer encoder. We have observed that the 
convolutional operation on the patches distorts the spectral characteristics of the query 
pixels, which are crucial for inferring the corresponding land cover class. Therefore, this 

Figure 1. Overall framework of the proposed MSST network for HSI classification. The MSST network
comprises a token generator, a transformer encoder, and a classifier. The transformer encoder features
token fusion self-attention, cross-covariance attention, and a feedforward network.

3.2. Spatial–Spectral Token Generator

For transformer-based HSI classification tasks, researchers often employ convolutional
networks to extract spatial–spectral semantic features from HSI patches, which are then
mapped to tokens and fed into the transformer encoder. We have observed that the
convolutional operation on the patches distorts the spectral characteristics of the query
pixels, which are crucial for inferring the corresponding land cover class. Therefore,
this paper presents a redesigned token generator called SSTG, as illustrated in Figure 2.
The generator initially extracts the spatial–spectral representation from HSI data, using a
3DCNN. Subsequently, a multi-branch 2DCNN refines the semantic features. Additionally,
an independent 1DCNN branch is used to extract spectral features from the query pixels,
compensating for the loss of information during the patch convolution process.
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Figure 2. Processing details for the spatial–spectral token generator.

As shown in Figure 1, we initially process an HSI patch of size w × h × c using a
3DCNN composed of eight convolutional kernels, each of size 3 × 3 × 3. The computational
procedure is defined as follows:

X3D= ReLU(BN(3DConv(X in
patch))) (1)

where 3DConv is the 3D convolution, BN stands for batch normalization, and ReLU is the
rectified linear activation function. BN is used to normalize the output of 3DConv, an oper-
ation that effectively prevents gradient explosion and gradient disappearance, and speeds
up the network convergence. Moreover, the activation function increases the nonlinearity
of the network. 3DCNN outputs X3D ∈ R(w−2) × (h−2) × (c−2) × 8, a high-dimensional feature
block containing the spatial–spectral information extracted from the patch.

We reshape the dimensionality of X3D ∈ R(w−2) × (h−2) × (c−2) × 8 to X3D
reshape ∈

R(w−2) × (h−2) × ((c−2) × 8) as the input to 2DCNN. The 2DCNN comprises multiple branches,
each equipped with convolutional kernels of different sizes to extract features that encom-
pass richer contextual information. The computational process is as follows:

X2D = ReLU(BN(2DConv(X 3D
reshape))) (2)

In the network, we adjust the receptive field of the 2DCNN by adjusting the size
of the convolutional kernel. The output channel of each branch is configured to n. The
output dimension can be expressed as X2D ∈ Rsi × si × n, where si varies depending on the
convolutional kernel. Subsequently, in terms of dimensions, we flatten X2D to X2D

f latten ∈
R(si * si) × n and map it to the same X2D

weighted ∈ R(s * s) × n through weighted mapping, further

refining the shallow spatial–spectral features. Finally, we sum up the X2D
weighted of multiple

branches to obtain Xout1 as the output.
We constructed a 1DCNN for the query pixel, a branch designed to supplement the

distortions caused by the spectral features of the query pixel during the convolution of the
patch. We extract the query pixels and process them as follows:

Xout2= ReLU(BN(1DConv(X in
pixel))) (3)

where Xin
pixel refers to the query pixel of the patch.

We concatenate the resulting Xout1 with Xout2 to obtain the final output. This dense
convolutional network with additional query pixel spectral branches allows us to obtain a
more robust and discriminative spatial–spectral feature output, significantly enhancing the
exploitation of spatial–spectral information from HSI data.
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3.3. Token Fusion Self-Attention

In the modeling process of the classical self-attention module, the input token is
initially projected through three learnable weight matrices as query, key, and value. Subse-
quently, a weight distribution is computed using the query, key, and SoftMax functions.
Finally, the obtained weights are applied to the value, resulting in the attention output
as follows:

SA = Attention(Q, K, V) = SoftMax(
QKT
√

dk
)V (4)

where Q, K, and V denote query, key, and value, respectively. The computation flow is
shown in Figure 3a. In practice, to enable models to jointly attend to information from
different subspaces, h attention heads are used to divide Q, K, and V into h groups for
parallel computation of outputs. This process is illustrated in the following equation:

MSA = Concat(SA i)W
o (i = 1, 2, · · · , h) (5)

where WO represents the parameter matrix of size hdV × ntoken (ntoken denotes the number
of tokens). SAi represents the i-th group of attention output.
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Figure 3. Structures of the self-attention (a) and token fusion self-attention (b) mechanisms. In
self-attention, the attention computation involves initially mapping tokens into Q, K, and V, followed
by utilizing them to calculate the attention output. In TFSA, tokens are first fused at multiple scales,
followed by mapping them into multi-scale Q, K, and V representations. Using Q, K, and V of
corresponding scales, attention outputs are computed for different scales. Finally, these multiple
attention outputs are summed.

In previous attentional modeling, Q, K, and V were obtained by direct linear mapping
of tokens, and thus at a single scale. This limitation inevitably restricted the receptive field
of the attention layer, resulting in the inability of the attention layer to model the global
dependencies of multi-scale features. However, for HSI, which exhibits diverse object
scales, this mechanism is highly unfavorable for HSI classification. To address this issue,
we proposed a TFSA module that captures global dependencies among multi-scale features
and more effectively simulates targets of different sizes. Unlike conventional self-attention
mechanisms, TFSA first fuses tokens to different scales, and then maps them to different
scale keys and values using weight matrices. Subsequently, different attention heads in the
attention layer are used to model the attention of features at different scales.

Figure 3b presents a concise illustration of the computational process of TFSA. For
acquiring features at various scales, our algorithm first performs token fusion to varying
scales in the quantity dimension. After the integration at a larger scale, we obtain tokens
with feature information at a larger scale, corresponding to a reduced quantity. Similarly,
after integration at a smaller scale, tokens retain more detailed features, corresponding
to a relatively larger quantity. Through the fusion of multiple scales, we obtain tokens
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with diverse scales, enhancing their ability to represent the true state of the object. In
practice, we achieve token fusion through learnable convolutional layers. Then, the fused
tokens are mapped to generate keys and values of different sizes, as illustrated in the
following formula:

Qi= X WQ
i

Ki= Conv(reshape(X), f i, si) WK
i

Vi= Conv(reshape(X), f i, si) WV
i

(6)

where i represents the i-th attention head group. Qi, Ki, and Vi represent the query, key,
and value of the i-th attention head group, respectively. The term “reshape” signifies the
reshaping of the dimensions. Fi represents the size of the convolutional kernel, and si
represents the strides. Different attention head groups feature different convolutional
kernel sizes and strides. W Q

i , W K
i , and W V

i represent the weight matrices. The attention
calculation can be represented as follows:

TFSA = MSA + Concat(head i) (i = 1, 2, · · · , h)

where headi= SoftMax
(

QiKT
i√

dk

)
Vi

(7)

where i represents the i-th type of token fusion, which also corresponds to the number
of attention head groups. MSA represents the output of the attention coding without
token fusion.

By leveraging multi-dimensional keys and values, our TFSA module can pay more
attention to the multi-scale characteristics of HSI data during the coding process. This capa-
bility allows the classification network to effectively simulate objects with various scales.

3.4. Transformer Encoder

To further improve the exploitation of spectral information by the network, we added
a cross-covariance attention mechanism [48] in parallel with the TFSA module when
building the transformer encoder. CCA is a ‘transposed’ version of self-attention that
operates across feature channels rather than tokens, where the interactions are based on
the cross-covariance matrix between keys and queries. The complexity of this attention
computation mechanism is linearly proportional to the number of tokens, and allows
for efficient processing of high-resolution images. The transposed attention mechanism
effectively captures features across the channel dimension in images. In this research, we
introduced it to the HSI classification task to enhance the interaction efficiency among
spectral features. The calculation formula for CCA is as follows:

CCA(Q, K, V) = V ∗ CM(K, Q)

where CM(K, Q) = SoftMax(KT Q√
h

) (8)

where CM refers to the context vector of the transpose attention, while Q, K, and V are
derived from the mapping of tokens.

The complete transformer encoder is shown in Figure 4. The CCA mechanism is
connected in parallel with the TFSA module, and the output of both is fed into the feed-
forward network (FFN) after summation. The FFN consists of two fully connected layers
designed to enhance the model’s discriminative power and remove low discriminative
feature combinations. The calculation process is as follows:

X1= X + TFSA(Norm(X)) + CCA(Norm(X)) (9)

TE(X) = [(ReLU(X 1W1+b1))W2+b2] + X1 (10)
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Here, TFSA(-) is the output of token fusion self-attention, CCA(-) is the output of cross-
covariance attention, Norm signifies the layer normalization, ReLU denotes the rectified
linear activation function, and W1, W2, b1, and b2 denote the weights and biases of the first
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4. Experiment and Results

We compared our network against the current SOTA methods on three commonly
used public datasets to evaluate classification performance.

4.1. Data Descriptions and Experimental Settings
4.1.1. Data Detail

The Trento dataset was collected with the AISA Eagle sensor in a rural area south of
Trento, Italy. It consists of 63 spectral bands (0.42–0.99 µm), and has a size of 600 × 166 pixels.
The image was divided into six land cover types; Figure 5a,b display the false color map
and the ground truth map, respectively. The numbers of training and test samples are
shown in Table 1.
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Table 1. Details of classes in the Trento dataset and the numbers of samples used for training and
testing.

Class No. Color Class Name Test Train

1 MidnightBlue Apple trees 3994 40
2 Blue Buildings 2874 29
3 LawnGreen Ground 474 5
4 Yellow Woods 9032 91
5 Red Vineyard 10,396 105
6 FireBrick Roads 3142 32

The Pavia University dataset was acquired using the ROSIS-3 sensor over the Univer-
sity of Pavia, Italy. The sensor continuously images 115 bands in the wavelength range
0.43–0.86 µm, with an image size of 610 × 340 pixels. Figure 6 presents the false color map
in (a) and the ground truth map in (b). The numbers of training and test samples are shown
in Table 2.
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Table 2. Details of classes in the Pavia University dataset and the numbers of samples used for
training and testing.

Class No. Color Class Name Test Train

1 Blue Asphalt 1249 13
2 Green Meadows 201 3
3 Cyan Gravel 607 7
4 ForestGreen Trees 148 2
5 Magenta Painted metal sheets 1750 18
6 SaddleBrown Bare Soil 357 4
7 Purple Bitumen 4984 51
8 Red Self-Blocking Bricks 6310 64
9 Yellow Shadows 394 4

Houston2013 was collected using the ITERS CASI-1500 sensor in Houston, USA,
and its surrounding rural areas, at a spatial resolution of 2.5 m. The image consists of
349 × 1905 pixels and 144 spectral bands with wavelengths ranging from 364–1046 nm.
The study region encompasses 15 distinct land cover types, as depicted in Figure 7a,b,
illustrating the false color and ground truth maps, respectively. The numbers of training
and test samples are shown in Table 3.



Remote Sens. 2024, 16, 404 10 of 20
Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 7. Houston2013 dataset: (a) false color and (b) ground truth. 

Table 3. Details of classes in the Houston dataset and the numbers of samples used for training and 
testing. 

Class No. Color Class Name Test Train 
1  SaddleBrown Healthy Grass 13,901 140 
2  Blue Stressed Grass 3477 35 
3  Orange Synthetic Grass 21,603 218 
4  Green Trees 161,653 1632 
5  Orchid Soil 6156 62 
6  SkyBlue Water 44,111 446 
7  MintGreen Residential 23,862 241 
8  CoolGray Commercial 4013 41 
9  Yellow Road 10,711 108 

10  BananaYellow Highway 12,270 124 
11  Magenta Railway 10,905 110 
12  BlueViolet Parking Lot 1 8864 90 
13  DodgerBlue Parking Lot 2 22,282 225 
14  Linen Tennis Court 7282 74 
15  Red Running Track 4000 40 

4.1.2. Experimental Settings 
All of the experiments in this study were conducted on a 15 vCPU AMD EPYC 7543 

32-core processor equipped with 80 GB of RAM, and an A40 48 GB GPU. PyTorch 1.11.0 
served as the development framework; the learning rate was set to 0.001, the number of 
training epochs was set to 100, the batch size was set to 64, and Adam was chosen as the 
optimizer. Each experiment was conducted 10 times, and the results were then averaged. 
To precisely depict the classification accuracy of the model, the overall accuracy (OA), 
average accuracy (AA), and kappa coefficient (k) were used as evaluation metrics to assess 
the algorithm’s performance. A higher value for each metric indicates better classification 
performance. 

4.2. Comparison and Analyses of Methods 
To validate the effectiveness of the proposed network in this study, we conducted 

comparative experiments with nine mainstream HSI classification methods, which were 
classified into three categories of machine learning, convolutional networks, and trans-
former networks, including SVM, RF, 3DCNN [55], G2C-3DCNN [56], HybridSN [31], 
SSRN [32], ViT [42], SpectralFormer [57], and SSFTT [51]. For the setting of parameters 
and network structure of these methods, we followed the corresponding references. We 
reduced the number of spectral bands in HSI to 30 using PCA, set the patch size to 15 × 
15, and randomly partitioned the training and test sample sets for each experiment. 

  

Figure 7. Houston2013 dataset: (a) false color and (b) ground truth.

Table 3. Details of classes in the Houston dataset and the numbers of samples used for training
and testing.

Class No. Color Class Name Test Train

1 SaddleBrown Healthy Grass 13,901 140
2 Blue Stressed Grass 3477 35
3 Orange Synthetic Grass 21,603 218
4 Green Trees 161,653 1632
5 Orchid Soil 6156 62
6 SkyBlue Water 44,111 446
7 MintGreen Residential 23,862 241
8 CoolGray Commercial 4013 41
9 Yellow Road 10,711 108
10 BananaYellow Highway 12,270 124
11 Magenta Railway 10,905 110
12 BlueViolet Parking Lot 1 8864 90
13 DodgerBlue Parking Lot 2 22,282 225
14 Linen Tennis Court 7282 74
15 Red Running Track 4000 40

4.1.2. Experimental Settings

All of the experiments in this study were conducted on a 15 vCPU AMD EPYC 7543
32-core processor equipped with 80 GB of RAM, and an A40 48 GB GPU. PyTorch 1.11.0
served as the development framework; the learning rate was set to 0.001, the number of
training epochs was set to 100, the batch size was set to 64, and Adam was chosen as the
optimizer. Each experiment was conducted 10 times, and the results were then averaged.
To precisely depict the classification accuracy of the model, the overall accuracy (OA),
average accuracy (AA), and kappa coefficient (k) were used as evaluation metrics to assess
the algorithm’s performance. A higher value for each metric indicates better classification
performance.

4.2. Comparison and Analyses of Methods

To validate the effectiveness of the proposed network in this study, we conducted
comparative experiments with nine mainstream HSI classification methods, which were
classified into three categories of machine learning, convolutional networks, and trans-
former networks, including SVM, RF, 3DCNN [55], G2C-3DCNN [56], HybridSN [31],
SSRN [32], ViT [42], SpectralFormer [57], and SSFTT [51]. For the setting of parameters
and network structure of these methods, we followed the corresponding references. We
reduced the number of spectral bands in HSI to 30 using PCA, set the patch size to 15 × 15,
and randomly partitioned the training and test sample sets for each experiment.



Remote Sens. 2024, 16, 404 11 of 20

4.2.1. Quantitative Results and Analysis

Tables 4–6 display the classification accuracies achieved by MSST and the other nine
methods on the Pavia University, Trento, and Houston 2013 datasets. The accuracy metrics
include OA, AA, and κ, and the precision for each category. The best results for each metric
are indicated in bold. The results of the three experiments consistently demonstrate that the
MSST method outperforms other methods in classification performance. This is evidenced
by the fact that MSST achieved the highest OA, AA, and κ across all three experiments.

Table 4. Classification performance obtained by different methods for the Pavia University dataset
(best results are bolded).

Class SVM RF 3D-CNN G2C-3DCNN HybridSN SSRN ViT SpecFormer SSFFT Ours

1 89.00 92.92 96.92 96.73 94.01 98.08 93.12 96.98 97.36 96.38
2 94.41 97.39 99.76 99.81 99.49 99.63 99.80 99.98 99.88 99.90
3 49.47 23.00 56.59 82.44 75.31 84.46 60.73 71.90 90.18 90.42
4 83.02 79.95 84.37 89.02 87.90 88.33 92.71 84.31 92.05 93.68
5 98.80 99.77 99.62 99.85 100.00 98.87 99.55 99.77 99.10 99.22
6 62.88 27.70 85.46 98.57 93.63 100.00 94.92 97.33 99.84 100.00
7 27.79 33.64 68.03 97.27 90.51 94.76 79.57 90.05 100.00 100.00
8 68.20 80.43 85.87 91.08 82.28 97.06 88.34 88.29 92.37 95.35
9 73.32 71.78 37.99 99.68 94.34 84.20 91.14 75.88 90.50 91.21

OA (%) 82.19 ± 0.47 80.04 ± 0.65 90.86 ± 0.41 96.73 ± 0.24 94.08 ± 0.40 97.14 ± 0.23 93.95 ± 0.54 94.85 ± 0.10 97.57 ± 0.08 97.85 ± 0.24
AA (%) 71.88 ± 0.66 67.40 ± 0.74 79.40 ± 0.26 94.94 ± 0.21 90.83 ± 0.32 93.93 ± 0.18 88.88 ± 0.61 89.39 ± 0.25 95.70 ± 0.20 96.24 ± 0.05
K × 100 75.94 ± 0.42 72.50 ± 0.50 87.70 ± 0.14 95.65 ± 0.15 92.11 ± 0.18 96.21 ± 0.06 91.93 ± 0.51 93.12 ± 0.28 96.78 ± 0.33 97.16 ± 0.37

Table 5. Classification performance obtained by different methods for the Trento dataset (best results
are bolded).

Class SVM RF 3D-CNN G2C-3DCNN HybridSN SSRN ViT SpecFormer SSFFT Ours

1 78.14 68.70 97.65 98.87 99.70 99.17 96.52 98.97 99.67 99.65
2 59.19 64.65 66.74 82.67 85.32 88.45 84.06 90.22 94.33 95.72
3 31.01 36.71 49.16 83.33 81.86 46.62 36.50 22.36 57.38 81.22
4 95.26 94.39 99.09 99.92 99.03 100.00 99.75 100.00 99.98 99.98
5 85.58 90.22 99.89 100.00 99.72 100.00 99.99 99.95 99.97 100.00
6 66.65 77.94 79.28 90.07 85.55 88.77 84.28 83.96 97.45 96.12

OA (%) 82.12 ± 1.02 84.01 ± 0.74 93.20 ± 0.37 96.92 ± 0.17 96.35 ± 0.38 96.75 ± 0.10 95.27 ± 0.41 95.99 ± 0.24 98.45 ± 0.08 98.83 ± 0.38
AA (%) 69.30 ± 0.84 72.10 ± 0.58 81.97 ± 0.32 92.58 ± 0.34 91.86 ± 0.15 87.17 ± 0.07 83.52 ± 0.55 82.58 ± 0.10 91.46 ± 0.15 95.45 ± 0.20
K × 100 76.00 ± 0.80 78.43 ± 0.66 90.86 ± 0.24 95.88 ± 0.20 95.13 ± 0.26 95.66 ± 0.07 93.66 ± 0.34 94.64 ± 0.14 97.93 ± 0.18 98.44 ± 0.18

Table 6. Classification performance obtained by different methods for the Houston 2013 dataset (best
results are bolded).

Class SVM RF 3D-CNN G2C-3DCNN HybridSN SSRN ViT SpecFormer SSFFT Ours

1 96.40 96.32 89.01 86.62 98.01 86.03 84.49 87.87 86.47 89.12
2 87.57 96.04 82.37 91.67 95.63 90.28 95.63 93.16 95.90 92.85
3 99.62 99.75 97.78 97.97 94.54 97.20 95.55 94.16 95.93 95.43
4 90.57 90.25 88.49 89.05 89.69 93.76 83.21 89.49 81.14 91.13
5 97.59 99.46 99.77 100.00 99.30 100.00 99.46 99.77 100.00 100.00
6 45.24 61.01 83.63 83.33 84.82 86.31 83.33 61.76 86.31 86.31
7 81.66 81.66 63.72 67.28 74.81 79.95 75.63 67.45 74.06 72.35
8 76.57 68.43 67.31 72.46 65.75 70.00 80.97 77.54 78.06 76.87
9 68.88 79.27 64.72 77.26 77.52 88.43 79.53 76.16 80.25 79.40

10 78.23 79.50 94.90 99.08 96.95 100.00 99.72 98.98 100.00 99.57
11 79.94 87.87 76.68 87.29 74.39 88.00 64.45 83.39 95.48 98.06
12 69.89 68.90 90.04 94.49 75.76 91.95 94.70 93.71 98.16 98.09
13 23.80 12.78 50.32 65.50 68.05 81.63 31.79 39.54 73.00 80.35
14 86.61 96.46 90.16 99.61 100.00 99.02 68.31 70.97 100.00 100.00
15 96.08 97.09 99.69 99.37 100.00 99.37 84.05 84.69 100.00 100.00

OA (%) 81.02 ± 0.34 83.14 ± 0.27 82.03 ± 0.21 87.02 ± 0.48 85.51 ± 0.16 89.59 ± 0.41 83.32 ± 0.58 84.07 ± 0.15 89.48 ± 0.10 90.29 ± 0.12
AA (%) 78.58 ± 0.62 80.99 ± 0.29 82.57 ± 0.18 87.40 ± 0.30 86.35 ± 0.29 90.10 ± 0.64 81.39 ± 0.60 81.24 ± 0.08 89.65 ± 0.07 90.63 ± 0.08
K × 100 79.45 ± 0.33 81.74 ± 0.53 80.56 ± 0.15 85.96 ± 0.23 84.34 ± 0.08 88.75 ± 0.28 81.94 ± 0.52 82.74 ± 0.22 88.62 ± 0.28 89.50 ± 0.27
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The Pavia University and Houston 2013 datasets are high-resolution images of complex
urban areas with discrete samples, complex contextual information, and a variety of target
scales. Conventional CNN and transformer networks exhibit limitations in handling such
data. Despite SSRN and SSFTT demonstrating relatively promising results, SSRN, as a
CNN-based approach, still struggles to capture global information, while SSFTT fails to
account for the multi-scale nature of HSI data. The use of TFSA allows MSST to learn global
dependencies among objects at different scales, resulting in superior accuracy compared to
a series of convolutional and transformer networks.

As evidenced by experiments conducted at the University of Pavia, our proposed
MSST method demonstrates a distinct advantage over the other methods in classifying
targets with spatially similar features, such as meadows, gravel, bare soil, and bitumen;
despite GAHT [45] displaying comparable overall classification accuracy, our approach
outperforms it specifically for these targets, achieving higher classification accuracies by
0.31%, 2.27%, 2.04%, and 8.0%, respectively. This superiority is attributed to the utilization
of SSTG within our method, which enables more effective exploitation of spectral features.
In the Trento experiment, the imbalance between inter-class samples resulted in poor
performance for transformer networks such as ViT, SpecFormer, and SSFTT on imbalanced
classes (e.g., ground). However, the results obtained by MSST were not only the most
accurate overall, but were also more uniform for each class, demonstrating to some extent
that this mechanism of joint spatial–spectral features plus global multi-scale self-attention
has advantages over other methods when faced with imbalanced datasets.

4.2.2. Qualitative Results and Analysis

Figures 8–10 show the classification results of the different methods on the three
datasets. Overall, our proposed method achieves results that closely align with the ground
truth map, surpassing other methods. The classification results of the SVM and RF models
demonstrate considerable noise in their classification of large area classes like trees and
vineyards in Trento, due to the limitations of machine learning algorithms to effectively
use spatial information. However, our proposed MSST method successfully resolves the
confusion between bare soil and meadows in the Pavia dataset, and reduces “speckles”
produced by other methods. Similarly, the Houston 2013 classification results obtained by
the MSST model demonstrate superior accuracy compared to the other methods.
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Figure 8. Classification maps for the Trento dataset. (a) False color, (b) ground truth, (c–l): SVM
(OA = 82.12%), RF (OA = 84.01%), 3D-CNN (OA = 93.20%), G2C-3DCNN (OA = 96.92%), Hy-
bridSN (OA = 96.35%), SSRN (OA = 96.75%), ViT (OA = 95.27%), SpecFormer (OA = 95.99%), SSFFT
(OA = 98.45%), MSST (OA = 98.83%).
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Figure 9. Classification maps for the Pavia University dataset. (a) False color, (b) ground truth,
(c–l): SVM (OA = 82.19%), RF (OA = 80.04%), 3D-CNN (OA = 90.86%), G2C-3DCNN (OA = 96.73%),
HybridSN (OA = 94.08%), SSRN (OA = 97.14%), ViT (OA = 93.95%), SpecFormer (OA = 94.85%),
SSFFT (OA = 97.57%), MSST (OA = 97.85%).
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Figure 10. Classification maps for the Houston 2013 dataset. (a) False color, (b) ground truth,
(c–l): SVM (OA = 81.02%), RF (OA = 83.14%), 3D-CNN (OA = 82.03%), G2C-3DCNN (OA = 87.02%),
HybridSN (OA = 85.51%), SSRN (OA =89.59%), ViT (OA = 83.32%), SpecFormer (OA = 84.07%),
SSFFT (OA = 89.48%), MSST (OA = 90.29%).
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4.2.3. Time Complexity Comparison

Table 7 in this study records the training and testing times for the reference methods
and the proposed MSST on the three datasets. The results clearly demonstrate that the
transformer-based methods require more time for both training and testing compared to the
CNN-based methods, which is an unavoidable cost of using the self-attention mechanism.
Our MSST approach has a higher time cost compared to conventional CNN methods,
yet this cost is notably lower than ViT and SpectralFormer. In terms of computational
complexity, the MSST method is positioned in the medium-to-high range, mainly due to
the inclusion of the SSTG module and CCA. Although MSST does not outperform the other
methods in terms of efficiency, the manageable time cost is deemed acceptable, considering
its superiority in accuracy.

Table 7. Training times and test times for the contrasting methods and the proposed method on the
three datasets.

Methods
Train(S) Test(S)

Trento PU Houston
2013 Trento PU Houston

2013

3DCNN 127.99 174.96 103.97 2.65 3.12 1.53
G2C-3DCNN 122.41 192.26 101.98 2.51 4.37 1.34

HybridSN 124.03 163.80 95.05 2.22 3.84 1.58
SSRN 165.22 200.15 122.02 3.37 4.54 2.23
ViT 188.06 236.09 145.92 4.56 6.12 3.40

SpecFormer 187.24 227.10 142.248 4.01 5.71 2.90
SSFTT 145.59 183.85 116.71 3.22 3.79 2.17
MSST 185.72 222.32 123.47 4.12 5.44 2.94

5. Discussion
5.1. Parameter Sensitivity Analysis

To determine the optimal network configuration, we experimentally analyzed several
parameters that could impact the classification performance and training process. These
parameters included the size of the input patch, the number of tokens generated by SSTG
(n), the token fusion patterns in TFSA, and the number of attention heads in transformer.

5.1.1. The Impact of Patch Size and Number of Tokens

Based on existing research, this research set the patch sizes to (11, 13, 15, 17, 19), while
the numbers of tokens were chosen from the set (49, 64, 81, 100, 121). Figure 11 shows
how classification accuracy is affected by patch size and the number of tokens in the three
experimental sets.
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As depicted in Figure 11, for the Pavia University and Trento data, the overall accuracy
shows a convex functional trend of increasing and then decreasing as the patch size
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went from 11 to 19, with an optimum value attained at a patch size of 15. Similarly, in
the experiments conducted on the Pavia University and Trento datasets, configuring the
number of tokens to 64 yielded significantly better results than other values. For the
Houston 2013 dataset, on the other hand, the best overall accuracy was achieved when the
patch size was set to 11 × 11 and the number of tokens to 49.

5.1.2. The Impact of the Number of Attentional Heads

To ascertain the optimal number of attention heads, we examined the impact of
varying their quantity on classification accuracy in our experiments. This exploration
was conducted with the patch size and the number of tokens fixed at 15 × 15 and 64,
respectively. The results of these experiments are presented in Figure 12. Taking all three
datasets into consideration, we ultimately selected 8 as the number of attention heads.
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5.1.3. The Impact of Token Fusion Patterns in TFSA

To identify the optimal token fusion mode for TFSA, we proposed five different
schemes. The different schemes correspond to different fusion parameters R. Detailed con-
figurations are shown in Table 8. For example, in Pattern1, the tokens are fused using three
downsampling methods; specifically, the downsampling scale parameters (convolution
kernel size and strides) were set to 4, 2, and 1. Through this downsampling at different
scales, different degrees of token fusion are performed, and thus multi-scale information is
obtained. Here, i signifies tokens with i heads performing this type of downsampling.

Table 8. Details of the settings for the five fusion modes of TFSA.

Pattern1 Pattern2 Pattern3 Pattern4 Pattern5

R1


4 i = head

2
2 i = head

2
1 i = head

R2


8 i = head

2
2 i = head

2
1 i = head

R3


8 i = head

2
4 i = head

2
1 i = head

R4


7 i = head

2
3 i = head

2
1 i = head

R5


7 i = head

2
3 i = head

2
1 i = head

The five configuration schemes in Table 8 were compared across three datasets, with
the patch size, number of tokens, and number of attention heads fixed at 15 × 15, 64, and 8,
respectively. The results are shown in Figure 13. As can be seen from the figures, the fusion
pattern has an effect on the classification accuracy, but it is not significant. In the case of the
Trento and PU datasets, the Pattern1 schemes yield the highest accuracies. Conversely, for
the Houston 2013 dataset, the most suitable configuration scheme is Pattern5.
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5.2. Ablation Study
5.2.1. Ablation Study on the Main Modules

We conducted an analysis of the contributions of the three modules used by MSST
to classify performance through ablation experiments. Specifically, we divided the main
work of this paper into SSTG, TFSA, and CCA, and tested the impact of each module and
its different groups on the overall accuracy. As shown in Table 9, six cases were tested
on each dataset. In Table 9, a checkmark (

√
) in the component column indicates the

usage of the corresponding module, while a cross (×) indicates the non-utilization of the
corresponding module.

Table 9. Ablation study results of the main components on three datasets (best results are bolded).

Case

Components Dataset

SSTG TFSA CCA Houston
2013 Trento PU

1 × × × 83.49 95.45 93.15
2

√
× × 88.85 97.05 96.22

3 ×
√

× 89.65 97.49 95.57
4

√ √
× 90.01 98.68 97.80

5 ×
√ √

89.46 97.62 96.85

6
√ √ √

90.29 98.83 97.85

From Table 9, it is evident that the first case (baseline transformer) achieved the lowest
classification accuracy. With the adoption of SSTG as the tokenization method, there was a
significant improvement in classification accuracy, with overall accuracy improvements
of 5.36%, 1.6%, and 3.07% on the three datasets. Both case 3 and case 5 with the TFSA
module had higher overall accuracies than the non-use case. Case 5, which additionally
incorporated the CCA module, exhibited a slight improvement in classification accuracy
compared to case 3, although the impact of CCA on accuracy was not as significant as that
for TFSA and SSTG. Case 6, which represents the implementation of all three modules,
yielded the best results. These results demonstrate the effectiveness of the methodology
proposed in this study.

5.2.2. Ablation Study on the TFSA Module

More specifically, we performed ablation experiments on SSTG to demonstrate the
effectiveness of the query pixel feature extraction branch. We divided the SSTG into two
parts, the backbone branch and the query pixel branch (query pixel spectral features only),
and tested the effect of both on classification accuracy under the identical experimental
conditions. In Table 10, a checkmark (

√
) signifies that the corresponding branch is utilized,

while an (×) denotes it being unused. From the experimental results, it becomes evident that
the most optimal classification outcomes were obtained in the third scenario, suggesting
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that the model with the backbone branch in parallel with the query pixel branch is able to
make better use of the spatial-spectral features of HSI.

Table 10. Ablation study results of the detailed elements of the SSTG on three datasets (best results
are bolded).

Case
Components Dataset

Main Branch Query Pixel Branch Houston
2013 Trento PU

1
√

× 89.67 98.81 97.44
2 ×

√
84.18 93.73 94.62

3
√ √

90.29 98.83 97.85

5.3. Impact of Training Data Size on Method Performance

To evaluate the stability of our proposed method, we conducted comparative ex-
periments using different amounts of training samples, as detailed in Figure 14. In the
experiments, we selected 1%, 2%, 4%, and 8% of the data as training sets to investigate the
impact of different training sample sizes on the classification accuracy of each method. In
all three sets of experiments, the OA achieved by the MSST approach consistently increased
as the number of training samples expanded. This demonstrates the feasibility and stability
of our MSST.
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In each subplot, the MSST method is represented by the red dashed line at the top, as
shown in Figure 14. This indicates that our method consistently achieved better classifica-
tion accuracy, regardless of the number of training samples. The only exception is in the
Pavia University experiment, where the best classification accuracy was achieved by SSRN
when 4% of the data volume was used as the training set. However, this does not mean
that it is better than MSST, as both MSST and SSRN approach 100% OA at this juncture.

5.4. Semantic Feature Analysis

The input images, after being encoded by the proposed MSST method, are transformed
into high-dimensional semantic features. Using the t-SNE method, the features extracted
by the MSST method can be visualized as 2D graphical plots in Figure 15a–c for the Trento,
Pavia University, and Houston 2013 datasets, respectively. Notably, samples from the same
category are successfully clustered together, signifying that the network learns feature
information for each type. The aggregation of the feature visualization plots is evident for
the Trento and Pavia University datasets, while Houston 2013’s is more dispersed. These
results correspond to the fact that the Houston 2013 dataset is more complex compared to
the other two.
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6. Conclusions

In this study, we proposed a multi-scale spatial–spectral transformer, which is based on
spatial–spectral token generator, token fusion self-attention module, and cross-covariance
attention. The redesigned token generator is capable of extracting spatial–spectral features
from patches while concurrently employing a separate feature extraction branch to repair
the damaged spectral characteristics of query pixels. Additionally, CCA is employed to
capture dependencies among spectral sequences during attention encoding. Furthermore,
TFSA is used to enhance the network’s ability to model attention across mixed scales,
enabling our network to learn global dependencies among objects of varying sizes. The
experiments on the three HSI datasets demonstrated that MSST has the highest accuracy
compared to the SOTA methods. MSST exhibits pronounced advantages in handling data
characterized by dispersed samples and multi-scale targets. In our future research, we
intend to delve deeper into HSI classification tasks from perspectives such as model light
weighting, unsupervised learning, self-supervised learning, and multi-source data fusion.
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