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Abstract: Coastal regions, increasingly threatened by floods due to climate-change-driven extreme
weather, lack a comprehensive study that integrates coastal and riverine flood dynamics. In response
to this research gap, we conducted a comprehensive bibliometric analysis and thorough visualization
and mapping of studies of compound flooding risk in coastal cities over the period 2014–2022, using
VOSviewer and CiteSpace to analyze 407 publications in the Web of Science Core Collection database.
The analytical results reveal two persistent research topics: the way to explore the return periods
or joint probabilities of flood drivers using statistical modeling, and the quantification of flood risk
with different return periods through numerical simulation. This article examines critical causes of
compound coastal flooding, outlines the principal methodologies, details each method’s features,
and compares their strengths, limitations, and uncertainties. This paper advocates for an integrated
approach encompassing climate change, ocean–land systems, topography, human activity, land
use, and hazard chains to enhance our understanding of flood risk mechanisms. This includes
adopting an Earth system modeling framework with holistic coupling of Earth system components,
merging process-based and data-driven models, enhancing model grid resolution, refining dynamical
frameworks, comparing complex physical models with more straightforward methods, and exploring
advanced data assimilation, machine learning, and quasi-real-time forecasting for researchers and
emergency responders.

Keywords: compound coastal flooding; flooding risk; scenario simulation; statistical modeling;
bibliometric analysis

1. Introduction

Flooding, a major global natural disaster [1], annually affects a vast population, es-
pecially in coastal regions that are vulnerable to combined climatic and human-induced
hazards [2,3]. Notably, 80% of flood-related fatalities occur within 100 km of coasts [4].
Climate change intensifies typhoons, storm surges, and heavy rains [5], increasing flood
risks. With growing coastal economic activities and advancing global warming, the disaster
vulnerability in these areas is expected to rise [6], escalating future flood hazards [7,8].

Accurately estimating the spatial extent of flood characteristics like velocity, depth, and
frequency is crucial for flood risk analysis, a focus of extensive scholarly research [9–11]. As
Vojtek [12] and Skakun [13] integrated spatial distribution data of flood inundation extent,
depth, and flow velocity with relative flood inundation frequency for flood risk assessment,
they have provided new ideas and methods for flood risk evaluation. These methods
accurately assess the spatial extent and distribution of flood disasters. However, floods in
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coastal areas are often not caused by a single hazard but involve the interplay and combined
impact of multiple factors. Recent research has shifted from single- to multiple-hazard
studies, with the interaction and coupling of different hazards becoming a key challenge in
comprehensive risk assessment. Storm cyclones, typically accompanied by heavy rain and
storm surges [14–18], along with extreme river flow and astronomical tides, frequently lead
to compound flooding. Coastal areas, with their flat terrain and dense river networks, are
prone to flooding. Upstream heavy rains can cause river levels to exceed alert thresholds,
and local heavy precipitation increases the risk of dam failures or overflows [19]. High tides,
storm surges, and sea waves can further exacerbate flooding by causing seawater to back
up, particularly when coinciding with river floods, hindering floodwater discharge and
worsening drainage [20,21]. Additionally, coastal urbanization has increased the number
of impervious surfaces [22–24], altering hydrological patterns and affecting precipitation
and flow processes. Coastal cities also face challenges in flood management due to inad-
equate urban drainage infrastructure [25–28] and significant ground subsidence [29,30].
In summary, while significant progress has been made in understanding and mapping
flood characteristics, there remains a critical gap in comprehensively assessing the risk of
compound flooding, particularly in analyzing the complex interactions and cumulative
impacts of multiple flood-inducing factors in coastal areas [31]. This highlights the need for
more integrated and multifaceted research approaches to effectively address the nuances of
compound flood risks.

Therefore, this study comprehensively analyzed the processes and mechanisms of
compound flooding in coastal regions by reviewing the pertinent literature from the past
decade. It focused on three key areas: statistical models, dynamic numerical models, and
risk mapping methods employed in assessing coastal compound flood risks. The paper is
structured into three distinct sections, each dedicated to one of these focal areas, offering
a clear and concise overview of current methodologies and findings in this field. For a
detailed process flow, refer to Figure 1.
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Figure 1. Overall framework diagram of the article.

Part 1: Analysis of the disaster mechanisms of compound flooding. A review of the
literature from the past decade was conducted based on keywords, and three methods were
discussed: statistical models, numerical simulation models, and risk mapping methods.
The risk mapping methods were further categorized into artificial intelligence (AI) and
multi-criteria decision-making (MCDM).

Part 2: Various case studies related to statistical models, numerical simulation models,
and risk mapping methods were introduced. Additionally, a comprehensive discussion of
the strengths and limitations of each category and subcategory was conducted.

Part 3: This chapter introduces the recent advancements in coupled methods, along
with the associated uncertainties, and provides recommendations for future applications.
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By offering a comprehensive understanding of the methods, it aims to make meaningful
contributions to the field of research.

Part 4: A summary and recommendations for future research are presented in this
section.

In summary, this study offers an in-depth review of the three aforementioned methods,
successfully delineating all essential topics to formulate a review structure. Additionally, it
sheds light on recent advancements in coupled flood risk analysis and pinpoints areas for
further research.

2. Overview of Methods
2.1. Mechanisms of Compound Coastal Flooding

Coastal compound floods are those that take place in coastal regions, influenced by an
array of meteorological, hydrological, and hydrodynamic factors. These floods typically
result from the interplay and combination of multiple disaster-inducing elements [32–36].
Large coastal cities are prone to suffering from multiple disasters in the course of a storm
cyclone, leading to tremendous disaster losses and social impacts [37,38]. Overall, there are
three main sources of composite flooding in coastal areas [39–41]: (1) the ocean, extraor-
dinary weather events leading to dramatic seawater uplift in the form of superimposed
astronomical tidal surges, tsunamis, catastrophic ocean waves, and slow-onset sea-level
rise, i.e., so-called coastal flooding; (2) river-type flooding due to runoff from rivers gener-
ated by upstream precipitation; (3) localized precipitation, which provokes regional surface
waterlogging, called precipitation-type flooding. However, there is still a lack of scientific
understanding of the interactions between the aforementioned hazards and the coupled
disaster-causing processes in the academic community [42,43]. The simulation assessment
and prediction methods are relatively immature, which makes the simulation technology
one of the key directions in the current research of composite disaster science. Figure 2
shows a schematic diagram of the flood generation process in coastal cities and the key
factors contributing to flood inundation zones.
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Figure 2. Conceptual diagram of river–storm surge composite events in the fluvial–sea transition.
Heavy rain causes floods by increasing surface runoff and river water levels. Flooding is influenced by
factors like river shape, floodplain features, and defenses against extreme events. Coastal flooding can
be made worse by tidal surges and storm-driven water-level rises that interfere with river drainage
and raise sea levels.
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From a catchment-scale hydrological perspective, extreme precipitation and extreme
coastal water levels are the main triggers of coastal flooding. In particular, coastal water
levels can be decomposed into mean sea level (MSL), astronomical tides (ATs), non-tidal
residuals (NTRs), and wave-gaining water levels, controlled by multiple processes at differ-
ent spatial and temporal scales [1,44]. That is, in addition to the water levels observed on
conventional tide gauges, high-frequency (i.e., orders of magnitude of seconds) fluctuations
in water levels due to surface gravity waves should also be considered. Other physical
factors, like catchment and river network shape and slope, land-use type (e.g., impervi-
ous areas), evapotranspiration, and saturated soils, increase surface runoff and upstream
river flows. Simultaneously, from a hydrodynamic point of view, the topography of the
river channel and floodplain, the geometry of the river cross-section, the roughness of
the river channel and floodplain, and the presence of river structures are other critical
factors influencing the area of flood inundation. Ultimately, rainfall caused by storm surges
further increases river levels, and compound flooding occurs when river waves enter the
river–ocean transition zone with ocean surges [45]. The river waves lose momentum while
the surges hold momentum. The difference in velocity makes compound flood events
the most likely to strike in inland segments of the river–ocean transition, approaching the
tidal limit and increasing the flood risk immediately for coastal cities. Based on the above
flood-triggering factors, we conducted searches, investigations, and summaries of relevant
articles.

2.2. Detailed Overview of Search Strategy and Database Description

In this study, a comprehensive database was established using bibliometric methods [46],
providing a holistic view of the field. This database served as the foundation for identify-
ing current research trends, which were then utilized for subsequent categorical analysis.
WOS stands as the leading research platform across various scientific domains and is glob-
ally recognized as the most dependable citation database independent of publishers. We
utilized keywords related to compound flooding for searching the WOS core database. Af-
ter removing the less relevant literature, a total of 654 results were obtained. The search
terms used were as follows: (coastal/compound flood), (coastal flood/simulation/risk assess-
ment), (coastal flood/simulation/risk perception), (compound flood/risk assessment), (com-
pound flood/risk perception), (rainfall/river flood), (rainfall/storm surge), (storm surge/river
flood), (rainfall/storm surge/river flood), (storm surge/wave), (coastal/inundation/risk
assessment), (coastal flood/hazard), (coastal/inundation/hazard), (coastal/compound
flood/vulnerability), (coastal/compound flood/flood mapping), (compound flood/MCDM),
(compound flood/AHP), (compound flood/statistics), (compound flood/statistical), (com-
pound flood/machine learning), (compound flood/numerical modeling), (compound
flood/hydrodynamic), (compound flood/physically based). The timespan was from 2014
to 2023, focusing only on research articles and review papers. Within the publications, the
selection was further refined based on research areas related to science and technology,
physical sciences, social sciences, etc., ultimately identifying 440 publications linked to
coastal flooding. Then, CiteSpace was used to exclude duplicate articles, resulting in a
selection of 407 specialized publications focusing exclusively on compound coastal flooding.
The overall framework of this article is shown in Figure 2. The following is the specific
research methodology.

2.2.1. Research Stages in the Database Context

The research article output trends provide insights into the growth and focus of
compound flood research within academia. Given that the 2023 publication data are still
incomplete, our analysis was confined to the articles published between 2014 and 2022.
Figure 3 shows all annual publications between 2014 and 2022. The analysis shows that
from 2014 to 2022, the number of publications related to coastal flooding has been increasing
annually, with a significant increase since 2019. Even though the literature on compound
flooding existed prior to 2014, its systematic investigation commenced and took shape from
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that year onward. The Intergovernmental Panel on Climate Change (IPCC) stated in its
report on managing risks to improve climate resilience measures that “compound events
are a combination of multiple physical processes” [47]. Compound floods in coastal areas
are among the most typical compound events. Therefore, this paper can state that, after
the concept of composite events proposed by the IPCC in 2014, people started to recognize
the significance of the research on coastal composite floods with regard to sustainable
development, and the relevant field of research began to flourish. Since then, and most
notably in 2019, as insights into nature ripen and computational capabilities improve,
scholars have embarked on describing composite floods caused by multiple flood drivers.
Thereafter, the annual publications increased from 9 in 2014 to 85 in 2022, an increase of
9.4 times in 9 years. The average number of published articles per year during this period
was 40.4, for a total of 364 articles. The spike in the number of relevant articles indicates
that this research area is becoming increasingly popular, with an upward trend.
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Rising attention can also be traced to several factors. Firstly, climate change has
intensified the impacts of compound coastal floods over the years, thereby leading to an
urgent need for advanced research on disaster mechanisms, warning simulations, and
emergency response strategies regarding compound coastal floods. Alternatively, new
tools for the research of compound floods have been made available by technological and
scientific advances, fueling the continuous growth of this domain of research.

2.2.2. Geospatial Dimensions in the Publications

Figure 4 displays the geographical distribution of the publishing countries or regions
for the 407 articles, which are spread across the globe. It should be noted that some
publications may have multiple countries as co-publishers. The United States of America
(USA), China, the United Kingdom (UK), the Netherlands, Germany, and Australia, all
of which have extensive coastlines, were the top publishing countries. Most publications
predominantly came from these well-developed nations, indicating that countries with
vast coastlines, especially developed ones, pay more attention to this research field. The
United States published 186 articles, or 45.7% of the total papers, during 2014–2023 in
the field of global coastal compound flooding research. is the US was followed by China
(78 papers), the UK (37 papers), the Netherlands (34 papers), Germany (31 papers), and
Australia (30 papers). The majority of the research on coastal compound flooding has been
carried out in the United States and China. Table 1 provides an overview of the top ten
countries in terms of global publication volume. The United States has an average citation
count of 24.76 and a total citation count of 4606. Similarly, China has values of 17.41 and
1358, the United Kingdom has 25.02 and 926, the Netherlands has 25.20 and 857, Germany
has 32.77 and 1016, and Australia has 93.2 and 2796. Notably, France and Australia exhibit
the earliest average publication years among the top ten countries, namely, 2019.10 and
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2019.2, respectively. In contrast, China and the United Kingdom have the latest average
publication years of 2020.41 and 2020.56, respectively. These findings indicate that China
and the United Kingdom have experienced significant development in coastal compound
flooding research in recent years, suggesting a potential sustained scientific impact in the
future. In conclusion, research on coastal compound flooding is primarily led by the United
States and China, with other coastal countries playing important roles.
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Table 1. The top ten countries with the highest publication volume on coastal compound flooding,
and corresponding research indicators.

No. Country Continent Link Total Link
Strength NP APY AC

1 USA North America 24 117 186 2020.18 24.76
2 China Asia 19 67 78 2020.41 17.41
3 United Kingdom Europe 21 65 37 2020.56 25.02
4 Netherlands Europe 17 52 34 2019.70 25.20
5 Germany Europe 21 56 31 2019.38 32.77
6 Australia Oceania 22 42 30 2019.2 93.2
7 Italy Europe 19 34 23 2019.65 29.13
8 Canada North America 8 13 22 2020.31 17.09
9 Spain Europe 12 21 20 2019.9 12.85

10 France Europe 14 25 19 2019.10 28.36

Note: “Link” represents the number of other countries connected to that country (excluding duplicates). “Total
Link Strength” represents the total number of connections that a country has with other countries (includ-
ing duplicated connections). No. = number, NP = number of publications, APY = average publication year,
AC = average citations.

2.3. Research Trends through Keywords

Keyword analysis enables researchers to grasp core research topics, identify emerging
trends, and pinpoint focal areas of study. Figure 5 illustrates a knowledge map created
from the results of a keyword co-occurrence analysis conducted using VOSviewer. The
green cluster is the largest cluster, with the representative keyword “Numerical Model”.
The term “Numerical Model” appeared in 91 out of 407 articles, highlighting its pivotal role
in this research domain. This cluster also contains the keywords model, hazard, HEC-HMS,
flood modeling, hydrodynamic modeling, inundation model, scenarios, hazard assessment,
hydrodynamic model, shallow-water equations, and compound flooding. The grey cluster
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is the second largest keyword cluster, including the keywords return period, frequency
analysis, dependence, copula function, probability, and multivariate. The red cluster
includes sea level, fluxes, waves, and wind. The blue cluster contains land use, machine
learning, vulnerability assessment, and livelihoods. Furthermore, a selection of frequently
occurring words was compiled for further analysis, as shown in Table 2. Through the
clustered keywords, it can be observed that, in this study, the red cluster primarily focuses
on the driving factors of coastal compound flooding, while the grey cluster is centered
around terminologies related to statistical analysis. The green cluster revolves around
numerical simulation methods used in compound flooding research, while the blue cluster
involves methods of risk assessment. To succinctly represent these clusters, they have
been categorized as “Variability”, “Encounter Probability Model”, “Numerical Simulation
Model”, and “Integrated hazard risk mapping”, respectively.
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The thematic evolution map is created by clustering the domain’s keyword networks
of different topics [48]. Figure 6 shows an overall picture of the evolution of topics in
compound research from 2014 to 2023. The analysis of the thematic evolution graph gives
us an idea of the trend of relevant research contents and topics. Two cutoff times were
selected based on the volume of the published works: 2015 and 2020. The period from
2017 to 2019 was an important period for the study of compound floods. Strongly related
words such as “compound flood”, “compound event”, “sea-level rise”, “storm surge”, and
“river flow” have appeared many times. The latest research is more inclined to analyze
the composite risk of compound floods, and the keywords focus on words such as “pair
copula construction”, “modeling dependence”, “bivariate frequency analysis”, and “risk
management”.
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Table 2. Collation of some high-frequency keywords.

Label Cluster Links Link Strength Frequency

Storm surge #1 244 864 118
Sea-level rise #1 193 535 75

Risk #1 128 469 67
Coastal flooding #3 84 171 21
Climate change #1 206 536 91

Dynamics #0 63 109 32
Variability #0 85 144 28

Compound flooding #1 126 402 56
Dependence #1 113 409 49

Compound events #2 65 120 15
Extreme rainfall #1 104 384 47

Model #2 107 240 41
Precipitation #1 102 328 41

River #1 86 214 37
Uncertainty #1 52 97 13

Tides #2 73 145 24
Copula #1 56 132 16

Inundation #2 85 201 32
Note: “#” symbol represents the number of the keyword cluster.
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the name of the keyword cluster).

The analysis of keywords and trends presented above highlights two primary concerns:
The first is assessing the future relevance of these driving forces and the likelihood of their
concurrent occurrence. A significant joint probability suggests an increased frequency
of compound floods. The second concern is understanding the cumulative impact of
these forces on flooding. Addressing these concerns, this paper discusses composite flood
hazards in three main sections: statistical modeling, dynamic numerical modeling, and risk
mapping.

3. Research Results and Discussion

This article examines the risk of compound floods, which is defined by their frequency
(return period), intensity (such as water level, volume, and duration), and potential impact
(like inundation depth). Statistical models are typically employed to determine flood
frequency, while the intensity and scope of impacts are better assessed using dynamic
numerical models and risk mapping. This paper systematically reviews advances in
composite flood hazard simulations and evaluations, focusing on encounter probability
models, numerical simulations, and integrated hazard mapping techniques.
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Probabilistic modeling, numerical modeling, and risk mapping form an intercon-
nected framework, where each component contributes to and utilizes data from the others.
Probabilistic models use historical flood data to calculate flood occurrence probabilities or
frequencies, known as return periods [49]. This output then informs numerical models,
especially for evaluating scenarios at different return periods. These numerical models
incorporate data like meteorological conditions, topography, land use, and flood frequency
from probabilistic models to detail flood characteristics, such as levels, velocities, and
flow rates [50,51]. These details are essential for risk mapping, which employs numerical
model outputs and integrates them with GIS technology to create inundation and risk
maps [52,53]. These maps provide critical insights for decision-makers about a flood’s
potential geographic spread, inundation depth, and damage distribution. The interplay of
inputs and outputs among these models is detailed in Table 3.

Table 3. Output and input data of three types of models.

Model Classification Output Data Input Data

Encounter probability models

Dependence, correlation, joint return
period, conditional probability, joint
probability, risk, uncertainties, trend,

failure probability

Historical flood event data

Numerical simulation models Depth, flow, velocity, duration, extent of
inundation, spread, hazard

Meteorological information,
topography/geomorphology, land use,

and flood frequency data

Integrated hazard risk mapping Scope of influence, vulnerability, danger,
exposure, potential risks, sensitivity

Flood levels, flow velocities, duration,
people density, road network density,

economic data

In summary, probabilistic models estimate the probability of flood occurrence, numer-
ical models delineate the flood’s specific features, and risk mapping presents these details
visually to highlight the potential scope of a flood’s impact.

3.1. Statistical Models

Within the realm of flood-related statistical model research, the initial studies mainly
concentrated on the statistical analysis of rainfall, runoff, and storm surges. Table 4 concisely
outlines the methodologies, findings, and insights from key research on various flood
hazard factors.

Although many initial studies have acknowledged the individual impacts of extreme
rainfall, coastal flooding, and river flooding, few have addressed their combined effects.
This omission potentially compromises the accuracy of depicting the true dynamics of
compound flooding events and the associated statistical features of disaster risk. There-
fore, research on the joint analysis of multiple hazard factors, based on data from station
observations and numerical simulations, is gaining increasing prevalence. The primary
research objectives of multivariate analysis include evaluating the correlation [54], depen-
dence [55], encounter probability [56], combination design, and conditional probability [57]
among multiple hazard factors. Correlation and dependence studies aim to quantify the
interrelationships among these hazard factors. Combination design is carried out to design
different encounter scenarios, such as storm surge–astronomical high tide levels, extreme
rainfall–storm surge, storm surge–extreme runoff, extreme runoff–sea-level rise, and so
on. Encounter probability represents the probability of events occurring under these dif-
ferent combination scenarios [58]. Conditional probability indicates the probability of one
event occurring given the condition of another event occurring [59]. For a comprehen-
sive overview, refer to Table 5, which tabulates several case studies on multivariate flood
analysis, encompassing causative factors, research outputs, scenario combinations, and
employed methodologies.
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Table 4. Summary of the methodologies, results, and information of the early studies on floods.

Consistent Hazard
Factor

Output Results and
Information Common Research Methodology

Extreme rainfall

Rainfall intensity Fixed threshold method, percentile
threshold method

Duration Sen slope estimation, Mann–Kendall
trend test

Return period
Extremal distribution, Gumbel

distribution function, generalized
Pareto distribution model(GPD)

Frequency Linear method of moments, Pearson
type III frequency curve

Spatial and temporal variation
characteristics

Mann–Kendall trend test, linear
regression, sliding averages, linear

regression, wavelet analysis

Runoff

Trend
Linear trend analysis method,

cumulative distance curve method,
Mann–Kendall trend test

Periodicity
Wavelet analysis, analysis of variance
(ANOVA) cycle method, composite

wavelet transform

Runoff volume Multiyear averaging, raw data trend
analysis, M-K trend analysis

Frequency Non-smooth extremal model,
polynomial normal transform

Spatial and temporal variation
characteristics

Spatial and temporal variation
characteristics, GPD

Storm surge

Frequency Data analysis method, nonstationary
statistics method

Extreme high-tide levels Formulae for forecasting extreme
high-tide levels

Spatial and temporal variation
characteristics Wavelet analysis

Return period Combinatorial distribution method

Extreme value Pearson-III-Pareto distribution model

Sea-level rise Rising trend Time-series analysis methods

Wave

Trend Regression analysis, ARIMA model

Wave height
Weibull distribution, nonlinear
shallow-water wave function,

Rayleigh distribution

Wave period Longuet-Higgins distribution

Ground subsidence

Spatial and temporal
distribution characteristics GIS spatial statistical methods

Trend GIS spatial statistical methods

Impervious surface
Spatial and temporal

distribution characteristics GIS spatial statistical methods

Trend GIS spatial statistical methods
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Table 5. Case studies related to the multifactor encounter probability modeling of floods.

Case Studies Key Constituent Output Results
and Information

Combinatorial Approach Research
MethodologyOR AND

Dependence between high sea
levels and high river discharge
increases flood hazard in global

deltas and estuaries [57]

Sea-level rise, river
Dependence,
conditional
probability

√
Copula

A Bayesian Copula-based
nonstationary framework for

compound flood risk assessment
along US coastlines [55]

Sea-level rise,
rainfall

Dependence,
uncertainties, joint

return period,
trend

√ √
Copula

Multivariate analysis of
compound flood hazard across
Canada’s Atlantic, Pacific, and
Great Lakes coastal areas [60]

Sea-level rise, river,
rainfall

Joint return period,
failure probability

√ √
Copula

Assessing the characteristics and
drivers of compound flooding

events around the UK coast [61]
Storm surge, river

Dependence,
correlation, joint

return period

√
Dependence

method,
joint-occurrence

method
Mapping dependence between

extreme rainfall and storm
surge [62]

Storm surge,
rainfall Dependence

√ Bivariate logistic
threshold-excess

model
Quantifying the dependence
between extreme rainfall and

storm surge in the coastal
zone [63]

Storm surge,
rainfall Dependence

√ Bivariate logistic
threshold-excess

model

Modeling dependence between
extreme rainfall and storm surge

to estimate coastal flooding
risk [64]

Storm surge,
rainfall Dependence

√

Bivariate logistic
threshold-excess

model, point
process, the
conditional

methods
Copula-based joint probability

analysis of compound floods from
rainstorm and typhoon surge: a

case study of Jiangsu coastal
areas, China [56]

Storm surge,
rainfall

Encounter
probability, joint

return period,
marginal

distribution, risk

√
Copula

Compounding the joint impact of
rainfall, storm surge and river

discharge on coastal flood risk: an
approach based on 3D fully

nested Archimedean Copulas [65]

Storm surge,
rainfall, river

Dependence,
encounter

probability, joint
return period,

failure probability,
risk

√ √
Copula

Flood risk assessment of loss of
life for a coastal city under the

compound effect of storm surge
and rainfall [16]

Storm surge,
rainfall

Encounter
probability

√
Copula

Joint risk analysis of extreme
rainfall and high tide level based
on extreme value theory in coastal

area [66]

Rainfall, tide

Dependence,
correlation, joint

return period,
encounter
probability

√
Copula

Compound flood impact of water
level and rainfall during tropical
cyclone periods in a coastal city:

the case of Shanghai [67]

Peak water levels
(storm surge,

astronomical tides,
sea-level rise),

rainfall

Dependency,
encounter

probability, peak
water level

√
Copula

Note: AND scenarios consider the possibility of two or more marginal variables simultaneously exceeding
specific thresholds, while OR scenarios consider the possibility of at least one marginal variable exceeding the
threshold [55]; AND and OR are the most commonly used combinations of hazard scenarios [68].
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Table 5 highlights the predominant use of the copula method in recent studies. The
copula method was most widely used in these studies. Copula is one of the latest advance-
ments in the field of multivariate dependence modeling, and it can be used for calculating
joint probability distributions, dependencies, and return periods of bivariate or even multi-
variate relationships in compound flood scenarios, such as rainfall–storm surge [14,69,70],
rainfall–tide [66,71,72], or sea-level rise–river [73,74]. More than a dozen linear copula
functions have been identified in known studies, each of which corresponds to a different
number of parameters, and which differ significantly in their fitting performance [59].
In general, copula functions can be classified into three main categories: Archimedean
copula, elliptical copula, and quadratic copula. The Archimedean copula family includes
both symmetric copulas (such as the Frank copula) and asymmetric copulas (such as the
Joe copula). The elliptical copula family includes the Gaussian copula and the t copula.
Detailed categorization information can be found in Figure 7. The Frank copula, Gumbel
copula, and Clayton copula, which are the most commonly used Archimedean copulas in
the field of hydrology, have different tail characteristics [75]. Different copula functions
are used in practical applications, and the calculation results have large differences, so it is
especially critical to select a suitable copula function. In practice, it is necessary to select the
copula function that works best with the available data according to the root-mean-square
error criterion (minimum RMSE), Akaike information criterion (minimum AIC), and BIC
(minimum BIC) [76]. But regardless of the type of copula function, binary copulas are still
predominant in the current research. Multivariate coupling modeling is more challenging
compared to bivariate modeling, and it should be a future consideration to improve the
model to accommodate more variables.
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3.2. Numerical Modeling Approaches

In the past, both numerical simulation models and statistical models primarily con-
centrated on singular hazard factors, including rainfall, storm surges, and river flows,
rather than a combination of elements. Recent trends, however, have shifted towards
encompassing multiple hazard factors in flood simulation studies. The application research
of numerical simulation models can be categorized into two types, namely, single-type
and coupled-type, based on the number of compounded flood factors involved. Figure 8
displays the overall framework of the numerical simulation model.
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3.2.1. Isolated Scenario Analysis (ISA)

In coastal regions, rainfall runoff serves as a principal driver of compound flooding
events. Researchers use different control conditions and mathematical equations to create
numerical models that simulate this process. These models are essential for predicting
floods’ development and behavior in various environmental settings. Generally, these
simulation models fall into two categories: static and dynamic numerical models.

In fluids with an extremely low viscosity coefficient, the resistance term becomes
trivial to the extent that it can be omitted, and the momentum equation may also be
considered unnecessary. When hydrodynamic equations exclude this dynamic term, the
model is classified as a non-dynamic numerical model. In 2001, Liu introduced a flood
assessment methodology utilizing digital elevation models (DEMs), categorized into two
types: passive submergence and active submergence [77]. Both of these methods belong
to the category of non-dynamic numerical models. The passive submergence analysis
method, commonly referred to as the “bathtub model [78]”, utilizes a digital elevation
model (DEM) by overlaying the floodplain surface onto a raster or triangulated irregular
network (TIN) [79,80]. In this approach, all areas below the flat floodplain surface are
classified as flooded, disregarding the impact of topography on water flow. However,
previous studies have indicated that this method tends to overestimate the depth and
extent of flooding due to its simplistic representation of flood routing [81,82]. This is due to
the importance of considering topography in flood simulations, which cannot be ignored,
as it directly affects the flow of floodwaters and can hinder the spread of floodwaters in
higher-elevated areas. When the influence of both topography and discharge points is
considered on top of the passive submergence model, it is referred to as active submergence.
The cellular automaton (CA) method is commonly used to simulate active submergence.
CA is a grid-based dynamical model that discretizes time, space, and states [83], enabling
the capture of the spatiotemporal evolution of floods. Jamali (2019) proposed a rapid flood
inundation model called CA-ffé, based on the CA method, and compared it with HEC-RAS
and TUFLOW [84]. The results proved that CA is effective. However, it is worth noting
that CA models are often tested under ideal conditions and may exhibit lower accuracy in
reproducing 2D fluid dynamics compared to models based on the comprehensive shallow-
water equations (SWEs).

In contrast with the approach of non-dynamic numerical models, many researchers
incorporate the dynamic term in governing equations for more accurate flood flow simula-
tion and precise data acquisition, known as dynamic numerical modeling. In the dynamic
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numerical models for single-element simulation, there are hydrological models, as well as
1D, 2D, and 3D hydrodynamic models. The hydrological model typically operates indepen-
dently to calculate the inflow and outflow, determining the temporal variation in flow at
upstream cross-sections and control sections of river branches [85,86]. This flow process
can be used as an input boundary condition for hydrodynamic models. In hydrodynamic
simulations, the 1D hydrodynamic model is inadequate for addressing the problem of
urban surface floods that lack a fixed direction and path. At the same time, the computation
of a 3D hydrodynamic model is both complex and time-consuming. Consequently, the
application of 2D hydrodynamic models is more extensive.

In the realm of 2D hydrodynamic modeling, certain scholars have streamlined the
governing equations, resulting in practical and computationally efficient models—for ex-
ample, 2D diffusion wave models that ignore the local acceleration term and the convective
acceleration term, simple inertial models that ignore the convective acceleration term
(e.g., LISFLOOD-FP [87]), and a 2D kinematic wave model omitting the local acceleration
term, convective acceleration term, and pressure term [88]. The kinematic wave model was
initially developed for fluvial flooding with deeper water [89,90]. When conducting simu-
lations of relatively shallow urban surface water inundation, the kinematic wave model
has certain limitations, requiring several significant assumptions to be made, and it has a
low level of accuracy itself. Therefore, the diffusion wave model [91–93] and the simplified
inertial equation model [94,95] are considered to be more practical and commonly used
simplified models in the field of flood disaster simulation and risk perception. However,
simplified models may lead to inaccurate computational results.

Compared to simplified equations and models, the complete 2D SWE applies to vari-
ous flow conditions and geographical environments, including meandering watercourses,
complex terrain, and irregular water bodies. The complete 2D SWE model that considers
more physical details and more accurate fluid dynamic simulation results can be obtained,
yielding excellent performance in surface flood simulation research. However, in the full-
process simulation of urban floods, the 2D model does not account for the influence of
underground drainage pipes, which is a limitation. Therefore, to enhance the accuracy
of coastal city flood simulations, many researchers have focused on the coupling of 1D
drainage network models with 2D surface flow models [96–99]. By establishing a fluid
exchange between the 2D and 1D models, a more comprehensive urban flood model can be
constructed.

As crucial as rainfall runoff, another equally significant contributor to coastal flooding
is the phenomenon of storm surges. Historically, most of the early storm-surge simulations
were 2D models based on depth-integrated SWEs [100–103]. Their predominant advantages
lie in their simplicity and computational efficiency, which is why they have been adopted
extensively for storm-surge warnings across numerous countries [104]. As computing
capabilities advanced alongside the refinement of algorithms, the realm of oceanography
saw a gradual shift towards 3D numerical models for storm-surge simulation and opera-
tional forecasting, such as the ADCIRC, DELFT3D, POM, and FVCOM models [105]. For
instance, Valle (2018) coupled the Weather Research and Forecasting (WRF) model with the
Advanced Circulation Model (ADCIRC) to simulate the effects of storm surges [106]. Liu
(2018) created a 3D visualization of the flood pathway process based on the volume-of-fluid
(VOF) numerical model [107]. The study’s results indicated that 3D visualization can serve
as an effective tool to visually and realistically present the dynamic changes in hydrological
information. Ye (2020) proposed a 3D atmospheric pressure model for river-to-ocean flow
based on unstructured grids [108]. This model integrates traditional hydrological and
oceanographic models into a single modeling platform to simulate storm surges, subse-
quent river flooding events, and compound wave surges. This research demonstrates the
significance of incorporating the 3D effect in storm-surge simulations. In comparison to
two-dimensional (2D) modeling approaches, three-dimensional (3D) simulations provide
a comprehensive inclusion of critical parameters such as topography, bathymetry, wind
velocity, and wind direction. Additionally, by integrating these factors, more accurate
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storm-surge modeling and precise prediction of surge water levels can be achieved, leading
to more precise estimations of inundation extents.

Expanding on this concept, it is important to highlight the distinct challenges posed
by wave flooding. Wave flooding is a type of flooding caused by large amounts of seawater
being pushed onto the coast by strong winds, leading to considerable infrastructural
damages, including to structures like dikes and bridges. Notably, wave flooding intensifies
the risks associated with compound flooding. Krishna’s 2023 study on India’s southwest
coast delved into the interplay between waves, wind, and tides, illuminating wave activity’s
pivotal role in flood catastrophes [109]. A comprehensive literature review reveals a
research gap, with single-wave flooding being relatively less studied than rainfall-induced
or storm-surge floods. This can be attributed to the fact that wave flooding is inherently
triggered by intense winds, with extreme meteorological events, especially severe storms,
typically resulting in outcomes like storm surges. Consequently, research on wave flooding
typically integrates elements like tides and storm surges.

Broadly, global development issues like rising sea levels [110,111], the expansion of
impervious surfaces [22–24], and land subsidence [112,113] significantly impact flood pat-
terns. Their effects are particularly pronounced in determining the severity and frequency
of compound flooding in coastal regions. Rather than studying these elements separately,
they are often analyzed in tandem with other influencing factors to gain a deeper under-
standing of compound flooding mechanisms. A compilation of frequently utilized dynamic
numerical simulation models for single-scenario simulations, complete with the associated
control equations, access methodologies, and results, can be found in Table 6.

Table 6. Description of some existing dynamic numerical models.

Category Typical Model Model Equation
Description Access Information Acquisition

Hydrological models

HEC-HMS - Commercial Flow, spatial distribution

VIC - Open-source Flow, water level, spatial
distribution

SWAT - Open-source Flow, water level, spatial
distribution

MIKE SHE - Commercial Flow, water level, velocity,
spatial distribution, duration

HEC-GEORAS - Commercial Flow, water level, velocity,
spatial distribution, duration

1D hydrodynamic
models

HEC-RAS 1D 1D SWE Open-source Flow, water level, velocity,
spatial distribution, duration

MIKE 11 1D SWE Commercial Flow, water level, velocity,
spatial distribution, duration

ISIS 1D 1D SWE Commercial Flow, water level, velocity,
spatial distribution, duration

2D hydrodynamic
models

Lisflood-FP [87] Inertial formulation
of 2D SWE Research Flow, water level, velocity,

spatial distribution, duration

MIKE 21 NSE Commercial Flow, water level, velocity,
spatial distribution, duration

TUFLOW 2D SWE Commercial
Flow, water level, velocity,

spatial distribution, duration,
wave height

FloodMap [114] The 2D diffusive
wave model Research Water level, spatial distribution,

duration
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Table 6. Cont.

Category Typical Model Model Equation
Description Access Information Acquisition

2D hydrodynamic
models

HEC-RAS 2D 2D SWE + diffusion
wave Open-source Flow, water level, velocity,

spatial distribution, duration

CityCAT 2D SWE Open-source
Flow, water level, velocity,

spatial distribution, duration,
probability, vulnerability

TELEMAC 2D 2D SWE Commercial Flow, water level, velocity,
spatial distribution, duration

DHMUbran The 2D diffusive
wave model Research Flow, water level, velocity,

spatial distribution, duration

UPFLOOD [115] 2D diffusive wave
model Research Water level, velocity, spatial

distribution

JFLOW [116] 2D diffusive wave
model Research Flow, water level, velocity,

spatial distribution, duration

ISIS 2D 2D SWE Commercial Flow, water level, velocity,
spatial distribution, duration

3D hydrodynamic
models

Delfet3D NSE Commercial
Flow, velocity, water level, flow
direction, spatial distribution,

duration

ADCIRC NSE Open-source
Flow, velocity, water level, flow
direction, spatial distribution,

duration, pressure

TELEMAC 3D NSE Open-source
Flow, velocity, water level, flow
direction, spatial distribution,

duration, pressure

3.2.2. Composite Scenario Analysis (CSA)

Compound flood inundation typically encompasses multiple terrestrial processes,
including rainfall and river flow, along with marine elements such as storm surges and
waves [59]. Therefore, simulating compound flood scenarios requires the coupling of
oceanographic, hydrological, and hydrodynamic processes. In common composite scenario
numerical simulations, it is common to use the results of one model as input conditions
for another model. Based on the type of model that ultimately determines the extent of
flood inundation, these models can be classified into three categories [117]: hydrodynamics-
dominated models (such as HEC-RAS, MIKE21, and LISFLOOD-FP), hydrology-dominated
models (like SWMM, MIKE SHE, and VIC), and oceanography-dominated models (such
as ADCIRC, POM, and Deleft3D), as shown in Figure 9. Hydrodynamics-dominated
models use observed or simulated hydrological and oceanographic datasets as inputs to
direct the final inundation extents. For example, Yin (2016) coupled the storm-surge model
ADCIRC with the urban flood inundation model FloodMap, using the ADCIRC storm-surge
modeling as an input to simulate the urban inundation in New York City during Hurricane
Sandy [118]. Shen (2022) coupled a storm-surge model with a coupled 1D/2D urban flood
model to quantify the impact of possible future climate scenarios on the transportation
infrastructure in Norfolk, Virginia, USA [119]. Bennett (2023) studied compound flooding
in North Jakarta, Indonesia caused by waves, tides, and river flow, using a coupling of
the Delft3D and HEC-RAS models [120]. Hydrodynamics-based coupled models have the
advantage of using readily available datasets or simulation results from open models as
inputs. This can avoid the need for complex models, such as hydrological and oceanic
circulation models, since there is no established mutual interaction between the two models;
only using the results of the previous model as the input for the next model may lead to
underestimation of the final simulation results, resulting in inaccurate outcomes.
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The hydrology-dominated coupled models focus on establishing hydrological simu-
lation processes and combining observed data or model-generated sea levels to simulate
the entire process from precipitation runoff to inundation. Silva-Araya (2018) proposed an
approach combining the simulated wave nearshore model and the Advanced Circulation
Model (ADCIRC) with the gridded surface/subsurface hydrological analysis (GSSHA) 2D
hydrological model to determine the levels of coastal flooding caused by a combination
of storm surge and surface runoff [121]. Shi (2022) investigated the effects of compound
flooding when rainfall and storm surges occur simultaneously, developing a coupled
model based on the 1D hydrological model SWMM and the 2D hydrodynamic model
ADCIRC [122]. Similarly, hydrology-dominated coupled models, in which the interaction
between storm surges and runoff is not considered, can underestimate the simulation
results.

In oceanography-dominated coupled flood simulations, the focus is primarily on
simulating marine processes while utilizing simulated or observed data of hydrological
processes such as rainfall and runoff as inputs. Tromble (2013) utilized the distributed
hydrological model HL-RDHM to generate flow boundary conditions for ADCIRC and
simulated storm-surge inundation [123]. Bacopoulos (2017) integrated the SWAT and AD-
CIRC models to develop a coupled model for flood prediction in coastal regions [124]. Lee
(2019) coupled the hydrological model HEC-HMS with the hydrodynamic model Delft3D,
where HEC-HMS was used for hydrological simulation, while Delft3D incorporated the
runoff data, wind speed, pressure, and topography from HEC-HMS to calculate compound
flood water levels and velocities [125]. In oceanography-dominated coupled flood sim-
ulations, the neglect of mutual interactions between rainfall, river flooding, and marine
processes can also lead to an underestimation of the inundation outcomes in the coupled
flood simulation.

Table 7 lists additional composite flood coupling modeling studies that employ this
method, including their categories, models, and research subjects.
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Table 7. More case studies of unidirectional transfer composite model research.

Case Studies Categories Models Research Subjects

Cascade impact of hurricane movement,
storm tidal surge, sea level rise, and

precipitation variability on flood assessment
in a coastal urban watershed [126]

Hydrology-dominated
model ADCIRC-SWAN, ICPR

Hurricane, storm tidal surge,
sea-level rise, precipitation

changes

The combined impact of inland and coastal
floods: mapping knowledge base for the
development of planning strategies [127]

Hydrodynamics-
dominated model SWMM, HEC-RAS Rainfall, runoff, sea-level

rise, storm surge

A multi-scale ensemble-based framework for
forecasting compound coastal-riverine

flooding: The Hackensack-Passaic watershed
and Newark Bay [128]

Hydrodynamics-
dominated model

HEC-HMS, NYHOPS,
HEC-RAS Storm surge, river

Assessing compound flooding from
landfalling tropical cyclones on the North

Carolina coast [129]

Hydrodynamics-
dominated model

HEC-HMS, ADCIRC,
HEC-RAS Rainfall, storm surge

Modelling of coastal inundation in response
to a tropical cyclone using a coupled
hydraulic HEC-RAS and ADCIRC

model [130]

Hydrodynamics-
dominated model ADCIRC, HEC-RAS Rainfall, runoff, storm surge

Developing a hybrid modeling and
multivariate analysis framework for storm

surge and runoff interactions in urban
coastal flooding [131]

Hydrology-dominated
model Delft3D -SWAN, SWMM Storm surge, runoff

Use of 1D unsteady HEC-RAS in a coupled
system for compound flood modelling:

North Carolina case study [132]

Hydrodynamics-
dominated model

ADCIRC, HL-RDHM,
HEC-RAS 1D Rainfall, tidal

Developing a modelling framework to
simulate compound flooding: when storm

surge interacts with riverine flow [133]

Oceanography-
dominated model HEC-RAS, ADCIRC Storm surge, river

A new 1D/2D coupled modelling approach
for a riverine-estuarine system under storm
events: application to Delaware River basin

Oceanography-
dominated model

NWM, D-Flow FM,
ADCIRC/WW3

Tidal, surges, river, wind,
atmospheric pressure

3.3. Integrated Hazard Risk Mapping

Flood hazard maps are essential for probing areas exposed that are to flood hazards,
and they provide an effective representation of the spatial extent and distribution of flood
hazards. Flood risk mapping plays an instrumental role in the identification of potential
flood hazard areas, hazard intensities, flood depths, and initial damage levels. Compared
to probability models and numerical simulation models, integrated hazard risk mapping is
simpler and more suitable for large-scale and long-term risk assessment, and it has strong
integration capabilities [134] with other methods. Based on the integration status with
numerical simulation models, integrated hazard risk mapping methods can be classified
into two categories: empirical methods and physical-based methods. Empirical methods
include MCDM and AI methods [135]. Physical-based methods combine empirical models
with numerical simulation models, using accurate physical information such as water
depth, flow velocity, and inundation area obtained from the simulation models for more
precise risk assessment. The structure and classification of integrated hazard risk mapping
methods are shown in Figure 10.

MCDM refers to the decision to choose a limited (infinite) set of conflicting schemes
that cannot be shared. This is a method that aims to help decision-makers integrate
information to simplify the decision-making process. The result is usually a set of weights
related to different goals [136,137]. Then, utilizing the weighted linear combination and
sequential weighted average method [137], the weights are summarized, and the attributes
of each factor are summed along with their weight to determine the final score of the
factors considered in the analysis. After investigation, the analytic hierarchy process
(AHP) [138,139] is the most popular MCDM method in flood risk assessment [140]. The
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AHP can rank alternative solutions based on several criteria through discrete or continuous
pairwise comparisons to address decision-making problems [141], and today it is seldom
used alone but, mostly, combined with other flood risk assessment tools to perceive the risk.
For example, Cui (2017) considered flood factors in coastal cities, such as the geological
deposition rate, rising sea levels, precipitation, the length of urban drainage pipes, annual
GDP, and population, utilizing the AHP, Grey model (GM), and artificial neural network
(ANN) to predict flood losses [142]. Currently, the application of MCDM in the field of
composite flood risk perception is limited, but it has great potential for development.
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Recently, the application of AI techniques, such as machine learning (ML) and deep
learning (DL), in geological hazard modeling has been rapidly advancing. ML models are a
subfield of AI capable of building predictive models from historical data. They use remote
sensing (RS) and past flood data to detect spatial flood ranges and sensitive areas. According
to different data and different needs, the researchers can choose different ML algorithms
to determine the risk of coastal compound floods. Among these, the ANN is the most
popular and widely used method [143]. Wang (2016) developed an ANN-based system to
predict storm surges along the Louisiana coast [144]. Sahoo (2019) proposed an alternative
approach to predict storm surges and onshore flooding using techniques such as ANNs,
using pre-computed storm-surge and flood data scenarios to train ANN models for the
entire Orissa coast, with a 99% success rate [145]. Chondros (2021) proposed an integrated
approach for flood warning applicable to the flood-prone coastal area of Rohimno, Crete,
Greece, developing an ANN model and demonstrating the superior performance of the
developed ANN [146]. In addition to ANNs, other ML models—such as random forests
(RF) [147–151], the Gaussian process metamodel (GPM) [152], support-vector machine
(SVM) [147,150], and recurrent neural networks (RNNs) [153]—have also been applied.
The ML model can make full use of historical data without considering the physical process
of flood formation and can quickly train, verify, test, and evaluate the risk of floods based
only on the historical flood record dataset, which provides an easier-to-implement approach
to flood prediction, with high performance and relatively little complexity compared to
physical models [154]. However, considering accuracy, it is still necessary to strengthen
the close connection between ML and the physical process of flood formation. At present,
there are few algorithms involved in the related flood mechanisms [155]. This will be one
of the key research directions of ML methods in the field of flooding in the future. DL, as a
subset of ML based on neural network structures [156], consists of multiple performance
layers and obtains nonlinear modules through construction [157]. Convolutional neural
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networks (CNNs) are a commonly used method in DL. Liu (2019) developed an effective
and robust method for coastal inundation mapping based on a deep CNN with dual-time-
phase and dual-polarized synthetic-aperture radar (SAR) image information [158]. Munoz
(2021) evaluated the performance of CNN and data fusion (DF) frameworks for generating
composite flood maps along the southeast Atlantic coast of the United States under the
influence of Hurricane Matthew [159]. The results show that the resulting composite flood
map matches well (80%) with the backward-guided flood map for coastal emergency risk
assessment. Although DL has been a hot research direction in recent years, the application
of DL in flood risk perception is still a relatively new field.

Physical-based methods, as compared to empirical models, have several advantages.
Firstly, physical-based methods can consider more complex scenarios by incorporating
multiple interacting physical factors associated with compound flood hazards, leading
to more accurate risk assessment results. Secondly, numerical simulation models used in
physical-based methods can partition the study area into smaller grid cells, resulting in
more precise risk assessment outcomes. Currently, many scholars have already employed
physical-based methods for assessing flood risks. Hsu (2017) used the wind wave model
(WWM), Princeton Ocean Model (POM), and WASH123D watershed model to simulate
wave conditions, storm surges, and coastal inundation [160]. Based on the results of the
inundation simulation, an analytic hierarchy process (AHP) was employed to establish a
research area risk map using vulnerability and hazard analysis [160]. Afifi (2019) conducted
a comprehensive study on flood risk by using the 3Di model and high-resolution DEM
to simulate typhoon-induced flood inundation, assessing disaster losses and evaluating
the vulnerability of the study area through the AHP [161]. Yan (2021) proposed a method
that couples neural networks with numerical models to simulate and identify high-risk
areas for urban floods [162]. The results indicated that this method achieved a high level of
prediction accuracy. Ayyad (2022) utilized the ADCIRC model to simulate and generate
a large dataset of synthetic tropical cyclones, which was then used to train, validate, and
test an ANN model [163]. The study demonstrated that physical-based simulations can
be combined with ANN models to provide faster and more efficient predictions for low-
probability events. Zhang (2022) proposed a flood prediction model called QPF-RIF, which
combines a hydraulic model (SOBEK), support-vector machine–multistep forecast (SVM-
MSF), and a self-organizing map (SOM) [164]. The test results demonstrated that this model
is capable of accurately predicting the long-term distribution and depth of floods, offering
more reliable real-time and future information. Numerous studies have demonstrated that
combining integrated hazard risk mapping methods with numerical simulation models
can yield better predictive results.

Finally, some case studies are listed in Table 8, showcasing the methods, classifications,
input indicators, and output results applied in integrated hazard risk mapping.

Table 8. Research case studies and method classifications, along with input and output information
of integrated hazard risk mapping methods.

Case Studies Classification Methods Input Output

Assessing coastal vulnerability to
environmental hazards of the Indian
Sundarban delta using multicriteria
decision-making approaches [138]

Empirical
methods

Simple average method
(SAM), AHP, principal

component analysis
(PCA)

22 indicators of physical,
climate, and socioeconomic

variables
Vulnerability

Flood loss prediction of coastal city
based on GM-ANN [142]

Empirical
methods

AHP, Grey prediction
model (GM), ANN

Geological deposition rate,
sea-level rise, precipitation,
length of urban drainage
pipes, annual GDP, and

population

Flood-prone
areas

Risk mapping of Indian coastal
districts using IPCC-AR5 framework
and multi-attribute decision-making

approach [165]

Empirical
methods IPCC-AR5, TOPSIS

35 indicators, including
hazard, vulnerability, and

economic factors
Risk index
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Table 8. Cont.

Case Studies Classification Methods Input Output

AHP and TOPSIS-based flood risk
assessment-a case study of the

Navsari City, Gujarat, India [117]

Empirical
methods AHP, TOPSIS 14 indicators, including

hazard and vulnerability

Hazard,
vulnerability,

risk
Inundation risk assessment based on

G-DEMATEL-AHP and its
application to the Zhengzhou

flooding disaster [166]

Empirical
methods Grey-DEMATEL-AHP

Involving 12 indicators
related to natural
environment and

vulnerability

Risk area

Urban flooding risk assessment
based on GIS- game theory

combination weight: A case study of
Zhengzhou City [167]

Empirical
methods AHP-CRITIC

Water depth, population
density, road network

density, land use, lighting
brightness, medical rescue

points

Risk index

Assessment of long and short-term
flood risk using the multi-criteria

analysis model with the
AHP-Entropy method in the Poyang

Lake basin [168]

Empirical
methods AHP-entropy 10 indicators, including

hazard and vulnerability Risk index

A coastal flood early-warning
system based on offshore sea state

forecasts and artificial neural
networks [146]

Empirical
methods ANN

Characteristics of ocean
waves (height, period, and

direction), sea-level
elevation

Flood-prone
areas

From local to regional compound
flood mapping with deep learning
and data fusion techniques [159]

Empirical
methods CNN, DF

Multispectral Landsat
analysis-ready data (ARD),

synthetic-aperture radar
(SAR) data with dual

polarization, DEM

Compound
flood map

An effective alternative for
predicting coastal floodplain

inundation by considering rainfall,
storm surge, and downstream

topographic characteristics [169]

Physical-based
methods

ADCIRC, distributed
hydrological model,

RNN

3 hydrological factors and
7 geomorphic factors Flood depth

Integrated hydrodynamic and
machine learning models for

compound flooding prediction in a
data-scarce estuarine delta [147]

Physical-based
methods

SLIM 2D, RF, SVM,
multiple linear

regression (MLR)

Atmospheric, oceanic, and
riverine variables Water level

A study on coastal flooding and risk
assessment under climate change in

the mid-western coast of
Taiwan [160]

Physical-based
methods

WWM, POM,
WASH123D, AHP

Engineering,
socioeconomics, land use,

geology, disaster
prevention facilities

Astronomical
tides, storm

surges,
typhoon
waves

generated by
nearshore

wave setup,
wave runup,

overflow
A rapid prediction model of urban
flood inundation in a high-risk area

coupling machine learning and
numerical aimulation

approaches [162]

Physical-based
methods PCSWMM, Elman Rainfall, water depth Water depth

Artificial intelligence for hurricane
storm surge hazard assessment [163]

Physical-based
methods ADCIRC, ANN

Central pressure,
maximum wind speed,
maximum wind speed

radius, storm-surge peak
height, latitude distance,
left–right longitudinal

distance

Storm-surge
height, return

period
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4. Challenges and Future Perspectives

Under climate change and urbanization, there will continue to be a rise in sea lev-
els [170], an increase in the frequency and intensity of typhoons and extreme rainfall [171],
and shifting interactions between runoff and storm surges [172], with the tendency for
compound flooding in coastal areas to be increasingly severe [73]. Advancing research on
compound floods in the context of climate change is crucial for enhancing flood response
strategies and effective risk management. Given these circumstances, several key aspects
should be considered in future studies of compound flooding in coastal regions.

In compound flood frequency analysis, the assumption of stationarity under a consis-
tent distribution is paramount. However, this assumption has been increasingly challenged
by the escalating frequency and intensity of typhoons, influenced by global climate change,
rising sea levels, and anthropogenic activities. These factors have significantly altered
the stationarity of key variables like precipitation, runoff, and tidal levels [59,173]. Con-
sequently, compound flood studies that rest on the stationarity premise may not fully
encapsulate the complexities of contemporary real-world scenarios [174]. Additionally, the
data underpinning these statistical methods, whether sourced from observational stations
or simulation outputs, often face challenges related to their quality and duration [175],
which, in turn, can profoundly influence the assessment’s outcomes [59]. Moreover, under
the non-stationarity assumption, there is a noticeable dearth of research on multidimen-
sional statistical models for compound floods, especially those extending beyond two
dimensions. The intricacies of developing such models under nonstationary conditions
present not only computational challenges but also theoretical ones, as they require the
integration of multiple approaches. Further research endeavors in this direction are not
only warranted but essential for enhancing our understanding and predictive capabilities.

For example, Razmi (2022) considered the non-stationarity of extreme sea levels and
precipitation, conducting bivariate frequency analysis using the copula method [176]. The
results showed that under nonstationary conditions, the joint return period of compound
floods was shorter. Naseri (2022) evaluated the dependencies and non-stationarity effects
between variables in coastal–pluvial compound floods in the context of rising sea levels
and changing precipitation patterns, using a copula-based Bayesian framework [55]. It was
found that the risk of compound floods was greater under nonstationary scenarios. Pirani
(2023) considered the non-stationarity of rainfall, river flow, and coastal floods in both the
temporal and spatial dimensions, developing a nonstationary multivariate model using the
C-vine copula method with constant, linear, and quadratic link functions for the parameters,
and the uncertainties were quantified based on the Bayesian approach [177]. The results
indicated that under nonstationary conditions, the joint return period of compound floods
significantly shortened, and the failure probability exceeded that of the assumption of
stationarity. However, because the higher uncertainty and complex dependencies lead to
difficulties in constructing joint multivariate statistical models, there are still fewer studies
on joint multivariate probabilistic analyses of compound floods. Future studies should
consider more joint variables and select more flexible methods for modeling, which is the
future trend.

Building on these insights about non-stationarity, it is clear that researchers need better
tools to understand floods. This is where the recent shift towards coupling numerical
simulation models comes into play. In recent years, the coupling of numerical simulation
models has emerged as the predominant approach for composite flood simulation, with
the objective of attaining a comprehensive and granular representation of flood dynamics.
Huehne (2016) delineated this model coupling into four distinct categories: unidirectional-
type coupling, loose coupling, tight coupling, and complete coupling [178]. Specifically,
the unidirectional transfer of information, as detailed in Section 3.2.2 is indicative of
unidirectional-type coupling. Loose coupling allows models to operate independently
yet synchronize to facilitate concurrent information iteration. Conversely, tight coupling
is achieved through code integration, enabling interaction within the same code, while
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complete coupling represents the seamless integration of various models into a unified
framework that operates under a consistent equation set [117,178].

Notably, current research heavily leans towards unidirectional coupling [33,117], de-
spite its inherent limitations. For instance, the unidirectional coupling between ocean and
land hydrological models typically uses ocean model outputs as inputs for the hydrological
model, potentially overlooking the risk of critical land–ocean interactions. This oversight
underscores the need for advancing research into loose, tight, or even complete coupling
for more accurate composite flood simulations. Presently, investigations into loose and
tight couplings remain limited. Saleh (2017) employed a loose coupling technique, com-
bining the HEC-HMS hydrological model, the NYHOPS ocean model, and the HEC-RAS
hydrological model to simulate inundation during Hurricanes Irene (2011) and Sandy
(2012) [128]. Similarly, Tang (2013) implemented a domain decomposition method, facilitat-
ing tight coupling between the Godunov-type shallow-water model (SWM) and the ocean
model FVCOM [179]. Moreover, Shi (2022) amalgamated the one-dimensional SWMM
model into the two-dimensional ADCIRC model, achieving tight coupling to examine
various flood factors [122], while Li (2022) employed the tightly coupled ADCIRC-SWAN
model to study storm-surge-induced coastal inundation in Laizhou Bay [180]. Nonetheless,
merely amplifying the coupling intensity may not suffice for accurate simulations. It is
paramount to recognize that coupled models inherently harbor uncertainties, such as initial
topographical inaccuracies [181,182] and potential errors in prior driving data [183]. Other
uncertainties, including those stemming from model parameters like roughness coefficients
and wind resistance, are elaborated upon in Table 9. Addressing these challenges will be
vital for future advancements in composite flood hazard assessment.

Table 9. Potential elements and factors contributing to model uncertainty.

Category Sources of Uncertainty

Parameter uncertainty

Roughness

Soil permeability

Dam parameters

River cross-section

Eddy viscosity

Diffusivity

River permeability coefficient

Data uncertainty

DEM

Wind power, wind speed, wind direction

Land-use data

Rainfall runoff data

Dike data

Water-level observation data

Model uncertainty

Hydrological models

Hydrodynamic models

Ocean models

Coupling mode

Model assumptions uncertainty
Spatiotemporal consistency

Stationary

Data assimilation (DA) has emerged as a pivotal technique to counteract uncertain-
ties, aiming to synergize model states with observational data, either from the field or
from remote sensing, to refine predictions [184]. Its efficacy has been documented across
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various realms, including hydrology [185,186], meteorology [187,188], and ocean model-
ing [189]. Asher (2019) introduced an optimized interpolation-based DA approach, which
significantly reduced the water-level residuals during Hurricane Matthew on the US’s
southeastern Atlantic coast [190]. This method was observed to halve the storm’s over-
all surge error. Munoz (2022) coupled an integrated Kalman filter with hydrodynamic
modeling, underscoring DA’s capacity to bolster composite flood hazard assessments in
vulnerable regions, irrespective of the primary flood drivers—be they fluvial, stormwater,
or coastal [191]. The potential of DA to address uncertainties in composite flood drivers
presents a promising avenue for future research.

However, a salient challenge remains: coupled models, given their complexity, of-
ten lack real-time computational efficiency. This has led to a pivot towards harnessing
acceleration technologies like GPU and parallel algorithms. Proven to exponentially en-
hance flood models’ computation speeds, GPU algorithms represent a game-changer in
the field [192–194]. For instance, Li (2022) showcased a 2D hydrodynamic parallel model
that achieved a staggering 42-fold acceleration in flood simulation for Harbin’s Nangang
district [195]. Similarly, Buttinger-Kreuzhuber (2022) introduced a hybrid method merging
GPU-accelerated runoff simulation with CPU-based sewer network simulation, achiev-
ing up to 1000 times the speed [196]. Yet, it is pertinent to note that while GPUs excel
in accelerating simpler models, they falter with intricate ones. This necessitates refining
the dynamical framework and simplifying the coupled model without compromising its
essence.

Statistical models, while proficient at calculating dependencies between flood drivers,
lack the capacity to depict the scope and depth of flood inundation or to quantify the
mitigation impact of hydraulic engineering constructions [197]. In contrast, numerical
modeling provides a vivid representation of compound flooding risks. Marrying statistical
methods with numerical models leverages the benefits of both methodologies. However,
risk assessments rooted solely in historical data often neglect the uncertainties ushered in
by dynamic conditions. Hence, an amplified focus on research addressing hazard factor
uncertainties is paramount [198,199]. This can be achieved by generating extensive datasets
through stochastic simulations that encompass random rainfall, typhoon trajectories, and
intensities. Utilizing numerical models can further dissect the inherent uncertainties in
these simulations. Notably, current flood risk assessments under climate change uncertain-
ties remain underexplored and tend to be limited to individual factors. As an illustration,
Chaudhary (2022) introduced a probability-centric deep learning technique to ascertain
uncertainties from intensified rainfall due to variables like climate change and urban ex-
pansion [200]. It is also crucial to acknowledge that extreme events, such as typhoons,
can catalyze secondary hazards like landslides. A deeper understanding of the intercon-
nected dynamics behind these cascading disaster sequences is vital. Equally important
is the consideration of the evolving vulnerability of exposed elements [201], influenced
by diverse factors, ranging from coastal defense strategies amidst global climate change
to demographic shifts and socioeconomic developments, all of which collectively shape
coastal risk projections.

The described approaches, while distinct, can be synergistically coordinated. For prac-
tical implementation, it is crucial to account for the study area’s unique disaster database,
geographic nuances, and related factors. This involves tailoring methods to the required
spatial scale and precision of the risk assessment. In forthcoming endeavors, researchers
and policymakers can select or merge methods based on their merits, drawbacks, and
suitability, ensuring enhanced compound flood assessments in coastal regions. A concise
summary comparing the strengths, weaknesses, and best-use cases of these three flood
hazard simulation methods is presented in Table 10.
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Table 10. A concise overview comparing the strengths, weaknesses, and use cases of flood hazard
simulation and risk perception techniques.

Methods Strength Drawback Applicable Scene

Encounter probability models

Simple calculation and
clear thinking

Long-term historical disaster
data will limit the results Flood risk assessment

No precise geographic
data required

It cannot accurately reflect the
distribution law of flood risk Flood prediction

Factors such as hazard factors
will change over time,
resulting in inaccurate

prediction results

Dependence prediction of
flood-causing factors

Numerical simulation models

Can accurately predict flood
depth, duration, inundation
range, and other information

The calculation is more
complicated, and the time cost

is high

Construction of urban flood
warning system

Better use of accurate data
with high-resolution DEM

High requirements for
data accuracy Flood risk assessment

Can reflect the connection of
various elements in the
disaster system and the

evolution process of
the disaster

Boundary conditions are not
well defined, and complex
flows cannot be simulated

Urban surface water modeling

Flood monitoring

Integrated hazard risk
mapping methods

Simple to calculate and easy
to implement

Cannot accurately predict
future events Flood sensitivity mapping

Can accurately predict flood
risk areas

Accuracy depends on the
subjective opinion of experts Flood vulnerability mapping

Low data requirements Some ML model rules are
challenging to understand Flood risk assessment

Strong ability to combine with
other methods

High precision is required
for data Emergency flood management

Selection of flood control and
disaster mitigation methods

5. Conclusions

In the face of global climate change, coastal urban areas increasingly grapple with
compound flooding risks, stemming from multifaceted triggers like precipitation, river
flows, storm surges, and tsunamis. Coping with these challenges requires advanced
flood hazard modeling and risk perception techniques, which are essential for coastal
disaster mitigation and sustainable development. While existing methods, ranging from
probability models to numerical simulations and integrated hazard risk mapping, have
achieved progress, there remains substantial room for refinement. Crucial advancements
include better multivariate analyses, accounting for climate change disruptions, enhancing
numerical models’ fidelity, and addressing the rising complexities in simulations, especially
with the push from 2D to 3D representations. Furthermore, understanding the intricacies of
hazard interrelations, like floods triggering landslides, is vital. Charting the way forward,
it will be essential to select or synergize methods based on their specific merits, tailored to
the study’s unique geographical and data attributes. This holistic, integrative approach
will bolster our capacity for precise flood assessments, ultimately minimizing risks in
vulnerable coastal regions.



Remote Sens. 2024, 16, 350 26 of 33

Author Contributions: Conceptualization, H.S. and H.J.; methodology, H.S. and X.Z.; visualization,
H.S. and X.R.; formal analysis, H.S., H.J. and W.S.; software, H.S., X.Z. and W.S.; writing original
draft preparation, H.S. and X.Z.; writing—review and editing, H.S. and X.Z.; data curation, H.S. and
X.Z.; supervision, H.S. and X.R. project administration, H.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers 52071307, U1901602; the Qingdao Natural Science Foundation, grant number 23-2-1-61-
zyyd-jch; a Chinese Government Scholarship, grant number 202106335006; and the Key R&D projects
of Shandong Province, grant number 2020CXGC010702.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jafarzadegan, K.; Moradkhani, H.; Pappenberger, F.; Moftakhari, H.; Bates, P.; Abbaszadeh, P.; Marsooli, R.; Ferreira, C.; Cloke,

H.L.; Ogden, F.; et al. Recent Advances and New Frontiers in Riverine and Coastal Flood Modeling. Rev. Geophys. 2023, 61,
e2022RG000788. [CrossRef]

2. Barbaro, G.; Bombino, G.; Foti, G.; Barilla, G.C.; Puntorieri, P.; Mancuso, P. Possible Increases in Floodable Areas Due to Climate
Change: The Case Study of Calabria (Italy). Water 2022, 14, 2240. [CrossRef]

3. Garzon, J.L.; Ferreira, O.; Reis, M.T.; Ferreira, A.; Fortes, C.J.E.M.; Zozimo, A.C. Conceptual and quantitative categorization of
wave-induced flooding impacts for pedestrians and assets in urban beaches. Sci. Rep. 2023, 13, 7251. [CrossRef]

4. Hu, P.; Zhang, Q.; Shi, P.; Chen, B.; Fang, J. Flood-induced mortality across the globe: Spatiotemporal pattern and influencing
factors. Sci. Total Environ. 2018, 643, 171–182. [CrossRef]

5. Lap, T.Q. Researching the Variation of Typhoon Intensities under Climate Change in Vietnam: A Case Study of Typhoon Lekima,
2007. Hydrology 2019, 6, 51. [CrossRef]

6. Rajasree, B.R.; Deo, M.C. Assessment of Coastal Vulnerability Considering the Future Climate: A Case Study along the Central
West Coast of India. J. Waterw. Port Coast. Ocean Eng. 2020, 146, 05019005. [CrossRef]

7. Chan, F.K.S.; Yang, L.E.; Scheffran, J.; Mitchell, G.; Adekola, O.; Griffiths, J.; Chen, Y.; Li, G.; Lu, X.; Qi, Y.; et al. Urban flood risks
and emerging challenges in a Chinese delta: The case of the Pearl River Delta. Environ. Sci. Policy 2021, 122, 101–115. [CrossRef]

8. Garzon, J.L.; Ferreira, O.; Zozimo, A.C.; Fortes, C.J.E.M.; Pinheiro, L.V.; Ferreira, A.M.; Reis, M.T. Development of a Bayesian
networks-based early warning system for wave-induced flooding. Int. J. Disaster Risk Reduct. 2023, 96, 103931. [CrossRef]

9. Pham, B.T.; Avand, M.; Janizadeh, S.; Phong, T.V.; Al-Ansari, N.; Ho, L.S.; Das, S.; Le, H.V.; Amini, A.; Bozchaloei, S.K.; et al. GIS
Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment. Water 2020, 12, 683. [CrossRef]

10. Dong, B.; Xia, J.; Zhou, M.; Li, Q.; Ahmadian, R.; Falconer, R.A. Integrated modeling of 2D urban surface and 1D sewer
hydrodynamic processes and flood risk assessment of people and vehicles. Sci. Total Environ. 2022, 827, 154098. [CrossRef]

11. Cui, Y.; Liang, Q.; Wang, G.; Zhao, J.; Hu, J.; Wang, Y.; Xia, X. Simulation of Hydraulic Structures in 2D High-Resolution Urban
Flood Modeling. Water 2019, 11, 2139. [CrossRef]

12. Vojtek, M.; Vojtekova, J.; De Luca, D.L.; Petroselli, A. Combined basin-scale and decentralized flood risk assessment: A
methodological approach for preliminary flood risk assessment. Hydrol. Sci. J. 2023, 68, 355–378. [CrossRef]

13. Skakun, S.; Kussul, N.; Shelestov, A.; Kussul, O. Flood Hazard and Flood Risk Assessment Using a Time Series of Satellite Images:
A Case Study in Namibia. Risk Anal. 2014, 34, 1521–1537. [CrossRef]

14. Xu, H.; Xu, K.; Lian, J.; Ma, C. Compound effects of rainfall and storm tides on coastal flooding risk. Stoch. Environ. Res. Risk
Assess. 2019, 33, 1249–1261. [CrossRef]

15. Li, Y.; Shen, P.; Yan, Y.; Zhou, W. Flood risk assessment of artificial islands under compound rain-tide-wind effects during tropical
cyclones. J. Hydrol. 2022, 615, 128736. [CrossRef]

16. Li, Y.; Zhou, W.; Shen, P. Flood risk assessment of loss of life for a coastal city under the compound effect of storm surge and
rainfall. Urban Clim. 2023, 47, 101396. [CrossRef]

17. Gao, J.; Ma, X.; Zang, J.; Dong, G.; Ma, X.; Zhu, Y.; Zhou, L. Numerical investigation of harbor oscillations induced by focused
transient wave groups. Coast. Eng. 2020, 158, 103670. [CrossRef]

18. Li, Y.; Zhou, W.; Shen, P. Pedestrian danger assessment under rainstorm-induced flood disaster for an artificial island. Int. J.
Disaster Risk Reduct. 2022, 78, 103133. [CrossRef]

19. Liang, H.; Zhou, X. Impact of Tides and Surges on Fluvial Floods in Coastal Regions. Remote Sens. 2022, 14, 5779. [CrossRef]
20. van den Hurk, B.; van Meijgaard, E.; de Valk, P.; van Heeringen, K.; Gooijer, J. Analysis of a compounding surge and precipitation

event in the Netherlands. Environ. Res. Lett. 2015, 10, 035001. [CrossRef]
21. Khanal, S.; Ridder, N.; de Vries, H.; Terink, W.; van den Hurk, B. Storm Surge and Extreme River Discharge: A Compound Event

Analysis Using Ensemble Impact Modeling. Front. Earth Sci. 2019, 7, 224. [CrossRef]
22. Feng, B.; Zhang, Y.; Bourke, R. Urbanization impacts on flood risks based on urban growth data and coupled flood models. Nat.

Hazards 2021, 106, 613–627. [CrossRef]

https://doi.org/10.1029/2022RG000788
https://doi.org/10.3390/w14142240
https://doi.org/10.1038/s41598-023-32175-6
https://doi.org/10.1016/j.scitotenv.2018.06.197
https://doi.org/10.3390/hydrology6020051
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000552
https://doi.org/10.1016/j.envsci.2021.04.009
https://doi.org/10.1016/j.ijdrr.2023.103931
https://doi.org/10.3390/w12030683
https://doi.org/10.1016/j.scitotenv.2022.154098
https://doi.org/10.3390/w11102139
https://doi.org/10.1080/02626667.2022.2157279
https://doi.org/10.1111/risa.12156
https://doi.org/10.1007/s00477-019-01695-x
https://doi.org/10.1016/j.jhydrol.2022.128736
https://doi.org/10.1016/j.uclim.2022.101396
https://doi.org/10.1016/j.coastaleng.2020.103670
https://doi.org/10.1016/j.ijdrr.2022.103133
https://doi.org/10.3390/rs14225779
https://doi.org/10.1088/1748-9326/10/3/035001
https://doi.org/10.3389/feart.2019.00224
https://doi.org/10.1007/s11069-020-04480-0


Remote Sens. 2024, 16, 350 27 of 33

23. Zhu, Y.; Xu, C.; Liu, Z.; Yin, D.; Jia, H.; Guan, Y. Spatial layout optimization of green infrastructure based on life-cycle multi-
objective optimization algorithm and SWMM model. Resour. Conserv. Recycl. 2023, 191, 106906. [CrossRef]

24. Xu, C.; Tang, T.; Jia, H.; Xu, M.; Xu, T.; Liu, Z.; Long, Y.; Zhang, R. Benefits of coupled green and grey infrastructure systems:
Evidence based on analytic hierarchy process and life cycle costing. Resour. Conserv. Recycl. 2019, 151, 104478. [CrossRef]

25. Peng, H.; Liu, Y.; Wang, H.; Ma, L. Assessment of the service performance of drainage system and transformation of pipeline
network based on urban combined sewer system model. Environ. Sci. Pollut. Res. 2015, 22, 15712–15721. [CrossRef] [PubMed]

26. Arora, A.S.; Reddy, A.S. Conceptualizing a decentralized stormwater treatment system for an urbanized city with improper
stormwater drainage facilities. Int. J. Environ. Sci. Technol. 2015, 12, 2891–2900. [CrossRef]

27. Liu, B.; Xu, C.; Yang, J.; Lin, S.; Wang, X. Effect of Land Use and Drainage System Changes on Urban Flood Spatial Distribution in
Handan City: A Case Study. Sustainability 2022, 14, 14610. [CrossRef]

28. Li, J.; Burian, S.J. Evaluating real-time control of stormwater drainage network and green stormwater infrastructure for enhancing
flooding resilience under future rainfall projections. Resour. Conserv. Recycl. 2023, 198, 107123. [CrossRef]

29. Yin, J.; Zhao, Q.; Yu, D.; Lin, N.; Kubanek, J.; Ma, G.; Liu, M.; Pepe, A. Long-term flood-hazard modeling for coastal areas using
InSAR measurements and a hydrodynamic model: The case study of Lingang New City, Shanghai. J. Hydrol. 2019, 571, 593–604.
[CrossRef]

30. Antoniadis, N.; Alatza, S.; Loupasakis, C.; Kontoes, C.H. Land Subsidence Phenomena vs. Coastal Flood Hazard-The Cases of
Messolonghi and Aitolikon (Greece). Remote Sens. 2023, 15, 2112. [CrossRef]

31. Enriquez, A.R.; Wahl, T.; Baranes, H.E.; Talke, S.A.; Orton, P.M.; Booth, J.F.; Haigh, I.D. Predictable Changes in Extreme Sea Levels
and Coastal Flood Risk Due to Long-Term Tidal Cycles. J. Geophys. Res. Oceans 2022, 127, e2021JC018157. [CrossRef]

32. Eilander, D.; Couasnon, A.; Leijnse, T.; Ikeuchi, H.; Yamazaki, D.; Muis, S.; Dullaart, J.; Haag, A.; Winsemius, H.C.; Ward, P.J. A
globally applicable framework for compound flood hazard modeling. Nat. Hazards Earth Syst. Sci. 2023, 23, 823–846. [CrossRef]

33. Santiago-Collazo, F.L.; Bilskie, M.V.; Hagen, S.C. A comprehensive review of compound inundation models in low-gradient
coastal watersheds. Environ. Modell. Softw. 2019, 119, 166–181. [CrossRef]

34. Santiago-Collazo, F.L.; Bilskie, M.V.; Bacopoulos, P.; Hagen, S.C. An Examination of Compound Flood Hazard Zones for Past,
Present, and Future Low-Gradient Coastal Land-Margins. Front. Clim. 2021, 3, 684035. [CrossRef]

35. AghaKouchak, A.; Huning, L.S.; Mazdiyasni, O.; Mallakpour, I.; Chiang, F.; Sadegh, M.; Vahedifard, F.; Moftakhari, H. How do
natural hazards cascade to cause disasters? Nature 2018, 561, 458–460. [CrossRef]

36. Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jezequel,
A.; Mahecha, M.D.; et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 2020, 1, 333–347.
[CrossRef]

37. Wijetunge, J.J.; Neluwala, N.G.P.B. Compound flood hazard assessment and analysis due to tropical cyclone-induced storm
surges, waves and precipitation: A case study for coastal lowlands of Kelani river basin in Sri Lanka. Nat. Hazards 2023, 116,
3979–4007. [CrossRef]

38. Tang, J.; Hu, F.; Liu, Y.; Wang, W.; Yang, S. High-Resolution Hazard Assessment for Tropical Cyclone-Induced Wind and
Precipitation: An Analytical Framework and Application. Sustainability 2022, 14, 13969. [CrossRef]

39. Curtis, S.; Mukherji, A.; Kruse, J.; Helgeson, J.; Ghosh, A.; Adeniji, N. Perceptions of risk to compound coastal water events: A
case study in eastern North Carolina, USA. Prog. Disaster Sci. 2022, 16, 100266. [CrossRef]

40. Camus, P.; Haigh, I.D.; Nasr, A.A.; Wahl, T.; Darby, S.E.; Nicholls, R.J. Regional analysis of multivariate compound coastal
flooding potential around Europe and environs: Sensitivity analysis and spatial patterns. Nat. Hazards Earth Syst. Sci. 2021, 21,
2021–2040. [CrossRef]

41. Zhang, Y.; Najafi, M.R. Probabilistic Numerical Modeling of Compound Flooding Caused by Tropical Storm Matthew over a
Data-Scarce Coastal Environment. Water Resour. Res. 2020, 56, e2020WR028565. [CrossRef]

42. Feng, D.; Fang, K.; Shen, C. Enhancing Streamflow Forecast and Extracting Insights Using Long-Short Term Memory Networks
with Data Integration at Continental Scales. Water Resour. Res. 2020, 56, e2019WR026793. [CrossRef]

43. Jafarzadegan, K.; Abbaszadeh, P.; Moradkhani, H. Sequential data assimilation for real-time probabilistic flood inundation
mapping. Hydrol. Earth Syst. Sci. 2021, 25, 4995–5011. [CrossRef]

44. Gregory, J.M.; Griffies, S.M.; Hughes, C.W.; Lowe, J.A.; Church, J.A.; Fukumori, I.; Gomez, N.; Kopp, R.E.; Landerer, F.; Le
Cozannet, G.; et al. Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surv. Geophys.
2019, 40, 1251–1289. [CrossRef]

45. Herdman, L.; Erikson, L.; Barnard, P. Storm Surge Propagation and Flooding in Small Tidal Rivers during Events of Mixed
Coastal and Fluvial Influence. J. Mar. Sci. Eng. 2018, 6, 158. [CrossRef]

46. Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105,
1809–1831. [CrossRef] [PubMed]

47. Leonard, M.; Westra, S.; Phatak, A.; Lambert, M.; van den Hurk, B.; McInnes, K.; Risbey, J.; Schuster, S.; Jakob, D.; Stafford-Smith,
M. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 113–128.
[CrossRef]

48. Kaffash, S.; Nguyen, A.T.; Zhu, J. Big data algorithms and applications in intelligent transportation system: A review and
bibliometric analysis. Int. J. Prod. Econ. 2021, 231, 107868. [CrossRef]

https://doi.org/10.1016/j.resconrec.2023.106906
https://doi.org/10.1016/j.resconrec.2019.104478
https://doi.org/10.1007/s11356-015-4707-0
https://www.ncbi.nlm.nih.gov/pubmed/26022395
https://doi.org/10.1007/s13762-014-0655-3
https://doi.org/10.3390/su142114610
https://doi.org/10.1016/j.resconrec.2023.107123
https://doi.org/10.1016/j.jhydrol.2019.02.015
https://doi.org/10.3390/rs15082112
https://doi.org/10.1029/2021JC018157
https://doi.org/10.5194/nhess-23-823-2023
https://doi.org/10.1016/j.envsoft.2019.06.002
https://doi.org/10.3389/fclim.2021.684035
https://doi.org/10.1038/d41586-018-06783-6
https://doi.org/10.1038/s43017-020-0060-z
https://doi.org/10.1007/s11069-023-05846-w
https://doi.org/10.3390/su142113969
https://doi.org/10.1016/j.pdisas.2022.100266
https://doi.org/10.5194/nhess-21-2021-2021
https://doi.org/10.1029/2020WR028565
https://doi.org/10.1029/2019WR026793
https://doi.org/10.5194/hess-25-4995-2021
https://doi.org/10.1007/s10712-019-09525-z
https://doi.org/10.3390/jmse6040158
https://doi.org/10.1007/s11192-015-1645-z
https://www.ncbi.nlm.nih.gov/pubmed/26594073
https://doi.org/10.1002/wcc.252
https://doi.org/10.1016/j.ijpe.2020.107868


Remote Sens. 2024, 16, 350 28 of 33

49. Tuyls, D.M.; Thorndahl, S.; Rasmussen, M.R. Return period assessment of urban pluvial floods through modelling of rainfall-flood
response. J. Hydroinform. 2018, 20, 829–845. [CrossRef]

50. Scorah, M.; Stephens, D.; Nathan, R. Benchmarking the selection of probability neutral hydrologic design floods for use in 2D
hydraulic models. Australas. J. Water Resour. 2019, 23, 137–147. [CrossRef]

51. Olbert, A.I.; Moradian, S.; Nash, S.; Comer, J.; Kazmierczak, B.; Falconer, R.A.; Hartnett, M. Combined statistical and hy-
drodynamic modelling of compound flooding in coastal areas-Methodology and application. J. Hydrol. 2023, 620, 129383.
[CrossRef]

52. Zhou, Q.; Su, J.; Arnbjerg-Nielsen, K.; Ren, Y.; Luo, J.; Ye, Z.; Feng, J. A GIS-Based Hydrological Modeling Approach for Rapid
Urban Flood Hazard Assessment. Water 2021, 13, 1483. [CrossRef]

53. Chen, Y. Flood hazard zone mapping incorporating geographic information system (GIS) and multi-criteria analysis (MCA)
techniques. J. Hydrol. 2022, 612, 128268. [CrossRef]

54. Dougherty, E.; Morrison, R.; Rasmussen, K. High-resolution flood precipitation and streamflow relationships in two US river
basins. Meteorol. Appl. 2021, 28, e1979. [CrossRef]

55. Naseri, K.; Hummel, M.A. A Bayesian copula-based nonstationary framework for compound flood risk assessment along US
coastlines. J. Hydrol. 2022, 610, 128005. [CrossRef]

56. Ai, P.; Yuan, D.; Xiong, C. Copula-Based Joint Probability Analysis of Compound Floods from Rainstorm and Typhoon Surge: A
Case Study of Jiangsu Coastal Areas, China. Sustainability 2018, 10, 2232. [CrossRef]

57. Ward, P.J.; Couasnon, A.; Eilander, D.; Haigh, I.D.; Hendry, A.; Muis, S.; Veldkamp, T.I.E.; Winsemius, H.C.; Wahl, T. Dependence
between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environ. Res. Lett. 2018, 13,
084012. [CrossRef]

58. Jin, H.; Chen, X.; Zhong, R.; Liu, M. Occurrence time distribution fitting and encounter probability analysis of extreme precipitation
in the Huaihe River Basin. Theor. Appl. Climatol. 2023, 154, 161–177. [CrossRef]

59. Jia-Yi, F.; Jie, Y.; Xian-Wu, S.; Jian, F.; Shi-Qiang, D.U.; Min, L. A review of compound flood hazard research in coastal areas.
Progress. Inquisitiones Mutat. Clim. 2021, 17, 317–328.

60. Pirani, F.J.; Najafi, M.R. Multivariate Analysis of Compound Flood Hazard Across Canada’s Atlantic, Pacific and Great Lakes
Coastal Areas. Earth Future 2022, 10, e2022EF002655. [CrossRef]

61. Hendry, A.; Haigh, I.D.; Nicholls, R.J.; Winter, H.; Neal, R.; Wahl, T.; Joly-Laugel, A.; Darby, S.E. Assessing the characteristics and
drivers of compound flooding events around the UK coast. Hydrol. Earth Syst. Sci. 2019, 23, 3117–3139. [CrossRef]

62. Wu, W.Y.; McInnes, K.; O’Grady, J.; Hoeke, R.; Leonard, M.; Westra, S. Mapping Dependence Between Extreme Rainfall and
Storm Surge. J. Geophys. Res. Oceans 2018, 123, 2461–2474. [CrossRef]

63. Zheng, F.F.; Westra, S.; Sisson, S.A. Quantifying the dependence between extreme rainfall and storm surge in the coastal zone. J.
Hydrol. 2013, 505, 172–187. [CrossRef]

64. Zheng, F.; Westra, S.; Leonard, M.; Sisson, S.A. Modeling dependence between extreme rainfall and storm surge to estimate
coastal flooding risk. Water Resour. Res. 2014, 50, 2050–2071. [CrossRef]

65. Latif, S.; Simonovic, S.P. Compounding joint impact of rainfall, storm surge and river discharge on coastal flood risk: An approach
based on 3D fully nested Archimedean copulas. Environ. Earth Sci. 2023, 82, 63. [CrossRef]

66. Chen, H.; Xu, Z.; Chen, J.; Liu, Y.; Li, P. Joint Risk Analysis of Extreme Rainfall and High Tide Level Based on Extreme Value
Theory in Coastal Area. Int. J. Environ. Res. Public Health 2023, 20, 3605. [CrossRef] [PubMed]

67. Xu, H.; Tian, Z.; Sun, L.; Ye, Q.; Ragno, E.; Bricker, J.; Mao, G.; Tan, J.; Wang, J.; Ke, Q.; et al. Compound flood impact of water
level and rainfall during tropical cyclone periods in a coastal city: The case of Shanghai. Nat. Hazards Earth Syst. Sci. 2022, 22,
2347–2358. [CrossRef]

68. Li, J.; Lei, Y.; Tan, S.; Bell, C.D.; Engel, B.A.; Wang, Y. Nonstationary Flood Frequency Analysis for Annual Flood Peak and Volume
Series in Both Univariate and Bivariate Domain. Water Resour. Manag. 2018, 32, 4239–4252. [CrossRef]

69. Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for
major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [CrossRef]

70. Xu, K.; Ma, C.; Lian, J.; Bin, L. Joint Probability Analysis of Extreme Precipitation and Storm Tide in a Coastal City under
Changing Environment. PLoS ONE 2014, 9, e109341. [CrossRef]

71. Zellou, B.; Rahali, H. Assessment of the joint impact of extreme rainfall and storm surge on the risk of flooding in a coastal area. J.
Hydrol. 2019, 569, 647–665. [CrossRef]

72. Gao, C.; Hao, M.; Chen, J.; Gu, C. Simulation and design of joint distribution of rainfall and tide level in Wuchengxiyu Region,
China. Urban Clim. 2021, 40, 101005. [CrossRef]

73. Ghanbari, M.; Arabi, M.; Kao, S.; Obeysekera, J.; Sweet, W. Climate Change and Changes in Compound Coastal-Riverine Flooding
Hazard Along the US Coasts. Earth Future 2021, 9, e2021EF002055. [CrossRef]

74. Moftakhari, H.R.; Salvadori, G.; AghaKouchak, A.; Sanders, B.F.; Matthew, R.A. Compounding effects of sea level rise and fluvial
flooding. Proc. Natl. Acad. Sci. USA 2017, 114, 9785–9790. [CrossRef]

75. Latif, S.; Mustafa, F. Copula-based multivariate flood probability construction: A review. Arab. J. Geosci. 2020, 13, 1–25. [CrossRef]
76. Zhangjun, L.; Shenglian, G.; Xinfa, X.; Shichao, X.; Jingqing, C. Application of Copula functions in hydrology and water resources:

A state-of-the-art review. Adv. Water Sci. 2021, 32, 148–159.
77. Liu, R.Y.; Liu, N. A GIS Based Model for Calculating of Flood Area. Acta Geogr. Sin. 2001, 56, 1–6.

https://doi.org/10.2166/hydro.2018.133
https://doi.org/10.1080/13241583.2019.1603334
https://doi.org/10.1016/j.jhydrol.2023.129383
https://doi.org/10.3390/w13111483
https://doi.org/10.1016/j.jhydrol.2022.128268
https://doi.org/10.1002/met.1979
https://doi.org/10.1016/j.jhydrol.2022.128005
https://doi.org/10.3390/su10072232
https://doi.org/10.1088/1748-9326/aad400
https://doi.org/10.1007/s00704-023-04547-5
https://doi.org/10.1029/2022EF002655
https://doi.org/10.5194/hess-23-3117-2019
https://doi.org/10.1002/2017JC013472
https://doi.org/10.1016/j.jhydrol.2013.09.054
https://doi.org/10.1002/2013WR014616
https://doi.org/10.1007/s12665-022-10719-9
https://doi.org/10.3390/ijerph20043605
https://www.ncbi.nlm.nih.gov/pubmed/36834298
https://doi.org/10.5194/nhess-22-2347-2022
https://doi.org/10.1007/s11269-018-2041-2
https://doi.org/10.1038/nclimate2736
https://doi.org/10.1371/journal.pone.0109341
https://doi.org/10.1016/j.jhydrol.2018.12.028
https://doi.org/10.1016/j.uclim.2021.101005
https://doi.org/10.1029/2021EF002055
https://doi.org/10.1073/pnas.1620325114
https://doi.org/10.1007/s12517-020-5077-6


Remote Sens. 2024, 16, 350 29 of 33

78. Carneiro-Barros, J.E.; Plomaritis, T.A.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F. Coastal Flood Mapping with Two
Approaches Based on Observations at Furadouro, Northern Portugal. Remote Sens. 2023, 15, 5215. [CrossRef]

79. Kumbier, K.; Carvalho, R.C.; Vafeidis, A.T.; Woodroffe, C.D. Comparing static and dynamic flood models in estuarine environ-
ments: A case study from south-east Australia. Mar. Freshw. Res. 2019, 70, 781–793. [CrossRef]

80. Sadler, J.M.; Haselden, N.; Mellon, K.; Hackel, A.; Son, V.; Mayfield, J.; Blase, A.; Goodall, J.L. Impact of Sea-Level Rise on
Roadway Flooding in the Hampton Roads Region, Virginia. J. Infrastruct. Syst. 2017, 23, 05017006. [CrossRef]

81. Ramirez, J.A.; Lichter, M.; Coulthard, T.J.; Skinner, C. Hyper-resolution mapping of regional storm surge and tide flooding:
Comparison of static and dynamic models. Nat. Hazards. 2016, 82, 571–590. [CrossRef]

82. Castrucci, L.; Tahvildari, N. Modeling the Impacts of Sea Level Rise on Storm Surge Inundation in Flood-Prone Urban Areas of
Hampton Roads, Virginia. Mar. Technol. Soc. J. 2018, 52, 92–105. [CrossRef]

83. Hai, S.; Wenjie, J.; Yazhi, Z. Storm surge flood risk simulation and evaluation method based on grid and cloud model: A case
study of Xiangzhou District, Zhuhai City. J. Nat. Disasters 2022, 31, 69–80.

84. Jamali, B.; Bach, P.M.; Cunningham, L.; Deletic, A. A Cellular Automata Fast Flood Evaluation (CA-ffe) Model. Water Resour. Res.
2019, 55, 4936–4953. [CrossRef]

85. McMillan, H.K.; Brasington, J. End-to-end flood risk assessment: A coupled model cascade with uncertainty estimation. Water
Resour. Res. 2008, 44. [CrossRef]

86. Grimaldi, S.; Petroselli, A.; Arcangeletti, E.; Nardi, F. Flood mapping in ungauged basins using fully continuous hydrologic-
hydraulic modeling. J. Hydrol. 2013, 487, 39–47. [CrossRef]

87. Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional
flood inundation modelling. J. Hydrol. 2010, 387, 33–45. [CrossRef]

88. Guo, K.; Guan, M.; Yu, D. Urban surface water flood modelling—A comprehensive review of current models and future challenges.
Hydrol. Earth Syst. Sci. 2021, 25, 2843–2860. [CrossRef]

89. Singh, V.P. Kinematic wave modelling in water resources: A historical perspective. Hydrol. Process. 2001, 15, 671–706. [CrossRef]
90. Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple spatially-distributed models for predicting flood inundation: A

review. Geomorphology 2007, 90, 208–225. [CrossRef]
91. Zhang, H.; Wu, W.; Hu, C.; Hu, C.; Li, M.; Hao, X.; Liu, S. A distributed hydrodynamic model for urban storm flood risk

assessment. J. Hydrol. 2021, 600, 126513. [CrossRef]
92. Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case

study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [CrossRef]
93. Bradbrook, K.; Waller, S.; Morris, D. National floodplain mapping: Datasets and methods—160,000 km in 12 months. Nat. Hazards

2005, 36, 103–123. [CrossRef]
94. Sadeghi, F.; Rubinato, M.; Goerke, M.; Hart, J. Assessing the Performance of LISFLOOD-FP and SWMM for a Small Watershed

with Scarce Data Availability. Water 2022, 14, 748. [CrossRef]
95. Rajib, A.; Liu, Z.; Merwade, V.; Tavakoly, A.A.; Follum, M.L. Towards a large-scale locally relevant flood inundation modeling

framework using SWAT and LISFLOOD-FP. J. Hydrol. 2020, 581, 124406. [CrossRef]
96. Xu, K.; Zhuang, Y.; Bin, L.; Wang, C.; Tian, F. Impact assessment of climate change on compound flooding in a coastal city. J.

Hydrol. 2023, 617, 129166. [CrossRef]
97. Sanudo, E.; Cea, L.; Puertas, J. Modelling Pluvial Flooding in Urban Areas Coupling the Models Iber and SWMM. Water 2020, 12,

2647. [CrossRef]
98. Chen, Y.; Hou, H.; Li, Y.; Wang, L.; Fan, J.; Wang, B.; Hu, T. Urban Inundation under Different Rainstorm Scenarios in Lin’an City,

China. Int. J. Environ. Res. Public Health 2022, 19, 7210. [CrossRef]
99. Liu, Y.; Chen, B.; Duan, C.; Wang, H. Economic loss of urban waterlogging based on an integrated drainage model and network

environ analyses. Resour. Conserv. Recycl. 2023, 192, 106923. [CrossRef]
100. Wing, O.E.J.; Sampson, C.C.; Bates, P.D.; Quinn, N.; Smith, A.M.; Neal, J.C. A flood inundation forecast of Hurricane Harvey

using a continental-scale 2D hydrodynamic model. J. Hydrol. X 2019, 4, 100039. [CrossRef]
101. Krestenitis, Y.N.; Androulidakis, Y.S.; Kontos, Y.N.; Georgakopoulos, G. Coastal inundation in the north-eastern mediterranean

coastal zone due to storm surge events. J. Coast. Conserv. 2011, 15, 353–368. [CrossRef]
102. Pei, B.; Pang, W.; Testik, F.Y.; Ravichandran, N.; Liu, F. Mapping joint hurricane wind and surge hazards for Charleston, South

Carolina. Nat. Hazards 2014, 74, 375–403. [CrossRef]
103. Rao, A.D.; Murty, P.L.N.; Jain, I.; Kankara, R.S.; Dube, S.K.; Murty, T.S. Simulation of water levels and extent of coastal inundation

due to a cyclonic storm along the east coast of India. Nat. Hazards 2013, 66, 1431–1441. [CrossRef]
104. Chunxia, L.; Zhongkuo, Z.; Xueyan, B.; Jinnan, Y.; Guanhuan, W.; Huijun, H. Research and Application of Ocean Circulation and

Wave Models: A Review and Prospects. Adv. Meteorol. Sci. Technol. 2017, 7, 12–22.
105. Xianwu, S.; Jun, T.; Zhixing, G.; Qinzheng, L. A Review of Risk Assessment of Storm Surge Disaster. Adv. Earth Sci. 2013,

28, 866–874.
106. Valle, A.; Curchitser, E.N.; Bruyere, C.L.; Fossell, K.R. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation

Model with Varying Meteorological Forcing. J. Mar. Sci. Eng. 2018, 6, 35. [CrossRef]
107. Liu, X.J.; Zhong, D.H.; Tong, D.W.; Zhou, Z.Y.; Ao, X.F.; Li, W.Q. Dynamic visualisation of storm surge flood routing based on

three-dimensional numerical simulation. J. Flood Risk Manag. 2018, 11, S729–S749. [CrossRef]

https://doi.org/10.3390/rs15215215
https://doi.org/10.1071/MF18239
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000397
https://doi.org/10.1007/s11069-016-2198-z
https://doi.org/10.4031/MTSJ.52.2.11
https://doi.org/10.1029/2018WR023679
https://doi.org/10.1029/2007WR005995
https://doi.org/10.1016/j.jhydrol.2013.02.023
https://doi.org/10.1016/j.jhydrol.2010.03.027
https://doi.org/10.5194/hess-25-2843-2021
https://doi.org/10.1002/hyp.99
https://doi.org/10.1016/j.geomorph.2006.10.021
https://doi.org/10.1016/j.jhydrol.2021.126513
https://doi.org/10.1016/j.jhydrol.2016.03.037
https://doi.org/10.1007/s11069-004-4544-9
https://doi.org/10.3390/w14050748
https://doi.org/10.1016/j.jhydrol.2019.124406
https://doi.org/10.1016/j.jhydrol.2023.129166
https://doi.org/10.3390/w12092647
https://doi.org/10.3390/ijerph19127210
https://doi.org/10.1016/j.resconrec.2023.106923
https://doi.org/10.1016/j.hydroa.2019.100039
https://doi.org/10.1007/s11852-010-0090-7
https://doi.org/10.1007/s11069-014-1185-5
https://doi.org/10.1007/s11069-012-0193-6
https://doi.org/10.3390/jmse6020035
https://doi.org/10.1111/jfr3.12252


Remote Sens. 2024, 16, 350 30 of 33

108. Ye, F.; Zhang, Y.J.; Yu, H.; Sun, W.; Moghimi, S.; Myers, E.; Nunez, K.; Zhang, R.; Wang, H.; Roland, A.; et al. Simulating storm
surge and compound flooding events with a creek-to-ocean model: Importance of baroclinic effects. Ocean Model. 2020, 145,
101526. [CrossRef]

109. Krishna, P.S.S.; Tiju, V.I.; Nair, L.S.; Ramesh, M. Coastal flooding by wave, wind, tide interactions and related processes along the
southern part of SW coast of India. Reg. Stud. Mar. Sci. 2023, 62, 102968.

110. Ge, J.; Much, D.; Kappenberg, J.; Nino, O.; Ding, P.; Chen, Z. Simulating storm flooding maps over HafenCity under present and
sea level rise scenarios. J. Flood Risk Manag. 2014, 7, 319–331. [CrossRef]

111. Garcia, E.S.; Loaiciga, H.A. Sea-level rise and flooding in coastal riverine flood plains. Hydrol. Sci. J.-J. Sci. Hydrol. 2014, 59,
204–220. [CrossRef]

112. Chang, Y.; Tsai, T.; Yang, J. Flood hazard mitigation in land subsidence prone coastal areas by optimal groundwater pumping. J.
Flood Risk Manag. 2019, 12, e12517. [CrossRef]

113. Wang, H.; Lin, C.; Yang, C.; Ding, C.; Hwung, H.; Hsiao, S. Assessment of Land Subsidence and Climate Change Impacts on
Inundation Hazard in Southwestern Taiwan. Irrig. Drain. 2018, 67, 26–37. [CrossRef]

114. Yu, D. Parallelization of a two-dimensional flood inundation model based on domain decomposition. Environ. Modell. Softw.
2010, 25, 935–945. [CrossRef]

115. Su, B.; Huang, H.; Zhu, W. An urban pluvial flood simulation model based on diffusive wave approximation of shallow water
equations. Hydrol. Res. 2019, 50, 138–154. [CrossRef]

116. Bradbrook, K.F.; Lane, S.N.; Waller, S.G.; Bates, P.D. Two dimensional diffusion wave modelling of flood inundation using a
simplified channel representation. Int. J. River Basin Manag. 2004, 2, 211–223. [CrossRef]

117. Xu, K.; Wang, C.; Bin, L. Compound flood models in coastal areas: A review of methods and uncertainty analysis. Nat. Hazards
2023, 116, 469–496. [CrossRef]

118. Yin, J.; Lin, N.; Yu, D.P. Coupled modeling of storm surge and coastal inundation: A case study in New York City during
Hurricane Sandy. Water Resour. Res. 2016, 52, 8685–8699. [CrossRef]

119. Shen, Y.W.; Tahvildari, N.; Morsy, M.M.; Huxley, C.; Chen, T.D.; Goodall, J.L. Dynamic Modeling of Inland Flooding and Storm
Surge on Coastal Cities under Climate Change Scenarios: Transportation Infrastructure Impacts in Norfolk, Virginia USA as a
Case Study. Geosciences 2022, 12, 224. [CrossRef]

120. Bennett, W.G.; Karunarathna, H.; Xuan, Y.; Kusuma, M.S.B.; Farid, M.; Kuntoro, A.A.; Rahayu, H.P.; Kombaitan, B.; Septiadi, D.;
Kesuma, T.N.A.; et al. Modelling compound flooding: A case study from Jakarta, Indonesia. Nat. Hazards 2023, 118, 277–305.
[CrossRef]

121. Silva-Araya, W.F.; Santiago-Collazo, F.L.; Gonzalez-Lopez, J.; Maldonado-Maldonado, J. Dynamic Modeling of Surface Runoff
and Storm Surge during Hurricane and Tropical Storm Events. Hydrology 2018, 5, 13. [CrossRef]

122. Shi, S.Y.; Yang, B.; Jiang, W.S. Numerical simulations of compound flooding caused by storm surge and heavy rain with the
presence of urban drainage system, coastal dam and tide gates: A case study of Xiangshan, China. Coast. Eng. 2022, 172, 104064.
[CrossRef]

123. Tromble, E.; Kolar, R.; Dresback, K.; Luettich, R. River Flux Boundary Considerations in a Coupled Hydrologic-Hydrodynamic
Modeling System. Estuar. Coast. Model. (2011) 2013, 510–527. [CrossRef]

124. Bacopoulos, P.; Tang, Y.; Wang, D.; Hagen, S.C. Integrated Hydrologic-Hydrodynamic Modeling of Estuarine-Riverine Flooding:
2008 Tropical Storm Fay. J. Hydrol. Eng. 2017, 22, 04017022. [CrossRef]

125. Lee, C.; Hwang, S.; Do, K.; Son, S. Increasing flood risk due to river runoff in the estuarine area during a storm landfall. Estuar.
Coast. Shelf Sci. 2019, 221, 104–118. [CrossRef]

126. Joyce, J.; Chang, N.; Harji, R.; Ruppert, T.; Singhofen, P. Cascade impact of hurricane movement, storm tidal surge, sea level rise
and precipitation variability on flood assessment in a coastal urban watershed. Clim. Dyn. 2018, 51, 383–409. [CrossRef]

127. Karamouz, M.; Zahmatkesh, Z.; Goharian, E.; Nazif, S. Combined Impact of Inland and Coastal Floods: Mapping Knowledge
Base for Development of Planning Strategies. J. Water Resour. Plan. Manag. 2015, 141, 04014098. [CrossRef]

128. Saleh, F.; Ramaswamy, V.; Wang, Y.; Georgas, N.; Blumberg, A.; Pullen, J. A multi-scale ensemble-based framework for forecasting
compound coastal-riverine flooding: The Hackensack-Passaic watershed and Newark Bay. Adv. Water Resour. 2017, 110, 371–386.
[CrossRef]

129. Gori, A.; Lin, N.; Smith, J. Assessing Compound Flooding from Landfalling Tropical Cyclones on the North Carolina Coast. Water
Resour. Res. 2020, 56, e2019WR026788. [CrossRef]

130. Pandey, S.; Rao, A.D.; Haldar, R. Modeling of Coastal Inundation in Response to a Tropical Cyclone Using a Coupled Hydraulic
HEC-RAS and ADCIRC Model. J. Geophys. Res. Oceans 2021, 126, e2020JC016810. [CrossRef]

131. Tanim, A.H.; Goharian, E. Developing a hybrid modeling and multivariate analysis framework for storm surge and runoff
interactions in urban coastal flooding. J. Hydrol. 2021, 595, 125670. [CrossRef]

132. Bush, S.T.; Dresback, K.M.; Szpilka, C.M.; Kolar, R.L. Use of 1D Unsteady HEC-RAS in a Coupled System for Compound Flood
Modeling: North Carolina Case Study. J. Mar. Sci. Eng. 2022, 10, 306. [CrossRef]

133. Loveland, M.; Kiaghadi, A.; Dawson, C.N.N.; Rifai, H.S.S.; Misra, S.; Mosser, H.; Parola, A. Developing a Modeling Framework to
Simulate Compound Flooding: When Storm Surge Interacts with Riverine Flow. Front. Clim. 2021, 2, 609610. [CrossRef]

134. Wang, Y.; Hong, H.Y.; Chen, W.; Li, S.J.; Pamucar, D.; Gigovic, L.; Drobnjak, S.; Bui, D.T.; Duan, H.X. A Hybrid GIS Multi-Criteria
Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sens. 2019, 11, 62. [CrossRef]

https://doi.org/10.1016/j.ocemod.2019.101526
https://doi.org/10.1111/jfr3.12054
https://doi.org/10.1080/02626667.2013.798660
https://doi.org/10.1111/jfr3.12517
https://doi.org/10.1002/ird.2206
https://doi.org/10.1016/j.envsoft.2010.03.003
https://doi.org/10.2166/nh.2017.233
https://doi.org/10.1080/15715124.2004.9635233
https://doi.org/10.1007/s11069-022-05683-3
https://doi.org/10.1002/2016WR019102
https://doi.org/10.3390/geosciences12060224
https://doi.org/10.1007/s11069-023-06001-1
https://doi.org/10.3390/hydrology5010013
https://doi.org/10.1016/j.coastaleng.2021.104064
https://doi.org/10.1061/9780784412411.00030
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001539
https://doi.org/10.1016/j.ecss.2019.03.021
https://doi.org/10.1007/s00382-017-3930-4
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000497
https://doi.org/10.1016/j.advwatres.2017.10.026
https://doi.org/10.1029/2019WR026788
https://doi.org/10.1029/2020JC016810
https://doi.org/10.1016/j.jhydrol.2020.125670
https://doi.org/10.3390/jmse10030306
https://doi.org/10.3389/fclim.2020.609610
https://doi.org/10.3390/rs11010062


Remote Sens. 2024, 16, 350 31 of 33

135. Mudashiru, R.B.; Sabtu, N.; Abustan, I.; Balogun, W. Flood hazard mapping methods: A review. J. Hydrol. 2021, 603, 126846.
[CrossRef]

136. Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water
Resour. Manag. 2015, 29, 399–418. [CrossRef]

137. de Brito, M.M.; Evers, M. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat.
Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [CrossRef]

138. Ghosh, S.; Mistri, B. Assessing coastal vulnerability to environmental hazards of Indian Sundarban delta using multi-criteria
decision-making approaches. Ocean Coast. Manag. 2021, 209, 105641. [CrossRef]

139. Sutrisno, D.; Rahadiati, A.; Rudiastuti, A.W.; Dewi, R.S.; Munawaroh. Urban Coastal Flood-Prone Mapping under the Combined
Impact of Tidal Wave and Heavy Rainfall: A Proposal to the Existing National Standard. Isprs Int. J. Geo-Inf. 2020, 9, 525.
[CrossRef]

140. Mahmoud, S.H.; Gan, T.Y. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J. Clean.
Prod. 2018, 196, 216–229. [CrossRef]

141. Le Cozannet, G.; Garcin, M.; Bulteau, T.; Mirgon, C.; Yates, M.L.; Mendez, M.; Baills, A.; Idier, D.; Oliveros, C. An AHP-derived
method for mapping the physical vulnerability of coastal areas at regional scales. Nat. Hazards Earth Syst. Sci. 2013, 13, 1209–1227.
[CrossRef]

142. Cui, P.; Guan, Y.; Zhu, Y. Flood Loss Prediction of Coastal City Based on GM-ANN. In Proceedings of the 2017 IEEE International
Conference on Grey Systems and Intelligent Services (Gsis), Stockholm, Sweden, 8–11 August 2017; pp. 187–190.

143. Mosavi, A.; Ozturk, P.; Chau, K.W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536.
[CrossRef]

144. Wang, Q.; Chen, J.; Hu, K. Storm Surge Prediction for Louisiana Coast Using Artificial Neural Networks. In Proceedings of the
Neural Information Processing, Iconip 2016, Kyoto, Japan, 16–21 October 2016; Volume 9949, Pt III. pp. 396–405.

145. Sahoo, B.; Bhaskaran, P.K. Prediction of storm surge and coastal inundation using Artificial Neural Network—A case study for
1999 Odisha Super Cyclone. Weather Clim. Extremes 2019, 23, 100196. [CrossRef]

146. Chondros, M.; Metallinos, A.; Papadimitriou, A.; Memos, C.; Tsoukala, V. A Coastal Flood Early-Warning System Based on
Offshore Sea State Forecasts and Artificial Neural Networks. J. Mar. Sci. Eng. 2021, 9, 1272. [CrossRef]

147. Sampurno, J.; Vallaeys, V.; Ardianto, R.; Hanert, E. Integrated hydrodynamic and machine learning models for compound
flooding prediction in a data-scarce estuarine delta. Nonlinear Process Geophys. 2022, 29, 301–315. [CrossRef]

148. Sadler, J.M.; Goodall, J.L.; Morsy, M.M.; Spencer, K. Modeling urban coastal flood severity from crowd-sourced flood reports
using Poisson regression and Random Forest. J. Hydrol. 2018, 559, 43–55. [CrossRef]

149. Zahura, F.T.; Goodall, J.L. Predicting combined tidal and pluvial flood inundation using a machine learning surrogate model. J.
Hydrol. Reg. Stud. 2022, 41, 101087. [CrossRef]

150. Park, S.; Lee, D. Prediction of coastal flooding risk under climate change impacts in South Korea using machine learning
algorithms. Environ. Res. Lett. 2020, 15, 094052. [CrossRef]

151. Zahura, F.T.; Goodall, J.L.; Sadler, J.M.; Shen, Y.; Morsy, M.M.; Behl, M. Training Machine Learning Surrogate Models from a
High-Fidelity Physics-Based Model: Application for Real-Time Street-Scale Flood Prediction in an Urban Coastal Community.
Water Resour. Res. 2020, 56, e2019WR027038. [CrossRef]

152. Torres, M.J.; Nadal-Caraballo, N.C.; Ramos-Santiago, E.; Campbell, M.O.; Conzalez, V.M.; Melby, J.A.; Taflanidis, A.A. StormSim-
CHRPS: Coastal Hazards Rapid Prediction System. J. Coast. Res. 2020, 95, 1320–1325. [CrossRef]

153. Liu, H.; Hao, Y.; Zhang, W.; Zhang, H.; Gao, F.; Tong, J. Online urban-waterlogging monitoring based on a recurrent neural
network for classification of microblogging text. Nat. Hazards Earth Syst. Sci. 2021, 21, 1179–1194. [CrossRef]

154. Mekanik, F.; Imteaz, M.A.; Gato-Trinidad, S.; Elmahdi, A. Multiple regression and Artificial Neural Network for long-term rainfall
forecasting using large scale climate modes. J. Hydrol. 2013, 503, 11–21. [CrossRef]

155. Chen, H.; Liu, Y.; Lin, K.; Lan, T.; Liu, Z.; Li, W. Flood Hazard Assessment Methods: Research Review. J. Water Resour. Res. 2020,
9, 597–605. [CrossRef]

156. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
157. Dikshit, A.; Pradhan, B.; Alamri, A.M. Pathways and challenges of the application of artificial intelligence to geohazards

modelling. Gondwana Res. 2021, 100, 290–301. [CrossRef]
158. Liu, B.; Li, X.F.; Zheng, G. Coastal Inundation Mapping from Bitemporal and Dual-Polarization SAR Imagery Based on Deep

Convolutional Neural Networks. J. Geophys. Res. Oceans 2019, 124, 9101–9113. [CrossRef]
159. Munoz, D.F.; Munoz, P.; Moftakhari, H.; Moradkhani, H. From local to regional compound flood mapping with deep learning

and data fusion techniques. Sci. Total Environ. 2021, 782, 146927. [CrossRef]
160. Hsu, T.; Shih, D.; Li, C.; Lan, Y.; Lin, Y. A Study on Coastal Flooding and Risk Assessment under Climate Change in the

Mid-Western Coast of Taiwan. Water 2017, 9, 390. [CrossRef]
161. Afifi, Z.; Chu, H.; Kuo, Y.; Hsu, Y.; Wong, H.; Ali, M.Z. Residential Flood Loss Assessment and Risk Mapping from High-

Resolution Simulation. Water 2019, 11, 751. [CrossRef]
162. Yan, X.; Xu, K.; Feng, W.; Chen, J. A Rapid Prediction Model of Urban Flood Inundation in a High-Risk Area Coupling Machine

Learning and Numerical Simulation Approaches. Int. J. Disaster Risk Sci. 2021, 12, 903–918. [CrossRef]

https://doi.org/10.1016/j.jhydrol.2021.126846
https://doi.org/10.1007/s11269-014-0817-6
https://doi.org/10.5194/nhess-16-1019-2016
https://doi.org/10.1016/j.ocecoaman.2021.105641
https://doi.org/10.3390/ijgi9090525
https://doi.org/10.1016/j.jclepro.2018.06.047
https://doi.org/10.5194/nhess-13-1209-2013
https://doi.org/10.3390/w10111536
https://doi.org/10.1016/j.wace.2019.100196
https://doi.org/10.3390/jmse9111272
https://doi.org/10.5194/npg-29-301-2022
https://doi.org/10.1016/j.jhydrol.2018.01.044
https://doi.org/10.1016/j.ejrh.2022.101087
https://doi.org/10.1088/1748-9326/aba5b3
https://doi.org/10.1029/2019WR027038
https://doi.org/10.2112/SI95-254.1
https://doi.org/10.5194/nhess-21-1179-2021
https://doi.org/10.1016/j.jhydrol.2013.08.035
https://doi.org/10.12677/JWRR.2020.96065
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1016/j.gr.2020.08.007
https://doi.org/10.1029/2019JC015577
https://doi.org/10.1016/j.scitotenv.2021.146927
https://doi.org/10.3390/w9060390
https://doi.org/10.3390/w11040751
https://doi.org/10.1007/s13753-021-00384-0


Remote Sens. 2024, 16, 350 32 of 33

163. Ayyad, M.; Hajj, M.R.; Marsooli, R. Artificial intelligence for hurricane storm surge hazard assessment. Ocean Eng. 2022, 245,
110435. [CrossRef]

164. Chang, M.; Huang, I.; Hsu, C.; Wu, S.; Lai, J.; Lin, G. Long-Term Flooding Maps Forecasting System Using Series Machine
Learning and Numerical Weather Prediction System. Water 2022, 14, 3346. [CrossRef]

165. Malakar, K.; Mishra, T.; Hari, V.; Karmakar, S. Risk mapping of Indian coastal districts using IPCC-AR5 framework and
multi-attribute decision-making approach. J. Environ. Manag. 2021, 294, 112948. [CrossRef]

166. Zheng, Q.; Shen, S.; Zhou, A.; Lyu, H.M. Inundation risk assessment based on G-DEMATEL-AHP and its application to
Zhengzhou flooding disaster. Sustain. Cities Soc. 2022, 86, 104138. [CrossRef]

167. Peng, J.; Zhang, J. Urban flooding risk assessment based on GIS- game theory combination weight: A case study of Zhengzhou
City. Int. J. Disaster Risk Reduct. 2022, 77, 103080. [CrossRef]

168. Wu, J.; Chen, X.; Lu, J. Assessment of long and short-term flood risk using the multi-criteria analysis model with the AHP-Entropy
method in Poyang Lake basin. Int. J. Disaster Risk Reduct. 2022, 75, 102968. [CrossRef]

169. Huang, P. An effective alternative for predicting coastal floodplain inundation by considering rainfall, storm surge, and
downstream topographic characteristics. J. Hydrol. 2022, 607, 127544. [CrossRef]

170. Mimura, N. Sea-level rise caused by climate change and its implications for society. Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci. 2013, 89,
281–301. [CrossRef]

171. Chen, Y.; Chen, C.; Chao, Y.; Tung, Y.; Liou, J.; Li, H.; Cheng, C. Future Landslide Characteristic Assessment Using Ensemble
Climate Change Scenarios: A Case Study in Taiwan. Water 2020, 12, 564. [CrossRef]

172. Hu, S.; Liu, B.; Hu, M.; Yu, X.; Deng, Z.; Zeng, H.; Zhang, M.; Li, D. Quantification of the nonlinear interaction among the tide,
surge and river in Pearl River Estuary. Estuar. Coast. Shelf Sci. 2023, 290, 108415. [CrossRef]

173. Jun, X.; Wei, S.; Liping, Z.; Dunxian, S.; Hui, W.; Lei, Z.; Ping, Z. Opportunity and Challenge of the Climate Change Impact on
Flood Protection. J. Sichuan Univ. 2016, 48, 7–13.

174. Yilmaz, A.G.; Imteaz, M.A.; Shanableh, A.; Al-Ruzouq, R.; Atabay, S.; Haddad, K. A Non-Stationarity Analysis of Annual
Maximum Floods: A Case Study of Campaspe River Basin, Australia. Water 2023, 15, 3683. [CrossRef]

175. Ren, H.; Hou, Z.J.; Wigmosta, M.; Liu, Y.; Leung, L.R. Impacts of Spatial Heterogeneity and Temporal Non-Stationarity on
Intensity-Duration-Frequency Estimates—A Case Study in a Mountainous California-Nevada Watershed. Water 2019, 11, 1296.
[CrossRef]

176. Razmi, A.; Mardani-Fard, H.A.; Golian, S.; Zahmatkesh, Z. Time-Varying Univariate and Bivariate Frequency Analysis of
Nonstationary Extreme Sea Level for New York City. Environ. Process. 2022, 9, 8. [CrossRef]

177. Pirani, F.J.; Najafi, M.R. Nonstationary frequency analysis of compound flooding in Canadas coastal zones. Coast. Eng. 2023, 182,
104292. [CrossRef]

178. Huehne, S.; Reinoso, J.; Jansen, E.; Rolfes, R. A two-way loose coupling procedure for investigating the buckling and damage
behaviour of stiffened composite panels. Compos. Struct. 2016, 136, 513–525. [CrossRef]

179. Tang, H.S.; Kraatz, S.; Wu, X.G.; Cheng, W.L.; Qu, K.; Polly, J. Coupling of shallow water and circulation models for prediction of
multiphysics coastal flows: Method, implementation, and experiment. Ocean Eng. 2013, 62, 56–67. [CrossRef]

180. Li, Z.; Li, S.; Hu, P.; Mo, D.; Li, J.; Du, M.; Yan, J.; Hou, Y.; Yin, B. Numerical study of storm surge-induced coastal inundation in
Laizhou Bay, China. Front. Mar. Sci. 2022, 9, 952406. [CrossRef]

181. Gallien, T.W.; Kalligeris, N.; Delisle, M.C.; Tang, B.; Lucey, J.T.D.; Winters, M.A. Coastal Flood Modeling Challenges in Defended
Urban Backshores. Geosciences 2018, 8, 450. [CrossRef]

182. Sanders, B.F.; Schubert, J.E. PRIMo: Parallel raster inundation model. Adv. Water Resour. 2019, 126, 79–95. [CrossRef]
183. Moradkhani, H.; Nearing, G.; Abbaszadeh, P.; Pathiraja, S. Fundamentals of Data Assimilation and Theoretical Advances. In

Handbook of Hydrometeorological Ensemble Forecasting; Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H.L., Schaake, J.C.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–26.

184. Moradkhani, H. Hydrologic remote sensing and land surface data assimilation. Sensors 2008, 8, 2986–3004. [CrossRef]
185. Pathiraja, S.; Moradkhani, H.; Marshall, L.; Sharma, A.; Geenens, G. Data-Driven Model Uncertainty Estimation in Hydrologic

Data Assimilation. Water Resour. Res. 2018, 54, 1252–1280. [CrossRef]
186. Abbaszadeh, P.; Gavahi, K.; Moradkhani, H. Multivariate remotely sensed and in-situ data assimilation for enhancing community

WRF-Hydro model forecasting. Adv. Water Resour. 2020, 145, 103721. [CrossRef]
187. Navon, I.M. Data Assimilation for Numerical Weather Prediction: A Review. In Data Assimilation for Atmospheric, Oceanic and

Hydrologic Applications; Park, S.K., Xu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–65.
188. Houtekamer, P.L.; Zhang, F. Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation. Mon. Weather Rev. 2016,

144, 4489–4532. [CrossRef]
189. Bertino, L.; Evensen, G.; Wackernagel, H. Sequential data assimilation techniques in oceanography. Int. Stat. Rev. 2003, 71,

223–241. [CrossRef]
190. Asher, T.G.; Luettich, R.A.; Fleming, J.G.; Blanton, B.O. Low frequency water level correction in storm surge models using data

assimilation. Ocean Model. 2019, 144, 101483. [CrossRef]
191. Munoz, D.F.; Abbaszadeh, P.; Moftakhari, H.; Moradkhani, H. Accounting for uncertainties in compound flood hazard assessment:

The value of data assimilation. Coast. Eng. 2022, 171, 104057. [CrossRef]

https://doi.org/10.1016/j.oceaneng.2021.110435
https://doi.org/10.3390/w14203346
https://doi.org/10.1016/j.jenvman.2021.112948
https://doi.org/10.1016/j.scs.2022.104138
https://doi.org/10.1016/j.ijdrr.2022.103080
https://doi.org/10.1016/j.ijdrr.2022.102968
https://doi.org/10.1016/j.jhydrol.2022.127544
https://doi.org/10.2183/pjab.89.281
https://doi.org/10.3390/w12020564
https://doi.org/10.1016/j.ecss.2023.108415
https://doi.org/10.3390/w15203683
https://doi.org/10.3390/w11061296
https://doi.org/10.1007/s40710-021-00553-9
https://doi.org/10.1016/j.coastaleng.2023.104292
https://doi.org/10.1016/j.compstruct.2015.09.056
https://doi.org/10.1016/j.oceaneng.2012.12.050
https://doi.org/10.3389/fmars.2022.952406
https://doi.org/10.3390/geosciences8120450
https://doi.org/10.1016/j.advwatres.2019.02.007
https://doi.org/10.3390/s8052986
https://doi.org/10.1002/2018WR022627
https://doi.org/10.1016/j.advwatres.2020.103721
https://doi.org/10.1175/MWR-D-15-0440.1
https://doi.org/10.1111/j.1751-5823.2003.tb00194.x
https://doi.org/10.1016/j.ocemod.2019.101483
https://doi.org/10.1016/j.coastaleng.2021.104057


Remote Sens. 2024, 16, 350 33 of 33

192. Kalyanapu, A.J.; Shankar, S.; Pardyjak, E.R.; Judi, D.R.; Burian, S.J. Assessment of GPU computational enhancement to a 2D flood
model. Environ. Modell. Softw. 2011, 26, 1009–1016. [CrossRef]

193. Vacondio, R.; Dal Palu, A.; Mignosa, P. GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations. Environ.
Modell. Softw. 2014, 57, 60–75. [CrossRef]

194. Smith, L.S.; Liang, Q. Towards a generalised GPU/CPU shallow-flow modelling tool. Comput. Fluids 2013, 88, 334–343. [CrossRef]
195. Li, W.; Zhang, S.; Yang, X.; Bao, H. Parallel Calculation Method for Urban Two-Dimensional Rainfall Flood Model Based on

Compute Unified Device Architecture. Environ. Eng. Sci. 2022, 39, 685–696. [CrossRef]
196. Buttinger-Kreuzhuber, A.; Konev, A.; Horvath, Z.; Cornel, D.; Schwerdorf, I.; Bloeschl, G.; Waser, J. An integrated GPU-accelerated

modeling framework for high-resolution simulations of rural and urban flash floods. Environ. Modell. Softw. 2022, 156, 105480.
[CrossRef]

197. Shen, Y.; Morsy, M.M.; Huxley, C.; Tahvildari, N.; Goodall, J.L. Flood risk assessment and increased resilience for coastal urban
watersheds under the combined impact of storm tide and heavy rainfall. J. Hydrol. 2019, 579, 124159. [CrossRef]

198. Bhola, P.K.; Leandro, J.; Disse, M. Building hazard maps with differentiated risk perception for flood impact assessment. Nat.
Hazards Earth Syst. Sci. 2020, 20, 2647–2663. [CrossRef]

199. Garrote, J.; Pena, E.; Diez-Herrero, A. Probabilistic Flood Hazard Maps from Monte Carlo Derived Peak Flow Values-An
Application to Flood Risk Management in Zamora City (Spain). Appl. Sci. 2021, 11, 6629. [CrossRef]

200. Chaudhary, P.; Leitao, J.P.; Donauer, T.; D’Aronco, S.; Perraudin, N.; Obozinski, G.; Perez-Cruz, F.; Schindler, K.; Wegner, J.D.;
Russo, S. Flood Uncertainty Estimation Using Deep Ensembles. Water 2022, 14, 2980. [CrossRef]

201. Di Baldassarre, G.; Kemerink, J.S.; Kooy, M.; Brandimarte, L. Floods and societies: The spatial distribution of water-related
disaster risk and its dynamics. Wires Water 2014, 1, 133–139. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envsoft.2011.02.014
https://doi.org/10.1016/j.envsoft.2014.02.003
https://doi.org/10.1016/j.compfluid.2013.09.018
https://doi.org/10.1089/ees.2021.0310
https://doi.org/10.1016/j.envsoft.2022.105480
https://doi.org/10.1016/j.jhydrol.2019.124159
https://doi.org/10.5194/nhess-20-2647-2020
https://doi.org/10.3390/app11146629
https://doi.org/10.3390/w14192980
https://doi.org/10.1002/wat2.1015

	Introduction 
	Overview of Methods 
	Mechanisms of Compound Coastal Flooding 
	Detailed Overview of Search Strategy and Database Description 
	Research Stages in the Database Context 
	Geospatial Dimensions in the Publications 

	Research Trends through Keywords 

	Research Results and Discussion 
	Statistical Models 
	Numerical Modeling Approaches 
	Isolated Scenario Analysis (ISA) 
	Composite Scenario Analysis (CSA) 

	Integrated Hazard Risk Mapping 

	Challenges and Future Perspectives 
	Conclusions 
	References

