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Abstract: Multiview stereo (MVS) achieves efficient 3D reconstruction on Lambertian surfaces and
strongly textured regions. However, the reconstruction of weakly textured regions, especially planar
surfaces in weakly textured regions, still faces significant challenges due to the fuzzy matching
problem of photometric consistency. In this paper, we propose a multiview stereo for recovering
planar surfaces guided by confidence calculations, resulting in the construction of large-scale 3D
models for high-resolution image scenes. Specifically, a confidence calculation method is proposed
to express the reliability degree of plane hypothesis. It consists of multiview consistency and patch
consistency, which characterize global contextual information and local spatial variation, respectively.
Based on the confidence of plane hypothesis, the proposed plane supplementation generates new
reliable plane hypotheses. The new planes are embedded in the confidence-driven depth estimation.
In addition, an adaptive depth fusion approach is proposed to allow regions with insufficient
visibility to be effectively fused into the dense point clouds. The experimental results illustrate that
the proposed method can lead to a 3D model with competitive completeness and high accuracy
compared with state-of-the-art methods.

Keywords: confidence calculation; depth estimation; multiview stereo; plane supplementation;
weakly textured regions

1. Introduction

Multiview stereo (MVS) is an important research topic in photogrammetry and com-
puter vision. Over the last few years, impressive results [1–4] have been achieved in terms
of the quality of 3D geometric representation reconstructed from multiview stereo. The re-
constructed 3D model is applied in real-scene applications, such as digital cities, unmanned
aerial vehicles (UAV), augmented reality (AR), and virtual reality (VR). The MVS, based
on the PatchMatch algorithm [5,6], represents the most advanced MVS method. It aims at
estimating depth maps using a set of 2D images with multiple views and then merging the
dense 3D point clouds of the objects or scenes via depth fusion.

The PatchMatch algorithm can be divided into two main parts, including depth
estimation and depth fusion. The depth estimation relies on the cost function based
on photometric consistency, which is computed as normalized cross correlation (NCC)
of corresponding patches between multiple views. Further, the NCC is expressed as the
similarity of luminosity (pixel values or grayscale values) between different images’ patches.
The PatchMatch algorithm achieves adequately reliable results in strongly textured regions
as well as in Lambert surfaces. However, it is mainly faced with the following challenges:

(1) Depending on the photometric consistency, traditional depth estimation [6,7] exhibits
the fuzzy matching problem in weakly textured regions. The fuzzy matching problem
is that even the erroneous plane hypothesis allows patches to match highly similar
regions between multiple views. This makes depth estimation insufficiently reliable
in weakly textured regions.

Remote Sens. 2023, 15, 2474. https://doi.org/10.3390/rs15092474 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15092474
https://doi.org/10.3390/rs15092474
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15092474
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15092474?type=check_update&version=1


Remote Sens. 2023, 15, 2474 2 of 24

(2) During depth estimation, some views are invisible and cannot accurately reflect a
reliable matching relationship due to occlusion and illumination. The matching cost
calculated via invisible view would be an outlier in the multiview matching cost,
which affects the accuracy of depth estimation.

In response to the above problems, some state-of-the-art methods [8–11] have been
proposed. For outliers caused by invisible views in the multiview matching cost, a good
idea is to determine the importance of each neighboring view, thereby altering the influence
of each view in the multiview matching cost. Refs. [12–15] explored the contribution of
neighborhood views to the multiview matching cost to achieve a highly accurate MVS.
Ref. [15] designs a view weight to adjust the contribution of neighboring views in the
multiview matching cost. It jointly estimates view selection and depth-normal information
via a probabilistic graphical model. By using a generalized expectation maximization
algorithm, each view would be assigned a view weight. The weighted multiview matching
cost function effectively achieves highly accurate depth estimation. However, the view
weights never change the essence of the fuzzy matching problem of photometric consistency.
It makes [15] suffer from a significant inadequacy in terms of the completeness of the
reconstruction, especially in weakly textured regions.

To solve the deficiency of [15] in completeness, we propose a plane supplement
module, which is based on plane hypothesis confidence calculation. The generated reliable
plane hypothesis is introduced into a confidence-driven depth estimation, which can
effectively improve the completeness of the reconstruction. Meanwhile, confidence is
embedded into the multiview matching cost as a constraint to overcome the fuzzy matching
problem faced in photometric consistency.

In structured scenes, surfaces with weakly textured regions can be approximately
characterized as identical planes. This allows the plane-based methodology [16–21] to
effectively guide the elimination of the fuzzy matching problem that occurs in weakly
textured regions, then improves the completeness of the reconstruction. Following their
previous work, the authors of [18,22] introduce the prior plane to help the recovery of
weakly textured regions. Firstly, the pixels with extremely small costs are selected for
triangulation and interpolation. The generated triangular prior planes can effectively
represent the planar structure of the scene. Secondly, the prior planes are introduced into
the multiview cost function through a probabilistic graphical model. The new matching
cost balances the photometric consistency with planar compatibility, thus improving the
quality of reconstruction.

However, the problem with [18] is that the generation of prior planes is overly de-
pendent on the photometric consistency cost, although incorrect prior planes may not
be available due to the multiview matching cost. To address the problem, we propose
a new confidence calculation method to express the reliability of the plane hypotheses
in depth estimation. The calculated confidence consists of multiview consistency and
patch consistency. Via the plane hypothesis confidence calculation, a confidence-driven
depth estimation combined with the proposed planar supplement is effective in estimating
reliable plane hypotheses.

In addition, the quality of the 3D models merged from the 2D depth maps is dependent
on the depth fusion. The authors of [6,7] employ a consistent-matching-based depth fusion
approach to obtain dense point clouds. A consistent match is defined as satisfying certain
consistency constraints. The plane hypothesis would be accepted when allowing at least
certain neighboring views satisfying the consistent match (view constraint). The pixels of
accepted plane hypothesis are projected into the 3D space and averaged into uniform 3D
points. Based on the depth fusion method of consistent matching, [15,18,22] tighten the
constraints of consistent matching using the geometric error.

However, the fusion approach used in [7,15,18,22] relies on the fixed parameters of
consistency constraints and view constrain. For regions that are only visible in finite
neighborhood views, a rigorous view constraint may make it difficult to be fused into the
point clouds. The regions are easily fused if the view constraint is loose, however, leading
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to a decrease in the accuracy of the point clouds. To address this problem, we propose a
depth fusion method that adaptively adjusts view constraint and consistency constraints to
improve the quality of the 3D point clouds.

In this paper, we propose an MVS pipeline using confidence calculation as guidance
to recover reliable planar surfaces for weakly textured planes. To quantifiably express the
reliability of the plane hypothesis in depth estimation, we propose a confidence calculation
method consisting of multiview consistency and patch consistency. The plane supplement
method is applied to additionally provide reliable planes, especially for the planar surfaces
in weakly textured regions. Then, the reliable planes selected by the confidence calculation
are embedded in the confidence-driven depth estimation. Finally, an adaptive fusion
method can efficiently merge invisible regions into dense point clouds, and achieve a good
balance between completeness and accuracy of reconstruction.

Our contributions are summarized as follows:

• To quantify the reliability of the plane hypothesis in depth estimation, a plane hy-
pothesis confidence calculation is proposed. The confidence consists of multiview
confidence and patch confidence, which provide global geometry information and
local depth consistency.

• Based on the confidence calculation, a plane supplement module is applied to gen-
erate reliable plane hypotheses and is introduced into the confidence-driven depth
estimation to tackle the estimating problem of weakly textured regions to achieve the
high completeness of reconstruction.

• An adaptive depth fusion method is proposed to address the imbalance in accuracy
and completeness of point clouds caused by fixed parameters. The view constraint and
consistency constraints for fusion are adaptively adjusted according to the dependency
of each view on different neighboring views. The method achieves a good balance of
accuracy and completeness when merging depth maps into dense point clouds.

2. Related Works

According to [23], the pipelines of multiview stereo can be divided into four categories,
which are voxel-based methods [24,25], surface evolution-based methods [26,27], feature
point growing-based methods [28], and depth map merging-based methods [6,8,11,15,29].

The depth map merging-based approach is divided into two steps, which are depth
map estimation and depth map fusion. Depth maps are estimated for all views, and then
all depth maps are merged into the point clouds model based on the relationship between
multiple views. Ref. [5] innovatively proposes slanted support windows to achieve highly
slanted surface reconstruction with subpixel precision for disparity detail. Ref. [6] ap-
plies PatchMatch to MVS to estimate depth maps, and fuses them into point clouds by
consistency matching.

The invisible neighboring view in multiple views becomes a disturbance to the accu-
racy of depth estimation. Ref. [12] heuristically selects the best view by minimum cost for
accurate depth estimation. Refs. [13,30] model scene visibility and local depth smoothing as-
sumptions by Markov random fields for pixel-level view selection. Ref. [14] jointly models
pixel-level view selection and depth map estimation via a probabilistic framework to adap-
tively determine pixel-level data associations between the current view and all elements of
neighboring views. By discussing the support window selection, visibility determination,
and outlier detection, Ref. [9] proposes an accurate visibility estimation method to achieve
high-accuracy reconstruction. Ref. [15] establishes a pixelwise view selection scheme and
jointly estimates the view selection, as well as depth-normal information, by a probabilistic
graphical model.

The sequential propagation in the PatchMatch-based MVS method is an important
factor affecting the efficiency of depth estimation. Ref. [10] implements a GPU-based
parallel propagation of the red-black checkerboard scheme to accelerate the propagation
process of MVS. Ref. [22] proposes adaptive checkerboard propagation and multihypothesis
joint view selection to obtain efficient and high-quality reconstruction, which is named
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ACMH. On this basis, reliable estimation of weakly textured regions at coarse scales
is applied to fine scales in combination with multiscale geometric consistency guidance,
which is named ACMM. Similarly based on the adaptive checkerboard propagation scheme,
Ref. [18] proposes the prior plane generation method and embeds it into the matching
cost calculation, utilizing a probabilistic graphical model. Ref. [4] integrates the two
aforementioned works to achieve an extremely competitive 3D reconstruction.

The fuzzy matching problem faced in weakly textured regions greatly affects the
completeness of the reconstruction. Ref. [1] adaptively adjusts the patch size by curvature
model to attenuate the ambiguity of matching. Ref. [31] considers local consistency in
the matching cost and completes the MVS with high integrity in the pyramid structure.
Ref. [3] combines dynamic propagation and sequential propagation and introduces coarse
inference within a universal window to eliminate artifacts to improve the completeness
of reconstruction. Ref. [16] proposes a texture-aware MVS and fills the vacant planes by
superpixels after filtering outliers. Ref. [17] improves a planar complementation method
by growing superpixels to complement the filtered depth map. Ref. [32] combines the
relationship between multiple views while using superpixels to make the complementation
more robust. Ref. [20] proposes a plane prior generation method by combining mean-
shift clustering and superpixel segmentation, then introduces planar priors and smooth
constraints into the cost. The image gradient is used to adaptively adjust the weights
of different constraints in the cost. Ref. [21] designs a quadtree-guided prior method
and embeds it into the matching cost calculation to improve the estimation of weakly
textured regions.

The reconstruction of geometric details is also an important research problem. Ref. [33]
proposes a selective joint bilateral propagation upsampling method for recovering the depth
maps at coarse scales to geometric details at fine scales. Ref. [2] focuses on the geometric
details of reconstruction, especially the preservation of geometric details of thin structures.
Ref. [34] considers three types of filters to achieve an outlier and artifact removal method
for MVS.

Recently, a popular research approach combines the traditional MVS pipeline with
deep learning, which is about confidence. Confidence prediction is widely used in stereo
problems [35–37]. In multiview stereo, the photometric consistency is stably supported
by multiple views but is still not reliable. Ref. [38] proposes a self-supervised learning
method to predict the confidence of multiview depth maps and constructs high-quality
reconstructions by confidence-driven and boundary-aware interpolation. Ref. [39] proposes
a confidence prediction method, which is a network structure where RGB images, normal
maps, and scale-robust TSDF are globally fused by U-Net architecture with intermediate
loss and refined by an iterative refinement module with a later-fusion layer and LSTM layer.
Ref. [40] customizes a confidence prediction network for MVS using DNNs and uses it for
depth map outlier filtering and depth map refinement. Ref. [41] uses a pyramid structure to
guide the fine-scale MVS process using a grid at coarse scales, and a deep neural network
is designed to predict the confidence.

The successful extraction of semantic information contributes to the further develop-
ment of the quality of 3D reconstruction. Refs. [42,43] explore the possibility of semantic
segmentation for application in MVS. Further, Ref. [44] utilizes semantic segmentation-
guided prior planes to tackle the weak texture problem in PatchMatch MVS. Ref. [19]
combines the MVS with PlaneNet to repair incorrect points by correcting and integrating in-
accurate prior information from pretrained CNN models and depth map merging methods,
then interpolating in weak support planes.

3. Review of Depth Estimation in ACMH

In this section, we review an advanced PatchMatch-based MVS algorithm, ACMH [22].
It follows the basic four-step PatchMatch-based MVS algorithm [6]. The purpose of this
section is to help clearly understand the details of the depth estimation in our framework.
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ACMH adopts a propagation scheme of adaptive checkerboard sampling, and ame-
liorates the calculation of the multiview matching cost function through multihypothesis
joint view selection, thus achieving extremely high accuracy while parallelizing. The entire
depth estimation can be summarized as follows:

3.1. Initialization

ACMH generates a random initial plane hypothesis for each pixel. Then, the bilateral
weighted NCC [15] is calculated as the matching cost between the current view and each
neighboring view. The initial multiview matching cost is calculated as the average of the
top five best matching costs.

3.2. Propagation

Based on the diffusion-like propagation scheme [10], ACMH modifies the selection of
neighborhood plane hypotheses to four V-shaped areas and four long strip areas (Figure 1).
According to the multiview matching cost, the plane hypothesis with the minimum cost is
selected as the candidate in each of the eight areas.

Figure 1. The adaptive checkerboard propagation scheme of ACMH. Each V-shaped area contains
7 sampling pixels, and each long strip area contains 11 sampling pixels.

3.3. Multiview Matching Cost Calculation

For each pixel p, the matching costs between all neighboring views are calculated
and embedded into a cost matrix M according to its original plane hypothesis and eight
candidate plane hypotheses obtained in propagation,

M =

 m(φ0, 1) · · · m(φ0, J)
...

. . .
...

m(φ8, 1) · · · m(φ8, J)

 (1)

where m(φi, j) is the matching cost between the i-th plane hypothesis φi corresponding to
the j-th neighboring view, and J is the total number of neighboring views.

To mitigate the impact of unreliable neighborhood views, ACMH selects an appro-
priate subset from all neighboring views according to the cost matrix. Then, the reliable
neighboring views are given large view weights.

In each column of the cost matrix, a voting decision is adopted to determine the
suitability of the view. For the neighboring view Vj of the t-th iteration, the Sgood is defined
as the set whose m(φi, j) < τ(t), and Sbad is the set whose m(φi, j) > τb. The parameter τb
is a constant, and τ(t) is modeled as

τ(t) = τinit · e
− t2

µ (2)
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where τinit is the initial cost threshold and µ is a constant. The selected subset of neighboring
views contains all neighboring views whose Sgood > n1 and Sbad < n2.

Furthermore, to determine the view weight of each neighboring view in the subset,
the cost confidence is calculated based on the matching cost,

C(m(φi, j)) = e
−m(φi ,j)2

2β2 (3)

Based on the cost confidence, the initial view weight of the neighboring view Vj is
calculated as

winit

(
Vj

)
=


1
|Sgood| ∑

m(φi ,j)∈Sgood

C(m(φi, j)), Vj ∈ St;

0, else.
(4)

After iterative propagation, according to the most important view (the view with the
largest weight), the calculation of view weight is modified as

w′j =
{ (

Λ
(
Vj = vt−1

)
+ 1
)
· winit

(
Vj
)
, Vj ∈ St;

0.2 ·Λ
(
Vj = vt−1

)
, else.

(5)

where Λ(·) means that Λ(true) = 1 and Λ( f alse) = 0. According to the calculated view
weight, the multiview matching cost is calculated as

m(p, φi) =

N−1
∑

j=1
w′ j ·m(φi, j)

N−1
∑

j=1
w′ j

(6)

The original plane hypothesis of pixel p is updated to the plane hypothesis, with the
minimum multiview matching cost calculated in the set of plane hypotheses.

3.4. Refinement

In the refinement, each plane hypothesis is made as close as possible to the global
optimal solution after propagation. Random plane hypothesis (drand, nrand) and perturbed
plane hypothesis (dpert, npert) are generated based on the plane hypothesis (dp, np) of pixel
p. The new set of plane hypotheses is combined as (dp, np), (dprt, np), (drnd, np), (dp, nprt),
(dp, nrnd), (drnd, nrnd), (dprt, nprt). The plane hypothesis of pixel p is updated to the one
with the minimum multiview matching cost in the set.

Finally, the steps of propagation, multiview matching cost calculation, and refinement
are iterated several times to make the plane hypothesis of each pixel converge to the global
optimal solution.

4. Method
4.1. Overview

Given a set of views with known camera parameters, the goal of depth estimation is to
obtain each plane hypothesis in views, which contain both depth information and normal
information.

Then, all the depth maps are merged into dense point clouds. The whole framework
of our method is shown in Figure 2.

Firstly, the sparse point clouds are reconstructed via structure from motion (SFM).
Then, the set of views, camera parameters, and sparse point clouds are jointly input into
our framework. At the beginning of our framework, we follow the scheme in ACMH [22]
to obtain the coarse depth maps with structural details. Via the confidence calculation,
reliable plane hypotheses in coarse depth maps are identified and extracted. In plane
supplementation, the images with the extracted reliable planar hypotheses are divided into
multiple triangular primitives by Delaunay triangulation. For the low-confidence regions
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in triangular primitives, new reliable planes are generated via triangular interpolation of
the extracted reliable plane hypotheses. Afterward, the most accurate plane hypotheses
between the supplement planes and coarse depth maps are retained and embedded into
the confidence-driven depth estimation. Finally, the depth maps are converted into dense
point clouds according to the adaptive fusion approach.

Figure 2. Overview of our method. The framework is divided into five parts, namely depth estimation
of ACMH, confidence calculation module, plane supplementation module, confidence-driven depth
estimation, and adaptive fusion. Further, both the depth estimation of ACMH and the confidence-
driven depth estimation follow the basic four steps of the PatchMatch-based MVS algorithm, namely
initialization, propagation, multiview matching cost calculation, and refinement.

4.2. Plane Hypothesis Confidence Calculation

During the original depth estimation, photometric consistency appears as the problem
of fuzzy matching in weakly textured regions. The problem is demonstrated by the fact that
the depth of the incorrect plane hypothesis can make it possible to match highly similar
regions between multiple views, making the multiview matching cost lack credibility.
Ref. [15] attempts to add geometric consistency constraints to the multiview matching cost
to reduce the erroneous plane hypotheses in weakly textured regions. Ref. [31] tries to add
local consistency constraints to eliminate incorrect plane hypotheses.

However, photometric consistency would perfectly characterize the structure of the
objects or scenes in structured scenes. Adding constraints to the matching cost certainly
allows the fuzzy matching problem that occurs in weakly textured regions to be solved to
some extent. However, the new constraints may blur the geometric details in the object
or scene.

In contrast, we would like to capture which plane hypotheses are accurate enough to
be represented the real objects or scenes after each depth estimate. Therefore, we propose
a new confidence calculation method. The confidence expresses the degree of reliability
of each plane hypothesis. For the plane hypothesis with large confidence, we consider
that the plane hypothesis would accurately indicate the real surface of the scene or object.
The plane hypothesis with low confidence is considered to be an incorrect estimation,
and these incorrect plane hypotheses need to be filtered or upgraded. In the confidence
calculation, the confidence is divided into two parts, including the multiview confidence
and the patch confidence.

In multiview stereo, an assumption is that a reliable plane hypothesis should be
geometrically stable between multiple views. Thus, based on the relationship of multiple
views, a measure of multiview confidence is established firstly, which means the consistency
degree of plane hypotheses among multiple views.

Note that the multiview confidence is calculated based on all neighboring views.
The component of multiview confidence, which is calculated between the current view and
one neighboring view, is defined as the view confidence.
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Given a pixel p, its plane hypothesis φp is (dp, np). The multiview geometry is ob-
tained as shown in Figure 3. The camera projection matrix from the current view Vi to
the neighboring view Vj is calculated according to dp. The pixel p is projected into the
neighboring view Vj to obtain the projected pixel q, and the plane hypothesis φq of q would
be obtained in the neighboring view. The pixel q is reprojected back into the current view
to obtain the reprojection point p′ according to the camera projection matrix from the
neighboring view to the current view, which is calculated with dq. By reprojecting the point
p′, the plane hypothesis φp′ of p′ corresponding to the current view Vi can be obtained.

Figure 3. The diagram of multiview geometry, which is using a neighboring view of multiple views
as an example. Ci and Cj are the camera center of the current view and neighboring view, respectively.

The view relationship between the current view and j-th neighboring view can be
described via the reprojection distance ξgeo, depth relative error ξd, normal pinch error ξn,
and the matching cost m

(
φp, j

)
. Therefore, ξgeo, ξd, ξn is calculated according to the pixel p,

p′ and the plane hypothesis (dp, np), (dp′ , np′). Then, the view confidence consists of the
geometric confidence Cgeo, the depth confidence Cd, the normal confidence Cn, and the cost
confidence Cc, which are calculated via the Gaussian function,

Cgeo = e
−

ξ2
geo

2σ2
geo = e

−

(∥∥∥∥xp−xp′
∥∥∥∥)2

2σ2
geo (7)

Cd = e
−

ξ2
d

2σ2
d = e

− 1
2σ2

d


(

dp−dp′
)

dp

2

(8)

Cn = e
− ξ2

n
2σ2

n = e
−

[
arccos

(
np ·np′

)]2

2σ2
n (9)

Cc = e
−m(φp ,j)2

2σ2
c (10)

where σgeo, σd, σn and σc are constants in the Cgeo, Cd, Cn and Cc, respectively.
In a set of neighboring views V =

{
Vj | j = 1, 2, . . . , J

}
, there exist J sets of confidence

relations for neighboring view. The multiview confidence is calculated as the average of
the view confidence with all neighboring views:

C̄g =

J
∑

j=1

(
Cj

geo · C
j
d · C

j
n · C

j
c

)
J

(11)
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A good plane hypothesis should be supported by multiple neighboring views. When
the number of neighboring views that maintain consistency is increased, the trustworthiness
of the planar hypothesis is improved. Meanwhile, the geometric stability in multiple
views is increased. However, the camera’s pose variation and the presence of occlusion
determine that not all regions in a view can be consistent with multiple views. Specifically,
some regions in a view are only visible in a limited number of neighboring views. Thus,
in these regions, calculating the view confidence with all neighboring views may cause the
correct plane hypothesis to be judged as unreliable. To this end, the multiview confidence
calculation is modified to be the average of the best K neighboring views among all
neighboring views.

Cg =

K
∑

j=1

(
Cj

geo · C
j
d · C

j
n · C

j
c

)
K

(12)

The global spatial information is fully considered in the multiview confidence, which is
based on the consistency of multiple measurements. The multiview confidence calculation
makes most plane hypotheses easy to calculate as reliable estimates with high confidence.
However, for some plane hypotheses that are correctly estimated in current view, erroneous
multiview confidences are calculated because of wrong plane hypotheses in neighboring
views. In addition, because of similar plane hypotheses in multiple views, some noise in
the current view may be calculated as high-confidence and retained, especially in weakly
textured regions.

In order to reduce the calculation of error confidence, a patch confidence measure based
on depth local consistency is added, which only relies on the information in the current
view. In the PatchMatch algorithm [5,45], a key statement is that relatively large regions of
pixels can be modeled by an approximately 3D plane. It allows the same plane hypotheses
to be shared within the pixel regions. The statement can be beneficial to help exploit the
local information in a view. To this end, the patch confidence is structured as a calculation
based on the consistency of local planes. For each pixel in the current view, a cruciform
patch is constructed, centered on the pixel. Firstly, a 3D local plane is constructed in
the camera coordinate via the central pixel’s 3D point Xc and its corresponding plane
hypothesis. Secondly, neighboring pixels in a cruciform patch are projected into the same
camera coordinate to obtain 3D points Xn. The average Euclidean distance from the 3D
points of neighboring pixels to the local 3D plane is calculated (refer to Figure 4),

ξ =
1
N
·

N

∑
n=1

ξn =
1
N
·

N

∑
n=1

nc · (Xc − Xn)√
n2

cx + n2
cy + n2

cz

(13)

where N is the number of pixels in a cruciform patch and nc is the normal of patch center
pixel. ncx, ncy, ncz are the three components of normal nc.

Based on the calculated average Euclidean distance, patch confidence is constructed
by the Gaussian function as well:

Cl = e
− ξ

2

2σ2
p (14)

where σp is a constant parameter of patch confidence.
Finally, via the calculated multiview confidence and patch confidence, the confidence

of the pixel p can be expressed as

C
(

p, φp
)
= Cg · Cl (15)
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(a) (b)

Figure 4. The diagram of patch confidence. (a) Building a cruciform patch with the local window of
3 × 3, which contains four neighborhood pixels. (b) Calculation of Euclidean distance in the camera
coordinate. The green point is the 3D point of the center pixel, the black line is the plane hypothesis
of the center pixel, the red points are 3D points corresponding to neighborhood pixels in the patch,
and the blue line is the Euclidean distance.

4.3. Plane Supplement and Confidence-Driven Depth Estimation

The purpose of the propagation scheme is that the reasonable plane hypotheses can be
propagated to other pixels in the same plane, making the estimation accurate and reliable.
However, in the weakly textured regions, it is difficult to select the correct plane hypothesis
using the matching cost function based on luminosity consistency, because the weakly
textured regions usually do not contain discriminative information. This makes it difficult
for incorrect plane hypotheses to be replaced by correct neighborhood candidate planes via
the propagation scheme, and these incorrect plane hypotheses may be propagated to other
pixels due to the propagation scheme.

This means that relying on existing plane hypotheses cannot help the reconstruction of
weakly textured regions. Ref. [18] chooses the base point via photometric consistency cost
to generate the prior plane and introduces them into the calculation of multiview matching
cost. However, the photometric consistency is not reliable in weakly textured regions,
giving prior planes wrong plane hypotheses. In addition, the photometric consistency
cost of incorrect planar hypothesis may be sufficiently small in weakly textured regions.
Despite using prior planes as a constraint in the calculation of multiview matching cost, it
does not allow these errors to recompute an aggregation cost large enough to be replaced
by correct plane hypotheses contained in prior planes. It keeps the wrong plane hypotheses
in weakly textured regions of depth maps.

In Section 4.2, the confidence is proposed to discriminate the accuracy and reliability
of plane hypotheses to avoid misjudgment of photometric consistency in weakly textured
regions. After the plane hypothesis confidence calculation, pixels with high confidence (we
set the confidence threshold δc to 0.8) are extracted from the coarse depth map. The key
observation behind this is that these pixels with high confidence mostly contain the struc-
ture of 3D scenes. Meanwhile, the planar hypotheses of extracted pixels are accurate and
reliable, because they are supported by multiple views and are consistent in local planes.
Using the extracted pixels as base points, the images are divided into multiple triangular
primitives with different sizes using Delaunay triangulation [46]. Then, based on the
depths of the three base points in the triangular primitives, a local 3D plane where the
triangular primitives are located is constructed. For the low-confidence pixels contained in
each triangular primitive, they are projected into the local 3D plane to obtain new depths,
resulting in additional supplemental depth maps.

The supplemental planes perform well in weakly textured regions, especially those
with large planes. However, some edge regions are blurred, which is contrary to photo-
metric consistency. The coarse depth map that depends on photometric consistency is
calculated with higher confidence than the supplemental depth map in these edge regions.
Conversely, the confidence of the supplemental depth map is better than the coarse depth
map in weakly textured regions.
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Thus, the coarse depth map and supplemental depth map are jointly fed to a com-
parison module. Specifically, after obtaining the supplemental depth maps, the plane
hypothesis confidence calculation module is reapplied to calculate the confidence for each
plane hypothesis in the supplemental depth map. The confidences calculated in the supple-
mental depth map are compared with the coarse depth map, and the planar hypotheses
with higher confidence are retained.

Subsequently, the retained plane hypotheses are used as the initial values for the
confidence-driven depth estimation. An important reason for confidence-driven depth
estimation is that there are still some erroneous plane hypotheses mixed in with the retained
plane hypotheses. These noises tend to exhibit low confidence in both the supplemental
depth maps and the coarse depth maps. These noises can be effectively reduced with the
help of the propagation mechanism and the modified cost function. The results obtained by
combining the supplemental depth maps and the coarse depth maps lose partial structural
details. Since the photometric consistency cost has a significant result in textured regions,
it is possible to exploit this advantage to help the recuperation of these textured regions.
In addition, plane supplementation has a significant recovery for planar surfaces in weakly
textured regions. However, there is a subtle variation in the plane hypotheses in curved
surfaces of weakly textured regions, which causes a slight decrease in the accuracy of our
plane supplement. The propagation step and the refinement step in the depth estimation can
effectively help these curved surfaces to produce the correct variations of plane hypotheses
instead of keeping them in the same plane.

In the confidence-driven depth estimation, the processes of propagation and refine-
ment are kept in line with the ACMH [22], which are reviewed in Section 3. In particular,
for the multiview matching cost calculation, confidence is used as a constraint to limit the
propagation of incorrect plane hypotheses with low confidence to other pixels. Meanwhile,
planar hypotheses with high confidence can be easily propagated to other pixels of the
same plane with the help of the propagation scheme. According to the Equation (6),
the confidence-driven multiview matching cost function is modeled as

m
(

p, φp
)
=

N−1
∑

j=1
w′ j ·m

(
φp, j

)
+ λ ·

(
1− C

(
p, φp

))
N−1
∑

j=1
w′ j

(16)

where C
(

p, φp
)

is the confidence of pixel p, which is calculated with the plane hypothesis
φp, and λ is a weight constant.

For weakly textured regions, the matching cost of photometric consistency computed
by different plane hypotheses is usually similar because of the lack of distinguishability
information. It causes the propagation mechanism in traditional MVS to easily transmit
erroneous plane hypotheses to other pixels in these regions, and is difficult to replace.
According to the modified confidence-driven multiview matching cost, the determining
factor for propagation mechanism to judge the reliability of the candidate plane hypotheses
is confidence. Because the confidence level calculated in the noise is small, the multiview
matching cost calculated in the noise is larger than the correct plane hypothesis. Thus,
the confidence-driven multiview matching cost would be helpful to address the problem
of propagation mechanism for candidate plane hypothesis selection. Meanwhile, plane
hypotheses with high confidence can be easily transmitted to pixels in the same plane
because they are computed at a low cost. For the structural detail regions, the important
factor that dominates the propagation mechanism’s selection of candidate plane hypotheses
changes to the photometric consistency matching cost. The reason is that the calculated
confidences are all great in these regions. Thus, the detail regions that were previously
blurred and erroneous would be improved.

To avoid the complexity of repeated confidence calculations due to changes in plane
hypotheses, the confidence-driven depth estimation is restricted to obtaining the final depth
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maps with one propagation. Via this confidence-driven depth estimation, the final depth
maps preserve the structural details well and improve the estimation quality of weakly
textured regions.

4.4. Adaptive Fusion

After depth estimation, all the depth maps of views are obtained. In the depth map
fusion step, all the depth maps are merged into the dense point clouds. In [6,7], all the
depth maps are fused by consistent matching with a fixed threshold. Specifically, for each
pixel, it is projected into each neighboring view via its depth of plane hypothesis. Then, it
is reprojected back to current view by the depth of hypothesis, which is in the neighboring
view. The corresponding matching relationship can be obtained based on the reprojected
point and the pixel in the current view. A consistent matching is defined as satisfying the
consistent constraints, including depth difference δd ≤ 0.01 and normal angle δn ≤ 10.
For all neighboring views, if there exist n ≥ δ neighboring views (defining δ as the view
constraint) satisfying the consistent matching, the hypothesis is accepted. Finally, all pixels
that satisfy the consistency matching are projected into the 3D space and averaged into
uniform 3D points, thus becoming part of the dense 3D point clouds. Refs. [15,18,22] further
tighten the consistent constraints of consistency matching on this depth fusion approach;
the reprojection geometry error δgeo ≤ 2 should be satisfied.

However, we observe that such a depth map fusion approach relies on fixed consistent
constraints and fixed view constrain. There are always situations where some regions of
the current view are only visible in a limited number of neighboring views. Then, too
large a view constraint will cause these regions cannot to be fused into the dense point
clouds, resulting in a lack of completeness. Too small a view constraint ensures the fusion
of these areas, but leads to a decrease in the overall reconstruction quality, especially in
terms of accuracy.

To solve this problem, an adaptive depth fusion approach is developed. Specifically,
the view weight is added to each neighboring view when calculating the multiview match-
ing cost. Such view weights can reflect the visibility relationships of pixels in multiple views.
At the end of the last depth estimation, the view weights corresponding to all neighboring
views of all pixels are retained. In the depth map fusion step, firstly, all neighborhood view
weights corresponding to each pixel are sorted from large to small. Secondly, based on
the distribution changes of neighborhood view weights, the view constraints δ(Vi) can be
adjusted adaptively.

δ(Vi) =

{
j, w′ j > δw ∩ w′ j < δw ∩ j ≤ 4;
4 j > 4.

(17)

where w′ j denotes the j-th sorted view weight of neighboring views. δw is the threshold of
the view weight. After sorting, the comparison starts from the largest neighborhood view
weight to the threshold of view weight. For the view weight w′ j ≥ δw, we consider the pixel
to be visible in corresponding neighboring view. The view constraint is adaptively adjusted
to the number of neighboring views accumulated. Until the j-th view weight w′ j ≤ δw, we
consider that the pixel’s visibility starts to be insufficient. In addition, the main goal of our
adaptive fusion is to ensure accuracy while improving the integrity of invisible regions.
The increase in view constraint indicates that the visibility of the regions is satisfied in
multiple neighborhood views, but it becomes difficult to satisfy the consistency of plane
hypotheses between multiple views. To prevent the influence of excessive view constraint
on the completeness of these regions, the view constraint is phased at the maximum value
of 4.

Simultaneously, to ensure as much as possible that the adaptive view constraints
are adjusted by visibility judgments rather than resulting in incorrect plane hypotheses,
the consistency constraints of consistent matching are adaptively adjusted according to
the size of the view constraint. For pixels with small view constraints, the consistency con-
straints are tightened to ensure that their plane hypotheses are accurate enough. For pixels
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with large view constraints, the consistency constraints are relaxed appropriately, allowing
the pixels supported via multiple neighboring views to be easily merged into point clouds
to improve the completeness of reconstruction.

δnew
d = [ln(2 · δ(Vi)− 1) + 1] · δd (18)

δnew
n = [ln(2 · δ(Vi)− 1) + 1] · δn (19)

δnew
geo = [ln(2 · δ(Vi)− 1) + 1] · δgeo (20)

where δd, δn, δgeo is the strictest consistency constraint when the view constraint δ(Vi) is 1.
With the view constraint increased, the consistency constraints become loose, making pixels
easy to be merged into dense point clouds when they are visible among multiple views.

In addition, for outdoor scenes, the sky regions become redundant in the dense
point clouds, because the sky regions lack true depth. Through a guided-filter-based mask
refinement method, Ref. [47] uses a neural network and weighted guided upsampling
to create accurate sky alpha masks at high resolution, resulting in the segmentation of
sky regions. Thus, before the beginning of the depth fusion step, the method in [47] is
applied to filter out the plane hypotheses of sky regions contained in the depth maps. The
sky-filtering step has almost no effect on the calculation of the quantifiers. However, we
can obtain clean depth maps as well as dense point clouds.

With the depth map fusion approach described above, we can obtain dense 3D point
clouds with high completeness and accuracy.

5. Experiments

The proposed CGPR-MVS is implemented in C++ with CUDA. To evaluate the pro-
posed pipeline, we perform quantitative and qualitative evaluations on the published
dataset ETH3D benchmark [48]. In addition, the qualitative evaluation is performed on
the sensefly dataset. The experiments were conducted on a machine equipped with Intel
Xeon E5-1630 v4 CPU, 64G RAM, and NVIDIA Quadro K2200 GPU.

The ETH3D benchmark contains both high-resolution datasets and low-resolution
datasets for the MVS task. Further, the high-resolution dataset is divided into the training
branch and the test branch, with all images having a resolution of 6048× 4032. The training
branch dataset contains 13 sequences of indoor and outdoor scenes, with additional ground
truth point clouds and ground truth depth maps. The test branch dataset contains 12 se-
quences of indoor and outdoor scenes, and the evaluation is only available by uploading
to the online website, and the ground truth data are not publicly available. During the
evaluation, the quality of the reconstruction results is quantified in three metrics as accu-
racy, completeness, and F1 score. The accuracy is the percent fraction of the reconstruction,
which is closer to the ground truth than the evaluation tolerance. The completeness is
the percent fraction of the ground truth, which is closer to the reconstruction than the
evaluation tolerance. The F1 score is the harmonic mean of accuracy and completeness.
For details of the whole evaluation, please refer to [48].

The sensefly datasets are collected from real remote sensing images captured by vari-
ous drones with different cameras from AgEagle, a company that provides fixed-winged
drones and aerial imagery-based data collection and analytics solutions. The datasets
contain several different scenes, each with different flight heights and applied in different
practical applications. A challenging scene is selected to test in our experiment. The dataset
of Thammasat University campus in Bangkok, Thailand was collected by an eBee X drone
carrying an Aeria X photogrammetry camera. The drone flew at a height of 285 m, pho-
tographed scenes covering 2.1 square kilometers, and captured high-resolution images of
6000 × 4000. Usually, these collected datasets are used for 3D mapping, regular updating
of city maps, inspecting infrastructure, monitoring construction projects, and studying
architectural aspects.
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5.1. Parameter Settings

Firstly, the undistorted images are downsampled to the resolution of 3200 × 2130 for
reconstruction. For all datasets, the same set of parameters is used in the experiments.
The specific parameter settings are shown in Table 1.

Table 1. Parameter settings of experiments and their meaning.

Parameter Meaning Value

σgeo constant of geometric confidence 5.0
σd constant of depth confidence 0.05
σn constant of normal confidence 0.8
σc constant of cost confidence 0.5
K best K neighboring views 2
σp constant of patch confidence 1.0
δc confidence threshold 0.8
λ constant of confidence constraint in multiview matching cost 2.0
δw threshold of view weight 0.6
δd the strictest depth difference 0.01
δn the strictest normal angle 0.15

δgeo the strictest geometry error 1.5

5.2. Quantification

Some state-of-the-art MVS methods and our method were compared by quantita-
tive evaluation on the high-resolution of ETH3D benchmark, including Gipuma [10],
COLMAP [15], ACMH [22], OpenMVS [7], ACMP [18], CLD-MVS [38], QAPM [21].
The quantitative evaluation performance of the training branch dataset and the test branch
dataset are shown in Tables 2 and 3 respectively. Note that the evaluation tolerance is 2 cm,
as defaulted by the ETH3D benchmark. The quantitative evaluation of other approaches is
dependent on the published results on the online website of the ETH3D benchmark.

As shown in Table 2, the proposed method achieves the best performance of F1
score and completeness compared with other methods in the training branch dataset,
except for outdoor scenes, where completeness is slightly inferior to QAPM. The main
contribution of Gipuma is the parallelized red–black checkerboard propagation, which
brings a huge improvement in the efficiency of depth estimation. However, its performance
is far inferior to other schemes in the quality of reconstruction, because it simply selects
the top-k minimum matching cost for averaging to represent the multiview matching cost.
Both COLMAP and ACMH are based on the matching cost of photometric consistency. It
makes them suffer from fuzzy matching problems in weakly textured regions and perform
poorly in completeness, which in turn affects the F1 score. On the contrary, they possess
an extremely high accuracy attributed to their contribution to view selection strategy
and the check of geometric consistency. OpenMVS also uses the matching cost based on
photometric consistency. By relaxing the view constraint on depth fusion, it performs
poorly in terms of accuracy, but the increase in completeness results in an improvement
in the F1 score. ACMP introduces planar priors to improve completeness. However,
the generation of planar priors relies excessively on the multiview matching cost based on
photometric consistency, which allows erroneous planar priors to be generated and mislead
the computation of the improved cost function. CLD-MVS utilizes a boundary-aware
interpolation method, which improves completeness while decreasing its accuracy, and it
results in an inferior performance to our method. QAPM extracts pixel information with
the same plane by constructing the quadtree, then the plane priors are generated by a plane
fitting algorithm. However, the plane fitting algorithm is not implemented completely
for all quadtree blocks, which leads to a lot of vacancies in the generated prior planes.
In addition, nearly but not sufficiently accurate prior planes would affect the accuracy of the
reconstruction. The great success in completeness makes our method ahead of other SOTA
methods in the F1 score, while the accuracy is not overly behind the most accurate method
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COLMAP. The improvement in completeness is attributed to the fact that after utilizing the
confidence calculation method, the supplemental depth maps are generated based on it
and combined with the coarse depth maps. It allows for an effective recovery of weakly
textured regions, especially those planes in weakly textured regions, without blurring the
structural detail regions.

Table 2. Quantitative evaluation comparative results (F1 score, accuracy, completeness) at default
tolerance of 2 cm on high-resolution training dataset of ETH3D benchmark.

Method
All Indoor Outdoor

F1 Acc. Comp. F1 Acc. Comp. F1 Acc. Comp.

Gipuma [10] 36.38 86.47 24.91 35.80 89.25 24.61 37.07 83.23 25.26
COLMAP [15] 67.66 91.85 55.13 66.76 95.01 52.90 68.70 88.16 57.73

ACMH [22] 70.71 88.94 61.59 70.00 92.62 59.22 71.54 84.65 64.36
OpenMVS [7] 76.15 78.44 74.92 76.82 81.39 73.91 75.37 74.99 76.09

ACMP [18] 79.79 90.12 72.15 80.53 92.30 72.25 78.94 87.58 72.03
CLD-MVS [38] 79.35 82.75 77.36 81.23 87.22 77.29 77.16 77.54 77.45

QAPM [21] 78.47 80.43 77.50 80.22 84.34 77.43 76.43 75.86 77.59
OURS 82.64 86.66 79.39 85.03 88.52 82.13 79.86 84.48 76.19

The best results are marked in bold black.

Table 3. Quantitative evaluation comparative results (F1 score, accuracy, completeness) at default
tolerance of 2 cm on high-resolution test dataset of ETH3D benchmark.

Method
All Indoor Outdoor

F1 Acc. Comp. F1 Acc. Comp. F1 Acc. Comp.

Gipuma [10] 45.18 84.44 34.91 41.86 86.33 31.44 55.16 78.78 45.30
COLMAP [15] 73.01 91.97 62.98 70.41 91.95 59.65 80.81 92.04 72.98

ACMH [22] 75.89 89.34 68.62 73.93 91.14 64.81 81.77 83.96 80.03
OpenMVS [7] 79.77 81.98 78.54 78.33 82.00 75.92 84.09 81.93 86.41

ACMP [18] 81.51 90.54 75.58 80.57 90.60 74.23 84.36 90.35 79.62
CLD-MVS [38] 82.31 83.18 82.73 81.65 82.64 82.35 84.29 84.79 83.86

QAPM [21] 80.88 82.59 79.95 79.50 82.59 77.39 85.03 82.58 87.64
OURS 85.76 86.17 85.71 85.29 85.54 85.46 87.17 88.05 86.46

The best results are marked in bold black.

The performance of the proposed method is further demonstrated by the comparison
results of the test branch dataset shown in Table 3. Except for the outdoor scenes, where the
completeness is slightly inferior to QAPM, our method ranks first in both completeness and
F1 score. In addition, the comparison results of different scenes in the test branch dataset at
different distance tolerances are shown in Figure 5. It can be seen that our method almost
achieves the most competitive f1 scores for different sequences at each distance tolerance,
except for the ’exhibition hall’ sequence. It means that our method is robust for different
scene sequences, although at different evaluation tolerances. In addition, the accuracy
requirements for the reconstructed point clouds vary greatly in practical applications,
which gives all of the reconstruction results for different thresholds a reference significance
of comparison. Through the comparison between different sequences, it can be seen that
while the scenes contain a lot of weakly textured planes, our method achieves excellent
results for resolving the problems of luminosity consistency in these regions, resulting in
the most competitive F1 score. The ’lounge’ scene sequence is noteworthy among them
all. The ’lounge’ sequence is the one scene where all methods perform poorly because
of the presence of large reflective floor areas in this indoor scene. It causes a failure
in photometric consistency and makes depth estimation difficult. An important reason
for the best competitiveness of our method in this sequence is the proposed confidence
calculation method, then the planar supplement based on our confidence. ACMP and
QAPM are both planar-based methods, but their planar generation is based on photometric
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consistency, which makes them perform worse than us on this sequence. The interpolation
method of CLD-MVS blurs the geometric details and results in reduced accuracy, which
also affects the F1 score. In contrast, we perform plane supplementation and then combine
the supplemental depth maps with the coarse depth maps, which effectively improves
the deficiency of plane supplementation in geometric detail regions and provides reliable
planes in weakly textured regions.

(a) 1 cm (b) 2 cm

(c) 5 cm (d) 10 cm

Figure 5. Quantitative evaluation comparison results (F1 score) of different tolerances for all sequences
(botanical garden30, boulders26, bridge110, door7, exhibition hall68, lecture room23, living room65,
lounge10, observatory27, old computer54, statue11, terrace213) of the ETH3D benchmark’s high-
resolution test branch dataset.

5.3. Qualification

The qualitative evaluation is compared with some state-of-the-art PatchMatch-based
MVS methods in terms of both depth maps as well as dense point clouds. For the ETH3D
benchmark, all the dense point clouds are obtained from the results submitted on the online
website to fairly compare the reconstruction quality of all methods. The depth map results
with other methods are implemented in our machine via their open-source code. For the
sensefly dataset, both the dense point clouds and the depth map results are implemented
through open-source code.

For partial sequences of the ETH3D benchmark’s high-resolution dataset, the com-
parison of qualitative depth maps is shown in Figure 6. The challenges in the ETH3D
benchmark arise from a huge variation in camera angles between different images and the
magnification of weakly textured regions in the high-resolution images, while the former
leads to an increase in occlusion. The second aggravates the difficulty of reconstruction of
weakly textured regions, because the images in the benchmark contain a large number of
weakly textured surfaces (e.g., walls, floors, roads, ceilings). It can be seen that the depth
maps of OpenMVS and ACMH contain a large amount of noise, and these incorrectly esti-
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mated depths are detrimental to both accuracy and completeness. COLMAP also contains a
lot of noise; most of the noise is filtered out after the geometric consistency check, resulting
in accurate but extremely incomplete depth maps. ACMP improves the quality of the depth
maps via the plane priors. However, it is inferior to the depth maps of our method, which is
due to the generation of prior planes relying on the cost function of photometric consistency.
In contrast, the proposed confidence calculation would address well the unreliability of
photometric consistency in weakly textured regions. Thus, the depth maps with high
quality are estimated in combination with the plane supplement module.

A comparison of the qualitative depth maps for the university scene of the sensefly
dataset is shown in Figure 7. The challenges of the sensefly dataset are the poor overlap of
the images and the absence of common viewing areas. In addition, the weakly textured
regions in these remote sensing images are mostly concentrated on roads and building roofs.
As shown in Figure 7, the depth map of the COLMAP exhibits large vacancies. Besides the
weakly textured regions that fail to estimate the correct depths, the poor overlap of the
images leads to the misuse of geometric consistency in the COLMAP. The reason is that
some regions are invisible in partial—or even all—neighborhood views. This removes
the depth of these regions in the geometric consistency check, resulting in large vacancies.
OpenMVS and ACMH still perform poorly in the weakly textured planes, while ACMP
improves. In contrast, the depth maps of our method are most intact in these planar regions,
which indicates the successful recovery of our method in the weakly textured planes.

(a) Images (b) GT (c) COLMAP (d) OpenMVS (e) ACMH (f) ACMP (g) OURS

Figure 6. Comparative results of qualitative depth map with other methods on partial sequences
(pipes14, delivery44, relief31, electro45, terrains42, and courtyard38) of ETH3D benchmark’s high-
resolution training dataset. The black regions indicate no depth.

Through the proposed adaptive depth fusion approach, the obtained dense point
clouds are compared with other MVS methods. For the high-resolution training and test
datasets of the ETH3D benchmark, qualitative comparisons of the dense point clouds for
some sequences are shown in Figures 8 and 9, respectively. It can be seen that COLMAP and
ACMH exhibit large vacancies in weakly textured regions, which makes their point clouds
sparse. OpenMVS, which also utilizes the photometric consistency matching cost, sacrifices
significant accuracy for an increase in completeness by decreasing the view constraint
in depth fusion. Therefore, the point clouds of OpenMVS seem to be dense. However,
they contain a lot of redundancy, which severely reduces the accuracy of the point clouds.
The planar priors of ACMP bring a great improvement in completeness while maintaining
high accuracy. However, it can be seen that the point cloud still appears sparse and vacant
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in weakly textured regions, especially in weakly textured planar surfaces. This is due to
the incorrect prior planes generated in these regions, which are guided by the matching
cost of photometric consistency. In contrast, our method recovers completely in these
regions, especially in indoor scenes, which usually contain more weakly textured planar
surfaces (e.g., walls, floors). Due to the effect of adaptive fusion, although the regions
with insufficient visibility are effectively recovered in dense point clouds, some erroneous
redundancies inevitably appear. These redundancies are one reason why the accuracy
of our quantitative evaluation does not outperform other methods. However, the slight
decrease in accuracy is worth it compared to our great improvement in completeness.

(a) Images (b) COLMAP (c) OpenMVS (d) ACMH (e) ACMP (f) OURS

Figure 7. Comparative results of qualitative depth map with other methods on the university443

scene of the sensefly dataset.

(a) COLMAP (b) OpenMVS (c) ACMH (d) ACMP (e) OURS

Figure 8. Comparative results of qualitative point clouds with other methods on partial sequences
(relief231, facade76, delivery44, and courtyard38) of ETH3D benchmark’s high-resolution train-
ing dataset.
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(a) COLMAP (b) OpenMVS (c) ACMH (d) ACMP (e) OURS

Figure 9. Comparative results of qualitative point clouds with other methods on partial sequences
(door7, terrace213, observatory27, and statue11) of ETH3D benchmark’s high-resolution test dataset.

In addition, the comparison of point clouds on the sensefly dataset is shown in
Figure 10. It can be seen that the point clouds reconstructed by COLMAP and ACMH are
both sparse. ACMP has a better reconstruction in the weakly textured regions, but the
overall denseness is not as good as that of OpenMVS and ours. The point clouds of
OpenMVS, which are only based on the photometric consistency, show the densest point
clouds in the comparison. An important reason for the above observation is attributed to
the difference in depth fusion methods. COLMAP, ACMH, and ACMP all require a high
view constraint for depth fusion, which makes their reconstructed point clouds sparse,
although ACMP performs well in depth maps. In contrast, OpenMVS uses the most relaxed
view constraint for depth fusion, which results in the densest reconstructed point clouds.
Our adaptive fusion method dynamically adjusts the view constraint, which results in a far
denser point cloud than COLMAP, ACMH, and ACMP, but slightly sparser than OpenMVS.
However, the advantage of our method is that the reconstruction is more integral in the
weakly textured regions, especially the planar surfaces of these regions, such as the building
roofs and the water surface shown in the red box of Figure 10.

To further illustrate the effectiveness of our pipeline in weakly textured regions,
the comparison results of completeness visualizations are shown individually in Figure 11.
The completeness visualizations are provided on the online website of the ETH3D bench-
mark and are only available in the training branch dataset. It can be clearly seen that the
results of our method have more green parts (meaning the parts that are reconstructed
successfully) of point clouds compared to other methods. Most of the green parts of point
clouds belong to weakly textured regions. For the successful recovery in weakly textured
regions, our method can outperform other methods in terms of completeness.
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(a) COLMAP (b) OpenMVS (c) ACMH

(d) ACMP (e) OURS

Figure 10. Comparative results of qualitative point clouds with other methods on the university
scene of sensefly dataset.

(a) COLMAP (b) OpenMVS (c) ACMH (d) ACMP (e) OURS

Figure 11. Comparative results of completeness visualizations at default tolerance of 2 cm on partial
sequences (office, pipes, courtyard, and facade) of ETH3D benchmark’s high-resolution training
dataset. The green areas of point clouds are the parts that are less than the distance tolerance between
the reconstruction result and the ground truth. The red regions of point clouds are the ground truth
that cannot be accepted within the distance tolerance.

5.4. Ablation Study

To evaluate the effectiveness of each part of our proposed method, we conducted
ablation experiments on the high-resolution training dataset of the ETH3D benchmark.
The evaluation results are presented in Table 4. In the table, we list the results of removing
different modules from our proposed CGPR-MVS, including without all modules proposed
(baseline), without confidence calculation (CGPR-MVS/C), without plane supplement
(CGPR-MVS/S), without adaptive fusing (CGPR-MVS/A), and the whole pipeline in
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CGPR-MVS. For CGPR-MVS/C, we use the matching cost as a substitute for completing
the plane supplement module. For CGPR-MVS/S, we filter the unreliable estimation by
confidence after the confidence is computed in the confidence calculation module. For
CGPR-MVS/A, we set fixed-view constraint and fixed-consistency constraints for depth
fusion, like other pipelines [7,15,18,22].

Firstly, a quantitative comparison between CGPR-MVS and CGPR-MVS/A shows
that the adaptive fusion approach greatly balances the accuracy and completeness of the
reconstruction results. After removing adaptive fusion, the pipeline achieves extremely
high accuracy. Nonetheless, both accuracy and completeness are increased compared to
the baseline method. In CGPR-MVS/C, the proposed confidence calculation is replaced by
the multiview matching cost of photometric consistency to help the subsequent implemen-
tation of the plane hypothesis supplement. By comparing CGPR-MVS and CGPR-MVS/C,
the result without confidence calculation is that the completeness and accuracy of the
quantitative evaluation are significantly reduced. The results further illustrate the failure
of photometric consistency in the weakly textured regions, and prove that the proposed
confidence calculation is extremely effective for the improvement in reconstruction quality.
Compared to the quantitative evaluation results of CGPR-MVS and CGPR-MVS/S, there is
essentially no excessive change in accuracy, but there is a significant decrease in complete-
ness after removing the planar hypothesis supplement. Based on the implementation of
confidence calculation, the planar hypothesis supplement provides reliable planar hypothe-
ses for the weakly textured region, which helps converge to the global optimal solution.
In contrast, after losing the planar hypothesis supplement, the plane hypotheses of weakly
textured regions are limited to the wrong local optimal solution, resulting in the failure
of reconstruction.

Table 4. Ablation study results (F1 score, accuracy, completeness) at default tolerance of 2 cm on
high-resolution training dataset of ETH3D benchmark.

Method F1 Score Accuracy Completeness

Baseline 72.77 90.65 62.46
CGPR-MVS/C 74.40 76.59 73.70
CGPR-MVS/S 78.41 85.68 73.40
CGPR-MVS/A 79.71 90.72 71.87

CGPR-MVS 82.64 86.66 79.39
The best results are marked in bold black.

5.5. Time Evaluation

For each 3200 × 2130 resolution view in the high-resolution training dataset of the
ETH3D benchmark, the runtimes of each proposed section and the total runtime are listed
in Table 5. It can be seen that both the plane hypothesis confidence calculation module and
plane supplement module do not impose an excessive runtime burden for depth estimation.
Moreover, since the machine configuration is not expensive, the runtime results show that
the proposed pipeline can be equipped on low-performance machines without consuming
excessive computational resources.

In addition, the comparison results between the proposed method and some GPU-
based methods are shown in Table 6. The running times of all the methods are experi-
mentally obtained on our machines equipped with a single GPU. It can be seen that even
with the GPU, COLMAP [15] still has the longest running time, because of the sequential
propagation in depth estimation. Our pipeline takes more time than ACMP [18], but still
has a shorter running time than ACMM [22] and COLMAP [15]. The comparison results
further show that the proposed method is efficient enough and does not require more
computational resources.
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Table 5. Different modules’ running times for one image of 3200 × 2130 resolution on high-resolution
training dataset of ETH3D benchmark.

Module Time(s) Ratio (%)

depth estimation of ACMH 18.79 49.70
plane hypothesis confidence calculation 2.36 6.24

plane supplement 3.52 9.31
confidence-driven depth estimation 13.14 34.75

Total 37.81 -

Table 6. Comparison of running times for one image of 3200 × 2130 resolution on high-resolution
training dataset of ETH3D benchmark.

Method COLMAP ACMM ACMP OURS

Time(s) 129.9 43.0 23.7 37.8
The best results are marked in bold black.

6. Conclusions

In this work, we propose a novel MVS method, which is called confidence-guided
planar recovering multiview stereo (CGPR-MVS). After depth estimation, the confidence
calculation module is applied to depth maps to produce pixel-wise confidence, which
contains multiview consistency and patch consistency. Based on the plane hypothesis
confidence calculation, a Delaunay triangle-based plane supplement module additionally
provides reliable plane information. The supplemental depth map and coarse depth map
are fed into a confidence-driven depth estimation to achieve high-integrity recovery with-
out losing the structural detail regions. Via adaptive fusion, invisible regions can be merged
into dense point clouds. Qualitative and quantitative evaluations of high-resolution MVS
datasets demonstrate the efficiency and effectiveness of our method, especially in the re-
construction quality of weakly textured planes. In future work, we will focus on improving
the accuracy of texture detail regions while maintaining reconstruction completeness.
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