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Abstract: Hyperspectral images (HSIs) generally contain tens or even hundreds of spectral segments
within a specific frequency range. Due to the limitations and cost of imaging sensors, HSIs often
trade spatial resolution for finer band resolution. To compensate for the loss of spatial resolution and
maintain a balance between space and spectrum, existing algorithms were used to obtain excellent
results. However, these algorithms could not fully mine the coupling relationship between the
spectral domain and spatial domain of HSIs. In this study, we presented a spectral correlation
and spatial high–low frequency information of a hyperspectral image super-resolution network
(SCSFINet) based on the spectrum-guided attention for analyzing the information already obtained
from HSIs. The core of our algorithms was the spectral and spatial feature extraction module (SSFM),
consisting of two key elements: (a) spectrum-guided attention fusion (SGAF) using SGSA/SGCA
and CFJSF to extract spectral–spatial and spectral–channel joint feature attention, and (b) high- and
low-frequency separated multi-level feature fusion (FSMFF) for fusing the multi-level information. In
the final stage of upsampling, we proposed the channel grouping and fusion (CGF) module, which
can group feature channels and extract and merge features within and between groups to further
refine the features and provide finer feature details for sub-pixel convolution. The test on the three
general hyperspectral datasets, compared to the existing hyperspectral super-resolution algorithms,
suggested the advantage of our method.

Keywords: frequency separation; spectrum adaptive attention; hyperspectral images; super-resolution

1. Introduction

Hyperspectral images (HSIs) based on remote sensing satellites have a large amount
of narrowband information, generated by combining imaging technology and spectral
technology. HSIs contain two-dimensional geometric space and one-dimensional spectral
information on the target. They are carefully segmented in the spectral dimension, not
only the traditional black, white, or RGB differences, but also N channels in the spectral
dimension. HSIs are used in many areas, such as land monitoring [1,2], urban planning [3],
road network layout [4], agricultural yield estimation [5], and disaster prevention and
control [6]. Hyperspectral technology is characterized by a multiband, narrow spectral
range, continuous band, and a large amount of information. However, due to the energy
limitations of hyperspectral imaging sensors, it is impossible to obtain a narrower spectral
resolution and a finer spatial resolution at the same time. Therefore, it is often necessary to
trade rough spatial resolution for a narrower spectral resolution. The common methods
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for enhancing image spatial resolution are mainly investigated from the perspectives
of hardware and process control. However, this not only poses challenges to current
engineering technology, but also contradicts the design philosophy of commercialization
and miniaturization. Researchers approach the problem of reconstructing high-quality
images with richer detail information from low-resolution images by exploring how to
extract more structural information of ground objects from the perspective of image feature
similarity.

In terms of research methods, super-resolution reconstruction can be divided into
two categories: one is the traditional reconstruction method represented by bicubic inter-
polation [7], cubic spline interpolation [8], projection onto convex set [9], iterative back
projection [10], and maximum a posteriori-based [11] approaches; the other is the deep
learning reconstruction algorithm based on CNN represented by neural network models,
such as SRCNN [12], VDSR [13], EDSR [14], SRResNet [15], and RCAN [16]. Compared to
traditional SR methods, CNN-based deep learning models effectively leverage supervised
learning to capture the nonlinear feature mapping from LR–HR image pairs, thereby recov-
ering missing details in LR. Consequently, deep learning-based super-resolution methods
for natural images have garnered significant attention from researchers. Furthermore, the
remarkable performance of these algorithms has also inspired researchers to explore the
potential of deep learning for super-resolution reconstruction of hyperspectral images.

Hyperspectral images contain a significantly greater number of spectral dimensions
than natural images. For instance, the CAVE dataset comprises 31 gray images captured
at different spectral wavelengths, whereas natural images only have 3 RGB channels.
Consequently, when utilizing CNN-based neural networks to tackle the super-resolution
problem of hyperspectral images, the 2D convolution kernel size must be extended to 3D
to incorporate feature information across both spatial and spectral dimensions. Under
this condition, 3D-FCNN [17] extends the convolution kernel processing of natural image
super-resolution from 2D to 3D, allowing for feature extraction along the spectral dimen-
sion. This solves the problem of spectral distortion caused by directly applying the SR
model designed for natural images to hyperspectral images. Yang et al. [18] proposed
the MW-3D-CNN method that combines wavelet with 3D convolution. Unlike directly
reconstructing HR-HSI, MW-3D-CNN predicts the wavelet coefficients of HR-HSI and uses
inverse wavelet transform to restore LR-HSI to high-quality HR-HSI. Wavelet could capture
image structures in different orientations, and an emphasis on predicting high-frequency
wavelet sub-bands is helpful for recovering the detailed structures in SR-HSI.

The use of 3D convolution can indeed lead to better results compared to 2D convo-
lution used for natural images. However, it may also lead to a significant increase in the
number of parameters, resulting in a significant computational burden on the hardware.
Li et al. [19] proposed an approach that alternates between 2D and 3D units to share
information during the reconstruction process. Their method alleviates the problem of
structural redundancy and improves model performance while reducing the size of model
parameters. Li et al. [20] decomposed the 3D convolution into 1D convolution and 2D
convolution to process the features of spectral domain and spatial domain, respectively, and
fused the two features with a new hierarchical side connection, which imposes the spectral
information to the spatial path gradually. Liu et al. [21] designed enhanced 3D (E3D)
convolution, which factorized the standard 3D convolution into sequential spatial and
spectral components. E3D convolution can largely reduce the computational complexity
and extract effective spatial–spectral features with the holistic information. Li et al. [22]
used a 2D/3D hybrid convolution module to further extract the potential features of the
spectral image, but the 2D/3D conversion module increased the computational complexity.
Zhang et al. [23] proposed a convolutional neural network super-resolution reconstruction
algorithm combining multiscale feature extraction and multi-level feature fusion structure
to solve the problem of the lack of effective model design for spectral segment feature
learning of hyperspectral remote sensing images.
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Employing 2D/3D units or replacing standard 3D convolution with 1D and 2D con-
volution can effectively reduce the network parameter size without compromising perfor-
mance. However, this technique entails separate feature extraction for the spectral and
spatial domains via 1D spectral convolution and 2D spatial convolution, respectively. Since
the features of these domains are distinct, it is imperative to apply distinct operations tai-
lored to their respective features for effective processing. Hu et al. [24] designed a spectral
difference module, which integrates the spectral difference module with the super-resolving
process in one architecture, a parallel convolution module and a fusion module for simulta-
neous super-resolution reconstruction of spatial and spectral information. Liu et al. [25]
designed group convolutions in and between groups composed of highly similar spectral
bands and used a new spectral attention mechanism constructed by covariance statistics
of features to facilitate the modeling of all spectral bands and examined spatial–spectral
features. From the perspective of sequence, Wang et al. [26] grouped hyperspectral data
along spectral dimensions, modeled spectral correlation using recursive feedback networks,
and integrated the results of each group to obtain the final SR results. Li et al. [27] used 1D
convolution to squeeze and expand the spectral dimension to form the spectral attention
mechanism and applied a series of spatial–spectral constraints or loss functions to further
alleviate spectral distortion and texture blur.

At present, the SR method based on CNN still has some problems, as follows:

(1) Due to the different spectral curve responses corresponding to different pixels in
HSI, an attention mechanism can be applied to the emphasis of spectral features.
However, the existing spectral attention methods based on 3D convolution can only
extract the features of several adjacent spectra or exchange a wider spectrum receptive
field with a larger convolution kernel parameter. Furthermore, if two-dimensional
spatial attention and channel attention are simply extended to three-dimensions, the
information present in the spectrum dimension cannot be effectively exploited.

(2) Most existing SR methods ignore the features of different stages, or only concatenate
the features of different stages to the end of the network, without fully considering
the further mining of the feature information of each stage in the existing model.

(3) Most existing SR methods directly apply upsampling for SR reconstruction at the end
of feature extraction, not considering the information fusion between features after
feature extraction to achieve a more precise reconstruction performance.

To address these problems, we proposed an efficient CNN network based on a spec-
trum attention mechanism for HSI super-resolution, called SCSFINet, which consisted
of three parts, including shallow feature extraction, a spectrum-guided attention fusion
module (SGAF), high- and low-frequency separated multi-level feature fusion (FSMFF),
channel grouping and fusion (CGF), and an upsampling layer. In the SGAF, the network
can be used to determine the correlation between the spectrum and spatial and channel
dimensions, using a spectrum-guided spatial/channel attention (SGSA/SGCA) module
and a cross-fusion module for joint spectral features (CFJSF) to compute space and channel
attention based on spectral correlation features. At the end of the feature, FSMFF is applied
to integrate features from different stages. After the feature extraction, CGF is designed
to fuse the features between different channels in the feature map. We conducted several
experiments on three general datasets, and the results showed that the proposed SCSFINet
was superior to other existing hyperspectral SR methods. The key contributions of this
study are as follows:

(1) The spectrum-guided spatial/channel attention (SGSA/SGCA) module use spectral
high-frequency information to optimize channel attention and spatial attention, so
that it can be applied in spectral dimension. The proposed attention module can
simultaneously focus on the spatial, spectral, and channel features of HSI.

(2) A cross-fusion module for joint spectral features (CFJSF) combines features from three
branches and fuses them through multi-head self-attention, sharing the attention map
with other branches. This module allows the network to learn the differences between
response curves of different features in the spectrum dimension.
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(3) The high- and low-frequency separated multi-level feature fusion (FSMFF) is designed
for merging the multi-level features of HSIs. This module enhances the expression
ability of the proposed network.

(4) Channel grouping and fusion (CGF) uses channel grouping to enable feature infor-
mation in one group to guide the mapping and transformation of another group
of feature information. Each group of features only affects the adjacent group of
features, which allows the network to refine the extracted fusion feature information
and transmit it to the final upsampling operation.

2. Proposed Method

In this section, to introduce the proposed network, details on SCSFINet are presented
in four parts: the overall framework, spectrum-guided attention fusion (SGAF) module, the
high–low-frequency separated multi-level feature fusion (FSMFF) module, and the channel
grouping and fusion (CGF) module. The goal of SCSFINet was to learn the mapping
relationship between low-resolution (LR) and high-resolution (HR) HSIs with a size of
s×h×w and s× rh× rw, respectively; s, h, w and r represent the spectrum number, height,
width, and up-scale factor of HSIs, respectively.

The super-resolution of HSIs was evaluated as follows:

ISR = H(ILR; θ) (1)

where ISR and ILR represent the SR image and LR image, θ denotes the parameters of the
proposed network, and H(·) indicates the mapping function of the SR method.

2.1. Overall Framework

The structure of the proposed network SCSFINet is shown in Figure 1. It has three
parts, including shallow feature extraction, a spectral and spatial feature extraction (SSFE)
module, and an image reconstruction module. In the first part, a 3 × 3 × 3 convolution
filter was applied to extract the shallow feature F0 of the input LR image ILR. The value of
F0 was determined using the following Equation (2):

F0 = H333(ILR) (2)

where H333(·) indicates the convolution operation of size 3× 3× 3.
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tion of the hyperspectral image feature fusion network (SCSFINet).

Then, the shallow feature F0 was sent to the designed spectral and spatial feature
extraction (SSFE) module, which extracted the spectral–spatial joint feature using feature
interweaving and fusion. The output of SSFE was obtained using Equation (3), as follows:

FN = HSSFE(F0) (3)
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The spectral reflection curves corresponding to pixel points at different positions in the
hyperspectral image were different (as shown in Figure 2). To help the proposed network
adapt to the problem of different spectral reflection curves, the SSFE module first applied
n repeatedly cascaded spectrum-guided attention fusion (SGAF) modules to produce the
joint characteristics of deep spectral, space, and channel. The output Fn of the n-th SGAF
was described as follows:

Fn = HSGAF,n(Fn−1)
= HSGAF,n(HSGAF,n−1(· · · (HSGAF,1(F0)) · · ·))

(4)

where HSGAF,n indicates the operations of the n-th SGAF, which can be a composite function
formed by three designed modules: SGSA, SGCA, and CFJSF. More details are presented
below.
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Figure 2. The reflection curve of seven points randomly selected in the photo_and_face_ms image from
the CAVE dataset on spectral dimension. Seven points were randomly selected from the CAVE test
image photo_and_face_ms, which has dimensions of 512 × 512. Each point’s coordinates (x, y) and
dimensions (31) correspond to 31 spectral response values at that location.

As more SGAFs were cascaded, the spatial expression ability of the network decreased
while the semantic expression ability increased [28]. We built the high–low-frequency
separated multi-level feature fusion (FSMFF) module to merge feature information from
different stages. Based on the input features F1, F2, and F3, which are produced by the first
SGAF to the (n − 1)th SGAF, the feature after fusion FFSMFF was expressed as follows:

FFSMFF = HFSMFF(F1; . . . ; Fn−1) (5)

where HFSMFF(·) indicates the feature fusion function.
At the end of the SSFE, we summed Fn, FFSMFF, and the feature F0 from the shallow

feature extraction module to obtain the final feature FN . The mathematical process can be
described by Equation (6), as follows:

FN = HSSFE(F0)
= Fn + FFSMFF + F0

(6)
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In the reconstruction module, we applied the channel grouping and fusion (CGF)
module for re-integrating the feature from SSFE and 1× 1× 1 filters for adjusting the
number of channels in order to restore the hyperspectral SR image. Based on the input FN ,
the above process was expressed as follows:

ISR = Hup(H111(HCGF(FN))) (7)

where HCGF(·) indicates the CGF module and Hup(·) indicates the upsampling function,
which can vary with the scale factor.

In the learning-based SR field, the common upsampling operation requires using
deconvolution [29] or sub-pixel convolution [30]. However, the “uneven overlap” of
deconvolution [31] resulted in the formation of checkerboard artifacts in the output image.
We applied sub-pixel convolution to reconstruct the SR image from the LR image.

2.2. Spectral and Spatial Feature Extraction Module (SSFE)

To integrate spectral features with spatial features and generate spectral attention
features, this paper adopts the concept of residual skip connections from RCAN [16] to
construct a network. The residual skip connections from RCAN enable low-frequency
information to be transmitted through the network more quickly, while ensuring sufficient
network depth to recover high-frequency information. The main body of the network
uses the residuals of jump connections to learn nonlinear mapping, which contains several
SGAFs.

(1) Spectrum-guided attention fusion (SGAF): It is well known that CBAM [32] and
BAM [33] combine spatial attention and channel attention from series and parallel perspec-
tives, respectively, to form more effective integrated attention. SGAF combines SGSA and
SGCA in the way of hierarchical connection and cross-fusion. As shown in Figure 3, to
obtain the joint feature from spectra, space, and channel and to integrate the spectral feature
into spatial and channel dimensions, we constructed three parallel branches, each of which
used features from different dimensions and exchanged features with other branches.
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In the upper/lower branch, SGSA and SGCA are fused in a hierarchical connection.
The above process was as follows:

Fn−1
middle = H333(Fn−1) (8)

Fupper = HSGSA−b

(
HSGCA−a

(
Fn−1

middle

))
(9)

Flower = HSGCA−b

(
HSGSA−a

(
Fn−1

middle

))
(10)



Remote Sens. 2023, 15, 2472 7 of 28

where HSGSA−a/b(·) indicates the SGSA-a/b module, and HSGCA−a/b(·) indicates the SGCA-
a/b module.

In the middle branch, the different features of the upper and lower branches will be
transmitted in the CFJSF by way of cross-fusion. Due to the different response curves
of the same target on the spectral axis, the middle branch combined its feature with two
features from other branches (SGSA-a and SGCA-a), using the cross-fusion module for
joint spectral features (CFJSF) to determine the correlation among the spectral dimensions.
Equations (11)–(13) are as follows:

FSGCA−a = HSGCA−a

(
Fn−1

middle

)
(11)

FSGSA−a = HSGSA−a

(
Fn−1

middle

)
(12)

FCFJSF, FSAM = HCFJSF

(
Fn−1

middle, FSGCA−a, FSGSA−a

)
(13)

where HCFJSF(·) indicates the CFJSF module.
Furthermore, the adjusted feature was sent to the concatenation operation, and the

self-attention probability map was sent to the second stage of the other two branches
(SGSA-b and SGCA-b) for further modifying their features, as follows:

Fn = H111
(
[Fupper; FCFJSF; Flower

]
) (14)

where [·] indicates the concatenation operation.
Compared with CBAM’s serial connection and BAM’s parallel connection, this module

can improve the network’s feature emphasis on features from different domains in the
feature map, as it combines SGSA (spectrum-guided spatial attention) and SGCA (spectrum-
guided channel attention) using hierarchical fusion and cross-fusion.

(2) Spectrum-guided spatial attention (SGSA) and spectrum-guided channel attention
(SGCA): SGSA and SGCA are shown in Figure 4. Compared to conventional spatial atten-
tion/channel attention, SGSA and SGCA applied HFGSA(high-frequency-guided spectrum
adaptive) modules specifically designed to deal with spectral attention and avoided the
unreasonable utilization of spectral information caused by the direct average processing of
the spectral dimension to extend SA and CA directly into the spectral dimension.
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There are two versions of SGSA (SGSA-a and SGSA–b) and SGCA (SGCA-a and 
SGCA-b). The versions with b received a self-attention probability map from CFJSF as the 
input to adjust the feature map. 

Taking SGSA-a as an example, SGSA, like conventional SA, used average-pooling 
and max-pooling to determine the mean and maximum values of the input feature on the 
HW plane. For the spectral dimension, SGSA-a used HFGSA to obtain the spectral atten-
tion, which acted as the weight coefficient of spectral dimension, and then it was summed 
along the spectral dimension to obtain the feature map after adaptive adjustment. Equa-
tion (15) is as follows: 

Figure 4. (a,c) Architecture of the SGSA-a/b. (b,d) Architecture of the SGCA-a/b. Matrix multiplica-
tion only works if there is an input FSAM.

There are two versions of SGSA (SGSA-a and SGSA-b) and SGCA (SGCA-a and SGCA-
b). The versions with b received a self-attention probability map from CFJSF as the input to
adjust the feature map.

Taking SGSA-a as an example, SGSA, like conventional SA, used average-pooling and
max-pooling to determine the mean and maximum values of the input feature on the HW
plane. For the spectral dimension, SGSA-a used HFGSA to obtain the spectral attention,
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which acted as the weight coefficient of spectral dimension, and then it was summed along
the spectral dimension to obtain the feature map after adaptive adjustment. Equation (15)
is as follows:

F1
SGSA−a = AvgS(HHFGSA(Fn−1))) (15)

where HHFGSA(·) indicates the HFGSA module and AvgS(·) indicates the average opera-
tion on the spectral dimension.

Note that in SGSA-b, the formula is changed to the following:

F1
SGSA−b = AvgS(HHFGSA ⊗ FSAM) (16)

where FSAM indicates the self-attention probability map and ⊗ indicates the matrix multi-
plication operation.

Then, conventional SA was applied to obtain the final feature, as follows:

Fmax
SGSA−a = maxs

(
F1

SGSA−a

)
(17)

Fmean
SGSA−a = means

(
F1

SGSA−a

)
(18)

Fout
SGSA−a = Fn−1 � σ(H111(Fmax

SGSA−a; Fmean
SGSA−a)) (19)

where s indicates that the operation was performed in the spectral dimension.
The process for SGCA was quite different from that of SGSA. The SGCA-a first used a

2D convolution kernel to extract the spatial feature of the input feature, as follows:

F1
SGCA−a = H133(H333(Fn−1)) (20)

Unlike the max and mean operations in SGSA, as shown in Equations (17) and (18),
respectively, these two operations in SGCA were used in the spatial dimension of the
feature map, as follows:

Fmax
SGCA−a = maxHW

(
F1

SGCA−a

)
(21)

Fmean
SGCA−a = meanHW

(
F1

SGCA−a

)
(22)

F2
SGCA−a = H111

(
Fmax

SGCA−a; Fmean
SGCA−a

)
(23)

where HW indicates that the operation is performed in the spatial dimension.
Then, HFGSA was used to extract the correlation information of the input features

along the spectral dimensions, as follows:

F3
SGCA−a = Avgs(HHFGSA

(
F2

SGCA−a

)
) (24)

The difference between SGCA-b and SGCA-a is shown in the following Equation (25),
and the rest are the same:

F3
SGCA−a = Avgs(HHFGSA

(
F2

SGCA−a ⊗ FSAM

)
) (25)

Finally, SGCA-a used the compression and expansion method on the channel dimen-
sion to extract the relevant information of the input feature map in the channel dimension
and then multiplied it with the input of Fn−1, as follows:

Fout
SGCA−a = σ

(
H111

(
H111

(
HHFGSA

(
F3

SGCA−a

))))
(26)
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Compared with CA and SA, this module not only focuses on the feature correlation
information of spatial and channel domain, but also emphasizes the spectral dimension
correlation features. Meanwhile, since the features of the spectral domain are fully extracted,
the spectral information loss caused by the direct use of CA and SA for max-pooling and
average-pooling of spectral dimensions can be avoided.

(3) High-frequency-guided spectrum adaptive mechanism (HFGSA): As shown in
Figure 5d, it is believed that using the convolution kernel of a large receptive field in the
spectral dimension can increase the detail information from spectral bands, while spectral
high-frequency information can be obtained by using the difference in the feature map of
the large and small receptive fields. The HFGSA consists of two main modules, spectral-
FSM and spectral-HFA, as shown in Figure 5a. Spectral-FSM is applied to separate spectral
high-frequency features, while spectral-HFA uses spectral high-frequency information to
generate attention features.
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Figure 5. (a) Architecture of the high-frequency-guided spectrum adaptive mechanism (HFGSA).
(b) Architecture of the spectral high-frequency attention (spectral-HFA) module. (c) Architecture
of the spectral frequency separation module (spectral-FSM). (d) Comparison of feature maps of
different receptive fields. Due to the use of a larger receptive field convolution kernel along the
spectral dimension, the detail information in the large spectral receptive field feature map is richer
than the original input and small spectral receptive field feature map, so the obtained high-frequency
information has more texture details than the original input.
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Specifically, as shown in Figure 5c, spectral-FSM mainly uses two kinds of 3× 1× 1
convolution kernels with different receptive fields (with/without dilation) for extracting
the input features in the spectral dimension. Given that the input Finput

HFGSA ∈ RC×S×H×W ,
the feature was sent to two different convolution layers in parallel to generate spectral
high-frequency features. FSHF was determined using Equations (27)–(29) as follows:

FSRF = Hwo
311

(
H311

(
Finput

HFGSA

))
(27)

FLRF = Hw
311

(
H311

(
Finput

HFGSA

))
(28)

FSHF = FLRF − FSRF (29)

where C, S, H, and W indicate the number of channels, spectrum, height, and width,
respectively, Hw

311(·) and Hwo
311(·) indicate the convolution layer of size 3× 1× 1 with and

without dilation, respectively, FSRF and FLRF indicate the small and large receptive field
features, respectively, and FSHF is the high-frequency feature.

Spectral-HFA uses the high-frequency feature to generate the attention map for
adjusting the small/large receptive field feature information, as shown in Figure 5b.
Equations (30) and (31) are as follows:

FSRF
Spectral−HFA = Hwo

311(FSRF + FSRF � σ(Hwo
311(FSHF))) (30)

FLRF
Spectral−HFA = Hw

311(FLRF + FLRF � σ(Hw
311(FSHF))) (31)

where FSRF
Spectral−HFA and FLRF

Spectral−HFA indicate the output feature of the small/large recep-
tive field from spectral-HFA, � indicates the element-wise multiplication, and σ indicates
the sigmoid function.

Finally, the outputs of the two different receptive field spectral-HFAs were added and
fused, and then the merged feature was sent to the sigmoid function layer to obtain the
final spectral attention map. The final output of the module was obtained by multiplying
the map and the original input, as follows:

out = Finput
HFGSA � σ

(
FSRF

Spectral−HFA + FLRF
Spectral−HFA

)
(32)

The above method was used to design an adaptive attention mechanism for the
spectral dimension, which solved the problem related to the effect of directly pooling the
spectral dimension when applying HSIs to SA and CA.

(4) Cross-fusion module for joint spectral features (CFJSF): Although HFGSA adds
an attention mechanism to the spectral dimension from the perspective of spectral high-
frequency information, the 3 × 1 × 1 convolution kernel is still sliding on the spectral
dimension, its essence is still only able to obtain the correlation between k adjacent bands,
and it cannot effectively obtain the context information of the entire spectral dimension.

Therefore, a self-attention mechanism will be used in this paper to make up for the
deficiency of HFGSA in spectral context information extraction. However, due to the
different spectral curves corresponding to different pixel points, a single self-attention
mechanism will not be able to use the spectral curves of numerous ground objects in
hyperspectral images, and too much self-attention will waste computing resources. In
this paper, we will use the method of multiple self-attention mechanisms to extract the
long-range correlation of the spectral dimension. Different from sequences, HSIs have a
large number of effective features both in the space and spectral domain, so it is necessary
to reasonably distinguish the key, query, and value to capture the spectral dimension
correlation of hyperspectral images to the maximum extent.
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In SGAF, the upper and lower branches are composed of SGSA and SGCA in series,
while CFJSF connects SGSA-a and SGCA-a in parallel and sends them to CFJSF together
with the middle branch. Since the self-attention probability matrix graph jointly generated
by the key and query is used to guide the attention adjustment of value, the selection of the
key and query should be the part that best reflects the features of HSI, namely SGSA-a and
SGCA-a, because they represent the spectrum–space joint feature and spectrum-channel
joint feature of HSI, respectively.

As shown in Figure 6, we used the multi-head self-attention mechanism to determine
the correlation between spectra. There were three inputs in CFJSF, namely Fin−1

CFJSF, Fin−2
CFJSF

and Fin−3
CFJSF, as in the following Equations (32)–(34):

Fin−1
CFJSF = Fn−1

middle (33)

Fin−2
CFJSF = Fn−1

middle + FSGCA−a (34)

Fin−3
CFJSF = Fn−1

middle + FSGSA−a (35)
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the concatenation.

First, the feature maps after Fin−2
CFJSF and Fin−3

CFJSF were concatenated and taken as the

Query and Key of self-attention, and Fin−1
CFJSF was taken as the value of self-attention, as

follows:
FQK = H111

([
Fin−2

CFJSF; Fin−3
CFJSF

])
(36)

FV = Fin−1
CFJSF (37)



Remote Sens. 2023, 15, 2472 12 of 28

Then, these features were sent to m self-attention modules to generate eight self-
attention probability maps and n adjusted features, as follows:

FSAM,1, FCFJSF,1 = Hsel f−att,1
(

FQK, FV
)

FSAM,2, FCFJSF,2 = Hsel f−att,2
(

FQK, FV
)

·
·
·

FSAM,m, FCFJSF,m = Hsel f−att,n
(

FQK, FV
)

(38)

where Hsel f−att,i (i = 1, 2, . . . , m) indicates the i-th self-attention function, and FSAM,i, FCFJSF,i
(i = 1, 2, . . . , m) indicates the i-th probability map and adjusted feature.

Finally, these probability maps were concatenated, and the merged map was sent to
HFGSA-b in the next SGCA and SGSA in other branches. These adjusted features were
concatenated into one, and the feature was sent to the final concatenation at the end of
SGAF, as follows:

FSAM = H133(FSAM,1; FSAM,2; . . . ; FSAM,m) (39)

FCFJSF = H333(FCFJSF,1; FCFJSF,2; . . . ; FCFJSF,m) (40)

FSGAF = H333

(
F2

SGSA; FSGAF; F2
SGCA

)
(41)

where F2
SGSA and F2

SGCA indicate the second module after SGCA and SGSA in each branch,
respectively. FSAM was sent to HFGSA-b for further feature extraction.

2.3. High–Low Frequency Separated Multi-Level Feature Fusion (FSMFF)

Densely connected networks, such as DenseNet [34] and SRDenseNet [35], and output
features from different stages were merged by simple addition or concatenation. However,
this simple fusion method using a point-by-point convolution kernel is only a weighted
summation of features from different stages according to channel dimensions, which fails to
make full use of information from feature space, such as spatial high-frequency information.
As shown in Figure 7, to more effectively integrate the output feature from different stages
and assist the reconstruction module to complete the SR image, we constructed the high–
low-frequency separated multi-level feature fusion (FSMFF) module, inspired by octave
convolution [36], based on a spatial frequency separation module (spatial-FSM), spatial
high/low frequency feature mapping (spatial-HFFM/spatial-LFFM), and spatial high–low
frequency exchange (spatial-HLFE).
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There were n− 1 features FSGAF,1, . . . , FSGAF,n−1 ∈ RC×S×H×W as inputs of FSMFF,
which were from each stage of the network. First, we used 3D convolution of size 1× 1× 1
after concatenation to obtain the preliminary fusion feature Finput

FSMFF ∈ RC/q×S×H×W , as
follows:

Finput
FSMFF = H111(FSGAF,1; . . . ; FSGAF,n−1) (42)

where q indicates the channel downsampling factor to make an effective fusion of channel
information.

Next, we obtained two different frequency features via spatial-FSM. Different from
octave convolution, we use the spatial-FSM to artificially divide the high and low frequency
features from the input feature, as shown in Figure 8. Spatial-FSM generates FSpatial−H ∈
RC/q×S×H×W by the difference in the different receptive field convolution layers in spatial
dimensions. The FSpatial−L ∈ RC/q×S×H×W is obtained by subtracting the Finput

FSMFF with
FSpatial−H , and the above process is as follows:

FSpatial−H = Hw
311

(
H311

(
Finput

FSMFF

))
− Hwo

311

(
H311

(
Finput

FSMFF

))
(43)

FSpatial−L = TID(Finput
FSMFF − FSpatial−H) (44)

where TID(·) means the trilinear interpolation downsampling operation.
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Figure 8. The architecture of the spatial frequency separation module (spatial-FSM).

After separating the spatial high and low frequency features, the high and low fre-
quency features are, respectively, sent into the corresponding feature mapping module, as
shown in Figure 9a.

F′Spatial−H = H333

(
FSpatial−H

)
(45)

F′′Spatial−H = H333

(
F′Spatial−H + FSpatial−LH

)
(46)

F′Spatial−L = H333

(
FSpatial−L

)
(47)
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F′′Spatial−L = H333

(
F′Spatial−L + FSpatial−HL

)
(48)
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Figure 9. (a) The architecture of the spatial high-frequency feature mapping (spatial-HFM) and
spatial high-frequency feature mapping (spatial-LFM). (b) The architecture of the spatial high–low
frequency exchange (spatial-HLFE).

Spatial-HFFM and spatial-LFFM ensure that the feature components of different spatial
frequencies are carried out in different feature mapping branches. However, independent
feature mapping is insufficient for multi-stage feature extraction, so it is also necessary
to fuse feature components of different frequency features, as shown in Figure 9b. We
performed spatial-HLFE to fuse the features from different spatial frequency, as follows:

FSpatial−HL = TID
(

H333

(
F′Spatial−H

))
(49)

FSpatial−LH = TIU
(

H333

(
F′Spatial−L

))
(50)

F f used
FSMFF = F′′Spatial−H + TIU

(
F′′Spatial−L

)
(51)

where TIU(·) means the trilinear interpolation upsampling operation.
The above operations combined the feature information from different stages to

effectively use spatial high- and low-frequency information. After the fusion of high and
low frequency information, we also applied the pixel self-attention mechanism after F f used

FSMFF,
which generated more detailed features for the final reconstruction stage.

Given that F f used
FSMFF ∈ RC1×S×H×W , where C1 = C/q, we applied channel-wise down-

sampling and upsampling of convolutional layers to further utilize the correlation between
points. Then, a sigmoid activation function was used to normalize and generate the atten-
tion weight coefficients, which were applied to linearly weigh the features for obtaining
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the auxiliary feature. Finally, we used a pointwise convolution of size 1× 1× 1 to restore
the original number of channels.

Fweight = σ
(

H111

(
H111

(
F f used

FSMFF

)))
(52)

FFSMFF = H111

(
Fweight � F f used

FSMFF

)
(53)

The FSMFF combined multi-level features by using high- and low-frequency separa-
tion and pixel-level self-attention mechanisms, thus, improving the nonlinear mapping and
expression ability of the network effectively.

2.4. Channel Grouping and Fusion (CGF)

In the super-resolution reconstruction stage, the upsampling method based on subpixel
convolution [30] is usually used directly. However, when the information in the LR
space is limited, a well-designed module can compensate for the lack of important local
information by distilling features in the HR space [37]. An efficient hyperfraction model can
be considered as generating a relatively rough SR feature map, and then obtaining a more
detailed SR feature map from the rough SR feature map through some fine operations.

We proposed the CGF to divide the feature map into several groups along the channel,
as shown in Figure 10a. The rough SR feature map is transformed into a fine SR feature map
by intra-group feature mapping and inter-group feature transfer. The k-th group was fused
with the (k − 1)th group to obtain the new k-th group feature information. The (k − 1)th
group generate the channel attention map to adjust the k-th group, as shown in Figure 10b.
Then, the output features of each group were concatenated along the channel dimension
and re-fused and adjusted through the convolution layer to obtain the pre-reconstructed
feature. Finally, the channel of the pre-reconstructed feature was adjusted to r2 times using
point-wise convolution, and the result of the final super-resolution reconstruction was
obtained using sub-pixel convolution, as follows:

F0
CGF = FN

= [FN,0, FN,1, . . . , FN,k]
(54)

F0
CGF,0 = FN,0 (55)

F0
CGF,1 = H333(FN,1 + FN,0)� CAM(FN,0)

F0
CGF,2 = H333(FN,2 + FN,1)� CAM(FN,1)

·
·
·

F0
CGF,k = H333(FN,k + FN,k−1)� CAM(FN,k−1)

(56)

F1
CGF =

[
F0

CGF,1; F0
CGF,2; . . . ; F0

CGF,k

]
(57)

F2
CGF,1 = H333

(
F1

CGF

)
(58)

ISR = Hup

(
H111

(
F2

CGF,1

))
(59)

where CAM(·) indicates the channel attention layer.
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Our proposed network was trained with the L1 norm as the loss function of the
network, as follows:

Loss(ISR, IHR) =
1
N ∑N

i=1

∣∣∣Ii
SR − Ii

HR

∣∣∣ (60)

where ISR represents the reconstructed spectral image, IHR represents the original spectral
image, and N represents the number of training samples.

3. Experiments

In this section, we evaluated the proposed SCSFINet both quantitatively and qual-
itatively. First, we tested our SCSFINet on three common datasets and mentioned the
specific implementation details. Then, we analyzed the performance of SCSFINet. Finally,
we compared the proposed SCSFINet with Bicubic, VDSR, EDSR, MCNet, ERCSR, and
MSFMNet.

3.1. Datasets

Among many hyperspectral datasets, we selected three of the most common datasets
as the benchmark for verifying the proposed network performance in this study. These
datasets were CAVE, Pavia Center, and Pavia University.

(1) CAVE: The CAVE dataset was collected by a cooled CCD camera that had a spectral
width of 400–700 nm. This dataset had 512 pixels in both height and width and contained
32 hyperspectral images, each of which was divided into 31 spectral bands at a spectral
interval of 10 nm. In the evaluation stage, we selected 7 images for testing and kept
25 images for training [23].

(2) Pavia Center (Pavia) and Pavia University (PaviaU): The Pavia Center (Pavia)
dataset and Pavia University (PaviaU) dataset had a wavelength range of 430–860 nm, and
they were collected using ROSIS sensors over the city of Pavia in northern Italy. Pavia had
102 spectral bands with 1096 pixels in height and 715 pixels in width, while PaviaU had
103 spectral bands. Both Pavia and PaviaU had nine categories of figures, but the categories
of this dataset were not completely consistent. For more effective training and testing,
starting from the upper left corner of these two datasets as the origin, we selected images
with a size of 144× 144 as the test set and the other parts as the training set.

(3) Data preprocessing: Although the samples in the dataset belonged to the same
distribution, there were differences in the distribution between the original samples without
any processing. Thus, the input samples needed to be standardized via data preprocessing
to improve the convergence speed of the network and the image reconstruction effect of
the overall network [37]. We used the zero-mean standardization (Z-score) method to
preprocess the dataset, which uses the mean and standard deviation of the dataset to adjust
the data to the normal distribution. For HSIs, the average value and standard deviation of



Remote Sens. 2023, 15, 2472 17 of 28

the pixels in each band were calculated, and the average vector and standard deviation
vector along the spectral dimension were obtained, as follows:

x′ =
x− µ

σ
(61)

where x, µ, σ, and x′ indicate the original sample, the average value, the standard deviation
of x in each spectral band, and the standardized x′, respectively.

After image reconstruction, the de-normalization operation was conducted through
known µ and σ to obtain the final ISR.

3.2. Implementation Details

(1) Experiment settings: Since the number of spectra in different datasets was different,
the setting of the number of spectra in the model was consistent with the input dataset. The
number of feature channels (C) was set to 64. The number n in the SGAF module was set to
4, which implied that there were four repeatedly cascaded SGAFs to extract joint features
of deep spectral, space, and channels. In the CFJSF module, eight self-attention modules
were arranged in parallel. In the FSMFF module, the downsampling factor q was set to 1/2
to effectively fuse the channel information. In the CGF, the input feature was divided into
four groups along the channel dimension, which was denoted as k.

The data preparation, network training, and the testing described in this study were
conducted in MATLAB and Python environments. The hardware device consisted of four
NVIDIA RTX2080Ti graphics cards.

In the settings of hyperparameters related to training, we selected the ADAM algo-
rithm as the network optimizer to optimize and update the network parameters, which
set the exponential decay rate of the biased first-order moment estimation and biased
second-order moment estimation to 0.9 and 0.999, respectively, and the correction factor
to 1 × 10−8. The initial learning rate of the network was set to 1 × 10−4, which decayed
0.1 times every 120 epochs for 400 epochs.

(2) Evaluation metrics: The super-resolution reconstruction task requires objective
evaluation indicators to determine the effectiveness of the reconstruction algorithm. There-
fore, we selected four evaluation methods for quantitatively evaluating the performance of
the network reconstruction results, which included the peak signal-to-noise ratio (PSNR),
mean peak signal-to-noise ratio (MPSNR), structural similarity (SSIM), and spectral angle
mapping (SAM). They were defined as follows:

MSE =
1

H ·W
H

∑
i=1

W

∑
j=1

(X(i, j)−Y(i, j))2 (62)

PSNR = 10× log10

(
2Bits − 1

)2

MSE
(63)

MPSNR =
10
B

B

∑
i=1

log10

(
2Bits − 1

)2

MSE
(64)

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (65)

θ(z∗, zh) = cos−1

 zT
h z∗

2
√
(z∗)Tz∗ 2

√
zT

h zh

 (66)

SAM =
1

H ·W
H

∑
i=1

W

∑
j=1

θ(X(i, j), Y(i, j)) (67)
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where MSE(·) denotes the mean square error function, X and Y denote the reconstructed
HSI image ISR and the original ground-truth image IHR, respectively, i and j indicate the
index of the image height H and width W, respectively, Bits indicates the image pixel
depth, B indicates the number of spectral bands of the HSI image, µx and µy indicate the
mean value of ISR and IHR, respectively, σx and σy denote the variance of ISR and IHR,
respectively, σxy indicates the covariance between ISR and IHR, C1 and C2 indicate the
minima that prevent division by zero, θ(·) represents the spectral angle mapping function,
z∗ and zh represent the pixel vector of ISR and IHR, respectively, and T represents the vector
transpose operation.

3.3. Results and Analysis

To comprehensively demonstrate the advantages of the proposed network, we selected
six popular methods for comparison, namely Bicubic, VDSR, EDSR, MCNet, MSFMNet,
and ERCSR. The following were the subjective and objective test results obtained by using
the method on the three datasets.

(1) CAVE dataset: As shown in Figure 11, to visualize the test images, we selected the
26th, 17th, and 9th spectral bands from the photo_and_face_ms as the RGB channels, which
were generated by different methods at scale factor 8. We found that the result obtained by
the Bicubic, VDSR, EDSR, MCNet, MSFMNet, and ERCSR methods differed considerably
from the original high-resolution image in various aspects, especially the texture edge
features. Specifically, due to the lack of proper use of spectral and spatial information in
hyperspectral images, the result generated by the Bicubic, VDSR, and EDSR methods were
particularly fuzzy, and the texture changed significantly. Although MCNet, MSFMNet, and
ERCSR had specially designed basic modules for hyperspectral datasets, these modules
used basic 2D/3D convolution to extract two-dimensional and three-dimensional features
from hyperspectral datasets and did not use the connection between the whole spectral
band and spatial information. Therefore, MCNet, MSFMNet, and ERCSR had certain
distortions in some bright areas. To visually demonstrate the reconstruction effect of the
proposed method using spectral dimension information, we determined the absolute pixel
difference between the SR result of various methods and the original high-resolution image
(Figure 11). Compared to these methods, because SCSFINet can fully utilize the correlation
of the whole spectral band and the connection between the space and spectrum, SCSFINet
performed well in the subjective vision of texture details, edge features, and facial parts.
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Figure 11. Reconstruction results and absolute error map comparisons of various algorithms for the
test image photo_and_face_ms. The reconstructed image of the spectral band 26-17-9 was used as the
RGB channel with a scale factor of 8.

The reflectance curves of the pixels randomly selected in different spectral bands in
the results obtained using different methods are shown in Figure 12. The curve of SCSFINet
was closer to the original high-resolution image curve.
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Figure 12. A visual comparison of spectral distortion for the image photo_and_face_ms (170, 60), (280,
80), and (450, 300) from the CAVE dataset.

To quantitatively evaluate the advantages of the method from multiple perspectives,
the quantitative description of the four performance indicators in the CAVE dataset is
presented in Table 1, with the optimal results represented in bold font. Figure 13 displays a
bar chart of the data corresponding to a scale factor of 2, as shown in Table 1. By observing
the four quantitative indicators, we found that our method performed the best under the
condition of upscale factors 2, 4, and 8. However, only the SSIM under upscale factor 8 was
slightly lower than (but very close to) the optimal MSFMNet at 0.0002. To summarize, our
method used the inter-spectral attention mechanism and the effective high-frequency and
low-frequency feature fusion module to realize the feature correlation mapping between
spectra and feature fusion at different stages, and fully extracted the spectral information
from the hyperspectral images.

Table 1. Quantitative evaluation of the data on hyperspectral image SR algorithms from the CAVE
dataset for scale factors 2, 4, and 8. The numbers in bold indicate the best result and underlined
numbers indicate the second best. ↑ indicates that the larger the value, the better the performance.
↓ indicates that the smaller the value, the better the performance.

Scale Methods PSNR ↑ MPSNR ↑ SSIM ↑ SAM ↓
Bicubic 40.330 39.500 0.9820 3.311
VDSR 44.456 43.531 0.9895 2.866
EDSR 45.151 44.207 0.9907 2.606

×2 MCNet 45.878 44.913 0.9913 2.588
ERCSR 45.972 45.038 0.9914 2.544

MSFMNet 46.015 45.039 0.9917 2.497
Ours 46.240 45.240 0.9921 2.474

Bicubic 34.616 33.657 0.9388 4.784
VDSR 37.027 36.045 0.9591 4.297
EDSR 38.117 37.137 0.9626 4.132

×4 MCNet 38.589 37.679 0.9690 3.682
ERCSR 38.626 37.738 0.9695 3.643

MSFMNet 38.733 37.814 0.9697 3.676
Ours 38.848 37.897 0.9699 3.630

Bicubic 30.554 29.484 0.8657 6.431
VDSR 32.184 31.210 0.8852 5.747
EDSR 33.416 32.337 0.9002 5.409

×8 MCNet 33.607 32.520 0.9125 5.172
ERCSR 33.624 32.556 0.9113 5.114

MSFMNet 33.675 32.599 0.9136 5.084
Ours 33.723 32.638 0.9134 5.027
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could more effectively reconstruct the details contained in the original image. 

Figure 13. Bar charts depicting the four evaluation indicators on the CAVE dataset of scale factor 2.
(a) PSNR. (b) mPSNR. (c) SSIM. (d) SAM.

(2) Pavia Dataset: The subjective performance of different methods on the Pavia
dataset for upscale factor 4 is shown in Figure 14. Among them, the 13th, 35th, and 64th
spectral bands were used for the color generation of RGB channels. The obtained image
of Bicubic was too fuzzy, and the details were blurred, while only the result of SCSFINet
could more effectively reconstruct the details contained in the original image.
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Figure 14. The results of reconstruction and absolute error map comparisons of various algorithms
using the Pavia Center dataset. The reconstructed image of spectral band 64-35-13 was used as the
RGB channel with a scale factor of 4.

As shown in the absolute error image, ESRCR and MSFMNet only recovered part of
the information on the street, which led to a large error between them and the original
high-resolution image. The resulting graph of SCSFINet differed the least from the original
image, which further confirmed that SCSFINet had excellent reliability in the reconstruction
of complex structural information. From the perspective of spectral reconstruction, the



Remote Sens. 2023, 15, 2472 21 of 28

reflectance curve of the pixels in the spectral range (Figure 15) indicated that the spectral
curve of SCSFINet was closest to the original high-resolution image, which confirmed that
the spectral reconstruction performance of SCSFINet was excellent even for the complex
structure.
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Figure 15. A visual comparison of the spectral distortion of the images (80, 140), (120, 80), and (140,
15) from the Pavia Center dataset.

The quantitative description of the four performance indicators in the Pavia dataset
with scale factors 2, 4, and 8 are shown in Table 2. Figure 16 displays a bar chart of the
data corresponding to a scale factor of 2, as shown in Table 2. The results of the experiment
showed that the method was superior to other methods at different scales when analyzing
the data in the Pavia dataset.

Table 2. Quantitative evaluation of the data on hyperspectral image SR algorithms from the Pavia
dataset for scale factors 2, 4, and 8. The numbers in bold indicate the best result and underlined
numbers indicate the second best. ↑ indicates that the larger the value, the better the performance.
↓ indicates that the smaller the value, the better the performance.

Scale Methods PSNR ↑ MPSNR ↑ SSIM ↑ SAM ↓
Bicubic 32.406 31.798 0.9036 4.370
VDSR 35.392 34.879 0.9501 3.689
EDSR 35.160 34.580 0.9452 3.898

×2 MCNet 35.124 34.626 0.9455 3.865
ERCSR 35.602 35.099 0.9503 3.683

MSFMNet 35.678 35.200 0.9506 3.656
Ours 35.927 35.413 0.9540 3.627

Bicubic 26.596 26.556 0.7091 7.553
VDSR 28.328 28.317 0.7707 6.514
EDSR 28.649 28.591 0.7782 6.573

×4 MCNet 28.791 28.756 0.7826 6.385
ERCSR 28.862 28.815 0.7818 6.125

MSFMNet 28.920 28.873 0.7863 6.300
Ours 29.031 29.000 0.7943 5.873

Bicubic 24.464 24.745 0.4899 7.648
VDSR 24.526 24.804 0.4944 7.588
EDSR 24.854 25.067 0.5282 7.507

×8 MCNet 24.877 25.096 0.5391 7.429
ERCSR 24.965 25.190 0.5382 7.834

MSFMNet 25.027 25.257 0.5464 7.449
Ours 25.125 25.377 0.5553 7.404
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Figure 16. Bar charts depicting the four evaluation indicators on the Pavia dataset of scale factor 2.
(a) PSNR. (b) mPSNR. (c) SSIM. (d) SAM.

(3) PaviaU Dataset: The subjective performance of different methods on the PaviaU
dataset for upscale factor 8 is shown in Figure 17. Among them, the 13th, 35th, and 64th
spectral bands were used for the color generation of RGB channels. From the figure, it is
evident that most of the methods, such as Bicubic and VDSR, produce reconstructed images
that are generally blurry. EDSR’s reconstructions exhibit granulation and more noise. The
reconstructed images of MCNet, ERCSR, and MSFMNet feature blurred roads in the lower
right corner. In contrast, SCSFINet can effectively recover the details in the image.
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The absolute error image also indicates that Bicubic and VDSR have large errors in
recovering the street part, whereas EDSR, MCNet, ERCSR, and MSFMNet can only partially
recover the street details. SCSFINet’s results show the least difference from the original
image, demonstrating its reliability and superiority. Additionally, the reflectance curve of
pixels in the spectral range, shown in Figure 18, confirms that SCSFINet has the closest
spectral curve to the original high-resolution image. This indicates that SCSFINet’s spectral
reconstruction performance is excellent, even for complex structures.
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Figure 18. A visual comparison of spectral distortion for the image (77, 39), (86, 91), and (132, 124)
from the PaviaU dataset.

Table 3 presents the quantitative descriptions of the four performance indicators for
scale factors 2, 4, and 8 in the PaviaU dataset. In addition, Figure 19 displays the data under
scale factor 2 in Table 3. The experimental results clearly demonstrate the superiority of our
proposed method over other existing methods in analyzing PaviaU datasets at different
scales. Considering that both Pavia and PaviaU datasets were smaller than the CAVE
dataset, we found that our method also performed well with small datasets.

Table 3. Quantitative evaluation of the data on hyperspectral image SR algorithms from the PaviaU
dataset for scale factors 2, 4, and 8. The numbers in bold indicate the best result and underlined
numbers indicate the second best. ↑ indicates that the larger the value, the better the performance.
↓ indicates that the smaller the value, the better the performance.

Scale Methods PSNR ↑ MPSNR ↑ SSIM ↑ SAM ↓
Bicubic 30.509 30.497 0.9255 3.816
VDSR 33.988 34.038 0.9524 3.258
EDSR 33.943 33.985 0.9511 3.334

×2 MCNet 33.695 33.743 0.9502 3.359
ERCSR 33.857 33.910 0.9520 3.220

MSFMNet 34.807 34.980 0.9582 3.460
Ours 35.914 35.033 0.9584 3.068

Bicubic 29.061 29.197 0.7322 5.248
VDSR 29.761 29.904 0.7854 4.997
EDSR 29.795 29.894 0.7791 5.074

×4 MCNet 29.889 29.993 0.7835 4.917
ERCSR 30.049 30.164 0.7899 4.865

MSFMNet 30.140 30.283 0.7948 4.861
Ours 30.388 30.489 0.8068 4.692

Bicubic 26.699 26.990 0.5936 7.179
VDSR 26.737 27.028 0.5962 7.133
EDSR 27.182 27.467 0.6302 6.678

×8 MCNet 27.201 27.483 0.6254 6.683
ERCSR 27.288 27.548 0.6276 6.611

MSFMNet 27.334 27.586 0.6356 6.615
Ours 27.384 27.590 0.6427 6.576
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3.4. Ablation Study

In this section, we evaluated the proposed network from three aspects, including the
study of SGAF, FSMFF, and CGF. For comparing the modules, we determined the results
for a scale factor of 2 using the CAVE dataset.

As shown in Figure 20, to better explain our method, we constructed a baseline model
corresponding to SCSFINet, which removed the proposed HSGFA, CFJSF, FSMFF, and CGF
modules. The baseline model only had standard channel attention and spatial attention in
parallel and series.

The effects of the ablation research on CFJSF, HFGSA, FSMFF, and CCG are shown
in Table 4 and Figure 21. To compare the impact of different components on the network
without any bias, we used five collocation methods to conduct ablation surveys.

Table 4. Ablation study results on evaluating the efficency of the network structure on the CAVE
dataset of scale factor 2.

1 2 3 4 5

CFJSF 8 4 4 4 4

HFGSA 8 8 4 4 4

FSMFF 8 8 8 4 4

CGF 8 8 8 8 4

PSNR 45.516 45.744 45.998 46.150 46.240

mPSNR 44.574 44.776 44.983 45.144 45.240

SSIM 0.9911 0.9914 0.9917 0.9919 0.9921

SAM 2.602 2.573 2.521 2.491 2.474
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The results of the ablation study presented in Table 4 showed that when the network
lacked any of the proposed modules, the performance was the worst. Because the baseline
was equivalent to ignoring the spectral dimension of hyperspectral images and different
features from different stages, it prevented the network from fully utilizing the spectral
information and spatial information for learning. When the baseline model added the
spectral dimension learning modules CFJSF and HFGSA, the performance indicators of
the network improved significantly, which showed that the two modules designed in this
study helped the spectral dimension of the network in learning. They enabled the network
to learn spectral features along the spectral dimension, and they also fully integrated the
features with the spatial features. When FSMFF and CCG were added to the baseline, the
performance of the network improved significantly by 0.157 dB and 0.09 dB, respectively.
Compared to the baseline, each experiment presented in Table 3 produced better results for
the performance indicators. The results showed that each module was an indispensable
link for the network.

4. Conclusions

In this study, we proposed a method for hyperspectral super-resolution which had
good performance and generalization abilities for multiple datasets. SCSFINet designed
several efficient modules to better learn the spectral and spatial joint characteristics of HSI.
In order to extract more features from the spectrum, a HFGSA module is designed, which
can effectively learn spectral features by combining spectral high-frequency information
with an attention mechanism. The CFJSF module extracts the long-range correlation of
the spectral dimension from the perspective of spectral context, so as to make up for
the shortcoming that HFGSA can only use the features between several adjacent bands.
Meanwhile, SGAF combined with SGSA, SGCA, and CFJSF effectively fused the features of
spectral domain, spatial domain, and channel domain from the perspective of hierarchical
fusion and cross-fusion. In addition, a FSMFF module is designed, and features of different
frequency components are extracted and finally fused by means of spatial high- and low-
frequency separation, so as to achieve efficient multi-level feature fusion. The designed
CGF carries out feature interaction between groups in the form of channel grouping to help
the network generate more detailed feature maps.

Based on the results of the experiment using several datasets, we showed that the
effectiveness and generalization of SCSFINet were satisfactory, and the subjective and
objective experimental results obtained using our method were better than those obtained
using other methods.
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