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Abstract: Detecting mesoscale ocean eddies provides a better understanding of the oceanic processes
that govern the transport of salt, heat, and carbon. Established eddy detection techniques rely on
physical or geometric criteria, and they notoriously fail to predict eddies that are neither circular nor
elliptical in shape. Recently, deep learning techniques have been applied for semantic segmentation
of mesoscale eddies, relying on the outputs of traditional eddy detection algorithms to supervise the
training of the neural network. However, this approach limits the network’s predictions because the
available annotations are either circular or elliptical. Moreover, current approaches depend on the
sea-surface height, temperature, or currents as inputs to the network, and these data may not provide
all the information necessary to accurately segment eddies. In the present work, we have trained a
neural network for the semantic segmentation of eddies using human-based—and expert-validated—
annotations of eddies in the Arabian Sea. Training with human-annotated datasets enables the network
predictions to include more complex geometries, which occur commonly in the real ocean. We then
examine the impact of different combinations of input surface variables on the segmentation performance
of the network. The results indicate that providing additional surface variables as inputs to the network
improves the accuracy of the predictions by approximately 5%. We have further fine-tuned another
pre-trained neural network to segment eddies and achieved a reduced overall training time and higher
accuracy compared to the results from a network trained from scratch.

Keywords: eddy detection; deep neural network; semantic segmentation; Arabian Sea

1. Introduction

Energetic swirls in the ocean, known as eddies, are essential for the transport of heat
and material [1] and for energy conversion among dynamics at different scales [2]. In
oceanography, eddies with diameters ranging between 10 km and 500 km are known as
mesoscale eddies [3]. Mesoscale eddies regulate oceanic mixing and climate by promoting
the transport of salt, heat, and carbon on both local and global scales [4,5], and by inducing
a strong shear that generates sub-mesoscale processes to produce prominent vertical fluxes
in the upper ocean [6,7]. Detecting and tracking mesoscale eddies are therefore important
for investigating their properties, transport mechanisms, and their contributions to air–sea
coupling processes [8].

Established eddy detection methods depend either on physical or on geometric criteria
to classify these mesoscale features from the mainstream flow. Physical criteria involve the
determination of dynamical properties such as the magnitude of the sea-level anomaly [9],
the velocity gradient [10,11], or the Okubo–Weiss (OW) parameter [12]. Generally, these
methods define an eddy based on closed contours of these quantities above a certain threshold
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value; however, they are limited by the fact that no single threshold is optimal for the varying
oceanic conditions, and the OW parameter is extremely susceptible to noise in sea-surface
height (SSH) data [13,14]. To overcome these weaknesses, Chelton et al. 2011 [13] proposed a
“threshold-free” method, partitioning the SSH field using a range of monotonically changing
thresholds. They further proposed smoothing the SSH field spatially before processing these
data to reduce the noise, which may affect the OW parameter.

Unlike the physical criteria, geometric criteria are based on selecting circular or closed
streamlines from the quasi-circular flow patterns. One of the most straightforward methods
for identifying eddies based on geometric criteria is to identify instantaneous streamlines
mapped onto a plane normal to the vortex core [15]. A more sophisticated implementation
is to use the winding-angle (WA) method [16], which has been demonstrated to be more
efficient and accurate than the Okubo–Weiss method for identifying mesoscale eddies [17].
Nevertheless, a major drawback of established eddy detection techniques is the geometric
restriction on the predicted eddies, where these eddies have to be circular or elliptical by
construction of the algorithm.

Recently, deep learning techniques have been advancing rapidly, capitalizing on the
ability of deep neural networks (DNNs) to learn sophisticated relationships between input
and output fields. These advances have been utilized to solve pressing issues in computer vi-
sion, pattern recognition, and physics, to name a few examples. For instance, deep learning
has been employed to produce high-quality realistic images [18–20], to help with medical
assessments of cancer patients [21,22], and to emulate earth systems [23–25]. Deep learning
has also been used to detect objects and segment images [26,27] and videos [28]. In particu-
lar, semantic segmentation (e.g., Ref. [29]) and instance segmentation (e.g., Refs. [30,31]) aim
to delineate all features or individual features, respectively. In segmentation approaches,
a DNN is used to output a classification map, of the same size as the input image, which
describes the object or class to which a given pixel belongs [32].

Machine learning techniques for detecting eddies were first introduced by Castelani, 2006 [33],
who trained a densely connected neural network to detect eddies from sea surface temperature
(SST) data. Deep learning techniques were then employed to help improve the detection accuracy.
For instance, both Franz et al., 2018 [34], and Lguensat et al., 2018 [35], depended on SSH data to
train a convolutional neural network (CNN) to detect eddies. Both groups of investigators em-
ployed semantic segmentation approaches to generate classification maps describing the locations
and extents of cyclonic and anticyclonic eddies. Moschos et al., 2020 [36], then proposed using
SST data rather than SSH data to train a CNN to produce classification maps that identify the
locations of cyclonic and anticyclonic eddies. Similarly, Duo et al., 2019 [37], Xu et al., 2019 [38], and
Nian et al., 2019 [39], utilized sea-surface anomalies as inputs for the detection and semantic
segmentation of mesoscale eddies. More recently, a combination of SST and SSH data and surface
speeds were used as inputs to a deep CNN, which predicted the locations and shapes of individual
eddies in an instance-segmentation approach [40]. These previously mentioned methods relied
on model-generated eddy labels, which limited the predicted shapes of the mesoscale eddies to
be either circular or elliptical. In reality, however, the shapes of these eddies may be distorted,
necessitating the requirement for more sophisticated labels [41].

In this study, we have trained a DNN to perform the semantic segmentation of cy-
clonic and anticyclonic eddies in the Arabian Sea by relying on human-labeled and expert-
validated annotated data for mesoscale eddies in that sea. Human-based annotations
allow for predictions of complex eddy geometries allowing to identify eddies that are
neither circular nor elliptical, which is one of the major limitations of non-learning-based
algorithms. In particular, our training dataset includes annotations of different shapes
that are not necessarily elliptical, which enables the DNN to predict such complex geome-
tries. The annotations are made openly accessible to promote additional developments in
learning-based eddy detection. The employed deep neural network comprises a U-Net [29]
backbone for feature extraction, with a Pyramid Pooling Module (PPM) [42] as the decode
head or task-performing network that predicts the output classification maps. We trained
this network using as input the SSH, SST, sea-surface salinity (SSS), and zonal and merid-
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ional velocity components from the Copernicus Marine Environment Monitoring Service
(CMEMS), a global ocean-eddy-resolving reanalysis product [43]. The usage of different
surface variables as inputs to the network provides more information about the surface
state of the sea and is expected to improve the prediction accuracy compared to the use of a
single ocean-surface field. We compared the results obtained by using this trained model to
those obtained from another model with the same architecture that we trained using only
SSH, SST, or SSS data as the single input, as is typically performed in the literature. We then
analyzed the results by examining the sensitivity of the network to different combinations
of the input ocean-surface fields. Moreover, to investigate the computational benefits of
using “off-the-shelf” networks [44], we compared the results obtained using this DNN to
those obtained using a pre-trained ResNet50–FCN [45], which was fine-tuned to predict
eddies using a transfer-learning methodology. We also evaluate the performance of a model
trained on the Arabian Sea dataset for predicting eddies in the Red Sea to investigate its
generalizability for the semantic segmentation of eddies in different basins. This study
is the first to analyze the impact of different combinations of ocean-surface fields on the
semantic segmentation of eddies, and to examine the utilization of transfer learning for the
semantic segmentation of mesoscale eddies.

The remainder of the paper is structured as follows. Section 2 describes the circulation
in the Arabian Sea and the data used for training and validating the DNN. The U-Net–PPM,
trained from scratch, and the pre-trained ResNet50–FCN are described in Section 3, where
the training setup and methodology are presented. The results are presented in Section 4.
Finally, Section 5 summarizes the main results and presents the concluding remarks and a
discussion of future research directions.

2. Ocean Data

We used the global ocean eddy-resolving reanalysis product from the Copernicus
Marine Environment Monitoring Service (CMEMS), which provides reliable and up-to-
date information of the global ocean with a comprehensive collection of oceanographic
and environmental data and includes information on a wide range of parameters such
as temperature, salinity, sea level, ocean currents, and biogeochemical properties. The
reanalysis dataset used in this study is available from 1993 to 2020 with a horizontal
resolution of 1/12◦, or approximately 8 km [43]. This ocean reanalysis was generated
using version 3.1 of the Nucleus for European Models of the Ocean (NEMO) model [46],
driven at the surface by the ERA-Interim climate reanalysis dataset [47] of the European
Centre for Medium-Range Weather Forecasts (ECMWF). This model assimilates in situ data
from various sources such as satellites and in situ measurements using a reduced-order
Kalman filter, including along-track altimeter data, remotely sensed SST data, and in situ
T/S vertical profiles, and the reanalysis data set was subject to rigorous quality control
and validation procedures to ensure its accuracy and reliability, and is continually updated
as new observations become available. In this study, daily averaged SSH, SST, SSS, and
surface current fields are extracted. The spatial and temporal resolution of the CMEMS
product are fine enough to resolve the mesoscale eddies in the Arabian Sea [8]. Figure 1
illustrates a snapshot of the surface currents superimposed on the SSH for a day during the
summer season.
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Figure 1. Plot illustrating the SSH and surface currents in the Arabian Sea at a snapshot representative
of a typical day during the summer season.

The Somali current along the Somalia coast off northwest Africa makes the Arabian
Sea unique compared to other basins with strong western boundary-current systems, since
it is not continuous in time but reverses seasonally [48]. This pronounced seasonality is
linked to the annually reversing Indian Ocean monsoon. During the southwest monsoon
season in summer, anticyclonic oceanic circulation in the Arabian Sea and the northward
western-boundary Somali current follow the appearance of a negative curl of the wind stress
over the central basin, while the opposite scenario applies during the northeast monsoon
season in winter [49]. In addition, the Arabian Sea exhibits pronounced intraseasonal
and spatial variability in eddy activity, with enhanced eddy kinetic energy (EKE) during
summer, primarily in the western basin. Mesoscale eddies play a key role in modulating the
circulation [50] and biological processes [51] in the Arabian Sea—east of the Somalia coast
in particular—and they exhibit EKE and eddy-induced transport, which are comparable in
magnitude in both the horizontal and vertical directions to other eddy-rich basins in the
global oceans [8,52,53].

3. Neural Network
3.1. Neural Network Architecture

In this section, we examine the use of a U-Net–PPM neural-network architecture to
segment cyclonic and anticyclonic eddies, and we compare its performance, in terms of pre-
diction accuracy and training time, to that of a pre-trained and fine-tuned Resnet50–FCN.
Both network architectures are composed of a CNN backbone for extracting features, fol-
lowed by a decode head for predicting the classification maps. The first network comprises
a U-Net [29] backbone and a PPM [42] decode head, and was trained from randomly
initialized model parameters. The second network is a pre-trained CNN that comprises a
50-layer ResNet [54] backbone equipped with a fully convolutional network (FCN) [45]
decode head, and we fine-tuned the initial model parameters by training it on our dataset.
Both neural network architectures and pipelines are presented in Figure 2, which illustrates
the architecture of each DNN along with the convolution blocks used to develop them.
This figure portrays the pipeline, showing the input fields, the individual layers/blocks,
and the output classification maps.
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(a) U-Net with PPM and convolution blocks.

(b) Resnet50-FCN.

Figure 2. Neural−Network Architectures: Schematics of (a) the U-Net backbone with the PPM
decode head, along with the Res- and FCN-blocks, and (b) the ResNet50–FCN that was pre-trained
on a subset of the COCO dataset and is available in PyTorch’s torchvision. The deep neural network in
(a) is trained by starting from randomized initial parameters, whereas that of (b) was trained from
randomly initialized and pre-trained model parameters that are fine-tuned by training on the Arabian
Sea dataset.

Figure 2a shows the backbone of the first network, which is a U-Net that comprises
the following sequence: a convolutional encoder, bottleneck layers, and an expanding
convolutional decoder that mirrors the encoder. Specifically, the U-Net’s encoder includes
the sequence of a convolution layer with a 3× 3 kernel size and a batchnorm followed by
ReLU activation function. This sequence is present twice at each level of the encoder, and a
maxpooling layer is employed to transition to the next level. The decoder is a reflection
of the U-Net encoder, with transposed convolutions and nearest-neighbor upsampling
substituted for the convolutions and max-pooling layers, respectively. Finally, a skip
connection concatenates the feature maps from the outputs of each encoder layer to the
input of the decoder layer at the same level; this has been shown to promote strong gradient
propagation and to preserve information from the encoder layers to subsequent layers in
the network [29,54].
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The second network consists of a 50-layer ResNet CNN backbone formed by a se-
quence of Res-Blocks, as shown in Figure 2b. The Res-Blocks [54] consist of three con-
secutive convolution layers, each followed by a BatchNorm layer, with a skip connection
between the input and the output of the Res-Block. The convolution layers have convolu-
tion kernels of sizes 1× 1, 3× 3 and 1× 1, respectively. To achieve 50 layers, this network
employs 16 consecutive Res-Blocks along with an initial convolution layer that is followed
by a max pooling layer with a stride of 2. The FCN is merged with the 50-layer ResNet
by connecting one FCN-block to the 15th Res-Block and another FCN-block to the last
Res-Block. The outputs of these FCN-blocks are upsampled and then joined to predict the
classification maps. We used a pre-trained model that is readily available in PyTorch’s
torchvision [55] in a transfer-learning [44] setting, with layers that fit the task-dependent
dataset substituted for the first and last layers before training the network on the dataset of
interest. This approach is commonly adopted in deep learning applications to reduce the
training time, where these pre-trained models were extensively trained on large datasets to
provide a large set of features that could be utilized in future tasks [56].

In the present work, we have analyzed the performance of both DNNs in segmenting
eddies in the Arabian Sea using different combinations of ocean-surface variables as inputs
to the DNN. We trained the first DNN using human-annotated labels, which allows for
complex geometrical predictions that differ from the outputs of established eddy-detection
algorithms, which are limited to circles and ellipses. Importantly, this study differs from
that of Fan et al., 2020 [40], who relied on combining the SSH and SST data into one channel,
producing a physically inconsistent quantity. Moreover, their analysis does not report the
spatial resolution of the input fields nor the geographical location of the region of interest.
Finally, the human-based labels used by Fan et al., 2020 [40], are based solely on SSH data,
making them susceptible to larger annotation errors than the ones reported here because
they miss the circulation information gained by using the velocities.

3.2. Training and Validation Datasets

We inputted the ocean-surface fields to the DNN to predict the probability that a pixel
belongs to a cyclonic eddy, an anticyclonic eddy, or neither (i.e., to the background). These
three categories comprise the output classes for which the network predicts a softmax
probability that a pixel belongs to a given class. Each ocean-surface variable is represented
by an input channel to the network, where the total number of input channels is equal to the
number of input variables propagated through the DNN. The input fields are propagated
through the DNN, which classifies the image point-by-point according to the class with
the highest softmax probability, as further discussed in the following section. Finally, the
output classification map is a 2D spatial map with the same resolution as the input, and it
indicates whether a grid cell is classified to belong to the background, a cyclonic eddy, or
an anticyclonic eddy.

The training and validation datasets rely on the CMEMS ocean reanalysis datasets
described in Section 2. In particular, we extracted the ocean-surface fields from the years
2001 to 2010 to generate the training dataset and used those from 2011 as the validation
dataset. All surface fields—including the velocity-vector fields—were human-labeled and
later validated by an expert to confirm the quality of the labels. This is important since a
DNN trained using eddy-detection-based data—cf. [35]—can only represent a surrogate of
the eddy-detection model. On the other hand, training a DNN using hand-labeled data that
contains labels of different shapes and sizes and which are not constrained to be ellipses or
circles, is a surrogate for an arbitrary model described by the human-based annotations.
Finally, we note that we have removed the last 10 days of 2010 and the first 10 days of 2011
from the training and validation datasets to avoid any leakage of information between the
training and validation datasets that may arise from high-frequency correlations that could
bias the performance-metric estimates. This results in training and validation datasets
comprising 3642 and 354 samples, respectively.
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3.3. Loss Function

We trained both networks by minimizing the cross entropy between the predicted and
true masks. The cross entropy is commonly used for multi-class semantic-segmentation
problems, cf. [57,58]. In multi-class classification, the cross entropy computes a loss for
each class label, and the total loss is reduced by taking the mean or sum of all the loss terms.
The cross entropy for C unique classes can be expressed as follows:

L(x; θ) = − 1
nxny

nx

∑
i=1

ny

∑
j=1

nc

∑
k=1

wkyt(x)log[ŷθ(x)], (1)

where nx, ny, and nc are the numbers of horizontal grid cells, vertical grid cells, and
classes, respectively. The quantities yt are the reference annotated labels and ŷθ are the
θ-parameterized labels predicted by the network at a given grid cell for an input image
x ∈ Rnx ,ny ,n f , where n f is the number of input ocean fields. The loss employs a class-specific
weighting wk, with ∑k wk = 1, to mitigate issues that may arise from class imbalance [58],
since at any given instance the areas covered by cyclonic and anticyclonic eddies are not
equal. The classes are weighted by the inverse of percentage of occurrence of a given
class throughout the entire training dataset. During training, we omitted the loss for
the background class to avoid overestimating the accuracy of the network because it is
considerably easier for the network to predict the background class label, leading to an
artificial boost in the overall loss without improving the segmentation accuracy.

3.4. Accuracy Metrics

In addition to the loss, we assessed the performance of the trained model by computing
a number of accuracy metrics that are commonly used in semantic segmentation. These
metrics include the pixel-wise accuracy (A), the Jaccard index (i.e., the intersection over the
union: IoU), the precision (P), and the recall (R) [28,45]. If we define a true positive (TP)
as an outcome in which the model correctly predicts a positive class, then a true negative
(TN) is an outcome in which the model correctly predicts a negative class. Similarly, a false
positive (FP) is an outcome in which the model incorrectly predicts a positive class, and a
false negative (FN) is an outcome in which the model incorrectly predicts a negative class.

Using this notation, we can define A as follows:

A =
TP + TN

TP + TN + FP + FN
, (2)

a measure of the fraction of pixels in the network labeled correctly. The IoU measures the
overlap of the target mask with the predicted output; this is given by

IoU =
|A ∩ B|
|A ∪ B| , (3)

where A is the set of positive-class pixels from the prediction and B is the set of positive-class
pixels from the true labels. The precision P is the ratio of TP to all positive examples, which
is a measure of the exactness of the model’s classification of a positive class; it is given by

P =
TP

TP + FP
. (4)

Finally,R is a measure of the percentage of detected ground-truth labels, expressed
as follows:

R =
TP

TP + FN
. (5)

3.5. Training Setup

We trained the DNN eddy detection models for a total of 20 epochs, each of which
randomly passes over 2500 sampled instances of the input fields and the corresponding
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labeled classification maps, which totals to 50, 000 random samples during training. Training
depends on a stochastic-gradient-descent (SGD) optimization algorithm to minimize the loss
function, with momentum 0.9 and weight decay 10−4. We performed an initial parameter
search to identify the best learning rate (LR) to maximize the model accuracy. In particular,
we trained the DNN for a batch size of 10 and LRs of 0.0001, 0.001, 0.01, 0.02, 0.03, 0.04, and
0.1. We selected the model that maximizes the average accuracy at segmenting cyclonic
and anticyclonic eddies as the best model and used it to report our results in Section 4. We
performed the same parameter search for each case corresponding to different input surface
fields, and we present the eddy-segmentation results from the model with the highest accuracy.
We utilized a learning-rate scheduler to reduce the LR by a factor of 10 if the accuracy did not
increase for at least three epochs; this enables us to take finer optimization steps in efforts to
build an improved model.

4. Experiments and Results
4.1. Semantic Segmentation Using Five Ocean-Surface Fields

In this experiment, the outputs of two U-Net–PPM models—one trained using all
five surface ocean fields as an input to the DNN while the other is trained using SSH data
only—are contrasted qualitatively against the reference annotations. The parameters of
the U-Net–PPM model were randomly initialized, and training was performed using the
dataset described in Section 3.2. Figure 3 shows the ground-truth labels and the predicted
segmentation maps for randomly selected samples for the case that used all five ocean-
surface variables to train the neural network. The results suggest that the trained model is
able to predict the location of mesoscale eddies quite comparably to the ground-truth labels.
The network also predicts additional eddies that were either missed during annotation
or are artifacts or “ghost” eddies, as named by Lguensat et al., 2018 [35]. Moreover, these
results suggest that the network smooths out the boundaries of the mesoscale predictions
by following the natural variations in the surface fields. This is an interesting takeaway
because the labels are based on polygons [59], which are not as smooth as the input fields.

Similarly, Figure 4 shows that the eddy locations predicted using only SSH data as
input are also visually comparable to the ground truth labels. The shapes of the mesoscale
features, however, are not as accurate as those predicted by the DNN trained on all the
ocean-surface variables. In particular, this model enlarges and over-smooths the predicted
regions that correspond to mesoscale eddies. The trained model’s predictions also merge
multiple labels together and exhibit some artifacts in the predicted segmentation masks.
Compared to the case in which all the surface variables were used as input, these predictions
are less accurate, as indicated by the prediction masks, inaccurately predicting extremely
small eddies or overestimating the corresponding prediction areas. While this section
presents a qualitative analysis of the network’s performance at segmenting eddies using
different input variables, the following section quantifies the performance boost achieved
from using multiple input fields as opposed to using only SSH data.

4.2. Sensitivity of Segmentation Accuracy to the Input Surface Fields

The results of the previous section indicates that the predicted eddies are better
captured qualitatively when all five surface variables are used as input to the DNN in
comparison to only using the SSH fields. In this section, the performance of the U-Net–PPM
DNN model, with randomly initialized trainable parameters, is quantified for different
combinations of input ocean-surface fields. The input layer of the network is the only
component of the DNN that is modified in this numerical experiment, varying the number
of input channels to correspond to the number of input fields. Note that the training
parameters, including the LR and batch size, are held fixed throughout these experiments
to allow a fair comparison between different models.
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(a) (b)

(c) (d)

Figure 3. Ground−truth and predicted segmentation masks for the U-Net–PSPnet deep neural
network using all five ocean-surface fields. The segmentation maps superpose the SSH data and
the surface-velocity vectors. The plots demonstrate that the network captures all the labeled eddies
with smoother boundaries. Here, the cyclonic eddies are colored red and the anticyclonic eddies
are colored black. The color bars at the sides of each panel indicate the SSH values in meters;
(a) Prediction—Sample 1; (b) Ground Truth—Sample 1; (c) Prediction—Sample 2; (d) Ground
Truth—Sample 2.

(a) (b)

(c) (d)

Figure 4. Ground-truth and predicted segmentation masks for the U-Net–PSPnet deep neural network
using only the SSH data as input. The segmentation maps are superposed on the SSH data only to
show the input to the network alongside the output masks. The plots demonstrate that the network
captures the labeled eddies with smoother boundaries than those in the ground-truth plots but lumps
some labels together. Here, the cyclonic eddies are colored red and the anticyclonic eddies are colored
black. The color bars at the sides of each panel indicate the SSH values in meters; (a) Prediction—
Sample 1; (b) Ground Truth—Sample 1; (c) Prediction—Sample 2; (d) Ground Truth—Sample 2.
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Table 1 reports the accuracy metrics for the different combinations of the input vari-
ables. The results suggest that using all five ocean-surface variables yields a 2% boost in A,
in comparison to using only SSH as input, and a 5% increase in A in comparison to using
SST or SSS as input. In addition, using SSH or the velocities alone yields a value ofA that is
roughly 2% greater than using either—or even both—SSS or SST as input. This indicates that
both SSH and the velocities are sufficient to achieve the semantic segmentation of eddies with
high A values; however, using all the ocean variables as input provides the neural network
with a rich flow of information, which achieves the highest A values. The mean IoU (mIoU)
varies in a way similar to A, with the largest mIoU obtained when all the ocean-surface fields
are used as inputs. Note that the values of the mIoU are expected to be smaller than the A
values because the mIoU penalizes wrong predictions, whereas A does not.

Table 1. Accuracy Metrics for different inputs to the neural network: The inputs to the U-Net–
PSPnet model are varied systematically, and the corresponding accuracy metrics are evaluated and
reported in the table. The table shows that the accuracy metrics are improved by approximately 5%
when all five ocean-surface variables are used, as opposed to using only the SSH data.

Accuracy Mean IoU P R
Input Variables Cyclonic Anticyclonic Cyclonic Anticyclonic Cyclonic Anticyclonic Cyclonic Anticyclonic

SSH 0.92871 0.93942 0.45984 0.42608 0.47306 0.44126 0.94267 0.92531

SST 0.89841 0.90285 0.35974 0.30395 0.37709 0.31804 0.88659 0.87279

SSS 0.89623 0.90300 0.34649 0.28808 0.36821 0.30932 0.85457 0.80754

SSH and SST 0.92809 0.93197 0.45975 0.40122 0.47049 0.41150 0.95272 0.94140

SSH and SSS 0.93942 0.94252 0.49387 0.43301 0.51596 0.45322 0.92022 0.90661

SSS and SST 0.90210 0.90361 0.36783 0.30508 0.38596 0.31913 0.88679 0.87388

Velocities 0.92511 0.92935 0.44640 0.38892 0.45945 0.40091 0.94016 0.92856

SSH, SSS, and SST 0.92341 0.92849 0.44366 0.38731 0.45447 0.39805 0.94913 0.93487

SST, SSS, and velocities 0.92524 0.93283 0.44927 0.40000 0.46097 0.41388 0.94653 0.92264

SSH, SSS, and velocities 0.92783 0.92855 0.45525 0.38625 0.46985 0.39846 0.93610 0.92648

SST, SSH, and velocities 0.91893 0.92540 0.43280 0.37998 0.44072 0.38907 0.96017 0.94211

SSH, SSS, SST, and velocities 0.94340 0.94855 0.49602 0.45173 0.49095 0.44603 0.93994 0.92783

Finally, this table shows that the network is able to not only achieve large values
of A but also to achieve R values that are much larger than the P values. Combining
these results with those of Figures 3 and 4 demonstrates that the network predicts the
majority of the positive classes; i.e., it predicts the eddies correctly. However, the areal
coverage of the eddies is overestimated, which adversely affects the P values, since the
eddies are not perfectly covered by the prediction. These results are also in agreement with
the predicted semantic-segmentation maps, in which the regions of the predicted labels are
almost always larger than those of the true labels. The P values may also be lower than
theR values because of class imbalance, where the background covers a larger area than
the eddies. Moreover, a highR value with a lower P value may also be attributable to the
network’s predictions of eddies that were not labeled; i.e., either missed during annotation
or non-existent. Finally, the results also indicate that the effects of the surface variables on
P andR are similar to their effects on A and mIoU.

Figure 5 presents the neural-network predictions for each combination of the input
variables considered in this sensitivity study. This figure also includes the reference human
labels to enable straightforward comparisons of the predictions with the reference for each
case. When only a single ocean variable is used as input to the DNN, several fictitious
eddies are predicted, as indicated by the artifacts, and the areas of the predicted eddies are
overestimated. This is similar to the results of Lguensat et al., 2018 [35]. As the number of
input variables is increased, the network predictions improve, as indicated by the predicted
regions better covering the actual eddies, as given by the labels. In all but the last case,
the DNN prediction does not split the eddy boundaries correctly, as is apparent from the
continuous predictions that lump several of the labeled eddies into a single predicted eddy.
This problem was largely mitigated when the SSH, SST, SSS, and the velocities were used
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as input to the network. In that case, the predictions better delineate the eddy boundaries,
with a smaller numbers of artifacts than in the other cases.

Figure 5. Illustration of the neural network predictions (left and right columns) for DNNs trained
using the input variables indicated by the titles of each subplot, along with the true human labels
(center column). We used the same input field for all the predictions, and the same truth is repeated
in each row to make the comparison easier for each case. Here, cyclonic eddies are colored red and
the anticyclonic eddies are colored black. Note that the background and the color bars correspond to
the first ocean−surface variable indicated by the subfigure title. The velocity vector field is overlaid
on top of the scalar field whenever applicable.

4.3. Transfer Learning Using a Pre-Trained Model

Various pre-trained models are readily available for deployment for a variety of tasks, in-
cluding object detection [60], human-pose determination [61], and semantic segmentation [28].
These models are generally trained extensively on large datasets—for example, on
ImageNet [62]—which helps the network to learn a rich collection of features. These pre-
trained models can be further tuned for a particular task using a specific dataset by—for
example, in classification problems—reinitializing the input and output layers to accommo-
date the input dimensions and the output classes required by the new task of interest. Here,
we explored the use of a pre-trained ResNet50–FCN [45,63] for the semantic segmentation
of mesoscale features in the Arabian Sea using the five ocean-surface fields employed above.
The model was pre-trained on a subset of COCO train2017 using 20 categories that also occur
in the Pascal VOC dataset. This model achieves anA of 91.4% and mIoU of 60.5% on COCO
val2017. We reinitialized the input layer to accommodate five channels, corresponding to
the five ocean-surface fields. The classifier was reinitialized to predict three channels, which
correspond to the cyclonic-eddy, anticyclonic-eddy, and background classes. The model
parameters were fine-tuned by training the model using our human-annotated Arabian Sea
ocean-eddies dataset. Furthermore, the same ResNet50–FCN model was trained starting from
randomly initialized trainable parameters using the same training dataset, and the resulting
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predictions were contrasted to the reference annotations and the predictions of the U-net–PPM
and fine-tuned ResNet50–FCN.

Figure 6 shows the reference and predicted segmentation masks for the U-net–PPM,
ResNet50–FCN, and fine-tuned ResNet50–FCN. The figure shows that all the predictions
perform comparably at detecting the mesoscale eddies. The U-net–PPM predicts several
“ghost” eddies that are not present in the ResNet50–FCN predictions. In contrast, both
ResNet50–FCN predictions are smoother and have less discontinuous predictions. This
could be attributed to the ResNet50–FCN model having ∼35 million trainable parameters,
far more than the∼1 million of the U-net–PPM. The figure indicates that the ResNet50–FCN
predictions have less “ghost” eddies for the case of the pre-trained model as opposed to
the one trained starting from randomly initialized trainable parameters. The predictions
are smoother than the labels; however, small artifacts that do not resemble eddies were
noticeable in a few samples. Nevertheless, the accuracy of the model is greater than the
accuracy of the U-Net–PPM trained with all five ocean-surface variables. This indicates that
the pre-trained model possesses a number of features that can be fine-tuned to improve the
predictability of eddies.

(a) (b)

(c) (d)

Figure 6. Transfer Learning: Predicted and ground-truth segmentation maps for some randomly
selected samples. We obtained these predictions using the fine-tuned ResNet50–FCN model, with
all five ocean-surface variables as inputs to the trained model. Cyclonic eddies are colored red and
anticyclonic eddies are colored black. The color bars at the sides of each panel indicate the SSH values
in meters; (a) Reference; (b) U-Net–PPM; (c) ResNet50–FCN; (d) Pretrained ResNet50–FCN.

Figure 7 outlines the evolution of A for both cyclonic (C) and anticyclonic (AC) eddies
over time, where each marker represents the value of A at the end of an epoch. The results
indicate that the pre-trained ResNet50–FCN model is able to achieve an average A higher
than that of U-Net–PPM for all time steps. Specifically, the pre-trained ResNet50–FCN
reaches an average A of approximately 96% in less than 30 min of training, whereas the
U-Net–PPM model achieves an average A of about 95% in approximately 200 min. This
demonstrates that fine-tuning a pre-trained model can help to reduce the consumption
of computational resources for such tasks, as the computational time was reduced more
than six-fold by fine-tuning the pre-trained network. Furthermore, the randomly initialized
ResNet50–FCN was also able to achieve accuracy values larger than those of the U-net–
PPM, however, such accuracy values were achieved after about 235 min of training, which
is expected from using a large model.
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Figure 7. Comparison Learning Curves: Evolution of the pixel accuracy of the U−Net–PSPnet
model trained from a random initialization and of a pre−trained ResNet50–FCN model that has been
fine-tuned. The curves show that the pre−trained Resnet50-FCN models achieve an accuracy above
95% much faster than the U−Net–PSPnet model. Note: FT refers to fine-tuned.

4.4. Generalization to the Red Sea

We finally investigated the performance of the pre-trained model in the semantic segmen-
tation of eddies in a different eddy-rich sea, the Red Sea, using the DNN trained with data
labeled for the Arabian Sea oceanic variables. In general, the model’s performance is expected
to degrade when the inputs are changed to a different sea because of the change in the input
distributions. To detect eddies in the Red Sea, we used the fine-tuned ResNet50–FCN using
all five ocean-surface variables (SSH, SST, SSS, and the velocities) as input, as they include the
richest set of features and achieve the highest accuracy, as discussed in previous sections.

Figure 8 shows the detected-eddy segmentation masks superimposed on the SSH data
and the velocity-vector field. Since no ground-truth labels are available for the Red Sea, we
performed a qualitative visual assessment of the performance of the model. Specifically,
this figure shows that the model is able to identify most, if not all, large-scale mesoscale
eddies in the Red Sea. In comparison to those in the Arabian Sea, eddies in the Red Sea are
generally smaller and are not greatly deformed from circular shapes. The detected eddies
flank each other in the central and northern Red Sea, and their sizes can become as large
as the whole width of the basin. This is due to the effect of the large meridional density
gradient that energizes the mesoscale dynamics under the topographic constraints [64].

While some eddies are not detected by this neural network, we suspect that this may
have occurred because the resolution of the data may be too coarse to enable eddy segmen-
tation in the narrow Red Sea basin [2]. Nevertheless, the network is able to identify several
large and semi-persistent eddies that are known to exist in the central Red Sea [2,65–67]. We
expect that better performance could be achieved by retraining the DNN using additional
data labeled for the Red Sea. Another approach to mitigate the effects of this domain shift
is to perform domain adaptation to push the input distribution closer to the one on which
the DNN was trained [68,69].
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(a) (b)

Figure 8. Red Sea Predictions: Predicted semantic-segmentation maps obtained using the fine-tuned
ResNet50–FCN model. Since no ground-truth labels are available, we assessed the performance of
the model without using any domain generalization to improve the predictions. Despite the facts that
the network was not trained for the Red Sea and that the data for this narrow basin are coarse, the
network is able to predict the rough locations of the mesoscale eddies. The plot shows the cyclonic
eddies colored red and the anticyclonic eddies colored black. The scalar field shown in the plots
corresponds to the SSH values in meters; (a) Sample 1; (b) Sample 2.

5. Discussion and Conclusions

We have utilized human-annotated labels for cyclonic and anticyclonic eddies in
the Arabian Sea to train a deep neural network for the semantic segmentation of these
mesoscale features. We first trained a deep neural network (DNN) with a U-Net feature
extractor and a PPM decode head starting from random initial parameters. We explored
using only the SSH data as input to the DNN, as is commonly done in the literature, in
contrast to using multiple surface-state variables (SSH, SST, SSS, and the velocities). The
results demonstrate that using all five ocean-surface variables yields a higher accuracy for
eddy detection than using only the SSH data as input.

Accordingly, we varied the input variables systematically to assess the sensitivity of
the DNN to these inputs. Our numerical experiments showed that the accuracy of the
DNN predictions is most sensitive to the SSH and velocities, and we obtained a boost of
2–3% in accuracy when we included these variables as inputs, as opposed to using only the
SST or SSS data. We also explored the use of a transfer-learning technique for the semantic
segmentation of eddies. In particular, a ResNet50 backbone with an FCN decode head that
were pre-trained on a subset of the COCO dataset were fine-tuned by training them on
the Arabian Sea eddies dataset. The results of this experiment demonstrated that using a
pre-trained model improves the prediction accuracy by approximately 2%. In addition, a
pre-trained model reduced the training time by more than half, by simply fine-tuning the
learned convolution kernels to the dataset at hand.

Finally, we evaluated the performance of the eddy detection DNN in qualitatively pre-
dicting the eddies in the Red Sea. We used the ResNet50–FCN model that was fine-tuned on
the Arabian Sea dataset to predict the eddies in the Red Sea. The results show that the model
predicts the larger mesoscale eddies but fails to predict the smaller eddies. The performance of
this DNN could be improved by using data labeled for the Red Sea, using domain adaptation
and generalization techniques, or using higher-resolution data to train the DNN.

This work could be extended further to track or even predict the locations and shapes
of eddies. In addition, one might be interested in applying domain-adaptation and general-
ization techniques to construct a model to predict eddies on a global scale. Moreover, one
could consider examining the performance of these models when remote-sensing data is
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used as input or when higher-resolution input fields are used to capture smaller features in
the ocean. Finally, we plan to investigate an instance-segmentation approach to detect and
delineate individual eddies in the ocean.
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