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Abstract: Monitoring tropical and subtropical forest soil CO2 emission efflux (FSCO2) is crucial
for understanding the global carbon cycle and terrestrial ecosystem respiration. In this study, we
addressed the challenge of low spatiotemporal resolution in FSCO2 monitoring by combining data
fusion and model methods to improve the accuracy of quantitative inversion. We used time series
Landsat 8 LST and MODIS LST fusion images and a linear mixed effect model to estimate FSCO2

at watershed scale. Our results show that modeling without random factors, and the use of Fusion
LST as the fixed predictor, resulted in 47% (marginal R2 = 0.47) of FSCO2 variability in the Monthly
random effect model, while it only accounted for 19% of FSCO2 variability in the Daily random effect
model and 7% in the Seasonally random effect model. However, the inclusion of random effects in
the model’s parameterization improved the performance of both models. The Monthly random effect
model that performed optimally had an explanation rate of 55.3% (conditional R2 = 0.55 and t value
> 1.9) for FSCO2 variability and yielded the smallest deviation from observed FSCO2. Our study
highlights the importance of incorporating random effects and using Fusion LST as a fixed predictor
to improve the accuracy of FSCO2 monitoring in tropical and subtropical forests.

Keywords: forest soil carbon emission; multisource remote sensing fusion; land-atmosphere interac-
tions; regional earth system simulation; tropical and subtropical forests

1. Introduction

Forest soil CO2 emission (FSCO2) serves as a crucial conduit in the global carbon cycle
and exerts a significant impact on the carbon budget of terrestrial ecosystems. In recent
decades, the continuous increase in greenhouse gases in the atmosphere has changed forest
growth and productivity, resulting in the acceleration of carbon dioxide emissions from
soil to the atmosphere [1]. Therefore, timely and accurate observation of FSCO2 at large
spatial scales has significant scientific value for deeply revealing the mechanism of the
global carbon cycle and for precisely predicting future climate change.

There are many FSCO2 monitoring methods, among which the Box method is widely
used [2]. Although the automatically closed gas chamber can effectively obtain the change
of FSCO2 in time, most gas chambers still need to fix the spatial difference of FSCO2
monitoring at the regional or landscape scale. In addition, due to the lack of long-time-series
field observation of FSCO2, earth observation images cannot directly monitor the temporal
and spatial variation of FSCO2, which limits the direct prediction of FSCO2 through remote
sensing products [3]. Therefore, previous studies estimated FSCO2 indirectly through biotic
and abiotic factors, among which soil temperature is the key environmental factor to control
FSCO2 [4]. These studies mainly investigated interconnections between soil temperature
and carbon release from the land surface from different aspects [5–7].
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Remote-sensing-based land surface temperature (LST) measurement has great poten-
tial for obtaining the spatial distribution characteristics of FSCO2 at the pixel level [1,8–10].
The MODIS LST product is one of the successful examples. It is currently widely used in
monitoring large-scale FSCO2 around the world [11]. The split window algorithm, used for
inverting this product, can effectively compensate for atmospheric attenuation. However,
the limitation in spatial resolution of MODIS LST restricts its applicability at small, regional
scales. Landsat 8 addresses the shortcomings of MODIS LST products and provides an un-
precedented opportunity to improve the accuracy of LST measurement via remote sensing
inversion. Several case studies have used the split window algorithm to obtain LST from
Landsat 8 [12–15]. However, a recent report shows that the thermal band 11 of Landsat
8 is subject to relatively high levels of stray light interference, which induces caution in
using a split window algorithm [16]. Therefore, the data fusion algorithm has been used to
estimate LST from single-channel TIRS images [17–20]. Although the quality of LST data
with different temporal and spatial resolutions has been improved greatly, the mapping of
FSCO2 based on the improved MODIS and Landsat 8 LST remote sensing fusion data is
still scarce.

The aim of this study is to address the following scientific problems in estimating the
FSCO2 at high spatiotemporal scale: first, how to retrieve a high-quality spatiotemporal
data set of remote sensing-based FSCO2 observation variables; second, how to construct an
efficient estimation model using multisource satellite-based data combined with an FSCO2
model. The solution to this problem is valuable for accurately estimating the global carbon
budget, mitigating global warming, and accurately predicting future climate change.

2. Materials and Methods
2.1. Study Basin

The study area (23.67–23.96◦N, 114.03–113.75◦E) is a headwater catchment of the
Liuxihe (LXH) River basin, named the LXH Reservoir watershed, and located in the
northern part of Guangdong Province of China [21] (Figure 1). It is characterized by a
typical subtropical monsoon climate with long-term mean annual temperature of 20.3 ◦C
and precipitation of 2100 mm [22]. The rainfall is concentrated in the period from March
to September (about 80%). The rest of the months are part of the dry period in this basin,
mainly consisting of autumn and winter. The catchment covers 456.7 km2, and the altitude
ranges from about 150 m to more than 1140 m. As one of the major head water reservoir
basins in southern China, it supplies drinking water to the city of Guangzhou and thus is
an important ecological barrier in the north of Guangzhou [23]. Vegetation cover, mainly
forests, accounts for 80% (365.4 km2) of the catchment area. The main vegetation types
are broad-leaf and needle-leaf evergreen forests. We selected Chenhedong (CHD) Nature
Reserve and GuoYuan (GY) in the LXH National Forest Park as sampling points and
conducted 10 independent measurements of the FSCO2 at each.

2.2. Data Processing
2.2.1. Earth Observation Data Sets and Preprocessing

The remote sensing data employed in this study consist of Landsat 8 images and Land
Surface Temperature (LST) products derived from daily Moderate Resolution Imaging
Spectroradiometer (MODIS) images. The MODIS LST product (MOD11A2) was obtained
from the Oak Ridge National Laboratory Distributed Active Archive Center (DAAC)
(http://MODIS.ornl.gov/cgi-bin/MODIS) while the Landsat 8 images were downloaded
from the US Geological Survey (USGS) website for free (http://Landsat.usgs.gov). A total
of 70 MODIS LST products and 7 Landsat images (Table 1) with low cloud coverage in the
study region (>1%) were used.

http://MODIS.ornl.gov/cgi-bin/MODIS
http://Landsat.usgs.gov
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Figure 1. The location of the Liuxihe (LXH) watershed in Guangzhou province of China (upper left). 
The Guoyuan (GY) and Chenhe Dong (CHD) sampling sites in LXH watershed (right). The distri-
bution of chambers in each study site, base map from Google Earth (lower left). 
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11 September 
2019 0 135.06/58.8 3.34 × 10−4  0.1 774.89 1321.08 

27 September 
2019 5.9 139.15/57.0 3.34 × 10−4 0.1 774.89 1321.08 
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2019 
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Figure 1. The location of the Liuxihe (LXH) watershed in Guangzhou province of China (upper
left). The Guoyuan (GY) and Chenhe Dong (CHD) sampling sites in LXH watershed (right). The
distribution of chambers in each study site, base map from Google Earth (lower left).

Table 1. Metadata for Landsat 8 images.

Date Cloud
Cover (%)

Azimuth/Zenith
Angles of the Sun ML(10) AL(10) K1 K2

11 September 2019 0 135.06/58.8 3.34 × 10−4 0.1 774.89 1321.08
27 September 2019 5.9 139.15/57.0 3.34 × 10−4 0.1 774.89 1321.08

29 October 2019 1.5 151.85/47.8 3.34 × 10−4 0.1 774.89 1321.08
14 November 2019 0.3 154.61/43.4 3.34 × 10−4 0.1 774.89 1321.08
30 November 2019 52.3 155.31/39.9 3.34 × 10−4 0.1 774.89 1321.08

17 January 2020 91.3 149.15/38.2 3.34 × 10−4 0.1 774.89 1321.08
18 February 2020 0 141.45/45.3 3.34 × 10−4 0.1 774.89 1321.08

ML(10) is the multiplicative rescaling factor; AL(10) is the additive rescaling factor; K1 and K2 are thermal constants;
Cloud cover represents the cloud coverage of a scene of Landsat 8 image.

We collected MODIS LST products of day and night spanning from 28 September
2019 to 4 January 2020. Filtering and clipping of images were complemented before usage.
Landsat 8 images without cloud cover in the study area were collected for the study period
(row 122 and path 43). In order to counteract the influence of stray light on the thermal
band 11 of Landsat 8, this study utilized thermal band 10 (with a spatial resolution of 100 m)
for estimating LST.

2.2.2. Field-Observed Data and Preprocessing

The field measurements of FSCO2 were conducted using a closed chamber in each
study site (GY and CHD) during the study period (Figure 1). FSCO2 at an interval of
two times per month for each site was measured using an automatic cavity ring-down
spectrophotometer [22]. There was no special setting for the instrument in this study, and
the default company settings are kept for reference [24].

Furthermore, in situ measurements of soil temperature, soil moisture, air temperature,
and precipitation were also conducted. Specifically, soil temperature (ST) and moisture
(SM) were measured at soil depths of 5–10 cm in the vicinity of the chamber sampling site
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using a heat dissipation probe (TDP, Dynamax Inc., Houston, TX, USA) at three different
locations [22]. The mean values of these variables were obtained by averaging repeated
measurements at each site.

2.3. Methods

Figure 2 illustrates the specific technical methods used in this study. To improve the
precision and accuracy of monitoring the carbon release flux from forest soils in the study
area, high-quality spatiotemporal remote sensing fusion images were obtained, and the
LXH headwater watershed in the humid region of South China was selected as the research
area. High temporal and spatial remote sensing forest soil CO2 emission flux parameters
were retrieved, and the new fusion algorithm and the CO2 emission flux estimation model
were effectively coupled to construct the multi-state variable optimization model.
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Figure 2. The flowchart of the research.

Finally, the field measurements of FSCO2 and high-quality spatiotemporal remote
sensing parameter sets of carbon flux were used for accuracy assessments of the forest soil
CO2 emission in different models, which improved the accuracy and efficiency of regional
CO2 emission flux estimation.

2.3.1. Landsat 8 LST Calculation

In order to analyze the data effectively, we used a set of mathematical equations to
process the raster images using a raster image calculator (Raster calculation tool within
ArcMap 10.8). Landsat band 4, band 5, and thermal band 10 were used. Band 4 and band
5 used for calculating the Normalized Difference Vegetation Index (NDVI). There are six
steps for estimating Landsat 8 LST [25–27] and they are described below.
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(1) The calculation of top-of-atmosphere radiance (TOA): The digital number (DN) of
each pixel in the original Landsat 8 images was used to calculate the TOA radiance of
the corresponding pixel according to the following formula provided by USGS:

TOAλ = ML × Qcal + AL (1)

where TOAλ represents the TOA (W m−2 srad µm); ML is the band 10-specific multi-
plicative rescaling factor; Qcal is the DN values of band 10; and AL corresponds to the
band-specific additive rescaling factor. The values for the above required parameters are
available from the metadata file.

(2) The conversion of TOA to brightness temperature (BT): The TOA radiance was con-
verted to BT by Equation (2):

BT = K2/(ln((K1/TOA) + 1))− 273.15 (2)

where K2 and K1 represent the specific band thermal conversion constants, respectively. To
obtain results in degrees Celsius, the radiation temperature needs to be adjusted by adding
absolute zero (about—273.15 ◦C).

(3) The NDVI calculation: The calculation of NDVI is important because the vegetation
proportion (Pν) is highly related to NDVI and the emissivity (ε) that is related to Pν

can be calculated.

NDVI =
(b5 − b4)

(b5 + b4)
, (3)

where NDVI is the Normalized Difference Vegetation Index and b5 and b4 represent the
fifth band (0.845–0.885 µm) and the fourth band (0.630–0.680 µm) of the Landsat 8 images,
respectively.

(4) The vegetation proportion calculation:

Pν = square
(

(NDVI − NDVImin)

(NDVImax − NDVImin)

)
(4)

where NDVImin is the minimum value of NDVI and NDVImax is the maximum value of
NDVI.

(5) Emissivity calculation:

ε = 0.004 × Pν + 0.986 (5)

(6) LST estimation:

LST =
BT(

1 +
(

0.0015×BT
1.4388

)
× ln(ε)

) (6)

All calculations were completed using the ArcGIS raster calculation tools.

2.3.2. Field Measurements and Validation

The sampling sites were ensured not to be covered by vegetation before measurement,
and the chamber was required to be close to the ground to ensure accurate reading of
carbon flux. We inserted the chamber into the surface soil to a depth of 3–5 cm. The
instrument recording time for each chamber was adjusted to 1 s, and the measurement time
interval was 2–5 min, repeated five times. Due to the difference in daily variation of FSCO2,
the measurements between 10:00 AM to 3:00 PM (local time) were selected and used as
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the field monitoring FSCO2 data in this study. The final FSCO2 calculation equation [28] is
as follows:

FSCO2 = ρ × V
S
× ∆C

∆T
(7)

where the FSCO2 is the carbon release between the land surface and air in forest soil
(g C·m−2·day−1); ρ is the density of CO2; S and V represent the area (m2) and the volume
(m3) of the chamber, respectively; ∆C is the changing trend of CO2 concentration in soil
with time; and ∆T is the time interval. We randomly selected 70% of FSCO2 data for model
operation, and the remaining 30% were used for model validation.

2.3.3. STI-FM Fusion Model and Validation

The STI-FM model is a fusion method proposed by Khaled hazaymeh in 2015 [17].
The aim of the model is to use two different sources of satellite remote sensing images to
generate high-quality spatiotemporal resolution fusion products. The model is based on
two assumptions. First, there is a linear relationship between two inconsistent MODIS LST
images; and second, the LSTs obtained from Landsat 8 and MODIS images at a specific time
(such as T1 or T2) are similar. The core idea of the model is to use the linear relationship
between the two MODIS LST products to generate Landsat 8 LST prediction data of high
time series. In other words, the model uses the linear relationship between the MODIS LST
in T1 and T2 to generate a synthetic Landsat 8 LST image in T2 using the Landsat 8 LST
image in T1.

MODIS(T2) = a × MODIS(T1) + c (8)

Synth_L8(T2) = a × L8(T1) + c (9)

where MODIS(T2) and MODIS(T1) are two consecutive MODIS LST images; a and c are
the slope and intercept between the MODIS(T2) and MODIS(T1), respectively; L8(T1) is
the Landsat 8 image collected from the same time with MODIS(T1); and Synth_L8(T2) is
the fusion image in T2 at the same time and spatial resolution as L8(T1).

Hazaymeh applied the STI-FM model to the semi-arid area of the Middle East and
Jordan [17]. When applying it to the subtropical monsoon climate region, it is necessary to
verify the applicability of the model. Previously, scholars applied the model to the Great
Bay area of Guangdong, Hong Kong, and Macao and verified its feasibility [16]. The model
was performed in the Google Earth Engine (GEE) platform, using R language and ArcGIS
10.8 software. The accuracy of the model is evaluated by assessing the adjusted R2 and root
mean square error (RMSE) using R language.

R2 =

 ∑
(

L(t) − L(t)

)(
S(t) − S(t)

)
√(

∑ L(t) − L(t)

)2
√(

∑ S(t) − S(t)

)2


2

(10)

RMSE =

√√√√∑
[
S(t) − L(t)

]2

n
(11)

where L(t) is the actual Landsat 8 LST value; S(t) is the Landsat 8 LST value synthesized by
the model; L(t) is the average value of the actual Landsat 8 LST; S(t) is the average value of
Landsat 8 LST synthesized by the model; and N = 10,000.

2.3.4. FSCO2 Estimation and Validation

The estimation of FSCO2 based on remote sensing data involves the following three
steps: Firstly, a normality test is conducted on the field-measured FSCO2 data and the
fused LST product test to explore seasonal, monthly, and daily changes of FSCO2. Then,
the constrained maximum likelihood method is applied to establish three linear mixed
effect models under different time scales (season, month, and day). The linear mixed



Remote Sens. 2023, 15, 1415 7 of 19

models include the null model, where the random intercept as a fixed predictor is grouped
according to the level of daily and monthly factors, and the Daily random effect model,
where the fusion of remote-sensing-derived LST is used as a fixed predictor and the daily
factor level is used as a random intercept effect. The fusion remote sensing LST as a fixed
predictor plus the daily factor level provides a random intercept effect; the composition of
the Monthly random effect model and Seasonally random effect models are similar to that
of the Daily random effect model, but the monthly and seasonal factor levels are used as
the random intercept effects, respectively, in the two models. Lastly, the three models were
compared with their corresponding null models utilizing the Akaike information criterion
(AIC) and Bayesian information criterion (BIC) to select the best optimum model.

Marginal R2 (mR2) and conditional R2 (cR2) were used to evaluate these models in
estimating seasonal, monthly, and daily FSCO2 [29]. Marginal R2 quantifies the proportion
of variance explained by the fixed prediction of Landsat 8 LST, while condition R2 evaluates
the proportion of variance captured by the fixed prediction of Landsat 8 LST and the
seasonal, monthly, and daily factor levels (random factors). The accuracy and efficiency
of the Daily random effect model, Monthly random effect model, and Seasonally random
effect model were evaluated using the validation data set. The accuracy of these models
was evaluated by assessing their adjusted R2 and RMSE.

3. Results
3.1. Field-Measured FSCO2 and Related Environmental Variables Analysis

Figure 3 shows the seasonal and daily changes in FSCO2 in the CHD and the GY.
It is evident that there are significant seasonal differences in FSCO2 at both study sites,
with higher values in autumn than in winter (Figure 3 CHD Season and GY Season).
Additionally, the average FSCO2 values in Site site GY are smaller than that in site CHD,
indicating that FSCO2 in the study area varies both temporally and spatially. When
abnormal values are excluded, the FSCO2 in GY during the dry season ranges from 0.15
to 39.36 g C m−2 day−1, with an average of 7.83 g C m−2 day−1. In contrast, the FSCO2 in
CHD during the dry season ranges from 0.97 to 41.09 g C m−2 day−1, with an average of
12.73 g C m−2 day−1. This indicates that the FSCO2 values in the study sites are spatially
heterogeneous, depending on time and space.
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Figure 4 shows the relationship between the field-measured FSCO2 and the soil
respiration, topsoil temperature, air temperature, and relative humidity. Results show
that the correlation coefficients between the FSCO2 and surface air temperature in the GY
and CHD sites are 0.46 (p < 0.001) and 0.70 (p < 0.001), respectively. The topsoil temperature
in the GY and CHD sites has stronger positive correlation with the FSCO2 (R2 = 0.72 and
R2 = 0.70) at the 0.001 significance level. FSCO2 is also significantly correlated with the
relative humidity in GY; the correlation coefficient is 0.4. The results also show that changes
in soil respiration do not have a noticeable impact on the level of FSCO2, and that soil
temperature and near-surface air temperature are crucial environmental factors affecting
the FSCO2 in the subtropical forest during the dry season.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 4. Relationship between the field-measured FSCO2 and abiotic variables (SR: Soil respiration, 
TC Soil: Topsoil temperature, TAmbient-Avg: Daily average near-surface temperature, RH: relative 
humidity) in GY and CHD. 

3.2. Multisource Remote Sensing LST Fusion 
3.2.1. Fusion LST Datasets and Accuracy Assessment 

Figure 5A shows a qualitative comparison of Landsat 8 LST and Fusion LST images 
on 28 September 2019, highlighting their similarity in features. The study also investigated 
LST at three different elevations during the study period and found that the Fusion LST 
image accurately predicted LST in variable topographic conditions. Histograms were gen-
erated for actual Landsat 8 LST and Fusion LST images for the entire study area and re-
vealed their similarities (Figure 5B). For quantitative evaluation, Fusion LST and MYD 
LST of the entire study area were plotted on 28 September 2019, and further Fusion LST 
and topsoil temperature in sampling chamber points were plotted during the study period 
(Figure 5C,D). Strong relationships were found between the variables of interest, with R2 
values of 0.77 and 0.60, and RMSE values of 0.33 and 2.24, respectively. Additionally, the 
close relationship between the regression line of MYD-LST and Fusion LST and the 1:1 
line indicates a strong correlation between the two datasets.  

Figure 4. Relationship between the field-measured FSCO2 and abiotic variables (SR: Soil respiration,
TC Soil: Topsoil temperature, TAmbient-Avg: Daily average near-surface temperature, RH: relative
humidity) in GY and CHD.

3.2. Multisource Remote Sensing LST Fusion
3.2.1. Fusion LST Datasets and Accuracy Assessment

Figure 5A shows a qualitative comparison of Landsat 8 LST and Fusion LST images
on 28 September 2019, highlighting their similarity in features. The study also investigated
LST at three different elevations during the study period and found that the Fusion LST
image accurately predicted LST in variable topographic conditions. Histograms were
generated for actual Landsat 8 LST and Fusion LST images for the entire study area and
revealed their similarities (Figure 5B). For quantitative evaluation, Fusion LST and MYD
LST of the entire study area were plotted on 28 September 2019, and further Fusion LST
and topsoil temperature in sampling chamber points were plotted during the study period
(Figure 5C,D). Strong relationships were found between the variables of interest, with R2

values of 0.77 and 0.60, and RMSE values of 0.33 and 2.24, respectively. Additionally, the
close relationship between the regression line of MYD-LST and Fusion LST and the 1:1 line
indicates a strong correlation between the two datasets.



Remote Sens. 2023, 15, 1415 9 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. Comparison between the Fusion LST and actual Landsat 8 LST at different altitudes (DEM 
= 498 m, 262 m, 1040 m) of study area on 28 September 2019 (A). The histogram plot of Fusion LST 
and Landsat 8 LST (B). Relationship between the MYD-LST and Fusion LST (C) and relationship 
between the field based topsoil temperature and Fusion LST (D). 

3.2.2. The Spatiotemporal Variations of LST in Landsat 8 LST, MODIS LST and Fusion 
LST 

Spatial variations of LST show that the distribution of FSCO2 has significant spatial 
patterns in all three multisource remote sensing LST images in different study periods and 
that surface topography is the major factor responsible for the spatial variations of FSCO2: 
as the altitude rises, the LST decreases. The LST variations also significantly differ during 
different seasons of the year. The monthly mean temperatures of September, October, and 
December during the dry season are 25 °C, 20 °C, and 15 °C in the study region (Figure 
S1), respectively. Moreover, compared with the MODIS LST (500 m), the Fusion LST (100 
m) has significantly higher spatial resolution, which improved markedly the FSCO2 esti-
mation at large regional scale. The accuracy of fusion LST data satisfied the conditions for 
simulating FSCO2. 

Figure 6 shows the spatiotemporal changing patterns of LST in autumn, winter, and 
the dry seasons as detected by Landsat and MODIS images and Fusion LST products of 
the study area. The figure illustrates that there is considerable variation in the accuracy of 
slope when using multisource satellite remote sensing products. The changing trends of 
LST at the pixel level obtained using Landsat images have higher spatial resolution, but 
the trend analysis is not accurate due to the low time resolution. This suggests that using 
a combination of satellite imagery from different sources can improve the accuracy of LST 
mapping, but the low time resolution of the images may still affect the accuracy of the 
results. 

Furthermore, Figure 6 shows the trends of LST in the subtropical forests in different 
seasons. The changing slopes of LST in winter are larger than in autumn, which is likely 

Figure 5. Comparison between the Fusion LST and actual Landsat 8 LST at different altitudes (DEM
= 498 m, 262 m, 1040 m) of study area on 28 September 2019 (A). The histogram plot of Fusion LST
and Landsat 8 LST (B). Relationship between the MYD-LST and Fusion LST (C) and relationship
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3.2.2. The Spatiotemporal Variations of LST in Landsat 8 LST, MODIS LST and Fusion LST

Spatial variations of LST show that the distribution of FSCO2 has significant spatial
patterns in all three multisource remote sensing LST images in different study periods and
that surface topography is the major factor responsible for the spatial variations of FSCO2:
as the altitude rises, the LST decreases. The LST variations also significantly differ during
different seasons of the year. The monthly mean temperatures of September, October,
and December during the dry season are 25 ◦C, 20 ◦C, and 15 ◦C in the study region
(Figure S1), respectively. Moreover, compared with the MODIS LST (500 m), the Fusion LST
(100 m) has significantly higher spatial resolution, which improved markedly the FSCO2
estimation at large regional scale. The accuracy of fusion LST data satisfied the conditions
for simulating FSCO2.

Figure 6 shows the spatiotemporal changing patterns of LST in autumn, winter, and
the dry seasons as detected by Landsat and MODIS images and Fusion LST products of
the study area. The figure illustrates that there is considerable variation in the accuracy
of slope when using multisource satellite remote sensing products. The changing trends
of LST at the pixel level obtained using Landsat images have higher spatial resolution,
but the trend analysis is not accurate due to the low time resolution. This suggests that
using a combination of satellite imagery from different sources can improve the accuracy
of LST mapping, but the low time resolution of the images may still affect the accuracy of
the results.
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Furthermore, Figure 6 shows the trends of LST in the subtropical forests in different
seasons. The changing slopes of LST in winter are larger than in autumn, which is likely due
to the significant decrease in LST in subtropical forests during the winter season. The spatial
distribution of the trend variance in LST reveals distinct patterns over different periods.
Specifically, the results indicate that LST in high-altitude areas differs more significantly
across space compared with low-altitude areas. This is likely because the forest canopy in
high-altitude areas is denser than in low-altitude areas, resulting in LST being more similar
to near-surface air temperature. As a result, the changing dynamics of LST in high-altitude
areas are more significant than in low-altitudinal areas.

3.3. FSCO2 Simulation
3.3.1. The Construction of the Linear Mixed Based FSCO2 Inversion Model

The similarities in variance between the Fusion LST variable and residual variance
across different months indicate that the changes in Fusion LST are mainly caused by
random factors rather than by other fixed factors (Table S1). The degree of change in
Fusion LST across different months is relatively small (0.04) in the observed data, and
this difference is mainly due to random error, suggesting that the variations in Fusion
LST between months are mainly caused by random factors such as measurement error.
Additionally, the differences in Fusion LST between months account for 46.8% of the total
variability in the data, and the remaining variability can be explained by random errors in
the model.
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For the fixed effect, the slope parameter of 0.21 and the intercept of 0.54 suggest that
there is a linear relationship between the independent and dependent variables. The data
indicate that there is a significant difference (p < 0.001) in mean Fusion FSCO2 between
measurements taken from September to January in the dry season. Additionally, the
variance in Fusion LST within months is relatively low (0.03) compared with the variance
between autumn and winter (0.05). This suggests that there is less variation in Fusion LST
within each month than between autumn and winter. It is noticeable that the variation
of Fusion LST by month accounted for 34.5% of the error left in the model, indicating
that when the predictor variable (Fusion LST) is grouped by autumn and winter, there is
no significant difference in FSCO2 measurement between autumn and winter. This also
suggests that the Fusion LST model does not vary significantly between these two seasons.
It means that the model is effective in explaining the variance in Fusion FSCO2 between
months, but less effective in explaining the variance between autumn and winter (Table S2).

The variance in Fusion LST between days was high (variance = 0.07) compared with
that within months (variance = 0.007). This suggests that there is more variation in Fusion
LST between days than within each month. The variation of Fusion LST by day accounted
for 9.72% of the error left in the model. For the fixed effect, the slope parameter was 0.13
while the intercept was 0.48. This suggests that there is a linear relationship between the
independent and dependent variables, but the slope of 0.13 is relatively small, which means
that the change in dependent variable is not large for one unit change in the independent
variable. The intercept is 0.48, which means when the independent variable is zero, the
dependent variable has a value of 0.48. The result also states that there is no significant
difference (p < 0.42) in mean Fusion FSCO2 measurements. This means there is not enough
evidence to show that a meaningful difference in the mean Fusion FSCO2 measurements
between different groups or conditions exists. In other words, it suggests that the model
is not effective in explaining the variance in Fusion FSCO2 measurements between days
and within months, and that the data do not provide enough evidence for a meaningful
difference in the mean Fusion FSCO2 measurements between different groups or conditions
(Table S3).

3.3.2. Model Validations

Table 2 shows the performance of the Daily random effect model, Monthly random
effect model, and Seasonally random effect model in comparison with their respective null
models and in comparison with each other. The results indicate that the Daily random
effect model and Monthly random effect model comparatively have lower AIC and BIC
values than the Seasonally random effect model. This suggests that the Daily and Monthly
models have better explanatory power and are more parsimonious than the seasonal
model. Meanwhile, the Daily random effect model and Monthly random effect model were
significantly improved over the intercept-only model.

Table 2. Evaluation of linear mixed effect models, outlined by random intercept and Fusion LST
segmented by day (between 28 September 2019 to 4 January 2020), month (September, October,
November, December, and January), and season (Autumn, Winter and Dry) of the year. Models
were assessed using the Akaike information criterion (AIC), Bayesian information criterion (BIC), the
p-value of a chi-squared test, and both marginal and conditional R-squared (mR2 and cR2).

Model Type Model Description AIC BIC p-Value mR2 cR2

None random effect
FSCO2~1 + (1|day) - - -

FSCO2~1+ (1|month)
FSCO2~1 + (1|season) - - -

Daily random effect FSCO2~LST + (1|day) 220.75 208.99 0.19 0.904
Monthly random effect FSCO2~LST + (1|month) −34.76 −23.00 <0.001 0.47 0.553
Seasonally random effect FSCO2~LST + (1|season) 984.47 996.24 <0.217 0.07 0.353
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The results of a statistical analysis of three different models indicate that the use of fixed
predictors (such as Daily, Monthly, and Seasonally) can explain variations in the dependent
variable (FSCO2) (Table 2). For example, the three models performed differently in terms
of how well their fixed predictors (mR2) or combination of fixed predictors and random
factors (cR2) explained the variations in FSCO2. The fixed predictor of the Daily random
effect model captured 19% of the variability in FSCO2, the Monthly random effect model
explained 47%, and the Seasonally random effect model explained 7%. However, when the
proportions of variance captured by fixed predictors and random factors were combined,
the Daily random effect model performed better than the Monthly and Seasonally random
effect models. The former could explain 90.4% of the total variance in the model, while the
Monthly random effect model and Seasonally random effect model explained only 55.3%
and 35.3%, respectively. It is noteworthy that the Daily random effect model and Seasonally
random effect model do not deviate from the assumption of common variance of linear
regression models. A likelihood-ratio test showed that there was no statistically significant
difference between a heteroscedastic model and each of the Monthly random effect model,
Daily random effect model, and Seasonally random effect model.

A detailed analysis of the results showed that the discrepancies between the esti-
mated values and the actual observed FSCO2 varied depending on which model was used
(Figures 7 and 8). This indicates that the three models had different levels of accuracy
in explaining the variations of the dependent variable of FSCO2. Before FSCO2 reached
0.5 g C m−2/day−1, the Daily random effect model overestimated FSCO2. When FSCO2
reached 0.75 g C m−2/day−1 in the Monthly random effect model, FSCO2 values were
estimated properly in the Seasonally random effect model. Consequently, the Daily random
effect model produces an RMSE of 0.22, while the RMSE is 0.28 in the Monthly random
effect model and 0.9 in the Seasonally random effect model. Although the Daily random
effect model and the Monthly random effect model exhibited similar RMSE, the Daily
random effect model demonstrated a stronger correlation between the estimated and ob-
served FSCO2 than the Monthly random effect model (adjusted R2 = 0.44, 0.9, and 0.19 for
the Daily random effect model, Monthly random effect model, and Seasonally random
effect model, respectively) (Figure 7). The Monthly random effect model that performed
optimally had an explanation rate of 55.3% (conditional R2 = 0.55 and t value > 1.9) for
FSCO2 variability and yielded the smallest deviation from observed FSCO2. While all three
models have biases, the Taylor diagram for the monthly model is closer to the observed data
points (Figure 8D). The quantiles of both the monthly and daily models have lower errors
(Figure 8A–C), which indicates that they have strong predictive performance. Overall, the
results suggest that the Monthly random effect model is the best model and can explain the
most variation in the dependent variable of FSCO2. It also adheres to the assumption that
the variance of the errors is constant across all levels of the independent variable in a linear
regression model.
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4. Discussion
4.1. Spatial Heterogeneity of FSCO2 Variations and Relationship between the Abiotic Factors

Based on the linear mixed effect models (e.g., Monthly random effect model), we
mapped FSCO2 spatial distribution during the study periods, and further calculated the
pixel-based mean and slope values of FSCO2 in the dry, autumn, and winter seasons to
understand the spatiotemporal distribution characteristics of FSCO2 in the subtropical
region during the dry season (Figure 9). The mean FSCO2 values in different seasons
have small FSCO2 in the north and center of the study areas compared with other areas.
However, the mean FSCO2 is variable in different periods. The highest FSCO2 occurred
in Autumn and Winter. The variation trends of FSCO2 also have significant variation in
different study periods, and the changing dynamics is the highest in autumn compared to
other periods.

The predicted FSCO2 and abiotic factors have significant relationships in dry seasons.
Moreover, the degree of relevance is different in GY and CHD. Figure 10 shows that
predicted FSCO2 and topsoil temperature and near-surface air temperature have significant
positive relationships; however, the relationship between the FSCO2 and soil respiration is
very weak in the GY site, while no significant relationship exists in the CHD site. Moreover,
the correlation coefficients (p < 0.001) in the GY site were significantly higher than those in
the CHD, illustrating that topography influences the relationship between the FSCO2 and
abiotic environmental factors.
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4.2. Spatiotemporal Dynamics of Soil CO2 Efflux of Subtropical Forest in Dry Seasons

According to the results, the FSCO2 during the dry season may offset a significant
amount of CO2 assimilated during the growing season, potentially accounting for 3–50% of
annual carbon emissions. Therefore, FSCO2 in the dry season is crucial to determine the
annual carbon cycle [4,22,30,31]. In our study, the subtropical forest in dry seasons was
targeted for using the remote sensing fusion method to acquire high-quality spatiotem-
poral products of LST and to estimate FSCO2 in dry seasons. Our results indicated that
FSCO2 trended downward from 28 September to 4 January of the following year, which
is consistent with the results of Chen et al. [22], who concluded that FSCO2 has distinct
variation during the dry season. Our results further revealed the spatiotemporal variability
of FSCO2 in dry seasons at high spatiotemporal resolutions, and significantly improved
the distribution accuracy of FSCO2 estimation. For example, at the temporal scale, we esti-
mated daily FSCO2 in the LXH reservoir basin. At spatial scales, we estimated 100 m spatial
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resolution of FSCO2 while significantly decreasing mixed-pixel uncertainty that would
arise from coarse-spatial-resolution images. In addition, our estimated mean maximum
and minimum values of FSCO2 in the autumn, winter, and dry seasons are lower than the
estimated values by Chen et al. [22]. This discrepancy could be due to the following two
reasons. First, there is a difference in the data sources for FSCO2 estimation. Chen et al. [22]
used MODIS images at coarse 500 m spatial resolution that may have contained many
mixed pixels that biased the true estimation of FSCO2. Second, Chen et al. [22] assumed
that the FSCO2 estimation values were affected by plant productivity and soil moisture
but not land surface temperature. In our study, we aimed to mainly use the land surface
temperature to improve the inversion accuracy of FSCO2 estimation at high temporal and
spatial resolutions at regional scales. Nevertheless, our future study will add other biotic
and abiotic factors, such as soil moisture and plant productivity, to further improve the
model’s accuracy. Moreover, our results revealed that the long spatiotemporal dynamics of
FSCO2 experience daily, monthly and seasonal variability.

4.3. Remote Sensing Based Soil CO2 Efflux Inversion

Remote sensing products are of great potential for the estimation of FSCO2 emission
at long-time and large spatial scales [32]. Earth observation technology allows for the
collection of data over large areas and over long time periods, making it well-suited for
monitoring and estimating emissions at regional or global scales. Additionally, the use
of remote sensing data can help to reduce the cost and logistic challenges associated
with ground-based measurements. Freely accessible remote sensing images like Landsat,
MODIS, and ASTER were commonly used in previous studies for estimating FSCO2 [10,32,
33] and obtained a relatively optimistic accuracy in LST (Table 3). Wu et al. [3] reported
long-time-series measurements of FSCO2 using the relationship between the FSCO2 and
MODIS LST. Richard et al. [32] used nighttime and daytime MODIS LST data to monitor
the FSCO2 for shorter time periods. Satellites equipped with thermal infrared detectors can
be a valuable tool for measuring soil temperature at a large spatial scale, particularly in
forested areas. This method can provide more accurate and extensive understanding of land
surface temperature, and its potential impact on the environment, by circumventing the
limitations of traditional in situ methods. It provides a more efficient and comprehensive
approach to monitor soil temperature at landscape or ecosystem scales [3]. Richard et al. [32]
assumed that satellite-remote-sensing-based LST values obtained from monitoring of the
forest canopy can reflect forest canopy temperature. The forest canopy size plays a crucial
role in determining the accuracy of LST estimation, as the heat retention capacity of
the dense canopy during peak growth seasons is contingent on the air conditions in its
immediate vicinity. Therefore, with an increase in forest canopy area, LST is close to the air
temperature [32]. In our study, the forest canopy of the entire study area was greater than
98%. The Landsat-MODIS LST inversion therefore has a relatively positive relationship
with air temperature, as shown in Figure 10.

Multisource remote sensing image fusion technology improves the quality of data
by effectively fusing data from different sources and features, and by leveraging the
unique advantages of various remote sensing data in terms of both spatial and temporal
resolution. The calibration and verification of the fusion results can usually be achieved by
using ground observation data. When it comes to using satellite technology to measure
temperature on the earth’s surface, we can obtain more accurate results by combining
information from several different sources. We can achieve better precision by analyzing
images that were acquired at different points in time, from varying perspectives, and at
varying levels of radiation intensity [32]. In this study, that is why we used both Landsat
and MODIS LST products to estimate high spatiotemporal FSCO2 at basin scales.
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Table 3. Previous studies of remote-sensing-based soil CO2 efflux monitoring during 2000–2022.

Authors Sites Method
Satellite
Data and

Resolutions

Inversion Spatial
Scales

Highest
Inversion
Accuracy

Published
Year

Kimball et al. [34] Tundra forest terrestrial carbon flux
(TCF) model

MODIS and
AMSR-E Continent scale 0.89 2009

Huang et al. [35] Broadleaf forest site
(Midwest USA) Statistical model MODIS

LST/500 m Basin scale 2014

Wu et al. [3] Canadian boreal
black spruce stand Linear regression model MODIS LST &

NDVI/500 m Landscape scale 0.78 2014

Huang et al. [11] FLUXNET forest Remote-sensing-based
model

MODIS
LST/500 m Site scale 2015

Huang et al. [36] Croplands support vector regression Landsat 8 images County level 0.73 2017

Ben
Bond-Lamberty

[37]

Artificial neural network
model Global scale 2018

Crabbe et al. [32] Forest Linear mixed model Landsat 8
LST/30 m Patch scale 2019

Warner et al. [38] Bamboo forest Quantile-based digital soil
mapping DEM/2 m Basin scale 0.64 2019

Huang et al. [39] Global biome-specific statistical
model MODIS/1 km Global scale 2020

Xu et al. [40] Forest Improved downscale
model

MODIS, Landsat
8 OLI/TIRS Regional scale 0.47 2020

Chen et al. [22] Tropical forest Random forest MODIS/500 m Basin scale 0.88 2021

Burdun et al. [33] Peatlands Model Landsat/MODIS
LST/1 km Regional scale 0.67 2021

4.4. Accuracy Analysis of Remote Sensing Modeling for FSCO2 Estimation

The high spatiotemporal simulation of the carbon flux between the surface and the
atmosphere depends heavily on the field in situ observation of carbon flux. However,
regional or general climate models ignore scale issues when monitoring carbon fluxes at a
coarser scale. This limits our large-scale and high spatiotemporal retrieval of carbon flux at
the soil-air interface. Our method provides an opportunity to estimate large-scale FSCO2
from surface temperatures determined from the fusion of multisource satellite imagery.

The accuracy of FSCO2 estimation based on satellite remote sensing images is subject to
several factors, including satellite access time, specific distribution characteristics, regional
topographic conditions, vegetation coverage, soil and air temperature, etc. [32]. The
assessment of soil FSCO2 in this study shows that soil moisture and temperature in the
subtropical forests in the dry season are the main drivers of FSCO2 change. It also indicated
that the relationship between soil moisture and FSCO2 is more complex than the relationship
between soil temperature and FSCO2. In other words, different degrees of soil wetness
may apply different effects on the FSCO2 efflux. The soil moisture (<50%) has a positive
effect on FSCO2 efflux for the subtropical forests in the dry season [22]. Another study
found that the accuracy of estimating vegetation indices such as NDVI, LAI, and LST from
satellite imagery is subject to soil moisture. The models developed in this study took this
into account [3]. Previous studies have shown that oversaturated soil has a limiting effect
on soil CO2 release [3,32,33]. It is generally recognized that soil moisture in subtropical
humid regions is relatively high and rainfall is sufficient. Therefore, for this reason, we
have chosen the dry season (September to January of the following year) as the observation
period. There was no rain in the study area during the study period, and the average soil
moisture of the two sites was 18.10% and 20.99%, both less than 50%. Therefore, there
was a positive correlation between FSCO2 and soil moisture. Specifically incorporating
soil moisture as a model parameter into a monthly model (Monthly random effect model)
(at least when considering summer FSCO2 variability) is necessary. However, the lack of
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high-quality soil moisture data with high spatial resolution limited this study. Therefore,
improving the model using soil moisture from satellite remote sensing data is needed in
future research.

4.5. Limitations and Future Works

This work attempts to deal with the accurate calculation of FSCO2 at large spatial
scales in a subtropical forest based on high spatiotemporal LST inversions. In other words,
it provides an opportunity to estimate FSCO2 at large spatial scales based on the surface
temperature as determined by satellite remote sensing images. Although remote sensing
fusion technology enables high temporal resolution for FSCO2 estimation, there are still
several limitations that need further addressing. Firstly, field measurement of FSCO2 used
chambers at five different times a day. LST is very sensitive to the air and soil temperature,
and although we acquired quite satisfactory results from models, a better method should
use the data with timing corresponding well with the satellite accessing time. Secondly, this
paper collected observation data from two sites over a period of five months. The limited
duration of the observations may have resulted in a relatively low accuracy of the model.
Future research will attempt to improve the model by expanding the spatial and temporal
scale of the observation data.

5. Conclusions

Utilizing satellite remote sensing images for FSCO2 estimation has significance for
accurate calculation of the carbon budget balance. Accurate spatiotemporal FSCO2 esti-
mation at regional scales is an urgent issue that needs immediate solutions for regional
climate models. In this research, we estimated soil CO2 efflux using a combination of
Landsat and MODIS imagery and constructed linear mixed effect models that account for
daily, monthly, and seasonal variability in Landsat-MODIS Fusion LST in the dry season.
By using daily, monthly, and seasonal FSCO2 measurements as separate random factors
in the linear mixed effect model, three different FSCO2 models were built. Our findings
revealed that the monthly random effect model, which utilizes Landsat 8 LST and MODIS
LST fusion images, can best explain the forest FSCO2 dynamics at a regional scale. There
is a strong positive correlation between the predicted FSCO2 and abiotic environmental
factors such as air and soil temperature. Future research can enhance these models by
incorporating other biotic and abiotic factors such as plant productivity, soil moisture, etc.
The estimation of soil CO2 emissions from subtropical forests based on remote sensing is
still in its infancy, and, to a large extent, this study deepened the knowledge of this field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15051415/s1, Figure S1: Spatial distribution of LST derived
from multisource remote sensing images in different study periods of subtropical forests in dry
seasons. First line is Landsat 8 LST, second line is MODIS LST, third line is Landsat-MODIS Fusion
LST; Table S1: Linear mixed effect of which Fusion LST estimate grouped by month (random intercept
effect) of observation was used to explain variability in soil FSCO2 subtropical forests; Table S2:
Linear mixed effect of which Fusion LST estimate grouped by season (random intercept effect) of
observation was used to explain variability in soil FSCO2 subtropical forests; Table S3: Linear mixed
effect of which Fusion LST estimate grouped by day (random intercept effect) of observation was
used to explain variability in soil FSCO2 subtropical forests.
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