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Abstract: Doppler weather radar is an essential tool for monitoring and warning of hazardous
weather phenomena. A large aliasing range (ra) is important for surveillance but a high aliasing
velocity (va) is also important to obtain storm dynamics unambiguously. However, the ra and va are
inversely related to pulse repetition time. This “Doppler dilemma” is more challenging at shorter
wavelengths. The proposed algorithm employs a CNN (convolutional neural network), which is
widely used in image classification, to tackle the velocity dealiasing issue. Velocity aliasing can be
converted to a classification problem. The velocity field and aliased count can be regarded as the
input image and the label, respectively. Through a fit-and-adjust process, the best weights and the
biases of the model are determined to minimize a cost function. The proposed method is compared
against the traditional region-based method. Both methods show similar performance on mostly filled
precipitation. For sparsely filled precipitation; however, the CNN demonstrated better performance
since the CNN processes the entire scan at once while the region-based method processes only the
limited adjacent area.

Keywords: velocity dealiasing; Doppler dilemma; convolutional neural networks

1. Introduction

The Doppler weather radar is an essential tool for nowcasting, warning of severe
storms and hazardous weather phenomena such as thunderstorms, blizzards, and hail [1].
For pulsed weather radars, a long aliasing range (ra), also known as the maximum un-
ambiguous range, is desirable for surveillance. In direct conflict with this desire, a high
aliasing velocity va, also known as the Nyquist velocity, is essential to obtaining storm dy-
namics. The Doppler dilemma is the manifestation of this conflict—a long-lasting challenge
where ra and va are in a fixed trade-off relation [1]. The Doppler dilemma becomes more
severe for shorter-wavelength radars such as the X-band compared to C- and S-band. Many
efforts have been attempted to mitigate the Doppler dilemma (e.g., [2–7]). Because the
performance of automated dealiasing algorithms can be poor at critical locations in a sweep,
labor-intensive manual dealiasing is still being practiced (e.g., [8–10]). For that reason,
an automated algorithm is still an important area of study, which is the primary motivation
of the current work.

The Doppler dilemma can be derived as shown in Equation (1).

rava =
λc
8

(1)

For a specific combination of ra and λ, the Doppler dilemma dictates the va value.
There are two common approaches to dealias the velocity measurements, which are (1) the
post-processing method and (2) the waveform design method. In the first approach, aliased
velocities are found by searching for velocity discontinuities (typically ∼ 2n va, where n is
−2, −1, 1, 2, and so on). Subsequently, dealiasing is accomplished by adding/subtracting
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2n va to the aliased velocities. One assumption is that the initial velocity measurement,
e.g., first cell, first range gate, first azimuth, etc., is non-aliased. The velocity measure-
ment of this cell is also known as the reference velocity, and there have been numerous
attempts to determine the discontinuity [2–7]. In the second approach, two (or more)
PRT values are used, and the aliased velocities are found by searching for disagreements
between the two measurements. The approach is known as the dual-PRF method [1,11].
Dealiasing is accomplished with the waveform design approaches by solving a least-
common-multiplier problem. There is a similar method known as the staggered PRT (Pulse
Repetition Time) [12,13]. Both methods use two pulse repetition frequencies (or periods).
The key difference is how the periods are arranged. The dual-PRF method collects a radial
by splitting it into two halves; one half uses one period while the other half uses the other.
The staggered-PRT method, however, collects a radial by staggering the two periods; hence
the name staggered PRT [14–18].

It must be emphasized that the post-processing method allows the system to operate
everything else, e.g., ground clutter filter, contiguous pulse-pair processing, etc., as is.
The waveform design methods require modifications to the existing ground clutter filters
due to the dwell discontinuity [17]. In this work, the main focus will be on the post-
processing approach, and the key is to detect the aliasing. Once detected successfully, it can
be dealiased correctly [2–4,19].

The detection of velocity aliasing is comparable to classification and one can see how a
machine learning (ML) algorithm can be applied to mitigate velocity aliasing. In principle,
a classification ML algorithm to determine how many times the velocity aliasing has
occurred allows us to identify the regions where velocity dealiasing is necessary. In essence,
the ML processing replaces what human intervention often is needed, i.e., identification of
the velocity aliasing region and classification of the velocity aliasing count. ML can perform
these two tasks in one pass, much like what a human is capable of. ML is a data-fitting
method. In ML, model parameters, i.e., weights and biases, are optimized through an
iterative training process. Optimization is performed to minimize a cost function. Each
couple of weights and biases is a neuron, and multiple neurons form a neural network
(1 layer). Neural networks that contain more than one layer are considered deep neural
networks. Deep learning is the training process of deep neural networks [20]. A single-layer
neural network is similar to the current technique (one threshold); however, the deep neural
network is more complex, with the promise of better performance.

Image segmentation is performed through a CNN (Convolutional Neural Network);
here, concatenated layers of filters operate like convolution. CNN-based image classifica-
tion can produce a single label that represents the whole image, e.g., facial recognition [21],
or an output image that indicates multiple labels (segments) within an image, e.g., medical
diagnosis [22], object recognition, and so on. It is also applied in meteorological data pro-
cessing, e.g., to classify spatially localized climate patterns from Community Atmospheric
Model v5 (CAM5) simulation [23], to detect the cold and warm fronts from the reanalysis
data [24], to classify the tropical cyclone intensity from satellite images [25], to predict
the probability of severe hail [26], and to detect the birds roosts from combined radar
products [27]. Like these examples, a CNN segments and labels the images. In this work,
the label represents whether a velocity cell is aliased. The input is the raw velocity field,
and the output is a map of flags indicating whether the velocity of a cell is aliased and,
by extension, how many times the velocity is aliased. Therefore, aliasing detection can be
converted into a labeling problem.

Our training goal is to encourage the model to learn the aliasing concept, rather than
to memorize a set of patterns. It is important to provide a diverse set of data that cover
most scenarios, e.g., Nyquist velocity, local mean velocity, storm pattern, scan elevation, etc.
Just like how a human can dealias a velocity map regardless of these variables, the goal is
to produce a CNN model that is capable of identifying aliasing count regardless of these
variables. To that end, some high-level features, such as segments and abrupt changes of
Doppler velocity are used to identify regions of aliasing.
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The evaluation of velocity dealiasing performance is commonly performed by calcu-
lating the accuracy or error rate (1 − accuracy). Some studies calculate the error rate based
on the error-included scan [2,28,29] and some studies evaluated the error rate based on
error gates [19,30]. Case studies are also performed by analyzing specific PPI (Plan Position
Indicator of one elevation angle) scans [6,19,28–30]. In this study, the mean of accuracy (µA)
and the standard deviation of accuracy (σA) averaged by scans are employed to evaluate
the performance. The σA indicates the consistency of performance. For example, a low µA
with low σA means poor performance most of the time. However, a high µA with high σA
means performance can vary widely and there are times the performance is unacceptable.

The overarching goal of this work is to exploit CNN for velocity dealiasing (aliasing
detection/classification/labeling). This is a post-processing approach since even dual-PRF
or staggered-PRT methods resulted in aliased velocity. The promise of using a CNN is
to achieve human-level performance. Through this process, it is expected that the labor-
intensive task of velocity dealiasing could be automated.

This paper is organized as follows. Section 2 describes the background, materials,
and proposed methodology, including the data pre-processing, algorithm description,
and training. Then, Section 3 explains the evaluation method and statistical results, presents
an analysis of the sensitivity test of a selection of va values and template sizes, and analyzes
with specific examples. In Section 4, the limitations and future works will be discussed,
and the conclusions of this paper are in Section 5.

2. Materials and Methods
2.1. Brief Review of Existing Techniques

Many attempts have been made to dealias Doppler velocity measurements. It started
from a one-dimensional dealiasing, which checks the continuity along the radial [2] using
the first meaningful range gate as the reference velocity. The key assumption is that the
reference velocity is non-aliased. However, this assumption can be incorrect, which leads
to error propagation. Later, the environmental wind, such as sounding, was introduced
to aid the detection of aliasing [3]. It is especially beneficial for identifying whether an
isolated storm is aliased. However, the wind profile from radiosonde could be significantly
different in time and space, thus resulting in poor performance when the wind field is
non-uniform and changes rapidly. For these reasons, the wind profile obtained by the
Velocity Azimuth Display (VAD) was proposed to represent the environmental wind
field [5,31,32]. The technique was subsequently extended to two or higher dimensional
dealiasing methods [4,19]. These were introduced to improve the dealiasing performance
since these methods take advantage of the neighboring cells in azimuth, elevation, and time.
A four-dimensional dealiasing method that mitigates the issue of high dependency on
external data sources such as sounding was introduced [28]. It uses the dealiased higher
elevation angular velocity in the vertical dimension since operational radars usually utilize
higher PRF values at higher scans and the former dealiased radar volume as initial reference
velocity. The method proposed by [6] utilizes a two-dimensional multi-pass scheme, which
checks the spatial discontinuity and dealiases the velocity by searching the reference
velocity in two directions, i.e., clockwise and counterclockwise. It does not require external
reference velocity data; instead, it has strict criteria for the first dealiasing of not complex
precipitation such as stratiform, and gradually relieves the threshold to dealias the more
complex velocities, including isolated storms. In the data assimilation field, a dealiasing
scheme by using three-dimensional wind from VDRAS (Variational Doppler Radar Analysis
System) as reference velocity was introduced by [29]. Most of the velocity dealiasing
algorithms focus on typical storms with measured velocity ranging from 20 to 36 m s−1,
and they are limited when the velocity is extremely strong, such as winds due to typhoons
and hurricanes. Later, the ADTH (Automated Dealiasing for Typhoon and Hurricane)
was developed [33]. It finds the first reference radial based on the local minima of GVAD
(Gradient VAD) and a higher number of valid gates. Then, a two-way (clockwise and
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counterclockwise) and two directions (in azimuth and radial direction) continuity check
is performed.

One popular radar processing software library, Py-ART (Python ARM Radar Toolkit),
incorporates a novel region-based velocity dealiasing algorithm [7]. The key assumption
of this method is that the first-guess field is non-aliased. Once the first-guess field is
determined, it checks the adjacent radar cells for abrupt velocity changes within a storm
cluster and, if aliased, dealiases the velocity by adding 2nva to the measurement. If a radar
scan has multiple isolated storms, it produces multiple first-guess fields and processes each
storm individually. If the assumption of the first-guess field is incorrect, it leads to incorrect
velocity dealiasing of the connected storm.

The detection of velocity aliasing can be converted to a classification problem, and CNN
is widely used in image classification. CNN is a collection of concatenated two-dimensional
filters. To have the same output size as input, a U-Net architectured semantic segmentation
using a CNN [34], which can recover the same output size by the de-convolution process,
is employed as the model design. In the encoding process, input velocity is ingested,
and it is processed into multiple levels of feature representations to keep the essence of
velocity aliasing labeling. In the decoding process, a map of labels is generated from
features learned by the encoder (lower resolution) to the pixel level (higher resolution).
Besides the convolution with two-dimensional filters, there are downsampling and up-
sampling processes, known as the pooling layer for downsampling and de-convolution
for upsampling. The convolutional layer convolves with internal 2-D filters to extract the
features, and the downsampling layer lowers the resolution but keeps the essence of the
features. Upsampling is used to recover the output size as the input size. In the context
of U-Net, upsampling using an output along with the input from the previous layers at
the same depth provides a mechanism to generate a feature map of the same size at the
same depth. The last layer turns the output from the last de-convolutional layer into labels
through a process that is similar to the mode process, i.e., the value at which the probability
is the highest. A so-called softmax classifier is used in this step. A softmax function pro-
vides a normalized output, which can be used as the probability of each label. Therefore, it
is commonly employed for multi-label classification [35]. The image segmentation process
provides an output image of labels that indicate whether a velocity pixel is aliased.

2.2. Data Generation

Artificial aliasing based on S-band data is performed to generate the input velocity
fields for training the CNN model. In this work, a simulated X-band radar velocity field
is used as the input (vi) to the CNN model. The X-band velocity is generated based on a
set of simple rules and it includes the number of times the velocity has aliased, referred
to as aliased count label (L) hereinafter. In the context of this study, L ∈ [−2,−1, 0, 1, 2] is
produced according to the following rules:

L =



−2, v < −3va

−1, −3va ≤ v < −va

0, −va ≤ v < va

1, va ≤ v < 3va

2, v > 3va

(2)

In short, vi can be defined as the following equation.

vi = vt + 2vaL (3)

where the vt is the ground truth. For example, if vt = 16 m s−1, and va = 15 m s−1,
then vi = −14 m s−1 and L = 1 since it is once aliased in the positive direction. If
vt = −29 m s−1, and va = 8 m s−1, then vi = 3 m s−1 and L = −2 since it is twice aliased
in the negative direction.
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The training dataset is employed to update the model parameters, which are comprised
of weights and biases. A validation dataset is used to determine the training stopping
point, which is to protect the model from overfitting the training dataset. A test dataset is
utilized to evaluate the performance, and these three datasets are mutually exclusive.

The number of scans for each dataset is shown in Table 1. In Table 1, scans from
four different years and five different NEXRAD radar sites are collected to diversify the
datasets. Furthermore, data are collected by considering the area where precipitation
fills the scan. Although a qualitative categorization, the cases are separated into “mostly
filled” precipitation and “sparsely filled” precipitation. Generally, these cases correspond
to stratiform and convective precipitation, respectively. The training dataset consists of
1872 scans, which includes 624 cases from three elevation angles, i.e., 0.5◦, 0.9◦, and 1.3◦.
It comprises 240 scans of mostly filled precipitation and 1632 scans of sparsely filled
precipitation. Unaliased velocity fields from the NEXRAD KTLX, KFWS, KICT, KLSX,
and KLOT radar sites in 2018 are employed as the training dataset. The validation dataset
includes 315 scans with 75 scans of mostly filled precipitation and 240 scans of sparsely
filled precipitation (105 cases with three elevation angles), and the scans from the NEXRAD
KTLX radar site in 2019 are collected. The test dataset has a total of 495 scans with 102 scans
of mostly filled precipitation and 393 scans of sparsely filled precipitation, which is 135
cases with three elevation angles, and the scans were collected from the NEXRAD KTLX
radar site in 2017 and 2020.

Table 1. The number of training, validation, and test scans for mostly filled precipitation and sparsely
filled precipitation.

Training Validation Test

Mostly filled precipitation 240 75 102
sparsely filled precipitation 1632 240 393

Total 1872 315 495

The mostly filled precipitation cases are characterized by being spatially continuous
and having relatively simple features, which means the features can be trained with a lower
number of scans. On the other hand, the sparsely filled precipitation is more complex and
includes spatially discontinuous storms, which requires diverse training data to represent
the complex features.

2.3. Proposed Algorithm

In this section, pre-processing and post-processing methods will be discussed. Velocity
dealiasing issues will be converted to the detection of labeling problems and then measured
velocity fields will be dealiased using the labels.

2.3.1. Pre-Processing

Input data are generated by considering a typical X-band radar coverage, which
is approximately 60 km [36–38]. Since our collected training data are approximately
2000 scans, there is an inherent limitation of the training data size compared to other
training data. Because of this, additional training data was generated by data augmentation,
which diversified the datasets by slightly modified copies of existing data [39].

The typical size of the CNN model input data is defined as width by height by
depth, where the width by height determines the two-dimensional image size, and the
depth is the number of color channels such as the red, green, and blue components of an
image. Concerning velocity dealiasing, the depth is one as the velocity is processed alone.
The dimension D of the input array of the velocity is

D = na × nr × 1, (4)

where na is the number of azimuths, and nr is the number of range gates. The output array
shares the same dimension as the input array to predict the label at each gate.
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With the NEXRAD range resolution of 250 m, 256 range gates are employed with a
range coverage of 64 km to cover the aforementioned 60 km range. The na is re-sampled by
a 2◦ spacing with 180 radials resulting in a full 360◦coverage. The input array is expanded
to 256 azimuths by copying the adjacent azimuths to produce a continuous input field,
i.e., na consists of azimuths 284, 286, . . . , 358, 0, 2, 4, . . . , 358, 0, 2, . . . , 74. For the aliased label
prediction, the middle portion, i.e., azimuths 0, 2, 4, . . . , 358, is extracted as the final output.

The wind direction is inherently biased as the collected dataset is limited, and se-
lected NEXRAD radars are located where there is a non-zero mean of the wind in terms of
climate [40]. Since it could result in a CNN model having a directional bias, data augmenta-
tion is performed by randomly rotating the radar scans and negating the velocity values.
That way, the mean wind is randomized and removed as a whole to train the CNN model.
Input velocity (vi) is a normalized unit. It is obtained by dividing the raw velocity by the va
to eliminate the bias and to map the input velocity to a range that is independent of specific
va values. In this study, a set of 60 rotation angles is used. Together with negating the sign,
a 120-fold increase in the dataset is accomplished. However, this is by no means equivalent
to replacing the dataset with a 120-fold larger collection but simply, as mentioned before,
a practice to remove the non-zero mean and the directional distribution that are inherent in
the dataset.

2.3.2. Training

Training is conducted with the internal model parameters, i.e., weights and biases,
to minimize the loss through the fit-and-adjust process, which is also known as the gradient-
descent algorithm. By concatenating a set of gradient descent through multiple layers, this
process is referred to as the back propagation [35].

Cross-entropy is employed as a cost function, which is shown in the following:

C = D(s(y), L) = −∑
i,k

Li(k) log(s(yi(k))), (5)

where L is the true label, i represents the aliasing label, k is the cell index, and s(y) represents
the output of the softmax classifier, which is shown in the following:

s(yi) =
eyi

∑M−1
j=0 eyj

, (6)

where M is the number of labels.
Intuitively, entropy measures the uncertainty of a field [41], and cross-entropy mea-

sures the uncertainty between the two variables, which corresponds to the predicted label
and the true label. The usage of cross-entropy as the loss function has been shown to be
viable for segmentation problems, e.g., [34,42]. If the cross-entropy is zero, it means the
predicted label is the same as the true label. Therefore, minimizing the cross-entropy means
making the model closer to the perfect prediction. The cost function (loss) decreases during
the training process but it is set to stop at convergence, which is defined as the successive
change of the performance that is less than a preset threshold. When a CNN model is
properly trained, it should be capable of producing good predictions in general. That is,
the training that was conducted using one dataset (training data) is sufficient to produce
similar prediction accuracy using a separate dataset (validation set). In our application,
the CNN model produces the aliased label Lp as output. For convenience, three sets of
labels are introduced here:

L0 = L ∈ [0]
L1 = L ∈ [−1, 1]
L2 = L ∈ [−2, 2]

(7)
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In the collected training data, L2 is the least populous while L0 is the most populous.
Hence, weighted cross-entropy loss is employed to equalize the data imbalances in the
proposed CNN model. Weighted cross-entropy loss is defined as follows:

Cw = −∑
i

wiLi log(s(yi)), (8)

where w is the class weight for each label, which is the inverse of the population ratio
of each label. Since the model parameters are trained by reducing the loss of the more
populated label, hence, the less populated labels may not be well-trained.

Various training variables such as different va, different template sizes T, and the
different numbers of layers can be optimized, and they impact the performance of the
trained model.

2.3.3. Variables of Optimization

In a training process, there are model and training variables. The model hyperparam-
eters include kernel size and a learning rate, and training variables such as va and T are
empirically determined through the sensitivity test, and will be discussed later. The utilized
model hyperparameters are a kernel size of three by three and a learning rate of 0.001.
The number of layers was empirically determined through experimentation. A total of
32 layers are employed, comprising the encoding part (seven convolutional layers and
six pooling layers) and the decoding part (seven convolutional layers, six up-convolutional
layers, and six concatenated layers). As mentioned before, our training goal is to encour-
age the model to learn the aliasing concept rather than to memorize specific scans from
a given va, training is performed by combining the multiple va values, along with data
augmentation. It is then compared to the training with single va, i.e., 7 m s−1 and 12 m s−1

to determine the similarities. Input velocity with va = 7 m s−1 is selected to include L2
since the maximum vt is 33 m s−1, which is the raw va of selected training data from the
NEXRAD S-band radar velocity. The aliasing velocity va = 12 m s−1 is also selected as a
single va training model owing to including the highest L1 with vt = 33 m s−1. However,
this model cannot predict L2 since the label is excluded from the training dataset.

Three different combined va methods are trained. One is performed by combining
va = 7 m s−1 and 12 m s−1, which is named va ∈ [7, 12]. The second option, which is named
va ∈ [ν], is a training set with va set to a random variable ν that has a uniform distribution
between 7 and 23 m s−1. When va is higher, the training data have less L1 labels and more
L0 labels. The higher va becomes, the more skewed the distribution becomes, as shown
in Figure 1. During the training process, the population of a label dictates the number of
adjustments that are made to identify that particular label. Logically, the labels with the
highest counts would be fitted the best. However, the goal is to achieve similar performance
among all labels. One way to overcome this imbalance is by using a so-called class weight,
which is inversely proportional to the population ratio of the labels, effectively undoing the
imbalanced adjustments caused by the population distribution.

Panel (a) of Figure 1 shows the distribution of labels on va ∈ [7, 9], panel (b) is on
va ∈ [11, 13], and panel (c) is on va ∈ [21, 23]. Training va is limited to 23 m s−1 to avoid
becoming highly biased toward identifying L0 and the performance of identifying L1
is penalized. This model is highly biased toward L2 since its class weight is 1:6.17:555.
Focusing on identifying L2 results in poorer performance of identifying L0 and L1. Class
weight can help to equalize the skewed distribution; however, if it is extremely skewed, it
could cause overfitting. For instance, if the training data collection contains 500 L0 and only
one L1, the class weight L0:L1 = 1:500. The model would try to fit the one L1 equally as the
other 500 L0, resulting in a net loss, i.e., negatively impacting the performance of identifying
L0. Therefore, a modified random training method, va ∈ [7, ν], which fixes va = 7 m s−1

and selects one other random va (ν) between va = 8 and 23 m s−1, is introduced to include
more L2 labels instead of increasing its class weight. In other words, two sets of data are
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trained together. The class weight of this method is set as 1:2.61:77.0, where the class weight
of the L2 is reduced tremendously compared to va ∈ [ν].

2 1 0 1 2
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2 1 0 1 2
Labels

0

2

4

6

8
(c) va [21, 23]

Distribution of Labels

Figure 1. This figure is the distribution of labels with different va in logarithmic scale: Panel
(a) represents the distribution of labels on va ∈ [7, 9]; panel (b) shows on va ∈ [11, 13]; and panel
(c) shows on va ∈ [21, 23]. When the va used is higher (left panel to the right panel), the distribution
is more skewed to the L0.

Another training variable, template size T, is defined as the number of azimuths na by
the number of range gates nr. For simplicity, na = 256 is fixed, and four different nr are
trained and evaluated by concatenating them to generate the 256 range gates. In this study,
T = 256 is selected as the training T by following the sensitivity test results, which will be
presented later in Section 3.3.

2.3.4. Algorithm Description

With the synthesized vi, post-processing will be performed with the trained CNN
model. As shown in Figure 2, vi passes through the model with the optimized parameters.
It is used to produce an output with the predicted label (aliased count) Lp. As we explained
earlier, the model has two main processes: encoding and decoding. In the encoding process,
the convolutional and pooling layers are stacked to extract the features by decreasing the
range and the azimuth size. In the decoding process, the output label Lp is generated
by de-convolution and up-conversion to recover the same input data size. The softmax
classifier and a one-hot coding method are applied to generate the Lp. Dealiased velocity
vp is generated by combining the vi, Lp, and the Nyquist velocity va and it is shown in
the following:

vp = vi + 2vaLp (9)
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Figure 2. Block diagram of the proposed velocity dealiasing technique using a CNN. Velocity
dealiasing is performed by combining the input (aliased) velocity (vi) and the aliasing count (Lp). vi

passes through the model, which consists of multiple layers of operations, i.e., convolution, pooling,
softmax, and prediction. To that end, the technique produces a map that indicates whether a velocity
measurement is aliased, the sign, and how many times it is aliased.



Remote Sens. 2023, 15, 802 9 of 20

3. Results

Figure 3 illustrates the velocity dealiasing process with two synthetic velocity fields
with a different va. This is an example of mostly filled precipitation, with a homogeneous
wind field and a broad continuous precipitation field. Figure 3a shows the radar reflec-
tivity Z, and Figure 3b is the ground truth data (vt) from the S-band radar velocity field.
The second column is the input (aliased) velocity (vi), which is manually aliased by va using
Equation (2). The third column is the predicted aliased label (Lp), and the last column is
the dealiased velocity using Equation (9). In Figure 3c, vi is aliased by va = 7 m s−1, where
Figure 3e Lp includes L0, L1, and L2. Figure 3d is the vi aliased by va = 17 m s−1, and L2
is not included as shown in Figure 3f. Regardless of different va, dealiased velocity vp is
shown as similar to ground truth vt for both va (Figure 3g,h), illustrating the efficacy of
using a CNN model to label the velocity aliasing count correctly.

va=7 (ms-1)

Ground Truth
Dealiased Result

Reflectivity

va=17 (ms-1)
Aliased CountInput (Aliased) Velocity

va=7 (ms-1)

va=17 (ms-1)

va=7 (ms-1)

va=17 (ms-1)

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 3. Results of the process of velocity dealiasing using the labels predicted by the CNN. In this
example, the data were collected from the KTLX radar on 8 March 2020 23:48 UTC. Figure 3 (a) Z
is the radar reflectivity. The input velocity vi is obtained by aliasing (b) vt (ground truth) using
(c) va = 7 m s−1 and (d) va = 17 m s−1. vp is the dealiased velocity according to Equation (9) with
(g) va = 7 m s−1 and corresponded label (e), and (h) is also dealiased velocity with va = 17 m s−1

and label (f).

3.1. Evaluation Method and Metrics

Evaluation is performed with synthesized X-band radar velocity field values from the
NEXRAD S-band radar since the ground truth is readily available. However, false labels
in clutter and undesirable echoes such as planes and biological echoes with high velocity
could survive the filters. Data from these speckles from the false ground truths could have
a negative impact on the evaluation of meteorological echoes. Occasionally, CNN output
appears correct; in our experience, most humans would prefer the CNN output compared to
ground truth data from the NEXRAD S-band radar velocity field because the CNN output
is spatially continuous, i.e., contains fewer speckles. Therefore, masking is employed in the
evaluation stage while training is performed without masking. In a training process, even
non-meteorological echoes could help predict more complicated storms, such as sparsely
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filled precipitation, by giving wider coverage since CNN is less prone to noise or bad
pixels. However, as we explained above, non-meteorological echoes or speckles from the
false labels are not considered in the evaluation. For a fair comparison, common masking
conditions, which are the reflectivity filter, HCA mask, and SNR thresholding, are applied
to both CNN and region-based dealiasing methods. In the region-based method, reflectivity
filtering is pre-applied, which filters the velocity where the reflectivity is less than 0 dBZ or
greater than 80 dBZ. NEXRAD HCA mask is applied to focus on precipitation by excluding
the non-precipitation echoes and SNR thresholding is utilized for the data quality control.

In a training process, all scans are trained at the same time. However, evaluation is
performed on two categories: mostly filled and sparsely filled precipitation, where the
classification is manually performed. In evaluation, test data are further divided into three
groups such as G1, G2, and G3, based on the va used. It is because if we analyze all labels
at the same time, it is hard to see the impact on less populated aliased labels when the va
is higher. G1 is the combined performance of va = 7 and 9 m s−1, G2 is combined with
va = 11 and 13 m s−1, and G3 is combined with va = 21 and 23 m s−1. Separation is based
on the label population; G1 includes L2, G2 does not include L2, but it has a higher portion
of L1, and G3 consists of mostly L0. The label population ratio is shown in Table 2.

Table 2. The population ratio of each label (L1, L2, and L3) of three different evaluation groups,
i.e., G1, G2, and G3.

L0 L1 L2

G1 109 47.8 1
G2 6.89 1 0
G3 119 1 0

Performance is measured by µA and σA, where A is the accuracy of one scan, which
is the number of correctly predicted cells of the total valid number of cells for one scan.
µA is the mean A averaged by the number of scans and σA is the scan-averaged standard
deviation of A to check how the accuracy is varied and dispersed. Because it could mitigate
the performance on the less populated label, it is also evaluated on each label (L0, L1, and L2).

3.2. Statistical Results

In Figure 4, µA and σA of CNN and the region-based dealiasing method from each va
group are compared. The region-based method has the option to utilize the environmental
background wind to aid the first-guess field; however, in this study, environmental back-
ground wind is not utilized for a fair comparison. In mostly filled precipitation scans, in G1,
the CNN method has the lower µA and higher σA than the region-based method. In G2 and
G3, it shows the similar performance on both methods of µA and σA. However, in sparsely
filled precipitation scans, in G1 and G2, the CNN method has the higher µA and lower σA
than the region-based method. In G3, µA is similar on both methods, but the σA is still lower
on CNN than the region-based method. Typical X-band radars that are set up to provide a
60-km coverage (ra = 60 km) have a va at approximately 15 m s−1. For that configuration,
performance on G2 is most representative. It includes a reasonable amount of L1 and shows
high performance on both mostly filled and sparsely filled precipitation scans.

Error analysis is conducted by separating the measurement type as speckles and
non-speckles. Separation is performed by grouping the connected error pixels first, and if
the number of error pixels in each group has less than a threshold (here, 10 pixels are used),
it is classified as a speckle. Otherwise, it is regarded as a non-speckle.



Remote Sens. 2023, 15, 802 11 of 20

G1 G2 G3
85

90

95

100

A
 (%

)

Filled precipitation

G1 G2 G3
85

90

95

100
Sparse precipitation

CNN
Region-Based

G1 G2 G3
0

5

10

15

20

25
A

 (%
)

G1 G2 G3
0

5

10

15

20

25

Figure 4. Comparison results on velocity dealiasing performance between the proposed CNN method
(blue) and the conventional region-based unwrapping method (red). Comparison is performed with
µA (top) and σA (bottom). The left panels show the performance from the mostly filled precipitation,
and the right panels show the performance from the sparsely filled precipitation.

Figure 5 shows an example of an incorrect prediction. From Figure 5, panel (a) shows
an image of the true labels, and panel (b) is an image of the predicted labels using the
CNN model. Panels (c)–(h) are the softmax classifier outputs, i.e., it normalizes a vector
to the [0, 1] range for each label, and the sum of each softmax output is 1. Therefore, it
shares many characteristics of a probability distribution of a random variable. There are
significant overlaps between labels ‘−1’ and ‘0’. Some ‘0’ labels are predicted as ‘−1’ labels.
In these instances, the otherwise correct label ‘0’ has the second highest probability. In order
to obtain more insight into the incorrect prediction, a similar scan, which is at around the
same time but from a different elevation angle is compared. In Figure 6, the predicted
label is mostly correct, but it somewhat overlaps between the label ‘−1’ and ‘0’. It shows a
low probability area, which is lighter than adjacent pixels, in the correct label ‘0’, and the
second highest probability, which is darker than adjacent pixels, is shown in the incorrect
label ‘−1’.
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Figure 5. An example of failed prediction with non-speckle echoes: Panel (a) shows the true label,
which is synthesized using a 0.88◦-EL scan from the KTLX on 16 January 2017 06:33 UTC; Panel
(b) shows the predicted label; Panels (c–h) represent the probability of each label from the CNN
model. One can see that the green patch near azimuths 0–45◦at far ranges is incorrectly predicted.
The correct label (L = 0), however, has a significant probability value, which would result in a correct
prediction if selected.
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Figure 6. A similar scan to Figure 5 but the CNN model succeeded the prediction of aliasing labels
(green patch in panel (b) of Figure 5). Panel (a) shows the true label, which is synthesized using
a 1.32◦-EL scan from the KTLX on 16 January 2017 06:33 UTC. In panel (b), the green patch near
azimuths 0–45◦ at range gates 180–256 from panel (b) of Figure 5 is now correctly identified. Panels
(c–h) represent the probability of each label from the CNN model.

If one replaces the incorrect pixels with labels that have the second highest probability,
the accuracy would have increased from 88.1% to 99.7%. The replaced result is shown
in Figure 7. Panel (a) represents the true label, panel (b) shows the raw predicted label,
and panel (c) is the replaced label from panel (b) by ones with the second most probable
prediction on failed ones. Out of the 168 scans among the total of 495 test data (non-speckle),
80.9% of them have the correct label as the second most probable prediction. Because of
the complexity of the CNN model, it is extremely difficult to find an explanation for these
false predictions. However, it is clear that the performance of the CNN model can be
improved significantly if the second most probable predictions were selected under these
circumstances. It must be emphasized here that this cannot be recovered in practice. This
example is presented here only to illustrate the potential for improvements.
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Figure 7. This figure shows the replaced result by the second most probable prediction on failed
pixels: Panel (a) is the true label; panel (b) is the raw predicted label; and panel (c) is the same as the
middle panel but incorrect labels are replaced by ones with the second highest probability. The value
of A increased from 88.1% in (b) to 99.6% in (c).

In Table 3, the overall performance, which is the weighted sum of G1, G2, and G3, are
calculated with Equation (10) from each aliasing label, i.e., labels in the sets of non-aliased
(L0), once-aliased (L1) and twice-aliased (L2).

ΠA = ∑
i

∑
l∈L

w(Gi ,l) × µ
(Gi ,l)
A (10)
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where w(Gi, l) represents the weight of labels in group Gi and set l, which are iterated
through all groups (G1, G2, and G3) and all label sets (L0, L1, and L2). The weights, which
are the population ratio of each va group, are shown in Table 4, where the sum of the
weights is ‘1’ for each label, and the overall performance of the CNN and region-based
methods are compared against each other.

Table 3. Comparisons of ΠA, L0, L1, and L2 between the proposed CNN and the conventional region-
based methods. Both methods perform equally well under conditions with mostly filled precipitation.
However, under conditions with sparsely filled precipitation, the CNN model outperforms the
region-based method.

ΠA (%) L0 (%) L1 (%) L2 (%)

CNN 99.58 99.62 97.89 93.44
Mostly Filled Region-Based 99.90 99.87 98.54 94.30

Difference −0.32 −0.25 −0.65 −0.86

CNN 99.23 98.39 96.85 84.96
Sparsely Filled Region-Based 96.39 96.88 91.45 74.39

Difference 2.84 1.51 5.39 10.57

Table 4. Evaluation weights of the different va groups and label sets used in Equation (10). The weight
is the inverse of the population ratio of each group. As expected, the sum of the weights within each
label set is always equal to one.

va Group L0 L1 L2

G1 0.25 0.61 1.00
Mostly Filled G2 0.33 0.35 -

G3 0.42 0.04 -

G1 0.28 0.74 1.00
Sparsely Filled G2 0.35 0.25 -

G3 0.38 0.01 -

For the mostly filled precipitation scans, both methods have similarly high µA (>99%),
but the region-based method shows slightly better performance, and the performances
between the methods are similar with a discrepancy of less than 1% for each label.

For the sparsely filled precipitation, which has a higher complexity than the mostly
filled precipitation scans, the CNN method achieves higher µA, and with much lower σA,
compared to the region-based method. For both methods, the overall accuracy ΠA is higher
than the group specific accuracy (µA(G = G1)) since ΠA is derived with more elements in
L0 as the set includes groups G2 and G3.

The overall performances of the three aliasing labels are in the order of ΠA(L = L0) >
ΠA(L = L1) > ΠA(L = L2). That is, the CNN model is effective at identifying non-aliased
regions, then the once-aliased regions, and finally, the twice-aliased regions. Identifying
the twice-aliased regions requires the correct identification of the once-aliased regions that
they are adjacent to. As such, it is unsurprising that ΠA(L = L2) is lower than ΠA(L = L1).
Similar argument can be made for ΠA(L = L0) > ΠA(L = L1).

3.3. Sensitivity Test

In this study, training variables are evaluated on va in three configurations: G1, G2,
and G3. In G1, the population ratio of L0:L1:L2 equals 110:48:1, and the corresponding class
weight ratio is 1:2.28:110. In G2, L0:L1 = 6.89:1, and the corresponding class weight is the
inverse of the population ratio, i.e., 1:6.89. In G3, L0:L1 = 119:1, and the corresponding
class weight ratio is 1:119. Figure 8 shows the performance with different training va and
evaluation using G1, G2, and G3. In G1, va = 7 and va ∈ [7, ν] show the highest performance
among five different models since both include va = 7 m s−1 in training, which has the
largest number of aliased labels (L1 and L2) in training. However, in G3, training with
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va ∈ [7, ν] resulted in lower σA than va = 7 model since G3 consists of the highest va values
with the least aliased label. va ∈ [ν] model shows a relatively poor performance than others
for its extremely skewed class weights (1:6.17:555) because the L2 population is deficient.
Therefore, it diminishes the non-aliased and once-aliased performance by highly focusing
the optimization on L2. From this experiment, va ∈ [7, ν] model is chosen for our final
training condition.
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Figure 8. Comparisons of the trained CNN with different va, i.e., va = 7 m s−1 (blue), va = 12 m s−1

(green), va ∈ [7, 12] (red), va ∈ [7, ν] (purple), and va ∈ [ν] (orange) for each on the mostly filled
precipitation (left), and the sparsely filled precipitation (right).

Figure 9 shows the scan-averaged µA and σA as a function of T. The left panels
provide results on the mostly filled precipitation scans, and the right panels correspond
to the sparsely filled precipitation scans. In general, using a larger T produces better
results (higher µA and lower σA), with the only exception on mostly filled precipitation
with T = 128 and T = 256, which are in reverse order but the difference is less than
0.5%. In G2 and G3, all four different template sizes show similar performances. These
results are expected because the mostly filled precipitation scans are spatially continuous
and have relatively simple features in contrast to the sparsely filled precipitation. It is
noteworthy that training with T = 32, which is relatively short-range coverage, also shows
high performance (µA > 96%) since it still has 360◦coverage and a more homogeneous
wind field, which makes it easier to predict the aliased label. Mostly filled precipitation
is less impacted by template size since these are spatially continuous and mostly filled.
In contrast, more spatially complicated cases can be negatively impacted by template size.
A larger template size covers a wider area, and it is beneficial for predicting the aliased
label L.

Figure 10 shows the µA performance of the trained model using different template
sizes as a function of range. The top panels provide the results on the mostly filled
precipitation scans, and the bottom panels are on the sparsely filled precipitation scans.
For the mostly filled precipitation, in range gates 0–127, all four template sizes show
similar performances. However, in range gates 128–256, the performances are shown in
this order: µA(128) > µA(256) > µA(64) > µA(32). For the sparsely filled precipitation,
the performances are shown in this order: µA(256) > µA(128) > µA(64) > µA(32). It is
noteworthy that the performance reduction is shown at each template boundary, unlike
for the mostly filled precipitation. The sparsely filled precipitation scans include the non-
uniform wind field, spatially discontinuous, and isolated storms. For these scans, the wider
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coverage would certainly help determine the dealiasing decisions. T = 128 and T = 256
are similarly performed. However, T = 128 shows the boundary reduction on range gate
128, while T = 256 is not, and T = 256 can be performed in one prediction to cover the
64 km while T = 128 needs two predictions.
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Figure 9. Comparisons of the performance of the trained CNN with different template sizes (T),
i.e., 32 (blue), 64 (green), 128 (red), and 256 (purple) range gates on mostly filled precipitation (left),
and sparsely filled precipitation (right). It is tested with three different va group, i.e., G1, G2, and G3.

In Figure 10, velocity dealiasing results with different template sizes as a function of the
range are compared against the traditional region-based method. The region-based method
can utilize the environmental background wind for estimating the first-guess field velocity
aliasing. As mentioned before, environmental background wind is not utilized for the sake
of fairness. For the mostly filled precipitation scans, the region-based dealiasing method
properly dealiases the velocity and shows a stable performance along the range compared
to the CNN method. However, for the sparsely filled precipitation scans, the region-based
dealiasing method performs poorly at the initial range gate compared to the T = 256 model.
It does not show any measurable performance reduction at the far range. In contrast,
the CNN method shows significant performance reduction. In the region-based method,
if it correctly estimates the first-guess velocity aliasing field, the performance is consistent
along the range. However, if not, it leads to failing the aliasing prediction of the entire storm
cell. Since the sparsely filled precipitation includes the multiple isolated storm precipitation
scans, a more significant number of first-guess field predictions are required than a single-
storm case. When the storm is isolated and far from the radar, it is more difficult to estimate
the first-guess field aliasing, even for a human-expert implementation. For the higher va
groups (G2 and G3), the overall performance is gradually improved, and the performance
differences among different template sizes are also reduced. Although class weight helps
equalize the less populous labels to be trained by weighting them higher, the distribution
of the labels in the evaluation sets is different. That is, G3 contains more L0 than in G2 and
G1; therefore, evaluation using G3 results in higher overall performance than G2 and G1.
The same explanations can be applied to comparisons between G1 and G2.
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Figure 10. Performance of the CNN algorithm as a function of range with the different T, i.e., 32 (or-
ange), 64 (magenta), 128 (green), and 256 (red) range gates. It is also compared to the conventional
region-based dealiasing method (blue dashed line). The first row is µA in percentage averaged by the
number of scans for the mostly filled precipitation. The second row is also the µA but for the sparsely
filled precipitation scans. It is analyzed with groups G1 (left), G2 (center), and G3 (right).

3.4. Case Study

In this subsection, a case study will be presented to illustrate the performance of the two
dealiasing methods under the conditions with mostly filled and sparsely filled precipitation.

Figure 11 shows an example PPI scan with mostly filled precipitation and va = 7 m s−1,
which includes L0, and L1. The wind field is spatially continuous, which can be seen in vi.
Both CNN and region-based methods dealiased the vi with over 99% accuracy since the
storm is wide, spatially continuous, and mostly filled.

Dealiased Results

Input Velocity (Aliased) Ground Truth CNNReflectivity Region-Based

Figure 11. An example PPI scan with a mostly filled precipitation. Z is the reflectivity, vi is the input
velocity, vt is the ground truth, vp is the dealiased velocity using the predicted aliased label from
the CNN, and vc is the dealiased velocity using the conventional region-based dealiasing method.
The data are synthesized using a 1.32◦-EL scan from the KTLX on 4 July 2017 05:38 UTC. This example
shows the result of processing a velocity field observed at 7 m s−1. For most simple cases such as
this, both methods are able to produce an accurate dealiased velocity field. This example shows over
99% accuracy from both CNN and region-based methods.

Figure 12 shows an example PPI scan with sparsely filled precipitation and va = 7 m s−1.
This is a case with multiple isolated storms that are well separated. As one can see in vi,
the wind field is discontinuous, and extremely challenging to distinguish the aliased area
even for a human. The proposed CNN method successfully dealiased most of the aliased
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isolated storms. However, the region-based method failed at many isolated storms, which
are circled in a yellow dashed line. For the isolated storms, if the region-based method
fails at the first-guess field, it leads to failure to decide the aliasing of whole isolated
storms. With isolated storms, the assumption that the first-guess field is non-aliased can be
problematic, as illustrated in this example.

On the other hand, a wide processing window can aid the decision of aliasing label.
Compared to the region-based method, the CNN model has a much wider view. In the
domain of CNN processing, there is a notion of the receptive field, which is defined as the
region that each particular CNN layer is looking at [43]. This region is essentially a 2-D
processing window that results from multiple layers of convolution. As one would expect,
more successive convolution results in a wider processing region. With the CNN model
that processes each radar cell through multiple layers, the receptive field is wide. In the
case of the proposed CNN architecture, the receptive field includes the whole PPI and the
entire scan range, effectively the whole radar coverage. As such, in a way, the model is
able to comprehend the big picture of a storm and identify aliasing regions like a human.
Through the wide view, the CNN is trained to identify large-scale features.

Dealiased Results

Input Velocity (Aliased) Ground Truth CNNReflectivity Region-Based

Figure 12. Similar to Figure 11, this figure shows an example PPI scan with isolated storms observed
at va = 7 m s−1. The data are synthesized using a 1.32◦-EL scan from the KTLX on 30 April 2017 19:14
UTC. The CNN method successfully dealiased the scan as it processed the entire scan all at once.
The region-based method, however, failed at a number of isolated storms, which are indicated in the
yellow circle. In this example, CNN method predicts the 99.5% on L0, 99.4% on L1, and 100% on L2,
while the region-based method predicts 77.9%, 67.8%, and 84.4% on L0, L1, and L2 for each.

4. Discussion

Generating a training dataset is arguably one of the most important steps in producing
a successful deep-learning model. One method of designing a deep-learning model is to
include the Nyquist velocity and mean wind as part of the input metadata. Conceptually,
knowing the scan elevation and the mean wind allows us to roughly expect where aliasing
can occur. So, using these two variables could help identify where aliasing occurs. A dif-
ferent approach was taken in this work. That is, data normalization and augmentation.
In our opinion, both accomplish a similar result. The data normalization would eliminate
the need to include Nyquist velocity as a part of the metadata while the data augmentation
(rotating the PPI and negating the velocity values) would remove the mean wind so that
the model no longer needs these variables.

Wind speed changes rapidly as a function of altitude. The probability of aliasing can
change depending on the scan elevation and range. One could argue that including all scan
elevations is necessary for the training datasets. However, as mentioned previously, our
hope is to let the CNN model learn the aliasing concept rather than memorize the specific
patterns. Just as how a human learns the aliasing concept, having all scan elevation is
not necessary. Therefore, including all scan elevations in the training dataset is, in princi-
ple, unnecessary. Nonetheless, a future work to investigate the real-world outcome may
be worthwhile.
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On the portions where CNN failed, the accuracy could improve from 88.1% to 99.7%
if one replaces the output with the label with the second-highest probability. This sug-
gests that some velocity discontinuity features are not identified properly. There is no
obvious solution at the moment but if portions of these errors can be recovered, the overall
performance would greatly improve.

One of the concerns of utilizing a deep learning model is the cost of computing.
The training time of our design is on the order of tens of hours while the inference time is
only a fraction of a second, which is feasible for real-time applications.

5. Conclusions

In this study, velocity dealiasing using a CNN method is proposed, implemented, and
evaluated. For the training, input velocity and true label fields are generated using the
NEXRAD S-band radar velocity field, which is assumed to be non-aliased. The velocity
field is artificially aliased to produce the aliased velocity fields, as one would collect using
an X-band radar. Since the collected dataset has an inherent mean bias due to the regional
dominant wind direction, data augmentation is performed by rotating the velocity field in
azimuth, and negating the sign. Class weight is also applied to equalize the less populous
labels, which are mostly the aliased labels. Cross-entropy is used as the cost function (loss).
Essentially, the optimization is targeted to minimize the difference between the true and the
predicted labels during the training. Velocity dealiasing is performed with input velocity
vi, predicted output label Lp, and the Nyquist velocity va. Through the sensitivity test,
template size T = 256 and training va ∈ [7, ν] are selected as the best training conditions.

Evaluation is performed by comparison to the region-based method, which is a part
of the Py-ART software collection. The performance evaluation is partitioned into three
groups: G1, G2, and G3, which are the va used and analyzed on mostly filled and sparsely
filled precipitation scans. The grouping provides insights about the real-world performance
of the algorithm when the certain distribution of aliasing conditions are present. Group
G1 represents a collection with a severe aliasing condition, group G2 represents a typical
aliasing condition from an X-band radar, and G3 represents a collection with velocity fields
that are the easiest to process.

For mostly filled precipitation, both the CNN and the region-based methods are able to
successfully produce the dealiasing label and, hence, the dealiased velocity fields, with <1%
performance difference. This illustrates that the CNN method can be used under conditions
with mostly filled precipitation. For the sparsely filled precipitation, however, the CNN
method shows a substantially better performance than the region-based method.

The performance difference can be attributed to the discontinuity of the storms, which
the region-based greatly suffers as the first-guess field cannot be produced correctly. There
is an option to utilize external wind measurements to aid this process but not practiced in
this work, for the sake of fairness for comparisons. The CNN model, which has a receptive
field of the entire scan, is capable of processing the entire scan in one shot. Through the
large collection of velocity fields in the training dataset, one can surmise that the CNN
model has learned what a proper velocity field and the corresponding aliasing label should
look like and, thus, is capable of producing the correct labels despite the discontinuity of
the storms. This level of data comprehension and processing is what a human would do
during a hand dealiasing process.

Of course, even the CNN model fails in some instances. When it does fail, it was found
that more than 80% of the errors (from the non-speckle echoes) could be eliminated if they
were identified as the label with the second highest probability. An investigation to recover
this type of error can be investigated in future work.
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