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Abstract: Land desertification is a key environmental problem in China, especially in Northwest
China, where it seriously affects the sustainable development of natural resources. In this paper,
we combine high-resolution satellite remote sensing images and UAV (unmanned aerial vehicle)
visible light images to extract desert vegetation data and quickly locate and accurately monitor land
desertification in relevant areas according to changes in vegetation coverage. Due to the strong
light and dry climate of deserts in Northwest China, which results in deeper vegetation shadow
texture and mostly dry shrubs with fewer stems and leaves, the accuracy of the vegetation index
commonly used in visible remote sensing image classification is not able to meet the requirements
for monitoring and evaluating land desertification. For this reason, in this paper, we took the
Hangjin Banner in Bayannur as an example and constructed a new vegetation index, the HSVGVI
(hue–saturation–value green enhancement vegetation index), based on the HSV (hue–saturation–
value) color space using channel enhancement that can improve the extraction accuracy of desert
vegetation and reduce misclassification. In addition, in order to further test the extraction accuracy,
samples of densely vegetated and multi-shaded areas were divided in the study area according to
the accuracy-influencing factors. At the same time, the HSVGVI was compared with the vegetation
indices EXG (excess green index), RGBVI (red–green–blue vegetation index), MGRVI (modified
green–red vegetation index), NGBDI (normalized green–red discrepancy index), and VDVI (visible-
band discrepancy vegetation index) constructed based on the RGB (red–green–blue) color space.
The experimental results show that the extraction accuracy of the EXG and other vegetation indices
constructed in RGB color space can only reach 70%, while the extraction accuracy of the HSVGVI
can reach more than 95%. In summary, the HSVGVI proposed in this paper can better realize the
extraction of desert vegetation data and can provide a reliable technical tool for monitoring and
evaluating land desertification.

Keywords: HSV color space; channel enhancement; UAV visible imagery; desert vegetation extrac-
tion; land desertification monitoring; HSVGVI

1. Introduction

Land desertification is a major ecological problem facing arid and semi-arid regions
worldwide [1]. It often occurs in mid-latitude regions, directly or indirectly affects more
than 100 countries worldwide, involves more than one billion people, causes losses of
up to USD 10 billion per year, and is ranked as one of the most serious environmental
and social problems in the world [2,3]. According to the statistics released by the United
Nations regarding land desertification, the problem of land desertification faced by China
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is particularly serious, which is mainly concentrated in the western and northern regions
of China, severely restricting local economic development and placing great pressure
upon the grassland ecological environment [4]. Among these regions, the Hangjin Banner
in the Inner Mongolia Autonomous Region is a key area for the prevention and control
of land desertification disasters in China [5]. The Hangjin Banner is rich in vegetation
resources, which are mainly dominated by tree species with strong drought tolerance
and low shrubs. The topography of the region mainly consists of hills and plateaus, so
there are high elevations, complex terrain, and a wide range of topography [6]. Therefore,
when monitoring land desertification in this region, one often faces the problems of low
efficiency and high labor costs, which are not conducive to the prevention and management
of land desertification.

With the rapid development of remote sensing technology, UAV remote sensing
technology has become more and more mature, which is widely used in remote sensing
vegetation classification research by virtue of its low cost and high accuracy in obtain-
ing remote sensing images [7]. Scholars at home and abroad have utilized UAV remote
sensing technology to classify urban vegetation [8], grassland vegetation [9,10], forest
vegetation [11,12], wetland vegetation [13], crops [14,15], and other vegetation, and all of
them have achieved good results. UAV remote sensing technology has also gradually been
combined with geological exploration and forestry resource surveys, and compared with
the traditional field survey method, it can not only monitor the distribution of vegetation
but also accurately identify the growth of vegetation, which has become an efficient and
accurate means of remote monitoring [16]. In the future, UAV remote sensing technology
will also be used for the monitoring of farmland, the assessment of crop growth, and the
monitoring of other natural disasters, as well as in other applications [17]. Meanwhile,
high-resolution satellite remote sensing images continue to surpass the meter and sub-
meter accuracy benchmarks [18]. Among the existing technologies, high-resolution satellite
remote-sensing images have the ability to dynamically monitor land desertification on a
large scale [19]. High-resolution satellite remote sensing images are used to establish vegeta-
tion cover models in a study area and analyze the areas that have undergone or are about to
face land desertification disasters [20,21]. According to the relationship between vegetation
coverage and desertification degree, the degree of desertification is graded, with FVC >
0.8 indicating non-desertification (potential desertification); 0.6 < FVC ≤ 0.8 refers to mild
desertification; 0.4 < FVC ≤ 0.6 is moderate desertification; 0.2 < FVC ≤ 0.4 refers to severe
desertification; and FVC ≤ 0.2 indicates extremely severe desertification [22]. Therefore,
areas with vegetation coverage (FVC) less than 0.3 are designated as key monitoring areas
for land desertification issues. Subsequently, visible remote sensing images from drones in
a study area are utilized to extract desert vegetation information by processing the images,
which are used to evaluate the degree of land desertification in the area [23,24]. Therefore,
extracting desert vegetation data through a combination of multi-source remote sensing
data based on high-resolution satellite remote sensing images and UAV visible remote
sensing images can help us dynamically monitor and combat land desertification, improve
monitoring efficiency, and significantly reduce the workload of monitoring personnel.

In the process of extracting vegetation information, constructing a vegetation index
is an indispensable and important technical means for extracting vegetation coverage
and monitoring land desertification via UAV visible light images. Wang Xiaoqin [25] and
others proposed a new vegetation index model, the VDVI, by combining the vegetation
and non-vegetation characteristics of UAV visible images and drawing on the principle
of NDVI construction; the extraction accuracy of this index can reach more than 90%. Li
Dongsheng [26] and others validated both the EXG and VDVI, and their accuracies can
reach more than 90%, which indicates that these indices are basically able to accurately
extract vegetation information. Bareth G [27] and others proposed the RGBVI, which is
applied to the extraction of vegetation cover in agricultural fields, and its accuracy can
reach more than 85%. However, due to the complex and harsh environment in deserts,
it is difficult to adapt the vegetation index commonly used in cities and villages to the
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extraction of desert vegetation. In particular, in the desert area of Northwest China, due to
the strong light and dry climate, the shadow texture produced by a tall tree canopy shows
a darker color. Vegetation in desert areas has fewer stems and leaves and is mostly dry
shrubs [28]. Therefore, the vegetation index model constructed using the RGB color space
is often limited by the shadow texture of vegetation when extracting vegetation data, which
causes the problem of misclassification and leads to large errors [29]. This is due to the
fact that visible images are based on RGB color space, in which the correlation between
R, G, and B channels is strong and not easy to analyze quantitatively, so much so that the
classification results cannot provide accurate data for land desertification monitoring [30].
For complex desert environments, it is crucial to ensure the accuracy of vegetation data
extraction and the applicability of the vegetation index model [31–33]. Since the HSV color
space model focuses more on color representation, and this model is less affected by light,
the H-value varies greatly between different feature types and is also relatively consistent
with the subjective perception of color by the human eye. It is able to capture the fine green
vegetation well and also fully detect the vegetation under a shadow texture cover, so it
has great potential in feature recognition and classification. Therefore, the HSVGVI was
established on the basis of the HSV color space by using the channel enhancement method,
which makes full use of the advantage that each variable in the HSV space can be analyzed
independently and quantitatively and reduces the influence of strong light and shadow
texture so that we can better extract the vegetation information and dynamically monitor
the changing trend of land desertification in desert areas with complex ground conditions.

2. Materials and Methods
2.1. Overview of the Study Area

The study area is located in the Hangjin Banner, Ordos City, Inner Mongolia Au-
tonomous Region, northern China. Its latitude lies between 107◦7′ E and 108◦55′ E, and
its longitude is between 39◦38′ N and 40◦27′ N; this area is an important part of the Inner
Mongolia grassland. The average altitude of the region is 1100 m, and the average annual
temperature is 8.6 ◦C, which is a typical temperate continental climate. The region is
subject to perennial wind–sand erosion and precipitation scarcity, leading to extensive
land desertification [34]. Its high altitude and complex topography make most of the area
unsuitable for manual field monitoring. Therefore, first, high-resolution satellite remote
sensing images were used to perform large-scale monitoring of land changes, and vege-
tation information was extracted to construct a vegetation cover model, which helped to
assess the health status of vegetation and the degree of desertification. The topography
and geomorphology information was obtained using DEM elevation data to help analyze
the characteristics of surface undulation, slope, and slope direction in desert areas. This
is of great significance for setting UAV flight parameters and judging the desertification
development trend. Finally, the UAV visible light image was used to extract data on the
actual situation of the study area accurately. Figure 1 shows an overview of the geographic
location of the study area and a model of the vegetation cover in Hangjin Banner.

2.2. Research Methodology
2.2.1. Color Space

In the classification of feature information, the commonly used color space models are
the RGB color space model, the Lab color space model, and the HSV color space model.
Among them, RGB images contain three color channels: R, G, and B. Due to the large
correlation between these channels, it is difficult to quantitatively analyze the features, and
misclassification problems easily occur [35]. Moreover, there are still many factors affecting
the classification accuracy in the field of visible light remote sensing, such as the shading
texture produced by tall trees covering low vegetation areas, dry shrubs with fewer stems
and leaves, and meadows with lower reflectance in deserts [36]. All of these physical factors
seriously interfere with the classification accuracy and cause misclassification problems,
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which in turn have an impact on the monitoring and evaluation of land desertification and
trend judgment.
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Figure 1. Multi-source imagery data of the study area.

However, the Lab color space consists of brightness factor L and chromaticity factors
a and b. Although it extends the range of color expression, only the a channel has the
ability to detect green vegetation [37,38]. Additionally, in the middle and low vegetation
coverage interval, because the a channel does not have bimodal characteristics during the
channel fitting process, it is also impossible to determine the range of vegetation pixel
thresholds in the a channel; thus, the Lab color space is more limited in extracting data
regarding the monitored vegetation. Compared with the RGB color space and Lab color
space, the HSV color space model consists of three elements: hue, saturation, and value [39].
These three elements are completely in line with human visual characteristics, with more
relative independence in remote sensing image processing, and the H (hue) value between
different color features varies greatly [40]. The HSV color space model is a hexagonal
vertebrae model, and the range of values of the H element is usually expressed in terms
of the angular range [41]. The hue (H) value covers a range from 0 to 360◦; the value of
S (saturation) is directly proportional to the color intensity and determines the vividness
of the color, which covers a value range from 0 to 100%; and the V (value) indicates the
brightness of the color; the larger the value, the higher the luminance, and it ranges from
0 to 100% [42]. Additionally, different color types can be represented by directly changing
the H channel; saturation and brightness are also independent of each other, and adjusting
the S and V values can arbitrarily change the vividness of the color without changing the
color type [43]. This makes the vegetation index determined using the HSV color space
have unique advantages in desert vegetation information extraction and more suitable for
desert vegetation detection. Therefore, based on the above reasons, this paper proposes
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the HSVGVI to extract desert vegetation information for monitoring. In addition, the HSV
color space model is shown in Figure 2.
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2.2.2. Methodological Process

Although high-resolution satellite remote sensing images (Landsat-8) have the ability
to monitor vegetation information on a large scale, they cannot detect desert vegetation
with high precision [44]. UAV remote sensing has the advantage of high precision and is
not affected by complex terrain, but the coverage of the monitoring area is limited, and the
preprocessing and splicing of images take longer; thus, it is time-consuming [45,46]. For
this reason, we used a combination of high-resolution satellite remote sensing images and
UAV visible light images to extract vegetation information in the study area. First, high-
resolution satellite remote sensing images were used to establish the vegetation coverage
(FVC) model of the study area, and the area with lower vegetation coverage (FVC < 0.3)
was set as the key monitoring area of land desertification. Visible light remote sensing
images from UAVs were then utilized to accurately extract desert vegetation information.

Furthermore, in visible light image desert vegetation detection, the detection accuracy
is mainly affected by the following two factors: dry wood vegetation containing low
chlorophyll and vegetation under the cover of shadow texture. Therefore, we took the above
two influencing factors as the main object of study, and based on these two influencing
factors, we divided the new regional samples in the study area. The criteria for sample
delineation were as follows: counting the number of pixels using the pixel-by-pixel method
and calculating the area occupied by the two main influencing factors to ensure that the
area of the influencing factors accounts for more than 20% of the total area of the samples (to
prevent the influencing factors from being overlooked because they account for a smaller
proportion), thus delineating the areas with dense vegetation and those with more shadows
in the study area. With the above sample area, the extraction effect and extraction accuracy
of the HSVGVI can be tested. Figure 3 shows a UAV visible remote sensing image, with
(a) showing an area with dense vegetation and (b) showing an area with multiple shadows.
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The detailed experimental procedure of this paper consisted of the following eight steps:

(1) First, we carried out data collection and integration using three Landsat8 images near
January 2021, all of which have less than 3% cloud cover, with a spatial resolution of
30 m, and path/row numbers of 129/32, 128/32, and 128/33, and then we used the
red and near-infrared bands of Landsat8 images to compute the NDVI values and
FVC values. After identifying the study area, we used a DJI Elf 4 rtk (multi-spectral
version) drone to acquire a light remote sensing image of the study area. The UAV
has the following wavelengths and spectral widths: blue (B): 450 nm ± 16 nm; green
(G): 560 nm ± 16 nm; red (R): 650 nm ± 16 nm; red edge (RE): 730 nm ± 16 nm;
and near-infrared (NIR): 840 nm ± 26 nm. It has a spatial resolution of 0.1 m, and
the specific flight parameters for the study area were set as follows: default speed:
7.9 m/s; shooting mode: timed shooting; heading repetition; and line repetition rates
of 65% and 45%.

(2) Subsequently, the Lantsat8 high-resolution satellite remote sensing image was sub-
jected to image preprocessing using ENVI 5.3.1 (64-bit) software’s Radiometric Cal-
ibration tool for each band in the data, with the interleaved output type selected
as BLL and the output data type selected as Float to complete the radiometric cal-
ibration. The atmospheric correction was then performed using the FLAASH (fast
line-of-sight atmospheric analysis of spectral hypercubes) method. After completing
the atmospheric correction, the image was spliced with the Seamless Mosaic tool, and
its background value was set to 0 (ignoring the background value). The sampling
method was chosen as the Cubio convolution method for image stitching calculation.

(3) The normalized vegetation index model (NDVI) was established, and the vegetation
cover (FVC) of the study area was calculated based on the NDVI, in which the NDVI
and FVC were determined using Equations (1) and (2).

NDVI =
NIR − R
NIR + R

(1)

where NIR is the near-infrared band, and R is the red band.

FVC =
NDVI − NDVInon

NDVIveg − NDVInon
(2)

where NDVIveg and NDVInon are the NDVI values for fully vegetated versus bare
ground or unvegetated pixels, respectively [47]. The NDVInon and NDVIveg values
vary over time and space due to atmospheric and surface conditions, year, season,
and region [48,49]. In this study, 5% and 95% cumulative percentages were used as
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confidence intervals to determine the valid NDVInon and NDVIveg values for the
study area, respectively.

(4) The vegetation cover model was analyzed, locating areas of land desertification and
obtaining visible remote sensing images from drones;

(5) Constructing HSVGVI vegetation index model based on unmanned aerial vehicle
visible light remote sensing images;

(6) The supervised classification of each vegetation index model was completed using
the support vector machine (SVM) method. The support vector machine (SVM) is a
machine learning method proposed by Vapnik in the 1990s, which was developed
based on the VC (Vapnik–Chervonenkis) dimension theory and the principle of
structural risk minimization in statistical theory. The basic idea of a support vector
machine is to classify the input sample points by finding an optimal hyperplane. The
principle of selecting the optimal hyperplane is to be able to distinguish the input
sample points correctly and maximize the geometric interval from the sample points
to the optimal hyperplane to obtain a better classification result [50]. Through the
learning and training of the support vector machine, the parameters of the optimal
hyperplane can be found, so as to obtain an efficient and accurate classification model.
The principle is shown in Figure 4. Compared with other methods, the SVM algorithm
performs well when dealing with small sample datasets because it can improve the
generalization ability of the model and reduce the risk of overfitting by maximizing the
classification interval. The SVM algorithm can also effectively deal with nonlinearly
divisible data by mapping the data into a high-dimensional space, and classification
is performed by finding the optimal hyperplane. Moreover, the SVM algorithm is
mainly affected by support vectors, so outliers have less influence on it [51].

(7) The confusion matrix, overall accuracy, producer accuracy, user accuracy, and error
analysis were constructed to jointly verify the accuracy of classification (according
to Foody [52], the Kappa coefficient is not suitable for comparing the accuracy of
thematic maps, so the Kappa coefficient indicator was not used). Confusion matrices
(CMs) are used as common evaluation tools in classification problems to visualize the
performance and error analysis of classification models. The correspondence between
the results of the classification algorithm on the samples and the actual situation is
shown in the form of a matrix. By analyzing the confusion matrix, the accuracy of
the vegetation index model can be calculated to further assess the performance of the
classification algorithm [53].

(8) Finally, the experimental classification results are analyzed through an accuracy eval-
uation of the experiment, and land desertification in the Hangjin Banner is discussed.

Remote Sens. 2023, 15, x FOR PEER REVIEW  7  of  28 
 

 

(3)  The normalized vegetation index model (NDVI) was established, and the vegetation 

cover (FVC) of the study area was calculated based on the NDVI, in which the NDVI 

and FVC were determined using Equations (1) and (2). 





IR

IR

N R
NDVI

N R
  (1) 

where  IRN   is the near-infrared band, and  R   is the red band. 





non

veg non

NDVI NDVI
FVC

NDVI NDVI
  (2) 

where vegNDVI    and  nonNDVI  are  the  NDVI  values  for  fully  vegetated  versus  bare 

ground  or unvegetated  pixels,  respectively  [47]. The  nonNDVI    and  vegNDVI    values 

vary over time and space due to atmospheric and surface conditions, year, season, and 

region [48,49]. In this study, 5% and 95% cumulative percentages were used as confidence 

intervals to determine the valid  nonNDVI   and  vegNDVI   values for the study area, re-

spectively. 

(4)  The vegetation cover model was analyzed, locating areas of land desertification and 

obtaining visible remote sensing images from drones; 

(5)  Constructing HSVGVI vegetation  index model based on unmanned aerial vehicle 

visible light remote sensing images; 

(6)  The supervised classification of each vegetation index model was completed using 

the support vector machine (SVM) method. The support vector machine (SVM) is a 

machine  learning method proposed by Vapnik  in  the 1990s, which was developed 

based on the VC (Vapnik–Chervonenkis) dimension theory and the principle of struc-

tural risk minimization in statistical theory. The basic idea of a support vector ma-

chine  is to classify the  input sample points by finding an optimal hyperplane. The 

principle of selecting the optimal hyperplane  is  to be able  to distinguish the  input 

sample points correctly and maximize the geometric interval from the sample points 

to  the optimal hyperplane  to obtain a better classification result  [50]. Through  the 

learning and training of the support vector machine, the parameters of the optimal 

hyperplane  can  be  found,  so  as  to  obtain  an  efficient  and  accurate  classification 

model. The principle is shown in Figure 4. 

 

Figure 4. Schematic diagram of SVM. Figure 4. Schematic diagram of SVM.



Remote Sens. 2023, 15, 5742 8 of 27

The flowchart of the experiment is shown in Figure 5.
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3. Experiment and Analysis
3.1. Determination of the Vegetation Index and Construction of Its Model

By constructing an RGB color space and determining the HSVGVIs, the corresponding
vegetation index models were established in the study area. Through supervised classifi-
cation and accuracy verification, the ability of each vegetation index to extract vegetation
information was statistically analyzed, and the vegetation indices that still maintained high
accuracy in extracting vegetation information in harsh desert environments were selected
to explore the key factors affecting the extraction of vegetation information.

3.1.1. Vegetation Index Based on RGB Color Space

Vegetation indices based on the RGB color space are calculated by combining multiple
bands according to the spectral characteristics of vegetation and are widely used to monitor
the extraction of vegetation cover data and evaluate the growth of vegetation. In the field
of UAV visible remote sensing, there are more than 150 vegetation indices [54], such as
the EXG (excess green index) [55], RGBVI (red–green–blue vegetation index) [56], MGRVI
(modified green–red vegetation index) [57], NGRDI (normalized green–red difference in-
dex) [58], and VDVI (visible-band difference vegetation index) [59]. These five vegetation
indices are based on the reflective and absorptive properties of plants considering electro-
magnetic waves and utilize the component of RGB in visible light to accurately describe
the information of various types of vegetation [60]. All of them are vegetation indices
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calculated based on the difference between green and red bands, which are highly sensitive
to the changes in vegetation chlorophyll content [61]. Therefore, these vegetation indices
were utilized as control tests. The accuracy was verified by constructing a confusion matrix
model and calculating the overall accuracy, producer accuracy, and user accuracy, and
finally, the differences between the HSVGVI vegetation indexes and those based on the RGB
color space were comprehensively analyzed in terms of their ability to extract vegetation
information. The specific construction formula is shown in Table 1:

Table 1. Construction formula of vegetation indices based on RGB color space.

Vegetation Index Formula Value Range

EXG (excess green index) 2× G− R− B [–1, 2]

RGBVI (red–green–blue vegetation index)
G2−R×B
G2+R×B [–1, 1]

MGRVI (modified green–red vegetation index)
G2−R2

G2+R2 [–1, 1]

NGRDI (normalized green–red difference index)
G−R
G+R [–1, 1]

VDVI (visible-band difference vegetation index) 2G−R−B
2G+R+B [0, 1]

3.1.2. Build HSVGVI

The UAV visible remote sensing image is an RGB color space image, so the RGB
color space should be converted into an HSV color space first. The specific conversion
relationship is shown in Equation (3):

R′ = R/255
G′ = G/255
B′ = B/255
C max = max(R′, G′, B′)
C min = min(R′, G′, B′)
∆ = C max− C min

(3)

where R, G, and B are the value domains of the R, G, and B channels, respectively. The
meaning of Cmax is to take the maximum value in the brackets, and the meaning of Cmin
is to take the minimum value in the brackets.

First, we normalized the R, G, and B color channels and selected the maximum and
minimum values of R, G, and B [62]. Then, the hue, saturation, and value parameters were
determined using Equation (4) to convert the RGB color space into the HSV color space
as follows:

Hue

H =


0
◦

, ∆ = 0
60◦ × (G′−B′

∆ + 0) , C max = R′

60◦ × ( B′−R′
∆ + 2) , C max = G′

60◦ × ( R′−G′
∆ + 4) , C max = B′

Saturation

S =

{
0 ,C max = 0

∆
C max ,C max 6= 0

Value
V = Cmax

(4)

where H, S, and V values represent the specific values of hue, saturation, and brightness,
respectively. The value of ∆ is obtained from Equation (1).

There is a difference in color distribution between RGB and HSV. In the RGB color
space, the color dots are evenly distributed, while in the HSV color space, the color dots are
more concentrated in the center area of the cone. Therefore, during the conversion process,
some colors may be more densely distributed in HSV images and shift or create new color



Remote Sens. 2023, 15, 5742 10 of 27

effects, giving a different appearance to the overall color of the HSV images. The difference
in hue (H) between different categories of features in HSV images is large, so compared to
RGB images, there is a higher degree of differentiation between different color types, which
can be used to construct the HSVVI from HSV images.

In order to further expand the differentiation between different types of features, and
to distinguish desert vegetation from other features such as bare soil, the brightness (V)
and saturation (S) values of the image can be increased by 10–20% (in this paper, the value
is taken to be 15%), which can maximize the color intensity and vividness of the image
without changing the clear structure of the image [63]. Next, it is necessary to output the
HSVVI again as an RGB image with channel enhancement. Although at this stage, the
color information of the HSVVI is expressed through H, S, and V color channels, the final
output form is still presented through RGB color channels. Therefore, after increasing the
S and V values, saving the effects as RGB images directly can avoid the color shift again
when converting the HSV color space to RGB color space. The specific method is shown in
Equation (5).

V × 1.15 S× 1.15
C = V × S
X = C× (1−

∣∣∣( H
60 )mod2− 1

∣∣∣)
m = V − C

(R′, G′, B′) =



(C, X,0) , 0 ≤ H < 60
(X, C,0) , 60 ≤ H < 120
(0, C, X) , 120 ≤ H < 180
(0, X, C) , 180 ≤ H < 240
(X,0, C) , 240 ≤ H < 300
(C,0, X) , 300 ≤ H < 360

(R, G, B) = ((R′ + m)× 255, (G′ + m)× 255, (B′ + m)× 255)

(5)

where mod2 denotes the operation of taking the modulus (remainder) of 2.
The spectral reflectance of green vegetation in visible remote sensing images is charac-

terized by the highest reflectance in the green band, which is greater than the reflectance in
the red and blue bands. That is, vegetation absorbs red and blue light with higher intensity
and absorbs green light with lower intensity. Lastly, using this feature, the HSVGVI was
constructed by mixing the R channel with the G channel through channel mixing, after
which the G channel was the enhanced channel, that is, the G value was enhanced to two
times the original one. The specific construction method (6) is shown below.

HSVGVI = HSVVI


RH × GH
GH × 2
BH

(6)

where RH, GH, and BH are the values of the R, G, and B channels in the HSVVI model,
respectively, and the HSVGVI model can be obtained through the calculation of channel
enhancement.

The HSVGVI can be used to monitor vegetation under shadow coverage, as well as
dry shrub vegetation and meadows with fewer stems and leaves, and solve the problem of
false classification caused by shadow texture coverage. Figure 6 shows an HSVGVI image
for (a) a multi-shaded area and (b) a dense vegetation area.
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Figure 6. HSVGVI image: (a) multi-shaded area; (b) densely vegetated area.

4. Results
4.1. Building Index Models

Based on the construction methods of various vegetation index models in the previous
section, the EXG (excess green index), RGBVI (red–green–blue vegetation index), MGRVI
(modified green–red vegetation index), NGRDI (normalized green–red difference index),
and VDVI (visible-band difference vegetation index) models were constructed in the RGB
color space through band combination calculation. The HSVVI (hue–saturation–value
vegetation index) and HSVGVI (hue–saturation–value green enhancement vegetation
index) models were constructed based on the HSV color space. All vegetation index models
are shown in Figure 7.
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4.2. Supervision Classification of Each Model

After constructing the vegetation index model, the supervised classification of different
features was carried out based on a support vector machine (SVM), the aim of which was
to divide the study samples into two categories (vegetation category and bare soil category)
with maximum spacing and find the hyperplane that maximized the boundary between
the two categories to achieve classification. By finding a set of support vectors as the closest
training sample points to the hyperplane, these support vectors are used to determine the
classification boundaries and make classification decisions [64]. To ensure the accuracy of
supervised classification, the separation between the training samples of different regions
of interest in the supervised classification samples was kept greater than 1.9. To ensure
the accuracy of supervised classification, a computerized ROI separability tool was used
to compute the separation between any classes when separating different ground objects.
Separability was based on the Jeffries–Matusita distance and transition separability to
measure the separability between different categories. Its range was [0, 2]. The greater the
separation, the better the discriminatory ability, and a separation degree of greater than
1.8 was considered satisfactory whereas that greater than 1.9 was considered accurate [65].
Based on the spatial resolution of the UAV, the area of a single pixel was calculated. By
means of field surveys, validation sample squares were established on a per-pixel basis.
The feature attributes (vegetation or bare soil) that accounted for more than 50% of the
features within the sample squares were recorded as attributes per pixel. Sample-by-
sample vectorization was performed based on the percentage of each type of feature
within each sample square. Finally, validation samples were obtained from the feature
information in each pixel. Using this method, the validation samples of multi-shaded areas
and vegetation-dense areas were obtained for subsequent accuracy validation. Figure 8
shows the supervised classification results of these seven vegetation indices compared
with the validation samples (green color indicates vegetation and purple color indicates
bare soil):
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Based on the two different types of study areas, preliminary findings can be revealed
by comparing and analyzing the supervised classification results in Figure 7 and the
raw UAV image data: In the multi-shaded type region, due to the influence of high-
intensity light, the branching and leafy tree canopy produces a deep shadow texture, which
covers a considerable area of low shrub vegetation on the ground surface, and due to
the large correlation of the three channels in the RGB color space, which is impossible to
quantitatively analyze, a large number of misclassification problems occur, which seriously
affect the accuracy of the vegetation extraction. The EXG, NGRDI, MGRVI, VDVI, and
RGBVI cannot be used to extract low vegetation areas under shadow coverage, resulting
in some vegetation pixels being misclassified as bare soil pixels. On the other hand, the
HSVVI and HSVGVI models constructed based on the HSV color space, in which the color
types in the image are only controlled using the H channel, are relatively independent and
have a larger degree of differentiation; thus, they can better detect the vegetation under
shadow coverage.
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The densely vegetated areas are located in arid and semi-arid regions with mostly
low and dry shrub vegetation, and the grass on the ground is too sparse and has low
chlorophyll content. This results in poor green light reflectance and leads to the inability to
recognize some of the vegetated areas. NGRDI, MGRVI, and HSVGVI models can maintain
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a certain accuracy in detecting vegetation in grassland areas because these three vegetation
indices enhance the green channel during the model construction. All other vegetation
indices have more serious misclassification problems, resulting in generally low accuracy
in detecting vegetation cover in the study area.

4.3. Calculation and Statistics of the Percentage of Physical Characteristics of Each Place

In this paper, reference data such as the total area of the study samples, specific
vegetation area, and non-vegetation area were obtained through field investigations, which
were used to evaluate the accuracy of the feature coverage determined with each vegetation
index model. The following calculation method was used for feature coverage: the ratio of
the area of two types of features after supervised classification using each vegetation index
model to the total area of the study area is taken as the coverage of these features in the
study area, as shown in Equation (7):

θv =
θc

θs
(7)

where θv is the coverage of a feature, θc is the area of a feature, and θs is the total area of the
study area.

Based on the above calculation process, the percentage of data for each feature and the
vegetation cover of each vegetation index after supervised classification can be obtained.
By comparing and analyzing them with the reference data, the ability of various vegetation
indices to extract vegetation information and monitor the process of land desertification
can be preliminarily judged. Vegetation coverage statistics for multi-shaded and densely
vegetated areas are presented in Table 2.

Table 2. Statistics on percentage of vegetation in multi-shaded and densely vegetated areas.

Index Percentage of Vegetation in
Multi-Shaded Areas

Percentage of Vegetation in
Densely Vegetated Areas

EXG 7.53% 19.59%
VDVI 7.67% 35.01%

RGBVI 8.83% 25.18%
MGRVI 8.66% 30.08%
NGRDI 22.19% 34.53%
HSVVI 10.08% 29.05%

HSVGVI 17.57% 38.79%
Reference data from field

measurements 17.01% 38.87%

4.4. Accuracy Evaluation and Error Analysis of Supervised Classification Results
4.4.1. Accuracy Assessment and Construction of Confusion Matrix

In this study, the entire sample area was first divided into a grid by individual pixels,
and the area occupied by individual pixels was calculated based on the spatial resolution
of UAV images. Then, a field survey was conducted to establish validation sample squares
based on the area of each pixel. The feature attributes (vegetation or bare soil) with more
than 50% of the area within a sample square were labeled as attributes for that sample
square. Subsequently, the feature information of each sample square was vectorized, and
the sample squares were vectorized into validation sample points, which were integrated
and used to construct validation samples for supervised classification. Next, the UAV
visible images were visually interpreted, and the interpretation results were compared with
the validation sample in order to further modify and correct any unreasonable points in
the validation sample. Finally, this validation sample was used to evaluate the accuracy of
the supervised classification results. In addition, we constructed a confusion matrix. The
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overall accuracy, producer accuracy, and user accuracy were used as accuracy evaluation
indicators, and the specific construction method is shown in Equations (8)–(10).

UAi =
Pii
Pi+

(8)

PAi =
Pii
P+i

(9)

OA =
∑k

i=1 Pii

P
(10)

where P is the total number of samples, k is the total number of categories, Pii is the number
of correctly categorized samples, P+i is the number of samples in category i, and Pi+ is the
number of samples predicted to be in category i.

4.4.2. Error Analysis

To further verify the accuracy of the supervised classification results, the following
equation was utilized for error analysis:

Ω =

∣∣∣Ωw −Ω f vc

∣∣∣
Ωw

× 100% (11)

where Ω f vc is the vegetation coverage rate after the supervised classification of each vege-
tation index, and Ωw is the vegetation coverage rate measured in the field. Due to the fact
that Ωw was used as a precision evaluation control experiment for the supervised classifi-
cation results of various vegetation indices, detailed field measurements were conducted
by delineating the study area to ensure the accuracy of Ωw.

In summary, the results of accuracy evaluation, error analysis, and confusion matrix
for the multi-shaded vegetation areas and densely vegetated areas are shown in Tables 3–6,
respectively. ‘Vegetation’ and ‘bare soil’ in Tables 4 and 6 indicate the number of vegetation
samples and bare soil samples, respectively.

Table 3. Accuracy assessment results for samples in multi-shaded areas.

Vegetation
Index

Overall
Accuracy

Producer
Accuracy User Accuracy Error Analysis

EXG 89.63% 41.67% 94.08% 55.73%
VDVI 90.49% 44.60% 98.92% 54.91%

RGBVI 91.82% 51.89% 100.00% 48.09%
MGRVI 91.63% 50.85% 99.88% 49.09%
NGRDI 91.31% 89.69% 68.75% 30.45%
HSVVI 93.08% 59.29% 100.00% 40.74%

HSVGVI 99.13% 99.10% 95.95% 3.29%

Table 4. Confusion matrix for multi-shaded region samples.

Vegetation Index Feature Type Vegetation Bare Soil

EXG
Vegetation 8200 516
Bare soil 11,479 95,505

VDVI
Vegetation 8776 96
Bare soil 10,903 95,925

RGBVI
Vegetation 10,212 0
Bare soil 9467 96,021
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Table 4. Cont.

Vegetation Index Feature Type Vegetation Bare Soil

MGRVI
Vegetation 10,006 12
Bare soil 9673 96,009

NGRDI
Vegetation 17,651 8022
Bare soil 2028 87,999

HSVVI
Vegetation 11,668 0
Bare soil 8011 96,021

HSVGVI
Vegetation 19,502 824
Bare soil 117 95,197

Table 5. Results of accuracy evaluation of samples from densely vegetated areas.

Vegetation
Index

Overall
Accuracy

Producer
Accuracy User Accuracy Error Analysis

EXG 76.27% 44.66% 88.56% 49.56%
VDVI 89.17% 81.14% 90.01% 9.86%

RGBVI 82.63% 60.05% 92.62% 35.17%
MGRVI 82.20% 65.82% 84.96% 22.55%
NGRDI 81.85% 71.09% 79.97% 11.10%
HSVVI 87.89% 71.81% 96.01% 25.21%

HSVGVI 95.73% 89.43% 99.52% 0.13%

Table 6. Confusion matrix for samples from densely vegetated areas.

Vegetation Index Feature Type Vegetation Bare Soil

EXG
Vegetation 20,070 2592
Bare soil 24,869 68,169

VDVI
Vegetation 36,462 4049
Bare soil 8477 66,712

RGBVI
Vegetation 26,988 2151
Bare soil 17,951 68,610

MGRVI
Vegetation 29,578 5236
Bare soil 15,361 65,525

NGRDI
Vegetation 31,947 8002
Bare soil 12,992 62,759

HSVVI
Vegetation 32,271 1341
Bare soil 12,668 69,420

HSVGVI
Vegetation 40,187 192
Bare soil 4752 70,569

4.5. Analysis of Supervised Classification Results

According to the supervised classification results, it can be seen that in the multi-
shaded vegetation area, although the supervised classification accuracies of all vegetation
indices are above 90%, a significant error occurs, which is mainly due to the following three
factors: (1) a misclassification problem occurs in the multi-shaded area due to the coverage
of the shaded texture; (2) a misclassification problem occurs in the densely vegetated area
due to the presence of a large number of dry shrubs; and (3) the percentage of vegetation
area in the region is much smaller than the percentage of bare soil area, leading to the
overall supervised classification accuracy being falsely high.

Based on this, we verified the accuracy of vegetation detection by constructing con-
fusion matrices, as well as the overall accuracy, producer accuracy, user accuracy, and
error analysis models; in this case, the error analysis is based only on the percentage of
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vegetation obtained, so it is more intuitive to determine the vegetation cover. The high
accuracy of producers and low accuracy of users indicate that although the visible vege-
tation index model can be used to roughly identify vegetation coverage, there is a very
serious misclassification problem, and its accuracy makes it difficult to use this model for
land desertification monitoring. In order to further explore whether the HSVGVI and other
vegetation indices may misclassify as a result of shadow texture, dry shrub vegetation,
etc., the study area was quantitatively divided again, the influence factors were amplified,
and the percentage of the vegetation sample area was increased so as to ensure that the
supervised classification results were intuitive and applicable to the evaluation of accuracy.

4.6. Comparison between Vegetation Samples under Shadow Coverage and Dry Shrub
Vegetation Samples

In order to further validate the misclassification problem described in the previous
section, the vegetation samples under shadow coverage and dry shrub vegetation samples
were divided in the study area. The specific division principles were as follows: (1) Since
the number of vegetation images in the original sample accounted for a small percentage
and the number of non-vegetation images accounted for a large percentage, even if the
problem of misclassification of vegetation images occurred, the impact on the final accu-
racy evaluation results would be small, resulting in the accuracy presenting a false high.
Therefore, increasing the percentage of vegetation area can better and more realistically
reflect the accuracy problem due to misclassification and can also ensure the intuitiveness
and authoritativeness of supervised classification accuracy. (2) The vegetation samples
under shadow coverage were divided, and the shadow-texture-influencing factors were
amplified. (3) The vegetation samples of low shrubs with fewer stems and leaves were
divided, and the influencing factors for dry shrubs were amplified. By using the above divi-
sion principles, the samples were obtained after amplifying the influencing factors, which
could better show the advantages of the HSVGVI in shadow elimination and vegetation
detection. Figure 9a shows the vegetation samples under shadow coverage, and Figure 9b
shows the dry shrub vegetation samples.
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4.7. Proportion and Accuracy Verification of Objects in Different Regions

By analyzing the supervised classification results of vegetation samples under shadow
coverage and dry shrub vegetation samples, the proportion of objects in each region with
these two samples was obtained. Table 7 shows the vegetation coverage statistics for the
shaded coverage and dry shrub areas.

Table 7. Percent vegetation statistics for shaded coverage areas and dry shrub vegetation areas.

Index Percentage of Vegetation in
Shaded Coverage Areas

Percentage of Vegetation in
Dry Shrub Areas

EXG 26.08% 20.03%
VDVI 26.52% 38.36%

RGBVI 29.86% 28.85%
MGRVI 27.77% 27.79%
NGRDI 48.91% 32.01%

HSVGVI 43.77% 46.27%
Real data from field

measurements 52.37% 51.45%

Based on the supervised classification results and actual field measurement data, we
constructed a confusion matrix and calculated the overall classification accuracy, producer
accuracy, and user accuracy. The specific accuracy evaluation is shown in Tables 8–11.
Table 8 is the accuracy evaluation results of vegetation samples under shadow cover-
age, and Table 9 is its confusion matrix. Table 10 is the accuracy evaluation results of
vegetation samples of dry shrubs, and Table 11 is its confusion matrix. ‘Vegetation’ and
‘bare soil’ in Tables 9 and 11 indicate the number of vegetation samples and bare soil
samples, respectively.



Remote Sens. 2023, 15, 5742 21 of 27

Table 8. Results of accuracy evaluation of samples from areas under shadow coverage.

Vegetation
Index

Overall
Accuracy

Producer
Accuracy User Accuracy Error Analysis

EXG 77.38% 53.85% 98.43% 50.20%
VDVI 78.73% 55.51% 99.70% 49.36%

RGBVI 82.23% 62.69% 100.00% 42.98%
MGRVI 80.14% 58.31% 100.00% 46.97%
NGRDI 84.29% 84.85% 82.63% 16.42%

HSVGVI 97.78% 98.14% 97.24% 8.21%

Table 9. Confusion matrix for samples from regions under shadow coverage.

Vegetation Index Feature Type Vegetation Bare Soil

EXG
Vegetation 1621 25
Bare soil 1389 3285

VDVI
Vegetation 1671 5
Bare soil 1339 3305

RGBVI
Vegetation 1887 0
Bare soil 1123 3310

MGRVI
Vegetation 1755 0
Bare soil 1255 3310

NGRDI
Vegetation 2554 537
Bare soil 456 2773

HSVGVI
Vegetation 2954 84
Bare soil 56 3226

Table 10. Results of precision evaluation of vegetation samples of dry shrubs.

Vegetation
Index

Overall
Accuracy

Producer
Accuracy User Accuracy Error Analysis

EXG 66.94% 37.34% 95.92% 61.07%
VDVI 83.88% 71.61% 96.05% 25.44%

RGBVI 75.45% 54.18% 96.64% 43.93%
MGRVI 72.64% 50.41% 93.35% 45.99%
NGRDI 75.45% 57.24% 92.05% 37.78%

HSVGVI 94.45% 89.58% 99.61% 10.00%

Table 11. Confusion matrix for dry shrub vegetation samples.

Vegetation Index Feature Type Vegetation Bare Soil

EXG
Vegetation 634 27
Bare soil 1064 1575

VDVI
Vegetation 1216 50
Bare soil 482 1552

RGBVI
Vegetation 920 32
Bare soil 778 1570

MGRVI
Vegetation 856 61
Bare soil 842 1541

NGRDI
Vegetation 972 84
Bare soil 726 1518

HSVGVI
Vegetation 1521 6
Bare soil 177 1596
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According to Tables 8 and 10, by increasing the percentage of vegetation area, the
supervised classification accuracy of each vegetation index model is no longer falsely
high due to fluctuations in the values and is more intuitive and authoritative. However,
there is still a large error, which reflects that the presence of shaded texture and low shrubs
containing fewer green leaves have a greater impact on the accuracy of vegetation detection.

In the vegetation samples from areas under shaded coverage, the vegetation indices
constructed based on the RGB color space are greatly affected by the shadow texture, and
their overall accuracies are generally low: The detection errors of vegetation coverage are
all greater than 40%. Among the different vegetation indices, although the total accuracy of
the NGRDI can reach 84.29%, and the producer accuracy can reach 84.58%, its user accuracy
is only 82.63%, indicating that there are many misclassification problems. In addition, the
producer accuracy of other RGB-space vegetation indices is generally low, but the user
accuracy can reach more than 90%, which indicates that there are many misclassification
problems in the classification process. This is due to the masking of shadow texture,
and many vegetation pixels are “lost” in the classification. These RGB spatial vegetation
indices can only extract the more obvious vegetation pixels, but it is difficult to extract
the vegetation pixels covered by shadow textures. On the other hand, the supervised
classification accuracy of the HSVGVI is as high as 97.78%, its vegetation cover detection
error is only 8.21%, the producer’s accuracy coefficient is 89.58%, and the user’s accuracy
is 99.61%. This indicates that it has a better extraction and classification accuracy, and
compared with the RGB-space vegetation indices, the HSVGVI can eliminate the effect of
shaded textures, which makes it more suitable for the detection of desert vegetation.

In the dry shrub vegetation samples, the overall accuracy of vegetation indices in RGB
color space is lower than 85%, generally around 70%, and the extraction error of vegetation
cover is more than 25%; the producer accuracy fluctuates between 37% and 72%, and the
user accuracy is above 90%. Since the VDVI is more sensitive to the green wave band, its
classification accuracy can reach 83.88% with an error of 25.44%; the producer accuracy
is 71.61%, and the user accuracy is 96.05%. The phenomenon that the producer accuracy
is lower, whereas the user accuracy is higher in the RGB vegetation indices also indicates
that the vegetation containing fewer stems and leaves is difficult to detect, which leads
to a serious misclassification problem. However, the HSVGVI has the advantages of the
quantitative analysis of relatively independent hues in the HSV color space as well as
green channel enhancement, so the overall accuracy, producer accuracy, and user accuracy
can be up to 94.45%, 89.58%, and 99.61%, respectively. The error analysis is only 10.00%,
which indicates that this index is suitable for classifying low shrubs with fewer green leaves
and solves the problem of misclassification observed with vegetation indices in the RGB
color space.

In conclusion, the HSVGVI not only inherits the unique advantages of the HSV color
space but also has the ability to enhance the green channel and greatly reduce the influence
of dark shadow texture, which enables us to extract the low shrub vegetation data with
fewer green leaves more clearly, and the overall accuracy, producer’s accuracy, and user’s
accuracy can be achieved at a high level.

5. Discussion
5.1. Comparative Analysis of Various Samples in the Research Area

In this study, the proportion of vegetation and non-vegetation, the classification
accuracy, and the producer accuracy in the two groups of study areas were determined
separately. By comparing and analyzing the above data, the following conclusions are
drawn: By establishing the second group of research areas, the two influencing factors of
shadow texture and dry shrub vegetation were further amplified. By observing the trends
of the overall accuracy, producer accuracy, and user accuracy of the vegetation indices
constructed based on the RGB color space, it was found that the overall accuracy and
producer accuracy coefficients decreased significantly, and the error gradually increased,
but the user accuracy still remained at a certain level. This indicates that these vegetation
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indices can extract some more “obvious” (not affected by influencing factors) vegetation
samples in the image, but there is a significant misclassification problem, as both shadow-
covered vegetation pixels and dry vegetation pixels are misclassified as bare soil pixels,
resulting in lower overall accuracy and producer accuracy. On the other hand, the overall
accuracy of the HSVGVI remains above 95%, the error rate is not more than 10%, and the
user accuracy and producer accuracy are above 89%. In summary, the results show that the
HSVGVI has the ability of shadow elimination and high-precision vegetation detection and
thus is a better solution to the two major problems faced in desert vegetation detection.

5.2. Analysis of Land Desertification in Hangjin Banner

Through the vegetation cover model, it can be inferred that the land desertification
problem in the Hangjin Banner is more serious, dominated by areas of medium and
severe land desertification. For monitoring land desertification in the Hangjin Banner,
we took a multi-shaded vegetation area and a densely vegetated area as examples, and
the vegetation coverage of these two samples determined using the HSVGVI was 0.18
(extremely desertified area) and 0.39 (moderately desertified area). In the FVC model
of high-definition satellite remote sensing images, the vegetation coverage of these two
samples was determined by inputting the geographic coordinates, and the vegetation
coverage of these two samples was 0.3 (severely desertified area). High-resolution satellite
remote sensing images could only roughly estimate the vegetation cover, and their accuracy
was not sufficient to accurately classify land desertification in the sample area. Therefore,
we monitored land desertification by combining multi-source remote sensing images,
using high-resolution satellite images to initially locate the areas with land desertification
problems, and then extracted the vegetation information in the area by using UAV visible
remote sensing images and the HSVGVI, so as to determine the grading of the degree of
land desertification with high precision and provide data and technical support for the
monitoring and prevention of land desertification in the Hangjin Banner.

6. Conclusions

The purpose of this paper is to combine high-resolution satellite remote sensing images
and UAV visible images to evaluate the land desertification status of the Hangjin Banner,
Bayannur City, Northwest China, as the study area. First, high-resolution remote sensing
images were used to establish a vegetation coverage model to locate land desertification
areas (FVC < 0.3). Then, UAV visible light images were used to extract desert vegetation
information, which made the evaluation of land desertification more efficient and precise,
with cheaper labor and less time-intensiveness.

Due to the strong light in the desert, the resulting shadow texture is deeper, and the
shading of the low vegetation areas as a result of the shadow texture seriously affects the
accuracy of vegetation extraction. In addition, due to climatic reasons, deserts are mostly
dry shrubs with fewer stems and leaves, which also leads to the serious misclassification
of vegetation indices in the RGB color space. For this reason, this paper proposes a new
vegetation index, the HSVGVI, which is based on the HSV color space and is determined
by using the channel enhancement method, which can eliminate the shadow texture to a
greater extent. At the same time, it inherits the unique advantages of the HSV color space
(the relative independence of the H channel), so it has a high sensitivity to the classification
of green vegetation. Compared with the vegetation index models constructed based on
the RGB color space, the HSVGVI shows higher accuracy and better adaptability in desert
vegetation detection. The accuracy of the HSVGVI was verified by constructing a confusion
matrix; calculating the overall accuracy, producer accuracy, and user accuracy; performing
an error analysis; and using the vegetation index in the RGB color space as a control
experiment. In order to further validate the advantages of the HSVGVI over the traditional
vegetation index, this study focused on the difficult factors in the new research samples
(vegetation samples under shadow coverage and dry shrub vegetation samples) through
quantitative analysis and research methods. It was found that the overall accuracy of the
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vegetation index classifications based on the RGB color space was generally lower than
80%, the producer accuracy was generally lower than 70%, and the error was generally
greater than 25%. By contrast, the classification accuracy of the HSVGVI could reach more
than 95%, the producer accuracy was more than 89%, the user accuracy could reach more
than 95%, and the error analysis was controlled below 10%. Thus, the influence of shadow
texture is eliminated and the problem of misclassification of bare soil is solved.

In summary, the HSVGVI has the advantage of the HSV color space, allowing us to
control the color in the image only through the H channel. At the same time, the HSVGVI
has a high sensitivity in terms of recognizing green vegetation and can accurately recognize
the green elements in the vegetation of dry shrubs. Therefore, the HSVGVI can provide
high-precision vegetation information for land desertification assessment through UAV
visible remote sensing images, and the HSVGVI model is more convenient to construct and
has higher classification accuracy than the vegetation index models constructed based on
the RGB color space.
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