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Abstract: In recent years, with the rapid development of deep learning technology, great progress
has been made in remote sensing scene image classification. Compared with natural images, remote
sensing scene images are usually more complex, with high inter-class similarity and large intra-class
differences, which makes it difficult for commonly used networks to effectively learn the features of
remote sensing scene images. In addition, most existing methods adopt hard labels to supervise the
network model, which makes the model prone to losing fine-grained information of ground objects.
In order to solve these problems, a feature-augmented self-distilled convolutional neural network
(FASDNet) is proposed. First, ResNet34 is adopted as the backbone network to extract multi-level
features of images. Next, a feature augmentation pyramid module (FAPM) is designed to extract and
fuse multi-level feature information. Then, auxiliary branches are constructed to provide additional
supervision information. The self-distillation method is utilized between the feature augmentation
pyramid module and the backbone network, as well as between the backbone network and auxiliary
branches. Finally, the proposed model is jointly supervised using feature distillation loss, logits
distillation loss, and cross-entropy loss. A lot of experiments are conducted on four widely used
remote sensing scene image datasets, and the experimental results show that the proposed method is
superior to some state-ot-the-art classification methods.

Keywords: remote sensing scene image; knowledge distillation; convolutional neural network;
auxiliary branch; soft label

1. Introduction

Remote sensing scene classification is the task of assigning a label to a specific scene.
It has received extensive attention in recent years and is mainly used in urban planning,
environmental surveying, natural disaster detection, and land use [1–4]. High-resolution
remote sensing images have the characteristics of complex content, diverse semantics, and
multi-scale targets. Remote sensing scene image classification is widely used, but due to
the characteristics of remote sensing images, it is difficult to accurately classify remote
sensing scene images. Therefore, the way in which to improve the classification accuracy of
remote sensing scene images has become a research hotspot in the field of remote sensing.
Traditional feature extraction uses hand-crafted features (e.g., texture features [5,6], spectral
features [7,8], color features [9,10], and shape features [11,12]). Traditional classifiers are
support vector machines [13] and decision trees [14]. Because it is difficult for manual
features to fully describe the information of high-resolution remote sensing scene images,
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traditional classifiers cannot classify the information of manual features well, and the
classification performance of traditional models cannot meet our requirements. With
the development of the deep convolutional neural network (DCNN) [15], DCNN-based
classification methods have become more and more popular. At this stage, many methods
have been proposed to distinguish remote sensing scene images [16–19]. The role of the
feature extractor is to map the remote sensing scene image to appropriate visual features,
while the role of the classifier is to classify the visual features into various semantic classes.
Convolutional neural networks (CNNs) are outstanding in expressive feature learning and
have achieved good performance in remote sensing scene classification. In conventional
CNNs, one-hot ground-truth labels are used to guide feature learning. However, one-hot
ground-truth labels only bring category information (i.e., which category the input image
belongs to), but cannot provide the relationship between categories. For example, “Dense
Residential Area” has the same distance to “Medium Residential Area” and “Airport”, but
“Dense Residential Area” is closer to “Medium Residential Area” than to “Airport”. In
this case, category information alone cannot accurately describe images, which leads to
insufficient supervision in training. As shown in Figure 1, the label of the scene is “bridge”.
In addition to “bridge”, there will be “river”, “tree”, “car”, and “house” in the scene. If
only bridge information is considered in the process of feature learning, other semantic
information will reduce the discrimination of learned features.
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Figure 1. The remote sensing scene image above is manually semantically labeled as a bridge. There
are multiple different land covers besides the bridge, including “River”, “Forest”, “Car”, “Residential”.
If only bridges are considered in the feature learning process, the content corresponding to other
semantics will reduce the discriminative degree of the learned features.

Knowledge distillation is a method of transferring the knowledge of the pre-trained
teacher network to the student network, so that the small network can replace the large
teacher network during the network deployment stage. The concept of knowledge distil-
lation [20] was originally proposed by Hinton et al. and has been widely used in various
fields and tasks. The basic principle of knowledge distillation is to learn the knowledge
of a larger and more complex model by training a smaller and more lightweight model.
Typically, complex models are referred to as “teacher models”, while simplified models
are referred to as “student models”. The teacher model can be a deep neural network or
other complex model, while the student model is usually a shallower or narrower layer
neural network. By taking the output of the teacher model and its corresponding labels as
the training target of the student model, the student model can gain more knowledge from
the teacher model, and gradually approach or exceed the performance of the teacher model
during the learning process. One of the main advantages of knowledge distillation is that
it can significantly reduce model complexity and computational resource requirements
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while maintaining relatively high performance. This makes knowledge distillation have a
broad application potential in resource-constrained environments such as mobile devices,
embedded systems, and edge computing. In addition, knowledge distillation can also be
used as a method of model compression to reduce the cost of storage and inference by
transferring the knowledge of complex models into simplified models.

Self-distillation (SD) [21] is a technique based on knowledge distillation. SD extracts
knowledge from an already trained model and uses this knowledge to retrain the same
model, thereby further improving the performance of the model. The core idea of the self-
distillation method is to improve performance by letting the model learn its own knowledge.
During training, the model uses its own soft labels as targets instead of hard labels.

Auxiliary classifiers [22,23] can enhance the performance of the main classifier by
providing additional information. In this paper, an auxiliary classifier is used to learn the
distribution of the classification results output by the classifier. During the training phase,
the auxiliary classifier is trained together with the main classifier. Auxiliary classifiers
can provide additional supervisory signals to help the main classifier better understand
the data distribution. Due to the high cost of remote sensing image acquisition and the
relatively small dataset, the use of auxiliary classifiers can help alleviate the overfitting
problem of the main classifier. By introducing auxiliary classifiers, additional regularization
effects can be provided to help reduce the degree of model fitting. The introduction of
auxiliary classifiers can also increase the diversity of the model. If the auxiliary classifiers
provide different predictions than the main classifier, the difference between them can
help improve the overall classification performance. In general, the basic principle of the
auxiliary classifier is to strengthen training, reduce overfitting, and improve diversity by
providing additional information.

In order to train a compact model to achieve high classification performance and
overcome the drawbacks of traditional distillation, a new self-distillation framework
is proposed.

The main contributions of this paper are as follows.

1. This paper proposes a new self-distillation framework that effectively combines fea-
ture distillation and logits distillation to solve the problem of losing fine-grained
information in traditional hard-label supervised models. This enables the backbone
network to extract more representative features of the image and improve the gener-
alization performance and adversarial nature of the model. Extensive experiments
on four commonly used remote sensing scene image classification datasets have
demonstrated the effectiveness of the proposed method.

2. In order to complement the advantages of multi-level features, a feature augmentation
pyramid module is carefully designed, which fuses the top-level features with the
low-level features through deconvolution to increase the richness of the features,
so that the semantic features extracted by the deep network can be learned by the
underlying network.

3. A method of adding two auxiliary classifiers in the middle layer is proposed, which is
trained through distillation to provide additional supervisory information and help
the network converge faster. In order to ensure that the shallow auxiliary classifier
and the main classifier share similar feature representations, a bottleneck structure
is added to the middle layer of the backbone network to encourage them to learn
similar features.

The rest of this paper is organized as follows. Section 2 briefly introduces the research
on remote sensing scene classification, and Section 3 provides a description of our proposed
method in detail. Section 4 shows the experimental results and discussion. In Section 5, the
conclusion and prospects are given.
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2. Related Works
2.1. Classification of Remote Sensing Scene Images

Over the past few decades, many methods for image classification of remote sensing
scenes have been proposed. Initially, these methods were mainly based on hand-crafted
features, such as gradient histograms [24], scale-invariant feature transforms [25], and the
bag-of-visual-word (BoVW) [26]. Although these methods yield impressive representations,
handcrafted features cannot fully capture the complex content of remote sensing scenes. In
recent years, the convolutional neural network (CNN) has performed well in extracting
representational features and is widely used in image classification and target detection. It
has achieved great success in remote sensing scene image classification, and many CNN-
based methods have been proposed. For example, Li et al. [27] proposed a deep feature
fusion network for remote sensing scene classification. Zhao et al. [28] proposed a structure
that combines local spectral features, global texture features, and local structural features
to fuse features. Wang et al. [29] use an attention mechanism to adaptively select key
regions of an image, and then fuse features to produce more representative features. The
key filter bank network (KFBNet) [30] uses a key filter bank to capture discriminative
local details while preserving local features. Shi et al. [31] proposed a multi-branch fusion
attention network, which fuses spatial attention and channel attention into the ResNet
backbone network. Shi et al. [32] proposed a dense fusion of multi-level features, through
3 × 3 depthwise separable convolution and 1 × 1 standard convolution, to extract the
information of the current layer and fuse it with the features extracted from the previous
layer. Deng et al. [33] proposed a deep neural network incorporating contextual features,
using the pre-trained VGG-16 as a feature extractor to obtain feature maps. Then, the feature
map is input into two parallel modules, global average pooling (GAP) and long short-term
memory (LSTM), to extract global and contextual features, respectively, and finally splicing
global features and contextual features. Meng et al. [34] proposed a multi-layer feature
fusion network based on spatial attention and a gating mechanism, using a backbone
network to extract multi-layer convolutional features, and then using a spatial attention
module to aggregate multi-layer features for classification. Wang et al. [35] proposed an
enhanced feature pyramid network based on deep semantic embeddings. Using multi-level
and multi-scale features, a feature fusion module is introduced to fuse the two branch
features. Zhang et al. [36] proposed a distributed convolutional neural network.

2.2. Knowledge Distillation

The idea of knowledge distillation (Original Knowledge Distillation) is to guide the
training of the student model by using the soft targets of the teacher model. The teacher
network usually produces class probabilities by using a “softmax” output layer with a
temperature hyperparameter applied, which is used to convert the logits generated by
each class calculation, that is, zi, into a probability qi, and the calculation process can be
represented as

qi =
exp(zi/T)

∑j exp(zi/T)
(1)

where T is the temperature, usually set to 1. Using a higher T value produces a softer
distribution on the output of the classification.

As shown in Figure 2, an image is input into the network, the resulting output is fed
into Softmax with temperature hyperparameters, and then a soft-label output is obtained.
In the output soft label, we can see that for an input image labeled as a forest, in addition
to the probability of the forest category, there will also be a certain probability of other
categories in the output.



Remote Sens. 2023, 15, 5620 5 of 25Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 25 
 

 

Forest
 

Figure 2. Network output soft-label histogram. 

Soft labels are the probability distributions output by the teacher model, which can 
provide richer information to help the student model learn. To transfer knowledge effec-
tively, an appropriate loss function needs to be defined to measure the difference between 
the output of the student model and the output of the teacher model. Commonly used 
loss functions include the mean squared error [37], cross-entropy loss [37], and KL diver-
gence [38]. The mean square error loss function measures the numerical difference of the 
output, while the cross-entropy loss function measures the difference in the probability 
distribution of the output. KL divergence (Kullback–Leibler divergence), also known as 
relative entropy, is an indicator used to measure the difference between two probability 
distributions. The calculation process can be represented as 

( )( ) ( )
( )
P iKL P Q P i log
Q i

=  (2)

where ( )P i   represents the distribution predicted by the teacher network, and ( )Q i  
represents the distribution predicted by the student network. 

KL divergence measures the loss of information from the true distribution to the 
model distribution. The real distribution is simulated using the output of the teacher net-
work. In the process of knowledge distillation, a large teacher model is usually used for 
training first, and then the teacher model is adopted to generate soft labels, which are used 
together with the output of the student model to train the student model. During the train-
ing process, different weights can be used to balance the relative importance of hard and 
soft objects. Choosing an appropriate teacher model is crucial to the effect of knowledge 
distillation. In general, the teacher model should be complex and accurate enough to pro-
vide high-quality soft targets. A commonly used teacher model is a pre-trained deep neu-
ral network model. The student model is usually more lightweight and simplified than 
the teacher model for deployment where computing resources are constrained. Some 
common student model design strategies include using shallow network structures and 
reducing the number of network parameters. With the deepening of research, many im-
proved and extended knowledge distillation methods have emerged. For example, the 
FitNets method [39] introduced the concept of intermediate layer alignment to align the 
intermediate layer outputs of the teacher model and the student model. The attention 
transfer method [40] learned knowledge from the teacher network by having the student 
network imitate the attention map of the teacher network. The relational knowledge dis-
tillation method [41] exploited relational modeling to improve knowledge distillation. A 
comprehensive overhaul of the feature distillation method [42] adopted the feature distil-
lation, designed a new distillation loss, distilled features before the ReLU function, and 
retained negative values before distillation. Ahn et al. [43] proposed a variational infor-
mation distillation framework, which transfers the knowledge learned by the 

Figure 2. Network output soft-label histogram.

Soft labels are the probability distributions output by the teacher model, which can
provide richer information to help the student model learn. To transfer knowledge effec-
tively, an appropriate loss function needs to be defined to measure the difference between
the output of the student model and the output of the teacher model. Commonly used
loss functions include the mean squared error [37], cross-entropy loss [37], and KL diver-
gence [38]. The mean square error loss function measures the numerical difference of the
output, while the cross-entropy loss function measures the difference in the probability
distribution of the output. KL divergence (Kullback–Leibler divergence), also known as
relative entropy, is an indicator used to measure the difference between two probability
distributions. The calculation process can be represented as

KL(P ‖ Q) = ∑ P(i)log
P(i)
Q(i)

(2)

where P(i) represents the distribution predicted by the teacher network, and Q(i). repre-
sents the distribution predicted by the student network.

KL divergence measures the loss of information from the true distribution to the model
distribution. The real distribution is simulated using the output of the teacher network. In
the process of knowledge distillation, a large teacher model is usually used for training first,
and then the teacher model is adopted to generate soft labels, which are used together with
the output of the student model to train the student model. During the training process,
different weights can be used to balance the relative importance of hard and soft objects.
Choosing an appropriate teacher model is crucial to the effect of knowledge distillation. In
general, the teacher model should be complex and accurate enough to provide high-quality
soft targets. A commonly used teacher model is a pre-trained deep neural network model.
The student model is usually more lightweight and simplified than the teacher model for
deployment where computing resources are constrained. Some common student model
design strategies include using shallow network structures and reducing the number of
network parameters. With the deepening of research, many improved and extended knowl-
edge distillation methods have emerged. For example, the FitNets method [39] introduced
the concept of intermediate layer alignment to align the intermediate layer outputs of the
teacher model and the student model. The attention transfer method [40] learned knowl-
edge from the teacher network by having the student network imitate the attention map of
the teacher network. The relational knowledge distillation method [41] exploited relational
modeling to improve knowledge distillation. A comprehensive overhaul of the feature
distillation method [42] adopted the feature distillation, designed a new distillation loss,
distilled features before the ReLU function, and retained negative values before distillation.
Ahn et al. [43] proposed a variational information distillation framework, which transfers
the knowledge learned by the convolutional network to the multi-layer perceptron (MLP)
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and maximizes the mutual information of the two neural networks by maximizing the
variational lower bound.

Due to the difficulty of selecting a teacher network and training a large teacher network,
some studies have proposed self-distillation algorithms. The self-distillation framework
distills knowledge within the network itself. The network is first divided into several
parts. Then, the knowledge from the deep layers of the network is squeezed into the
shallow layers. Zhang et al. [44] proposed a self-distillation framework using ResNet as the
backbone network to extract the output of the intermediate layer through the bottleneck
structure. The output obtained by the deep layer is used as a soft label to supervise
the distribution of the shallow layer so that the shallow layer of the network learns the
distribution of the deep layer. Ji et al. [45] proposed a self-distillation framework for feature
refinement, which enhances feature maps through lateral convolutions for the purpose of
self-knowledge distillation. Hu et al. [46] proposed a hierarchical self-distillation feature
learning framework. The distribution generated by the shallow network is supervised by
the distribution generated by the deep network. And a gradient separation and fusion
module is proposed, and the gradient generated by the final classification output is not
returned to the backbone network in reverse.

Influenced by the above work, knowledge distillation methods have been introduced
into remote sensing image analysis, and Wei et al. proposed MSH-Net [47] to assist
models with missing modalities by reconstructing complete modality-shared features from
incomplete inference modality reasoning. Among them, the Joint Adaptive Distillation
(JAD) method guides the model to learn modality-shared knowledge from multimodal
models by matching the joint probability distribution between the representation and
the ground truth. Hu et al. [48] proposed variational self-distillation to distill deep and
shallow layers through Variational Knowledge Transfer (VKT), using the prediction vector
of class entanglement information as supplementary class information. Li et al. proposed
dual knowledge distillation [49], designing dual attention and a spatial structure. The
two designed loss functions can effectively transfer the knowledge learned by the teacher
network to the student network. Liu et al. proposed cross-model knowledge distillation,
using the RGB image pre-trained model as a teacher model to guide multispectral scene
classification [50]. Lin et al. [51] proposed a pyramid network, which used an interpolation
method to generate high-resolution feature maps. Unlike these methods, we propose
a feature-augmented self-distillation network. In the network architecture, the teacher
network is an extension of the student network, which belongs to the same network
architecture. We employ a pyramid module to fuse the top-level feature maps with the
underlying multi-level features through deconvolution. The feature maps of the backbone
network are then supervised using feature distillation with the fused features. At the
same time, we add two auxiliary branches to the backbone network, and use the soft-
label distillation loss of the auxiliary branch to supervise the shallow network to learn
representational features. For the classifier of the backbone network, a combination of soft
and hard labels for supervision is adopted.

3. Methodology

In this paper, a feature-augmented self-distillation convolutional neural network
(FASDNet) is proposed, which is shown in Figure 3. It consists of the backbone classifier
network in the gray area in the middle of the picture, the self-teacher network in the green
area below the picture, and two auxiliary branches in the blue area above the picture.
ResNet34 is utilized as the backbone network to generate multi-layer features. Then, multi-
layer features are sent to the feature augmentation pyramid module to generate a refined
feature map. The reason why green areas are called self-teacher networks is that in the
same model, green areas are branches that extend from the backbone network. Green
areas generate more refined feature maps, which can guide model learning through feature
distillation. The core of self-teaching networks is that models use self-generated labels
or targets for training. The backbone network contains 4 convolution blocks, and each
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convolution block from bottom to top generates feature maps S1, S2, S3, and S4. The
shape of S1 is B× C × H ×W, and B, C, H, and W represent the batch size, number of
channels, and width and height of the feature map, respectively. The self-teacher network
takes the horizontal feature map of the backbone network as input, and each convolutional
block from the bottom to the top sequentially generates feature maps T1, T2, T3, T4. The
shape of T1 is B× C× 2× H ×W, and the number of horizontal convolution kernels is
set to 2C, so that the number of channels of the feature map T is twice the number of
channels of the feature map S. Two auxiliary branches adopt the convolutional bottleneck
structure to further learn the representation of shallow features. The final loss is jointly
determined using feature distillation loss, soft-label distillation loss, and ground truth loss.
By combining the loss function to apply strong supervision to the network, the probability
of network overfitting is greatly reduced.
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3.1. Self-Distillation

The idea of the self-distillation method is to introduce some mechanisms to allow the
model to generate some information by itself, and to use this information to perform self-
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learning operations. It can be used for model compression. During the process of training,
the self-teacher network will be included. During the testing stage, only the backbone
classifier network needs to be deployed to compress the complex model into a smaller and
lighter model, thereby reducing resource constraints. By introducing soft labels, the model
pays more attention to the distribution of learning data instead of just hard labels, which
helps improve the generalization performance of the model. The self-distillation method
can also sustain the disturbance of input data, thus improving the robustness of the model.
The proposed FASDNet adopts the green area part in Figure 3 as the self-teacher network,
where the feature map is represented by Ti, and the output soft label is represented by p̂t.
The gray area is utilized as the backbone network, and the feature map in it is represented
by Si. The feature map of the self-teacher is used to guide the feature map of the classifier
network. In other words, it aims to learn the feature representation of the self-teacher
network through a classifier network. For feature distillation, the distillation loss can be
represented as

LF(T, S; θc, θt) = ∑n
i=1||ϕ(Ti)− ϕ(Si)||2 (3)

where ϕ represents pooling of feature maps along the channel dimension and L2 normaliza-
tion, θc represents the parameters of the classification network, θt represents the parameters
of the self-teacher network, S represents the feature map of the classification network, and
T represents the feature map of the self-teacher network. LF enables the classification
network to learn the enhanced feature map of the self-teacher network. This training
can reduce the gap between the classification network and the self-teaching network. At
the same time, the self-distillation method also uses soft labels for distillation, and the
distillation loss is

LKD(x; θc, θt, T) = DKL(so f tmax(
fc(x; θc)

T
)||so f tmax(

ft(x; θt)

T
)) (4)

where fc is the classifier network, ft is the teacher network, DKL represents the KL diver-
gence between two distributions, LKD represents knowledge distillation loss, x represents
the tensor after input data augmentation, θc represents the parameters of the classification
network, θt represents the parameters of the self-teacher network, and T represents the
temperature hyperparameter. In addition to the distillation loss, the classifier network and
the self-teacher network adopt cross-entropy loss to learn the true labels. The cross-entropy
loss can be represented as

LCE(x; θc, θt) = −∑N
i=1 yi log(pS

i (x; θc) + (−∑N
i=1 yi log(pT

i (x; θt)) (5)

Among them, N represents the training sample, yi represents the real label, pS
i rep-

resents the output obtained by the backbone network after passing through the fully
connected layer and then using Softmax, and pT

i represents the output obtained from the
teacher network after passing through the fully connected layer and then using Softmax.

3.2. Feature Augmentation Pyramid Module (FAPM)

The purpose of the teacher network is to provide an excellent feature map and soft
labels for the classifier network. The input of the self-teacher network is the feature map
S1, S2, . . . , Sn of the classifier network. Assume that the classifier network is divided into n
blocks. The overall architecture of the feature augmentation pyramid module (FAPM) is
shown in Figure 4. We refer to the green blocks in Figure 4 as the feature augmentation
pyramid module, which mainly consists of deconvolution and convolution. Deconvolution
is used to upsample deep features with rich semantic information, and then fuse them with
the features obtained from horizontal convolution. The fused features are further processed
using convolution.
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The feature pyramid network can generate multi-scale and multi-level feature maps.
In this paper, deconvolution is utilized as an upsampling technique. Deconvolution up-
samples the feature map with rich semantic information twice. Compared to upsampling
interpolation methods, deconvolution can enable the model to learn how to generate
high-resolution features with more semantic significance from training data. Through
deconvolution, the semantic-information-rich features are combined with the underlying
features of the neural network to achieve spatial feature enhancement. Specifically, a top-
down and bottom-up path design is adopted. The horizontal convolution layer is used
before using the top-down path as follows.

Li = Conv(Si; di) (6)

where Conv is the convolution, batch normalization, and ReLU activation function op-
erations. The convolution includes parallel 1 × 1 convolution, 1 × 3 convolution, and
3 × 1 convolution. The Conv output dimension is di, and we design di = w× ci, where
w is a width hyperparameter, which is set to 2 here. Among them, the 1 × 3 and
3 × 1 convolutions have direction sensitivity, and the 1 × 3 and 3 × 1 convolution kernels
have different weights in the horizontal and vertical directions, which can better capture
the directional features in the input data. Compared with the traditional 3 × 3 convolution
kernel, the 1 × 3 and 3 × 1 convolution kernels have fewer parameters. When the number
of input and output channels is both 1, 1 × 3 and 3 × 1 require 6 weight parameters,
while 3 × 3 convolution requires 9 weight parameters. This can reduce the complexity and
computational cost of the model. The process of top-down path is

Pi = Conv′(wP
i,1 · Li + wP

i,2 ·Deconv(Pi+1); di) (7)

The downsampling process adopts a combination of maximum pooling and
1 × 1 convolution, which can be represented as

Ti+1 = Conv1×1(maxpool(Ti); ϕi) (8)
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where Conv1×1 represents a 1 × 1 convolution, Ti represents the feature map of each level
of the self-teacher network, and ϕi represents the parameters of the convolution kernel.
The process of the bottom-up path is

Ti = Conv′(wT
i,1 · Li + wT

i,2 · Pi + wT
i,3 · Conv1×1(maxpool(Ti−1); ϕi); di) (9)

where Pi represents the output of the middle layer of the i layer in the top-down path, and Ti
represents the output of the i layer in the bottom-up path. wp and wT represent normalized
parameters. The convolution kernel size of deconvolution is 2 × 2, and the step size is
2. The feature map obtained after deconvolution is added element by element with the
feature map generated using horizontal convolution. Conv′ represents the combination of
convolution, batch normalization, and ReLU activation functions. The calculation process
of Conv′ can be represented as

Conv′ = ReLU(BN(Conv1×1(Convdsc(x)))) (10)

Convdsc represents 3 × 3 depth-separable convolution, 1 × 1 point convolution is
used to interact with the feature maps in the channel dimension, and then the batch
normalization and ReLU activation function are performed.

3.3. Auxiliary Classifier

Two additional branches are introduced into the middle layer of the network to assist in
the training task, providing additional supervised information during the training process,
accelerating model convergence, and improving model generalization. The distillation loss
between the backbone network classifier and the auxiliary classifier can provide additional
supervised signals for the model, which helps the gradient propagate back to the shallower
layers of the network more effectively, thereby improving the training effect of the network.
Introducing auxiliary branches can also serve as a regularization method by introducing
additional tasks in the middle layer, forcing the network to learn effective representations
for multiple tasks, thereby improving the generalization performance of the model. The
position of shallow auxiliary classifiers and main classifiers in the network may lead to
them learning different feature representations of the data. This leads to inconsistent
weight updates for different parts. In this case, the weight adjustment between the shallow
auxiliary classifier and the main classifier may not be coordinated, resulting in inconsistent
classification results. To ensure that the shallow auxiliary classifier and the main classifier
share similar feature representations, we added a bottleneck structure in the middle layer
of the backbone network to encourage them to learn similar features. Soft labels are used
instead of hard labels to supervise the network in the process of training shallow classifiers.
A good shallow classifier can obtain more discriminative features, which in turn improves
the performance of deep classifiers. The bottleneck structure of the auxiliary classifier we
designed is shown in Figure 5. The blue square in the figure represents a 3 × 3 depth-
separable convolution, which is utilized for further extracting local spatial features, and
reducing parameters compared to ordinary convolution. The orange square represents a
1 × 1 point convolution, which is used to increase the dimension of the feature map. The
purple square represents the batch normalization layer and the yellow square represents
the activation function, which are used to finally pass through a global average pooling
layer. The bottleneck structure can be represented as

Downsample = Avgpool2d(ConvBNReLU(Si)) (11)

where ConvBNReLU represents the stacking of convolution, batch normalization, and
ReLU activation functions, as shown in Figure 5. Avgpool2d represents global average
pooling. Using the bottleneck structure for downsampling can reduce the difference
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between the shallow classifier and the deep classifier. The losses for supervising the two
auxiliary classifiers with soft labels are

LAux1(x; θc, T) = DKL(so f tmax(
fc(x)

T
)||so f tmax(

fAux1(x)
T

)) (12)

LAux2(x; θc, T) = DKL(so f tmax(
fAux1(x)

T
)||so f tmax(

fAux2(x)
T

)) (13)
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The total loss of the auxiliary classifier is

LAux(x; θc, T) = LAux1(x; θc, T) + LAux2(x; θc, T) (14)

where fc represents the classifier network, and fAux1 and fAux2 represent the auxiliary
classifier network. KL divergence is used as a metric distance to make shallow classifiers
learn the distribution of deep classifier outputs. Among them, LAux1(x; θc, T) represents
the KL distance between the classification output of the backbone network and the deep
auxiliary classifier. LAux2(x; θc, T) denotes the KL distance between the deep auxiliary
classifier and the shallow auxiliary classifier.

The supervised loss of the whole network consists of four parts. The first part is the
feature distillation loss between the backbone network feature map and the self-teacher
network feature map. The second part is the logits distillation loss between the backbone
network classifier and the self-teacher classifier. The third part is the logits distillation loss
between the backbone network classifier and the auxiliary classifier. The fourth part is the
cross-entropy loss of the classifier network and the real label and the cross-entropy loss of
the self-teacher network and the real label. The overall loss function can be expressed as

Loss = LF(T, F; θc, θt) + LKD(x; θc, θt, T) + LAux(x; θc, T) + LCE(x; θc, θt) (15)

3.4. Implementation Details

The process of the proposed FASDNet is as follows. Firstly, the original remote sensing
scene image is preprocessed. Then, the data are input into the backbone network to obtain
feature maps S1, S2, S3, and S4 at different stages. Using horizontal convolution to process
feature maps S1, S2, S3, and S4, feature maps L1, L2, L3, and L4 are obtained. Following this,
the feature map Si is input into 1× 1 convolution, 1× 3 convolution, and 3 × 1 convolution
for processing, i = 1, 2, 3, 4. The output features of the three parallel branches are added
element by element to obtain the aggregated features. Among them, 1 × 3 and 3 × 1 con-
volutions have direction sensitivity and can better capture the directional features of the
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input data. The deconvolution in the feature augmentation pyramid module upsamples
features with rich semantic information and fuses the upsampled features with the features
obtained using horizontal convolution. The fused features are further processed through
convolution to obtain an enhanced feature map, represented by Pi. After a top-down path,
the multi-level feature map enhanced by the pyramid module is obtained. Next is the
bottom-up path. First, the feature maps of L1 and P1 are fused to obtain T1, and then T1
is fused with L2 and P2 through downsampling to obtain T2. Through this bottom-up
approach, the feature maps T1, T2, T3, and T4 are obtained, and then T4 passes through a
linear layer to obtain the output of the self-teacher network. Two auxiliary branches are
added after the middle two layers of feature maps of the backbone network. The auxiliary
branches consist of a bottleneck downsampling structure and an auxiliary classifier. Ad-
ditional supervised information can be provided through distillation between auxiliary
branches and the backbone network. The final supervised loss consists of four parts: feature
distillation between the self-teacher network and the backbone network, logits distillation
between the output of the self-teacher network and the output of the backbone network,
logits distillation between the output of the backbone network and the auxiliary branch
output, and cross-entropy loss between the output of the self-teacher network and the
backbone classifier network and the real label. By updating the model parameters through
the total loss, the trained model is ultimately obtained. The specific process of the FASDNet
is shown in Algorithm 1.

Algorithm 1. The process of the proposed FASDNet

1. Data preprocessing to obtain the input tensor x.
2. Input x to the backbone network to obtain feature maps S1, S2, S3, S4 at different stages.
3. Use horizontal convolution to enhance the feature map obtained in step 2, Li = Conv(Si; di)
4. The feature map obtained in step 3 is input into the feature augmentation pyramid module,

Pi = Conv′(wP
i,1 · Li + wP

i,2 ·Deconv(Pi+1); di)

5. Combine the resulting enhanced feature map with the feature map of the horizontal convolution and the feature map after the
maximum pooling Ti = Conv′(wT

i,1 · Li + wT
i,2 · Pi + wT

i,3 · Conv1×1(maxpool(Ti−1); ϕi); di)

6. The feature maps of the middle two layers of the backbone network are sent to the auxiliary branch,
Downsample = Avgpool2d(ConvBNReLU(Si)), then the output of the auxiliary classifier is obtained.

7. Calculate the overall supervised loss Loss = LF(T, F; θc, θt) + LKD(x; θc, θt, T) + LAux(x; θc, T) + LCE(x; θc, θt)
8. Updating model parameters through the overall supervised loss.
9. Obtain the output of the classifier.

4. Experiments

To evaluate the effectiveness of the proposed FASDNet, some experiments are per-
formed on four public and challenging datasets, i.e., UC-Merced dataset [26], RSSCN7
dataset [52], AID [53], and NWPU-RESISC45 dataset [54], and the proposed FASDNet
is compared with some advanced classification methods proposed in recent years. The
experimental results show that the classification performance of the proposed method is
superior to those of some state-of-the-art methods on all datasets.

4.1. Datasets

In this section, the four datasets used in the experiments are introduced briefly. Some
examples selected in these datasets are shown in Figure 6.

Due to the significant difference in the number of images between different datasets,
we used a larger training ratio for smaller datasets and a smaller training ratio for larger
datasets. The training ratio on the four datasets is the same as that used in previous
work [55–57]. The information of the four datasets is described in Table 1.
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Table 1. Data information of the four datasets.

Datasets Number of
Images per Class

Number of Scene
Categories

Total Number of
Images

Spatial
Resolution (m) Image Size

UC-Merced 100 21 2100 0.3 256 × 256
RSSCN7 400 7 2800 - 400 × 400

AID 200–400 30 10,000 0.5–0.8 600 × 600
NWPU-45 700 45 31,500 0.2–30 256 × 256

(1) UC-Merced

UC-Merced is a commonly used remote sensing image dataset for object classification
tasks. This dataset was created and provided by the University of California, Merced. The
UC-Merced dataset contains 21 different object categories and each category has 100 images,
containing a total of 2100 images. Each image has a resolution of 256 × 256 pixels and
is a color image (RGB format). The images cover different types of ground features such
as cities, farmlands, forests, rivers, and parks. For the UC-Merced dataset, we divide
the proportion of training into 50% and 80%, and the remaining 50% and 20% are used
for testing.

(2) RSSCN7

RSSCN7 (Remote Sensing Scene Classification using Convolutional Networks) is
a dataset for remote sensing scene classification. The RSSCN7 dataset contains seven
common remote sensing scene categories, namely: Buildings, Forest, Farmland, River,
Lake, Meadow, and Roads. Each category contains about 400 images, for a total of about
2800 images. Each image has a resolution of 256 × 256 pixels and is a color image (RGB
format). For the RSSCN7 dataset, we divide the training ratio into 50%, and the remaining
50% is used for testing.

(3) AID

The AID (Aerial Image Dataset) is a widely used dataset for aerial image analysis,
mainly for remote sensing image classification and target detection tasks. The AID was
created by the Institute of Automation of the Chinese Academy of Sciences and con-
tains 30 different object categories, covering cities, farmland, forests, grasslands, roads,
rivers, lakes, buildings, and other types of objects. Each category contains approximately
200–400 images, for a total of approximately 10,000 images. Each image has a resolution of
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600 × 600 pixels and is a color image (RGB format). For the AID, we divide the training
ratio into 20% and 50%, and the remaining 80% and 50% are used for testing.

(4) NWPU-RESISC45

NWPU-RESISC45 is a widely used remote sensing image dataset for remote sensing
image classification tasks. This dataset is provided by Northwestern Polytechnical Uni-
versity (NWPU) in China and is one of the datasets for the RESISC45 (Remote Sensing
Image Scene Classification) competition. The NWPU-RESISC dataset contains 45 different
remote sensing image scene categories and each category has 700 images, containing a
total of 31,500 images. Each image has a resolution of 256 × 256 pixels and is a color
image (RGB format). The images cover different geographical environments and scenes,
including cities, farmlands, rivers, forests, grasslands, airports, etc. For the experiment
on the NWPU-RESISC45 dataset, we divide the training ratio into 10% and 20%, and the
remaining 90% and 80% are used as the test set.

4.2. Experimental Details

All experiments are implemented using Pytorch on a workstation with a GeForce RTX
3090. ResNet34 in the network is initialized with parameters pre-trained on ImageNet [58],
and the rest of the network uses randomly initialized parameters. The adaptive moment
estimation is adopted to optimize the model, the initial learning rate is set to 0.0001, and
the training is 150 epochs. The cosine decay learning rate adjustment is used, and the
learning rate decays to 0.1 times the original at the 30th epoch, 50th epoch, and 100th epoch.
We first resize the image to 448 × 448. Random horizontal flip, random vertical flip, and
random rotation with fixed angles are adopted to enhance the image. In addition, a color
enhancement method is adopted to enhance the image. In the experiments, the overall
accuracy (OA) is adopted to evaluate the effectiveness of our proposed method. OA is
the number of correctly predicted images in the test set divided by the total number of
images in the test set. To ensure the accuracy of the experimental results, the final results
are obtained by averaging 10 experiments. In addition, the confusion matrix is adopted to
analyze the prediction results of different categories.

4.3. Experimental Results and Analysis

To evaluate the effectiveness of our proposed method, a series of experiments are
conducted on four datasets. Some advanced classification methods using multi-layer
feature aggregation and global deep features are used for comparison. The experimental
results are listed in Table 2.

Table 2. The remote sensing scene classification methods studied in recent years to be compared,
where * indicates a classification method based on global deep features, · indicates a classification
method based on multi-layer feature aggregation, and † indicates an image classification method
using knowledge distillation.

Methods Year

GoogleNet/VGGNet-16 [53] * TGRS2017
VGG-VD16 + MSCP + MRA [59] · TGRS2018

VGG-16-CapsNet [60] * RS2019
SCCov [19] · TNNLS2019

GBNet + global feature [57] · TGRS2020
MG-CAP(Sqrt-E) [61] * TIP2020

MIDC-Net_CS [62] * TIP2020
ACR-MLFF [63] · GRSL2021

ACNet [64] * JSTARS2021
MSA-Network [65] * JSTARS2021

RANet [66] · JSTARS2021
EFPN-DSE-TDFF [35] · TGRS2021
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Table 2. Cont.

Methods Year

DFAGCN [67] · TNNLS2021
EMTCAL [68] * TGRS2022

MLF2Net_SAGM [34] * RS2022
CFDNN [33] RS2022

MBFANet [69] * GRSL2023
SAGN [55] * TGRS2023

VSDNet-ResNet34 [48] † TGRS2022

(1) Classification results on the UC-Merced dataset

Some methods with good classification performance on the UC-Merced dataset in
recent years are chosen to compare with the proposed FASDNet. The experimental results
are listed in Table 3. We can see that the classification accuracy of the proposed method
reaches 99.90% when the training ratio is 80%, which exceeds all comparison methods. The
OA of the proposed FASDNet is 0.33% higher than that of EMTCAL, which also uses a
ResNet34 backbone. The OA of the proposed FASDNet is 0.08% higher than that of the
SAGN method that uses a dense network to extract underlying features and then uses
graph convolution to further aggregate features. The OA of the proposed FASDNet is 0.33%
higher than that of VSDNet-ResNet34, which also uses the distillation method.

Table 3. Comparison of our proposed method with some methods proposed in recent years on the
UC-Merced dataset.

Method OA (50%) OA (80%)

GoogleNet [53] 92.70 ± 0.60 94.31 ± 0.89
VGG-16 [53] 94.14 ± 0.69 95.21 ± 1.20

VGG-16-CapsNet [60] 95.33 ± 0.18 98.81 ± 0.22
SCCov [19] - 99.05 ± 0.25

VGG-VD16 + MSCP + MRA [59] - 98.40 ± 0.34
GBNet + global feature [57] 97.05 ± 0.19 98.57 ± 0.48

MIDC-Net_CS [62] 95.41 ± 0.40 97.40 ± 0.48
EFPN-DSE-TDFF [35] 96.19 ± 0.13 99.14 ± 0.22

RANet [66] 97.80 ± 0.19 99.27 ± 0.24
DFAGCN [67] - 98.48 ± 0.42

MG-CAP(Sqrt-E) [61] - 99.00 ± 0.10
MSA-Network [65] 97.80 ± 0.33 98.96 ± 0.21

ACR-MLFF [63] 97.99 ± 0.26 99.37 ± 0.15
EMTCAL [68] 98.67 ± 0.16 99.57 ± 0.28
MBFANet [69]

SAGN [55]
-
-

99.66 ± 0.19
99.82 ± 0.10

VSDNet-ResNet34 [48] 98.49 ± 0.18 99.67 ± 0.18

FASDNet (ours) 98.71 ± 0.13 99.90 ± 0.10

The confusion matrix obtained in the case of the 80% training ratio is shown in
Figure 7. From Figure 7, we can see that each category has been well classified. The
above experimental results on the UC-Merced dataset indicate that the proposed FASDNet
method exhibits excellent classification performance.
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(2) Classification results on the RSSCN7 dataset

The proposed method is compared with some methods proposed in recent years on the
RSSCN7 dataset. The experimental results are shown in Table 4. The OA of our proposed
method is 97.79%, which is 1.78%, 1.81%, and 2.25% higher than those of MLF2Net_SAGM,
PCANet, and Contourlet CNN, respectively. The experimental results prove that our
proposed method has good feature representation ability.

Table 4. Comparison of our proposed method with some methods proposed in recent years on the
RSSCN7 dataset.

Method OA (50%)

BoVW(SIFT) [53] 81.34 ± 0.55
Tex-Net-LF_VGG-M [70] 91.25 ± 0.57

Resnet50 [70] 93.12 ± 0.55
WSPM-CRC-ResNet152 [71] 93.9

Tex-Net-LF_Resnet50 [70] 94.00 ± 0.57
DFAGCN [67] 94.14 ± 0.44

SE-MDPMNet [72] 94.71 ± 0.15
Contourlet CNN [17]

PCANet [18]
95.54 ± 0.71
95.98 ± 0.56

MLF2Net_SAGM [34] 96.01 ± 0.23

FASDNet (ours) 97.79 ± 0.14

The confusion matrix of the proposed FASDNet on the RSSCN7 dataset is shown in
Figure 8, which shows the proposed method can provide good classification performance.
The classification accuracy rate of all scenes is up to 97%, and the classification accuracy
rate of the “forest” scene can reach 99%. It can be seen from the figure that some “Field”
scenes are misclassified as “Grass”, and some “Grass” scenes are misclassified as “Field”.
This is due to the strong inter-class similarity between the “Grass” and “Field” scenarios.
There is also a misclassification between the “Industry” and “Parking” scenes, because
the “Industry” scene contains many parking areas, while the “Parking” scene contains
many industrial-area-style buildings. This makes it difficult for our proposed method
to distinguish them as well. Nevertheless, the proposed method still achieved excellent
classification performance.
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(3) Classification results on the AID:

Some methods proposed in recent years are selected to compare with our proposed
method, and the experimental results are shown in Table 5. With a training ratio of 20%
on the AID, the classification accuracy of the proposed FASDNet is 95.68%. It is 0.78%
higher than that of the SAGN method, 1.97% higher than that of the MBFANet method,
and 1.26% higher than that of the EMTCAL method. When the training ratio of the AID is
50%, the classification accuracy of the proposed FASDNet is 97.84%, which is 1.07% higher
than that of the SAGN method, 0.91% higher than that of the MBFANet method, and 1.43%
higher than that of the EMTCAL method. The experimental results fully demonstrate the
effectiveness of our proposed method.

Table 5. Comparison of our proposed method with some methods proposed in recent years on
the AID.

Method OA (20%) OA (50%)

GoogleNet [53] 83.44 ± 0.40 86.39 ± 0.55
VGG-16 [53] 86.59 ± 0.29 89.64 ± 0.36

VGG-16-CapsNet [60] 91.63 ± 0.19 94.74 ± 0.17
SCCov [19] 93.12 ± 0.25 96.10 ± 0.16

VGG-VD16 + MSCP + MRA [59] 92.21 ± 0.17 95.56 ± 0.18
GBNet + global feature [57] 92.20 ± 0.23 95.48 ± 0.12

MIDC-Net_CS [62] 88.51 ± 0.41 92.95 ± 0.17
EFPN-DSE-TDFF [35] 94.02 ± 0.21 94.50 ± 0.30

ACNet [64] 92.71 ± 0.14 95.31 ± 0.37
DFAGCN [67] - 94.88 ± 0.22

MG-CAP(Sqrt-E) [61] 93.34 ± 0.18 96.12 ± 0.12
MSA-Network [65] 93.53 ± 0.21 96.01 ± 0.43

ACR-MLFF [63] 92.73 ± 0.12 95.06 ± 0.33
EMTCAL [68] 94.69 ± 0.14 96.41 ± 0.23
MBFANet [31]

SAGN [55]
93.98 ± 0.15
95.17 ± 0.12

96.93 ± 0.16
96.77 ± 0.18

VSDNet-ResNet34 [48] 96.00 ± 0.18 97.28 ± 0.14

FASDNet (ours) 96.05 ± 0.13 97.84 ± 0.12
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The confusion matrix diagram under the 50% training ratio on the AID is shown in
Figure 9. Among the 30 categories, 28 categories have an accuracy of more than 90%, and
only two categories have an accuracy that does not reach 90%. The two categories are
“Resort” and “Square”. The “Resort” scene category is mainly misclassified as schools and
parking lots. The “Square” scene category is mainly misclassified into parking lots, central
areas, and schools. This is due to the high inter-class similarity of scene categories. Further
improving the performance of FASDNet is our future work.
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(4) Classification results on the NWPU dataset:

The experimental results of different classification methods are summarized in Table 6.
The overall accuracy reaches 92.89% under the 10% training ratio and 94.95% under the
20% training ratio. Compared with other methods, our proposed method achieves the
best classification results under training ratios of 10% and 20%. At the 10% training ratio,
the proposed FASDNet is 0.76% higher than that of the VSDNet-ResNet34 method, 1.16%
higher than that of the SAGN method, 1.28% higher than that of the MBFANet method, and
1.26% higher than that of the EMTCAL method. At the 20% training ratio, the proposed
FASDNet is 0.27% higher than that of the VSDNet-ResNet34 method, 1.46% higher than
that of the SAGN method, 0.94% higher than that of the MBFANet method, and 1.30%
higher than that of the EMTCAL method. These experimental results fully validate the
effectiveness of our proposed method on the remote sensing scene classification task.

The confusion matrix of FASDNet on the NWPU dataset is shown in Figure 10. We
can see that under a training ratio of 20%, only 4 of the 45 categories did not achieve 90%
accuracy, and 29 categories achieved more than 95% accuracy. Among these categories,
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the “palace” category is mainly misclassified as the “church” category. And the “church”
category is misclassified as “palace” just as much. The reason is that the architectural styles
of churches and palaces have great similarities.

Table 6. Comparison of our proposed method with some methods proposed in recent years on the
NWPU dataset.

Method OA (10%) OA (20%)

GoogleNet [53] 76.19 ± 0.38 78.48 ± 0.26
VGG-16 [53] 76.47 ± 0.18 79.79 ± 0.15

VGG-16-CapsNet [60] 85.08 ± 0.13 89.18 ± 0.14
SCCov [19] 89.30 ± 0.35 92.10 ± 0.25

VGG-VD16 + MSCP + MRA [59] 88.07 ± 0.18 90.81 ± 0.13
MIDC-Net_CS [62] 86.12 ± 0.29 87.99 ± 0.18

ACNet [64] 91.09 ± 0.13 92.42 ± 0.16
DFAGCN [67] - 89.29 ± 0.28

MG-CAP(Sqrt-E) [61] 90.83 ± 0.12 92.95 ± 0.13
MSA-Network [65] 90.38 ± 0.17 93.52 ± 0.21

ACR-MLFF [63] 90.01 ± 0.33 92.45 ± 0.20
EMTCAL [68] 91.63 ± 0.19 93.65 ± 0.12
MBFANet [31]

SAGN [55]
91.61 ± 0.14
91.73 ± 0.18

94.01 ± 0.08
93.49 ± 0.10

VSDNet-ResNet34 [48] 92.13 ± 0.16 94.68 ± 0.13

FASDNet (ours) 92.89 ± 0.13 94.95 ± 0.12
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4.4. Evaluation of Size of Models

The floating-point operations (FLOPs) and parameter quantities of some network
models are listed in Table 7. The FLOPs measure the complexity of the model. Table 7
shows that compared with EMTCAL, the proposed method has advantages in FLOPs and
parameter quantity, with a classification accuracy of 1.43% higher than that of EMTCAL,
demonstrating the advantages of the proposed method. Compared with methods such
as GoogLeNet, SE-MDPMNet, and Contourlet CNN, although they have disadvantages
in terms of parameter quantity and FLOPs, they greatly surpass these models in terms
of classification accuracy. It is worth mentioning that our model only needs to deploy
a backbone classifier network during the deployment phase. In this way, the model
complexity and computational resource requirements are reduced. From Table 7, it can also
be seen that the number of FLOPs and parameters of the model during deployment is less
than that during training.

Table 7. Complexity evaluation of some models.

The Network Model OA (%) Number of Parameter FLOPs

GoogLeNet [53] 85.84 6.1 M 24.6 M
CaffeNet [53] 88.25 60.97 M 715 M

VGG-VD-16 [53] 87.18 138 M 15.5 G
SE-MDPMNet [72] 92.46 5.17 M 3.27 G

Contourlet CNN [17] 95.54 12.6 M 2.1 G
EMTCAL [68] 96.41 27.8 M 4.3 G

FASDNet (Our training model) 97.84 24.7 M 3.8 G
FASDNet (Our deployment model) 97.84 21.8 M 3.6 G

4.5. Discussion

In order to comprehensively evaluate the effectiveness of our proposed method, some
ablation experiments and heat map analysis are conducted. Grad-CAM can make full use
of the features of the last layer of neural convolution to generate an attention map, also
called a heat map, to display important areas in the image. In these experiments, some
scene images are randomly selected, such as “parking lot”, “residential”, and “river”, in the
RSSCN7 dataset. The heat maps obtained by only the backbone network and the backbone
network combined with the distillation method are shown in Figure 11.

We can see from the figure that for the “Parking” scene, the method using only
the backbone network cannot accurately focus on the parking area. In addition to the
parking area, the network also focused on other parts. After combining with our proposed
distillation method, the network is obviously more focused on the parking area. For the
“resident” scene, only using the backbone network method, the network is partially biased
in the region of interest and ignores similar surrounding objects, which can only use limited
features for classification. However, our proposed method focuses on the target region
very well. For the “RiverLake” scene, the method without distillation can only focus on
the edge information of the scene, and cannot fully extract the target, which will affect the
classification accuracy. After using the distillation method, the network can focus more on
the complete region of interest.

To verify the effectiveness of our three proposed modules, some ablation experiments
were conducted on four datasets. The results of the ablation experiment are shown in
Tables 8–11. Each experimental result given in the table is the average of 10 repeated
experimental results. In the first case, the network only includes the backbone network,
resulting in the model with the worst classification performance. In the second case, the
classification accuracy is improved by combining distillation methods with networks. In
the third case, adding distillation methods and feature augmentation pyramid modules
to the network further improves the classification accuracy compared to distillation-only
methods. The fourth case adds distillation methods and auxiliary branches to the network,
which improves the classification accuracy compared to using only distillation methods.
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The last case connects all modules, i.e., distillation methods, feature augmentation pyramid
modules, and auxiliary branches. It can be seen that from the four tables, when the network
includes these three modules, the highest classification accuracy can be achieved. The
ablation study has fully demonstrated the effectiveness of the main modules in FASDNet.
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Table 8. Some ablation experiments of the proposed FASDNet on the UC-Merced dataset.

Condition KD FAPM Auxiliary OA

1 98.57 ± 0.18
2 3 99.29 ± 0.12
3 3 3 99.76 ± 0.15
4 3 3 99.55 ± 0.12
5 3 3 3 99.90 ± 0.10

Table 9. Some ablation experiments of the proposed FASDNet on the RSSCN dataset.

Condition KD FAPM Auxiliary OA

1 94.50 ± 0.28
2 3 95.79 ± 0.21
3 3 3 97.12 ± 0.14
4 3 3 97.38 ± 0.15
5 3 3 3 97.79 ± 0.14

Table 10. Some ablation experiments of the proposed FASDNet on the AID.

Condition KD FAPM Auxiliary OA

1 96.34 ± 0.22
2 3 97.12 ± 0.17
3 3 3 97.54 ± 0.14
4 3 3 97.40 ± 0.23
5 3 3 3 97.84 ± 0.12
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Table 11. Some ablation experiments of the proposed FASDNet on the NWPU dataset.

Condition KD FAPM Auxiliary OA

1 91.97 ± 0.15
2 3 94.12 ± 0.10
3 3 3 94.78 ± 0.13
4 3 3 94.56 ± 0.14
5 3 3 3 94.95 ± 0.12

To verify the effect of temperature hyperparameters on model performance, some
ablation experiments are carried out using the proposed FASDNet on the AID with a
training ratio of 50%. The temperature hyperparameters are divided into 1, 2, 4, 6, and 8.
The experimental results are listed in Table 12. It can be seen from Table 12 that the highest
classification accuracy is achieved when T is 4. When T is greater than 4, the network
performance becomes worse as the temperature increases. When T is less than 4, as the
temperature increases, the network performance continues to improve. Therefore, we use
4 as the temperature hyperparameter when training on other datasets.

Table 12. The experimental results obtained by the proposed FASDNet under the 50% training ratio
on the AID when the temperature hyperparameters are 1, 2, 4, 6, and 8.

T 1 2 4 6 8

Accuracy 97.44 97.52 97.66 97.58 97.48

5. Conclusions

In this paper, a novel remote sensing scene classification method is proposed, named
FASDNet. It mainly comprises three new designed modules, including the feature aug-
mentation pyramid module, the self-teacher network, and the auxiliary classifier. First,
ResNet34 is utilized as the backbone network to learn the multi-layer features of the model.
Then, a feature augmentation pyramid module is designed to fuse rich deep semantic
information and shallow features step by step through transposed convolution. Next, the
backbone network learns the aggregated features through feature distillation, and then Log-
its distillation is used as a regularization method to reduce the confidence of the network
prediction, thereby improving the robustness of the model. Finally, auxiliary branches
are added after the feature maps S2 and S3 generated by the backbone network. For the
auxiliary branch, the knowledge distillation method is also added, which can provide
additional supervision information and help the model to learn more effectively. The
proposed FASDNet is verified on four widely used remote sensing classification datasets.
The experimental results show that, compared with other advanced classification methods,
the proposed FASDNet has significant advantages in the classification of remote sensing
scene images.

Although our proposed FASDNet method achieves excellent performance, it still has
some shortcomings. In future work, we will integrate the three proposed modules into
other advanced networks to improve their generalization. In addition, striving to design
specialized networks that are more suitable for remote sensing scene classification is also
one of our ongoing efforts.
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