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Abstract: With the improvement of spectral resolution, the redundant information in the hyper-
spectral imaging (HSI) datasets brings computational, analytical, and storage complexities. Feature
selection is a combinatorial optimization problem, which selects a subset of feasible features to reduce
the dimensionality of data and decrease the noise information. In recent years, the evolutionary
algorithm (EA) has been widely used in feature selection, but the diversity of agents is lacking in the
population, which leads to premature convergence. In this paper, a feature selection method based
on discarding–recovering and co-evolution mechanisms is proposed with the aim of obtaining an
effective feature combination in HSI datasets. The feature discarding mechanism is introduced to
remove redundant information by roughly filtering the feature space. To further enhance the agents’
diversity, the reliable information interaction is also designed into the co-evolution mechanism, and
if detects the event of stagnation, a subset of discarded features will be recovered using adaptive
weights. Experimental results demonstrate that the proposed method performs well on three public
datasets, achieving an overall accuracy of 92.07%, 92.36%, and 98.01%, respectively, and obtaining the
number of selected features between 15% and 25% of the total.

Keywords: hyperspectral imaging; feature selection; data dimensionality reduction; evolutionary
algorithm; discarding–recovering mechanism; co-evolution mechanism

1. Introduction

The advancement of hyperspectral remote sensing leads to its widespread use in
scanning continuous, narrow spectral bands, as it enables the acquisition of information on
the reflection or radiation spectrum of objects at various wavelengths [1–3]. Digital number
(DN) or reflectance value is considered as the feature value for each band and represented
as a feature vector. However, there is a large amount of redundant information collected
through hyperspectral imaging (HSI) with the electromagnetic spectrum and visible light
infrared technology, resulting in high dimensionality [4]. In essence, data dimensionality
reduction helps to trim the redundancy and noise [5] and improves classification accuracy,
which has become an important topic in the processing of HSI datasets.

Generally, there are two methods for removing the redundancy of the dataset: feature
extraction and feature selection. Feature extraction involves the linear or nonlinear trans-
formation of the original high-dimensional features, such as combining different features
into a new feature set [6], where the features lose their original physical meaning. Feature
selection involves selecting the most representative feature combination from the dataset; it
detects representative features and decreases redundant information or noise from data,
which improves classification accuracy and enhances comprehensibility [7]. Due to the
difficulty in interpreting selected features from feature extraction, feature selection is widely
used in the processing of HSI datasets.
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There are three feature selection strategies based on the search rule, namely, filter,
wrapper, and embedded [8]. The filtering strategy analyzes each feature using a proxy
measure [9] and selects a combination with a specified number of features based on the score
ranking. However, the score only reflects the correlation with labels, ignoring the feature
interactivity that some feature with a low correlation to labels provides greater performance
improvement than those with a high correlation to labels. The wrapper strategy combines
the process of feature selection with the agent to identify an appropriate combination of
features. However, this strategy requires a continuous measure of the feature combination,
resulting in high computational complexity and inadequate generalization ability [10]. The
embedded strategy selects features in the learning process [11,12], and incorporates the
feature selection in training, avoiding the overfitting that may occur in other strategies by
adjusting the weights of features. The embedded strategy is usually combined with some
iterative searching; the weight is used to guide the next iteration.

Evolutionary algorithm (EA), which mimics the adaptation and survival of the fittest
observed in living organisms in nature, uses the searched heuristic information as the
guidance; the genetic material of these combinations is then assembled to create new off-
spring, and the process is repeated over many generations to allow the population evolves
towards better solutions [13]. Traditional EAs update the genetic material through mutation
and crossover operations, which are then passed to the next generation. However, those
algorithms only consider the stochasticity between agents, but not the similarity between
them, which will lead to the occurrence of premature convergence and overfitting phenom-
ena [14,15]. To address these limitations, distance-based EAs have been proposed; these
algorithms are designed to calculate the distance between agents to determine their simi-
larity and select some of them for crossover and mutation based on the similarity [16–20],
thereby helping to maintain diversity in the population and prevent premature conver-
gence. Nonetheless, due to the absence of competition or collaboration, the information
interaction between agents is insufficient, making it difficult for the EA to overcome local
optima and leading to stagnation in the iterative process.

The co-evolution mechanism is a means of enhancing information interaction ability.
Due to its robustness, this mechanism has received extensive attention and has been widely
used in various fields, including natural language processing and image retrieval [21,22].
By combining EA, the co-evolution mechanism improves the search efficiency of the EA
in feature selection to some extent [23–25]. It divides the original feature set into many
subsets; subpopulations are formed based on the agents generated by these subsets, then
this mechanism enhances the diversity by information interacting between the agents in
different subpopulations. However, the current information interaction only takes into
account exchanging the solution encoding with weak representation, leading to the low
diversity of agents and the subpopulation imbalance where some agents obtain better
combinations after searching than others most of the time. Therefore, a co-evolution
mechanism with prominent reliability is necessary to be further searched to fully realize
its potential.

In this paper, a feature selection method based on discarding–recovering and co-
evolution mechanisms is proposed to obtain a reduced feature combination of the HSI
datasets with adequate accuracy. The feature discarding mechanism is introduced to filter
out redundant features from the original dataset. Moreover, the co-evolution mechanism is
combined with EA to enhance the diversity of agents, and a reliable information interaction
is used to enable collaborative search between agents and help EA to jump out of the
local optima. To avoid the erroneous discarding of the interactive features that have a low
correlation with labels and improve the generalization ability, feature recovery is introduced
to raise the probability of discarded features. The purpose of this work is that propose
a feature selection method to select an effective feature combination and decrease the
redundant information in HSI datasets. The co-evolution mechanism is utilized to promote
the subpopulations of EA consistently. Moreover, the feature discarding and recovering
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mechanisms are used to avoid meaningless searching and enhance the generalization ability.
The main contributions of this work are listed as follows:

(1) The discarding–recovering mechanism is designed to enhance the generalization
ability and decrease the computational load, which filters the original feature space
and recovers some features into the population.

(2) The co-evolution mechanism is combined with EA, which divides two subpopulations
to co-evolve and utilizes reliable information interaction to enhance the diversity of
agents in subpopulations.

(3) A feature selection method based on discarding–recovering and co-evolution mecha-
nisms is proposed to obtain an effective feature combination, which has a prominent
performance in HSI datasets.

The rest of this paper is structured as follows: Section 2 provides the background
information; Section 3 details the proposed feature selection method; Section 4 presents the
experimental results from different perspectives; Section 5 exhibits the discussion of the
proposed method and Section 6 outlines the conclusions.

2. Related Work
2.1. The Feature Selection Method Based on Distance-Based EA

The feature selection method based on distance-based EA has received much attention
for its effectiveness in data dimensionality reduction, as it iteratively uses heuristic infor-
mation to guide the next iteration. Wu et al. [26] developed the particle swarm optimizer
(PSO) to reduce the dimensionality of the HSI dataset, where the chaotic sequence was
used to initialize the feature space, helping PSO jump out of local optima. Su et al. [27]
proposed a novel feature selection method based on the improved firefly algorithm (FA),
which largely outperformed the conventional covariance method. Xie et al. [28] proposed a
comprehensive feature selection method based on the artificial bee colony algorithm (ABC)
and subspace division, achieving prominent overall classification accuracy (OA) while
reducing a small amount of redundant information. Wang et al. [29] presented an optimized
feature selection method based on the grey wolf optimizer (GWO) in the HSI dataset, which
uses the adaptive weight to regulate the balance between optimal individuals and chaos
operation to set correlative parameters. Tschannerl et al. [30] proposed an unsupervised
feature selection method based on information theory and a modified discrete gravita-
tional search algorithm (GSA), obtaining a more informative subset of features. However,
with the increase of the data dimensionality, the ability of EA for further dimensionality
reduction gradually decreases since the monotonous agents, leading to the selected feature
combination, are redundant to some extent, and distinguishing between the approximate
labels is difficult.

2.2. The Co-Evolution Mechanism of Feature Selection

The co-evolution mechanism uses the “divide and conquer” approach to divide the
population, identify the current optimal subsets in the feature space, and eventually join
them together into a global subset. Song et al. [31] proposed an adaptive subpopulation size
adjustment mechanism based on co-evolution and a feature importance-oriented spatial
partition strategy, decreasing the calculating time of particle evaluation and providing a
competitive solution for the feature selection of high-dimensional data. Zhao et al. [32]
proposed a multiple populations co-evolution mechanism and multi-stage interaction
learning (OL) mechanism to fully search the prospective features in the stagnant state
and increase the possibility of jumping out of local optima. Zhou et al. [33] proposed a
feature selection method based on a cooperative co-evolution mechanism (CC-DFS). This
method used a heterogeneous model to search for feature combinations with cut-off points
and feature combinations without cut-off points, resulting in improved performance and
generalization ability. Rashid et al. [34] proposed a feature selection method based on a
cooperative co-evolution mechanism and random feature grouping (CC-RFG). Three ways
were introduced to decompose the feature set dynamically to ensure the interactive features
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were divided into the same subpopulation. However, the above co-evolution mechanisms
for feature selection only exchange the feature combination with weak representation,
leading to the difficulty of regulating those features.

2.3. Motivation

To tackle the problem of the EA in data dimensionality reduction caused by the large
feature space and redundant information, the preliminary filtering of the original feature set
is required, which helps to decrease the redundancy information of the dataset. To further
enhance the performance and effectiveness of EA, it is important to speed up the search
process, increase the diversity of agents, and facilitate effective information interaction to
improve the quality of the selected features.

Regarding the co-evolution mechanism, when agents from different subpopulations
interact, they exchange information that is likely to improve the OA or decrease the number
of selected features searched by agents. However, if weak features are not considered, it
will lead to an imbalance problem. To overcome these limitations, increasing the probability
of selecting the weak features and promoting diverse information interaction between
agents is necessary. By this, the co-evolution mechanism achieves a balanced and effective
optimization process, leading to a prominent result in HSI datasets.

In all, to improve search efficiency, it is necessary to remove the redundant features
in the original feature set while recovering some of these features when detecting update
stagnation. Additionally, the co-evolution mechanism is introduced to enhance the diversity
of agents in corresponding subpopulations, given that interaction with diverse information
is required to maintain the balance between subpopulations. All these measures help
improve the performance and stability of agents in feature selection, making them more
effective for real-world applications.

3. The Proposed Method

There is a certain of redundant information in the HSI dataset, and the performance in
the reduction of data dimensionality has room to improve for EA. As a result, the feature
discarding mechanism is implemented that uses some measure criteria to roughly filter the
feature space, and the co-evolution mechanism is utilized to divide the population and take
the reliable information interaction between agents to enhance the generalization ability.
During the iteration process, if a stagnation phenomenon is detected, it is likely caused
by the previous erroneous discarding of the interactive features, so the feature recovering
mechanism is detonated to increase the selected probability of weak features by adaptive
weights, and some of them will be recovered into the subpopulations.

3.1. The Feature Discarding Mechanism

Given the high degree of redundant features in the original dataset, removing it on a
large scale is necessary. This eliminates the need for a thorough analysis of each feature
and allows for a fast return of selected features. The evaluation measure for each feature is
defined as follows:

Sn =
n

∑
K=1

XK
n , n = 1, 2, 3 . . . . . . m (1)

XK
n =

2∣∣∣(θk
)T Hθk −

(
θk
)T H(−t)θk

∣∣∣ (2)

where H ∈ Rn×n, Hi,j = kernel
(
xi, xj

)
, and H(−t) = kernel

(
x−t

i , x−t
j

)
the (−t) indicates

that tth feature is discarded. Note that kernel
(
xi, xj

)
is the kernel function mapped to a

high-dimensional space, and θ represents the optimized parameters obtained from the
SVM-based classifier [35].

The feature discarding mechanism, which is based on forward filtering and reverse
learning, is implemented to obtain the ranking of feature scores using Equations (1) and (2),
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drops the specified number of features, and recovers groups of features with low score
ranking through reverse learning [36]. In addition, to improve the generalization ability,
the feature discarding mechanism calculates the compromise value of recovery groups [37].
The mathematical model is defined as follows:

Ui = max
1<k<m

[
wk

o*
k − xik

o*
k − o−k

]
, Ri =

m

∑
k=1

wk
o*

k − xik

o*
k − o−k

(3)

Qi =
v
(

Ri − R*)
R− − R* +

(1− v)
(
Ui −U*)

U− −U* (4)

where Ri and Ui denote the utility measure and the regret measure between m features,
respectively, W is the weight vector, O∗k is the maximum value of kth feature of the
decision matrix, O−k is the minimum value of kth feature of the decision matrix. R∗

and U∗ are the maximum value of R and U, respectively. S−, U− are the minimum
value of R and U, respectively. Qi represents the compromise value for each sample.
The feature discarding mechanism obtains the compromise value of feature groups using
Equations (3) and (4); the smallest one is selected as the original feature set.

3.2. The EA-Based Co-Evolution Mechanism

After feature discarding, the original feature set still has a high degree of redundant
features, necessitating further decrease. The EA-based co-evolution mechanism can effec-
tively search for the remaining features. Specifically, it divides the population into many
subpopulations and uses information interaction to achieve a balance between them.

3.2.1. The Population Division Based on Feature Correlation

Generally, the population division involves partitioning the original feature set into
multiple clusters (i.e., feature subsets) and initializing the agents generated in subpopu-
lations based on these clusters. In addition, agents only search for features within their
corresponding subsets while obtaining the rest via information interaction. Ideally, the
population division considers the correlation between features or between features and la-
bels commonly to minimize the correlation between features and maximize the correlation
between features and labels [38]. However, when interactive features are partitioned into
different subsets, subpopulations may fall into local traps that are not the local optimum of
the original feature set and rather the local optimum resulting from the incorrect division.
Therefore, the population division should ensure the feature subsets corresponding to sub-
populations are sufficiently different, and the interactive features are partitioned together
as much as possible, with the correlation between features considered.

Furthermore, generating many subsets requires an equal number of subpopulations to
match them, leading to a large computation load. Additionally, interactive features may be
divided into different subsets, resulting in mature convergence. To minimize the redundant
features of the entire dataset, the population division decomposes the original feature set
into two subsets, generating agents to form subpopulations within them. Figure 1 shows
an example of the population division. The original feature set is partitioned according
to the correlation between features, assuming that it has m features waiting for selection,
two subsets are formed after the population division, and the number of features is q. To
maintain subpopulations’ balance, q is equal to bm/2c, the bc is the integer-value function.

3.2.2. The Reliable Information Interaction

The agents in different subpopulations are designed to exchange the information in
parallel to facilitate interaction. If a feature does not belong to the current feature subset,
it is searched with a probability of 0. Moreover, subpopulations should be provided with
representative information to keep balance. Features with unsatisfactory scores may be the
result of not finding other interactive features [39]. With the representative information,
the features’ performance will be boosted. The representative information is defined as
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the best and worst combinations searched by agents in the corresponding subpopulation,
and one of them is selected as the interaction object to enhance the reliability of the co-
evolution mechanism. Figure 2 illustrates the reliable information interaction between
subpopulations. It can be seen that during the interaction, each subpopulation receives
representative information from the other. The agent then combines this information to
make an overall evaluation after conducting a search. By following this process, features
will be fully searched to obtain a prominent classification accuracy through the support
vector machine (SVM)-based classifier on the testing set.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 1. The process of population division. 

3.2.2. The Reliable Information Interaction 
The agents in different subpopulations are designed to exchange the information in 

parallel to facilitate interaction. If a feature does not belong to the current feature subset, 
it is searched with a probability of 0. Moreover, subpopulations should be provided with 
representative information to keep balance. Features with unsatisfactory scores may be 
the result of not finding other interactive features [39]. With the representative infor-
mation, the features’ performance will be boosted. The representative information is de-
fined as the best and worst combinations searched by agents in the corresponding sub-
population, and one of them is selected as the interaction object to enhance the reliability 
of the co-evolution mechanism. Figure 2 illustrates the reliable information interaction 
between subpopulations. It can be seen that during the interaction, each subpopulation 
receives representative information from the other. The agent then combines this infor-
mation to make an overall evaluation after conducting a search. By following this process, 
features will be fully searched to obtain a prominent classification accuracy through the 
support vector machine (SVM)-based classifier on the testing set. 

In subpopulations, the position of the next iteration of agents (�⃗�( )) is updated 
based on the distance (𝑑 ⃗) between the current agent’s position (�⃗� ) and the optimal 
position. Here, the positions of the current agents are updated based on the optimal agent 
obtained using Equation (5). �⃗�( ) = �⃗� − �⃗� ⋅ 𝑑 ⃗ (5) 

where 𝑑 ⃗ refers to the distance between the current agent and the global optimum, while �⃗� denotes the social status of the optimum with a random value selected from the range 
of [−1, 1]. 

Figure 1. The process of population division.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 23 
 

 

 
Figure 2. The process of reliable information interaction between subpopulations. 

3.3. The Feature Recovering Mechanism 
After the feature discarding, only the features with high ranking are selected, but the 

interactive features are not considered, which may lead to stagnation [40]. Consequently, 
the performance of feature subsets searched by agents may fall into local optima. Moreo-
ver, EA generally operates within the original feature set, and it is difficult to recycle the 
discarded features. To address these limitations, the feature recovering mechanism is ap-
plied to incorporate the recycled discarded features into the recovery subset, thereby in-
creasing the probability of selection. The feature recovery mechanism has two stages. The 
first stage is reverse learning, which increases the probability of selecting features with 
low score ranking. Moreover, if training stagnation is detected, indicating that the sub-
population is not improved in successive iterations, some of the discarded features should 
be recycled. This will allow agents to fully search features later. 

More attention should be paid to the features with low scores in the evaluative 
measures when recovering features. However, the low score does not necessarily mean 
that corresponding features should be simply discarded. Therefore, the lower-ranked fea-
tures will receive higher weights. Assuming the dimension of input data is  𝑚, the calcu-
lation for weight is described below: 𝑊 = 1 − 𝑆∑    𝑆  (6) 

where  𝑊    denotes the feature weight, and  𝑆    represents the feature score set ob-
tained from feature discarding,  𝑆   represents the ith feature score. More weights ob-
tained through Equation (6) are assigned to weak features, thus increasing their chances 
of being selected. As illustrated in Figure 3, after the features recovered through weighted 
screening are added to the corresponding subpopulation’s feature subset, a new feature 
space is generated for agents. 

Figure 2. The process of reliable information interaction between subpopulations.

In subpopulations, the position of the next iteration of agents (
→
X
(iter+1)

) is updated

based on the distance (
→

dIS) between the current agent’s position (
→
X

iter
) and the optimal

position. Here, the positions of the current agents are updated based on the optimal agent
obtained using Equation (5).

→
X
(iter+1)

=
→
X

iter
−
→
L ·

→
dIS (5)



Remote Sens. 2023, 15, 3788 7 of 21

where
→

dIS refers to the distance between the current agent and the global optimum, while
→
L denotes the social status of the optimum with a random value selected from the range
of [−1, 1].

3.3. The Feature Recovering Mechanism

After the feature discarding, only the features with high ranking are selected, but the
interactive features are not considered, which may lead to stagnation [40]. Consequently,
the performance of feature subsets searched by agents may fall into local optima. Moreover,
EA generally operates within the original feature set, and it is difficult to recycle the
discarded features. To address these limitations, the feature recovering mechanism is
applied to incorporate the recycled discarded features into the recovery subset, thereby
increasing the probability of selection. The feature recovery mechanism has two stages.
The first stage is reverse learning, which increases the probability of selecting features
with low score ranking. Moreover, if training stagnation is detected, indicating that the
subpopulation is not improved in successive iterations, some of the discarded features
should be recycled. This will allow agents to fully search features later.

More attention should be paid to the features with low scores in the evaluative mea-
sures when recovering features. However, the low score does not necessarily mean that
corresponding features should be simply discarded. Therefore, the lower-ranked features
will receive higher weights. Assuming the dimension of input data is m, the calculation for
weight is described below:

Wm = 1− Sm

∑m
i=1 Sm

i
(6)

where Wm denotes the feature weight, and Sm represents the feature score set obtained
from feature discarding, Sm

i represents the ith feature score. More weights obtained
through Equation (6) are assigned to weak features, thus increasing their chances of being
selected. As illustrated in Figure 3, after the features recovered through weighted screening
are added to the corresponding subpopulation’s feature subset, a new feature space is
generated for agents.
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3.4. The Objective Function

The main target of feature selection is obtaining a representative feature combination
from the original feature set to maximize the OA [41], which is an important evaluation
criterion, but how to decrease the number of selected features is also a crucial target
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in feature selection. In this paper, the objective function is used to evaluate the feature
combination searched by agents [42]; it is described in Equation (7).

f itness = α ·OA + (1− α) · lg
(

nc

ns

)
(7)

where f itness represents the fitness value of the feature combination searched by agents,
OA represents the overall classification accuracy obtained by SVM. Note that nc and ns
are the number of total features in the dataset and the number of selected features. α is a
weight factor of OA and the number of selected features; it takes α = 0.9 in this paper.

3.5. Implementation of the Proposed Method

The proposed feature selection method updates the agent based on distance, and its
key process involves the information interaction between agents. Moreover, in the event of
stalling, it recycles some of the discarded features, thereby improving the probability of
features with low score ranking. The proposed feature selection method is described as
follows (Algorithm 1):

Algorithm 1: Discarding–recovering and co-evolution mechanisms for HSI feature selection

Input: the n ×m dataset D, the agent size Agesize, the number of feature groups M by reverse
learning, and the maximum number of iterations Maxiter
Output: the effective feature combination selected by agents

Undergo the feature discarding process through the feature discarding mechanism and obtain
the SS and DS using the Equations (1)–(4) by reverse learning M feature groups

for i in SS:
do

Wm
i ← 1− Sm

i
∑m

k=1 Sm
k

end for

The SS is divided into two subsets SS1 and SS2 based on the correlation

Selectgroup1 ← SS1, Selectgroup2 ← SS2
Two subpopulations are generated in Selectgroup1 and Selectgroup2 and Agesize agents are

obtained
t← 0
while t < Maxiter:
do

Update the location of each agent by Equation (5)

Update the fitness value of each agent by Equation (7)

if the optimal solution has been updated then
Exchange the information through interaction

end if
if one of the subpopulations has stalled then

h← Recover(subset)
SS← Add(SS, h), DS← Sub(DS, h), Selectgroup1,2 ← Add (Selectgroup1,2, h),

S← Add(s, h)
end if
t← t + 1

end while
return The OA of effective feature combination

In the beginning, the feature evaluation is performed on all agents to discard the
features with low score ranking, resulting in a selected set (SS) of features and a discarded
set (DS) of features. The SS is then divided into two subsets: selectgroup1 and selectgroup2.
Representative information is exchanged between these subsets when the optimal agent
is updated. Moreover, if the stagnation phenomenon is detected, the feature recovering
mechanism is triggered to recycle a recovery feature subset with a certain number based on
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the adaptive weight W. These features will be added to the SS and removed from the DS.
The iteration process continues until the maximum iteration is reached.

4. Experimental Results

The proposed feature selection method is implemented using Python 3.8 on a personal
computer that has a 2.30 GHz CPU, 8.00 GB RAM, and the Windows 8 operating system.
To evaluate the performance of the proposed method, three HSI datasets, namely KSC
(176 bands), Salinas (204 bands), and Longkou (270 bands), are used in the study. The
experimental results are compared with some feature selection methods with EA-based,
co-evolution mechanism-based, and others, and each independent experiment is performed
in 30 operations with 50 iterations of each operation.

4.1. Dataset Description

The first dataset was acquired by NASA at the Kennedy Space Center (KSC) in Florida.
It was obtained from a distance of approximately 20 km and contained 224 bands with a
spatial resolution of 18 m. After removing bands with water absorbance and low signal-to-
noise ratio, 176 bands were used for verification. The image consists of 512 × 614 pixels.

The second HSI dataset, named Salinas, was obtained by an AVIRIS sensor in the
Salinas Valley of California, USA. It consists of 204 bands with a spatial resolution of 3.7 m
and a pixel size of 512 × 217. The spectral range of the dataset spans from 0.4 to 2.5 µm,
and the spectral resolution is 10 nanometers.

The third dataset was obtained in Longkou Town, Jingzhou City, Hubei Province,
China, and includes six classes in an agrarian context. The UAV flew at an altitude of 500 m,
and the spatial resolution of the airborne hyperspectral image is approximately 0.463 m.
The image size is 550 × 400, with 270 bands ranging from 400 to 1000 nm.

The class names and corresponding sample numbers of three HSI datasets are de-
scribed in Table 1. The image scene and ground truth of them are shown in Figure 4.

Table 1. The land-cover classes of three HSI datasets.

Class Number Class Name Sample Number Class Name Sample Number Class Name Sample Number

1 Scrub 761 Brocoli_green weeds_1 2009 Corn 34,511
2 Willow swamp 243 Brocoli_green weeds_2 3726 Cotton 8374
3 Cabbage palm

Hammock
256 Fallow 1976 Sesame 3031

4 Cabbage
palm/Oak
hammock

252 Fallow_rough plow 1394 Broad-leaf
soybean

63,212

5 Slash pine 161 Fallow_smooth 2678 Narrow-leaf
soybean

4151

6 Oak/Broadleaaf
hammock

229 Stubble 3959 Rice 11,854

7 Hardwood
swamp

105 Celery 3579 Water 67,056

8 Graminoid
marsh

431 Grapes_Untrained 11,271 Roads and
houses

7124

9 Spartina marsh 520 Soil vineyard develop 6203 Mixed weed 5229
10 Cattaial marsh 404 Corn_senesced

greed_weeds
3278 - -

11 Salt marsh 419 Lettuce_romaine 4 wk 1068 - -
12 Mud flats 503 Lettuce_romaine 5 wk 1927 - -
13 Water 927 Lettuce_romaine 6 wk 916 - -
14 - - Lettuce_romaine 7 wk 1070 - -
15 - - Vinyard_untrained 7268 - -
16 - - Vinyard_vertical_trellis 1087 - -
- Total 5211 Total 54,129 Total 204,542
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4.2. Parameters Setting of EAs

Before running, some parameters of EAs should be set for the heuristic search. The
performance of the effective feature combination is dependent on the setting of parameters
to some extent. In this paper, several EA-based feature selection methods, including
PSO [43], FA [44], GWO [45], and GSA [46], are adopted to provide an intuitive performance
comparison with the proposed method. Table 2 shows the parameters setting by these EAs.

Table 2. Parameters setting of each algorithm.

Parameters Values

Size of agents 15
Dimension Number of features

The number of iterations per algorithm 50
The acceleration constant c1, c2 in PSO 2

Min-max inertia weight ωmin, ωmax in PSO 0.2, 0.9
The light intensity absorption coefficient I in FA 1

The step factor α in FA 0.97
Min-max attraction βmin, βmax in FA 0.2, 1
α Correlation coefficient in GWO [2, 0]

The initial universal gravitational constant in GSA 100
Number of the subpopulation in co-evolution mechanism 2
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4.3. Experiments for the Search Ability

Table 3 presents the OA and Kappa coefficient after 30 independent operations, while
WTL is the win/tie/loss indicator of the fitness value. Table 4 shows the number of features
(Num) and CPU time (Time) selected by the 30 independent operations. To demonstrate the
prominent OA of the effective feature combination achieved in each iteration, the average
number of features and OA are obtained for each iteration, as shown in Figure 5, and the
fitness value is shown in Figure 6.

Table 3. The OA and Kappa coefficient of EA-based feature selection methods.

Datasets Metrics PSO FA GWO GSA Proposed

KSC
OA (%) 90.97 ± 0.33 90.26 ± 0.24 90.92 ± 0.31 90.71 ± 0.38 92.07 ± 0.12
Kappa 0.904 ± 0.002 0.887 ± 0.0016 0.897 ± 0.001 0.892 ± 0.002 0.917 ± 0.001
WTL + − + + 28/0/2

Salinas
OA (%) 91.77 ± 0.15 91.63 ± 0.23 91.65 ± 0.17 91.82 ± 0.26 92.36 ± 0.21
Kappa 0.907 ± 0.001 0.908 ± 0.0014 0.905 ± 0.001 0.909 ± 0.0018 0.915 ± 0.0013
WTL + − + − 27/1/2

Longkou
OA (%) 97.36 ±0.11 96.89 ± 0.27 97.12 ± 0.41 97.74 ± 0.33 98.01 ± 0.14
Kappa 0.964 ±0.0002 0.956 ± 0.001 0.960 ± 0.0024 0.969 ± 0.006 0.979 ± 0.002
WTL + − + + 30/0/0

Table 4. Number of selected features and CPU time of EA-based feature selection methods.

Datasets Metrics PSO FA GWO GSA Proposed

KSC
Num 49.6 50.3 50.7 55.3 42.2
Time 190.1176 152.4127 204.1769 195.3568 150.6149

Salinas
Num 67.5 55.3 56.7 55.6 43.1
Time 3600.5043 2714.3658 3536.9347 3742.5928 2427.6280

Longkou Num 95.7 68.7 76 95.4 62.5
Time 1564.3620 1269.3795 1514.6489 1892.3481 1204.7301
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According to Table 3, the proposed method outperforms PSO, FA, GWO, and GSA in
search capability, which achieves a prominent OA, surpassing PSO, FA, GWO, and GSA by
1.1%, 1.81%, 1.15%, and 1.36%, respectively. Those experimental results exhibit the superior
searchability of the proposed method. Moreover, it enhances the development potential of
local search by using a feature recovery mechanism. Its winning frequency is higher than
27, especially in Longkou, where it reached 30. These demonstrate the prominent stability
of the proposed method and the superior exploration ability.
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According to Table 4, the proposed method exhibits significantly higher reductive
efficiency than other EA-based feature selection methods. Specifically, it selects less than
20% of the features from the HSI dataset, resulting in the selection of only 42 features out of
a total of 176 bands in the KSC dataset while achieving a prominent OA. The Salinas dataset,
it selects approximately half number of features compared with GSA yet achieves a better
OA. On average, other methods select 58.7 features, whereas the proposed method selects
only 43.1 features, indicating superior performance. In addition, the feature discarding
mechanism substantially reduces redundant features, thereby shrinking the feature space
and improving the computation time, especially in the Longkou dataset.

As shown in Figure 5, after feature discarding, the number of selected features searched
by agents is still high, and the number of features is decreased after the heuristic search,
while the OA is little to no fluctuation, demonstrating the prominent stability of the
proposed method. Furthermore, the feature recovering mechanism effectively updates
agents before the iteration ends, indicating that the proposed feature selection method
possesses a prominent ability to escape from local optima. According to Figure 6, the fitness
value is visualized to comprehensively evaluate the searching ability of each algorithm, and
the proposed feature selection method achieves promising results on three HSI datasets
and ranks 1st in terms of average fitness value, followed by GWO, FA, PSO, and GSA.
Moreover, the proposed method achieves the optimal fitness value on three HSI datasets
compared with other EA-based methods, proving it has a prominent search ability for
feature selection.

4.4. Comparison with Other Feature Selection Methods

To assess the impact on each class, some feature selection methods in HSI datasets are
compared in the experiment: maximum information minimum redundancy (MRMR) [47],
joint mutual information with class correlation (JOMIC) [48], joint mutual information
maximization (JMIM) [49], conditional mutual information maximization (CMIM) [50] and
shallow-to-deep feature enhancement (SDFE) [51]. The experiments are performed on 10%
to 25% of the total features. The accuracy for each class and Kappa coefficient are shown in
Tables 5–16.



Remote Sens. 2023, 15, 3788 13 of 21

Table 5. The results for the KSC dataset using 10% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 92.5714 86.6579 88.4363 81.4724 92.3717 92.4264
2 86.2559 86.2222 93.2990 86.7841 86.1751 89.3519
3 63.4675 69.9670 74.7170 83.8542 85.4077 77.4074
4 52.9070 60.1990 52.1886 51.9231 55.5556 57.7670
5 62.5000 73.1183 75.0000 70.3704 68.3761 65.0407
6 60.8434 60.9929 70.4918 64.8936 83.4711 71.0059
7 67.9487 78.4091 71.4286 83.3333 74.7826 74.0741
8 76.5661 79.4304 76.7442 68.6981 87.6238 93.9058
9 82.6430 86.4341 84.4530 90.9692 90.2390 89.9606
10 87.6081 100.0000 100.0000 99.1562 99.8727 99.9618
11 95.5959 95.4054 98.8950 99.1892 98.5836 93.6869
12 91.3551 79.9213 76.8642 74.0876 92.7039 97.9499
13 99.5175 99.9482 99.2894 99.8801 99.6247 99.9915

OA (%) 85.0320 86.0128 85.7143 84.5203 90.2132 90.3624
Kappa 0.8406 0.8543 0.8418 0.8370 0.8908 0.8917

Table 6. The results for the KSC dataset using 15% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 91.8733 92.5104 88.2108 88.9655 92.8870 92.2006
2 89.6226 90.4762 72.0755 82.0961 88.7324 90.6977
3 70.7071 69.2557 77.7328 84.6154 80.2469 83.4711
4 48.4733 56.6845 56.7742 58.2996 57.9336 60.2996
5 82.0513 79.4872 73.3333 52.9032 75.2381 86.6667
6 78.4314 66.6567 71.5789 66.6667 65.1007 73.6842
7 70.1923 73.4513 81.5789 72.4771 74.2268 70.5357
8 80.9645 87.7612 85.0785 72.2343 89.5408 88.5856
9 82.7778 78.1570 87.1401 89.1304 91.6667 89.9408
10 87.8873 91.9162 100.0000 100.0000 99.7183 96.8927
11 98.3562 96.3824 98.4000 99.4350 97.6378 95.1157
12 92.9440 93.7811 94.4056 93.1925 98.1352 97.6526
13 98.4597 98.1065 99.9919 66.6667 100.0000 100.0000

OA (%) 86.5885 87.0362 87.9104 87.0362 90.5970 90.6397
Kappa 0.8514 0.8560 0.8644 0.8581 0.8925 0.8936

Table 7. The results for the KSC dataset using 20% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 92.9178 90.7609 87.2679 86.2924 92.0833 93.1642
2 91.7476 86.1472 88.8889 88.4793 95.5801 88.5416
3 73.6462 72.5632 85.8537 90.7407 85.7759 79.4165
4 60.5634 48.8189 56.2500 59.3156 58.0000 68.2564
5 65.9091 79.6875 72.7273 58.2677 78.5047 78.2196
6 65.1613 77.0833 69.3548 67.7419 78.8618 72.2519
7 77.1429 80.6818 74.5763 72.0339 92.0930 85.6429
8 82.9268 88.8298 81.7043 82.4818 86.8106 93.4579
9 88.5177 88.2828 88.3268 88.7574 92.6295 90.1245
10 91.3793 92.6686 99.9948 99.4444 97.7077 99.9094
11 97.6501 95.3728 99.9859 98.1283 98.9333 99.9654
12 92.2902 92.4242 95.7143 97.2772 97.3872 95.6413
13 99.6407 99.7599 100.0000 99.9618 100.0000 100.0000

OA (%) 88.3156 88.2942 88.7846 88.8699 90.9595 91.7057
Kappa 0.8712 0.8628 0.8750 0.8735 0.8992 0.9047
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Table 8. The results for the KSC dataset using 25% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 94.5428 93.5897 90.2878 89.9015 91.5395 94.2413
2 89.6714 91.9431 86.5169 92.3729 88.5572 98.5618
3 69.4444 73.6301 77.7778 88.0000 87.1111 87.1594
4 56.3636 54.1176 60.3960 60.5442 61.9910 69.5432
5 83.3333 85.5072 75.0000 72.7273 75.8929 84.5621
6 62.4309 73.4463 71.4286 68.2353 68.0203 77.8654
7 69.5238 78.2178 91.0448 79.3103 75.2137 72.5613
8 86.9674 91.1111 82.1306 83.3333 90.0990 93.6421
9 88.1764 88.5375 88.0299 95.1807 92.0892 92.6578
10 98.8338 94.9861 100.0000 99.9185 99.7175 99.9153
11 97.9058 98.5836 99.9103 97.1963 97.7901 97.2541
12 97.5717 94.0552 90.5983 92.6923 97.5501 98.4623
13 99.9826 99.5910 99.8459 100.0000 100.0000 99.8917

OA (%) 89.4883 89.8507 89.1721 90.3300 91.1514 92.8144
Kappa 0.8742 0.8819 0.8893 0.8991 0.9014 0.9164

Table 9. The results for the Salinas dataset using 10% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 99.5343 98.8636 100.0000 100.0000 99.8862 99.9654
2 97.2044 98.1765 97.9009 98.0724 98.5891 98.1319
3 92.7253 94.6309 89.8361 92.1729 94.4625 91.2998
4 98.0614 97.9032 99.1948 97.9592 97.1919 98.8606
5 97.8351 98.0897 95.3859 92.2832 98.4127 99.1625
6 99.4410 99.9438 99.3292 99.6081 99.7199 99.9438
7 97.7411 97.6190 99.9373 98.9480 99.0081 99.4410
8 74.1664 73.8863 70.0681 71.0198 74.8498 74.2189
9 97.9937 98.0613 96.5974 93.7715 99.1081 98.1501
10 94.0709 90.5249 86.0244 87.9890 94.5692 92.3497
11 94.6352 97.6852 76.1431 73.6961 95.5032 87.8981
12 91.0464 93.7778 93.0586 93.3839 95.7589 96.8362
13 93.1193 96.4200 90.2004 93.3180 93.7500 94.8598
14 98.6957 98.7179 95.7356 98.4305 98.0088 98.4749
15 77.0670 78.4153 77.4679 75.3187 80.4813 91.4327
16 98.5255 98.8032 99.6269 99.5019 99.6193 99.7484

OA (%) 89.3674 89.5685 87.3106 87.2573 90.4799 90.1081
Kappa 0.8797 0.8816 0.8657 0.8659 0.8936 0.8905

Table 10. The results for the Salinas dataset using 15% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 99.1982 99.9989 100.0000 100.0000 99.7517 100.0000
2 97.8947 98.2456 98.5832 98.3510 99.3765 99.5247
3 93.9427 91.5418 90.2646 94.9324 93.1071 94.8578
4 94.4870 97.7707 98.7302 97.5000 97.9528 99.0476
5 98.1387 97.6840 97.7215 97.1193 98.8215 98.1148
6 99.9987 100.0000 99.9438 99.9846 99.9438 100.0000
7 98.3446 99.0087 99.8118 99.0093 99.3808 99.2560
8 74.3518 74.5124 75.0246 75.4254 76.8367 78.0508
9 99.1783 99.0046 96.3605 97.5506 99.3585 99.2479
10 91.3971 93.1818 86.8185 86.8385 93.8272 95.9028
11 92.8421 97.1111 87.4157 87.6518 96.9365 96.0526
12 92.8414 94.9381 96.9629 96.4206 95.7589 96.2963
13 94.6262 96.1814 90.8072 92.8899 98.0583 94.6009
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Table 10. Cont.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

14 98.9035 98.2684 97.3154 96.3907 96.9199 94.6030
15 77.8520 78.5059 82.9680 82.0026 78.9930 81.5315
16 99.0826 98.9717 98.5258 99.5031 99.4987 99.0111

OA (%) 89.6342 90.0324 89.7656 90.0283 91.0142 91.7074
Kappa 0.8825 0.8876 0.8815 0.8936 0.9013 0.9105

Table 11. The results for the Salinas dataset using 20% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 99.4420 99.7738 100.0000 99.9843 99.4562 99.9913
2 99.4069 98.8797 98.9399 99.5258 98.9399 99.5848
3 95.0166 94.3844 92.3409 91.9181 94.1748 94.8408
4 97.3101 95.8333 97.8056 98.4227 99.3620 98.1132
5 98.5062 98.8235 98.3165 97.3177 97.9525 99.2437
6 100.0000 99.7205 99.9437 99.9439 99.8426 99.9439
7 99.4420 99.2551 99.9958 100.0000 99.6278 99.4406
8 75.6456 74.8615 75.5213 75.4221 78.1847 78.7730
9 98.6116 98.9015 97.1339 98.2715 99.2855 99.4298
10 93.5461 94.0072 88.2393 91.5014 96.0114 97.5300
11 91.0537 94.7253 91.1700 85.3061 95.2174 93.8819
12 95.3933 95.2009 97.0688 95.9866 96.8433 95.2486
13 95.2381 94.1452 95.0588 95.0588 96.6746 97.8208
14 97.2574 98.4881 98.0728 97.0402 96.5092 98.3368
15 77.3140 79.7858 83.1199 83.0685 78.8020 83.4154
16 98.3668 98.0964 99.3797 99.2583 97.4421 99.3750

OA (%) 90.3198 90.3321 90.3937 90.4347 91.3294 92.2411
Kappa 0.8907 0.8925 0.8901 0.8968 0.9047 0.9200

Table 12. The results for the Salinas dataset using 25% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 99.7743 99.4388 100.0000 99.9846 100.0000 100.0000
2 98.9971 99.1124 98.6382 98.4174 98.9393 99.8322
3 96.5324 96.8750 91.7559 92.9638 93.9297 96.1354
4 97.4724 97.9528 99.0461 98.4202 98.8906 99.3782
5 97.9305 99.0033 97.0906 98.5012 99.6619 99.5342
6 100.0000 99.9439 99.9438 99.8315 99.9438 99.9473
7 99.3180 99.4389 98.9467 99.7492 99.5644 99.9544
8 77.0343 75.3308 76.4241 75.4392 77.2064 80.7261
9 98.9362 99.0747 98.0524 97.1100 99.4294 99.4388
10 92.7785 93.4540 91.5855 93.6324 98.3138 97.7492
11 93.9759 96.4835 92.4406 92.7602 95.5789 98.9252
12 95.8567 95.8520 94.9283 96.0894 96.4126 98.7631
13 93.1034 95.6627 94.7743 96.8750 97.1429 99.3150
14 98.6813 95.8763 95.3586 97.3029 97.2973 98.5960
15 76.6654 80.1782 84.4185 84.4747 82.6695 84.2496
16 98.6076 98.2478 99.6264 99.5037 98.4029 99.5761

OA (%) 90.6893 90.7098 90.7960 90.7591 91.7607 93.2614
Kappa 0.8845 0.8914 0.8946 0.8935 0.9079 0.9251

Table 13. The results for the Longkou dataset using 10% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 96.3905 98.3974 73.6477 72.1819 98.6880 98.0647
2 88.8722 80.9339 38.6952 56.6265 86.0244 89.4598
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Table 13. Cont.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

3 95.2000 96.5035 0.0000 0.0000 96.8468 90.7834
4 94.9534 95.8103 72.4373 73.0363 97.4190 96.8578
5 74.8555 79.7403 0.0000 16.6667 75.0000 83.3333
6 95.7386 93.5909 0.0000 0.0000 93.8721 95.0276
7 99.9834 99.9834 84.6953 85.1456 100.0000 100.0000
8 87.3580 92.5262 0.0000 48.6330 91.6667 94.0458
9 70.6941 74.0634 38.3442 36.0714 86.9010 90.5724

OA (%) 95.4965 95.9963 72.9248 74.4785 96.9090 97.1208
Kappa 0.9731 0.9733 0.6845 0.7055 0.9793 0.9815

Table 14. The results for the Longkou dataset using 15% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 97.7496 97.6906 73.8964 74.6577 99.2295 99.3867
2 90.7609 91.1444 38.6128 58.0488 82.5495 89.7638
3 95.4802 98.8571 0.0000 0.0000 96.5665 95.7219
4 95.8955 96.1853 73.4588 75.8225 97.8005 96.4383
5 82.0442 81.6216 0.0000 25.0000 86.4407 85.7520
6 94.1784 93.5574 0.0000 0.0000 95.3447 96.2829
7 99.9834 99.9834 85.3745 87.0789 99.9503 99.9834
8 90.0000 90.3226 100.0000 50.1294 92.2272 94.4109
9 84.7458 83.3333 41.9118 38.4615 94.6844 93.0818

OA (%) 96.5721 96.6319 73.5984 76.5754 97.4413 97.4522
Kappa 0.9552 0.9560 0.6456 0.7110 0.9863 0.9867

Table 15. The results for the Longkou dataset using 20% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 96.3905 98.4955 86.5508 89.1432 98.8821 99.2585
2 88.8722 89.0357 56.8080 55.0672 85.9626 88.7850
3 95.2000 96.9231 0.0000 0.0000 99.9917 94.2731
4 94.9534 96.1932 83.9454 86.5783 97.4028 98.1774
5 74.8555 80.6283 3.8462 0.0000 82.4289 84.6753
6 95.7386 96.1825 0.0000 0.0000 96.3470 95.0673
7 99.9834 99.9834 92.4528 90.3115 99.9503 100.0000
8 87.3580 90.1306 60.3004 55.6107 93.2635 93.8160
9 70.6941 90.9091 73.4375 96.5217 95.3642 96.2865

OA (%) 95.4965 96.9035 84.5719 85.2890 97.4957 97.8596
Kappa 0.9731 0.9767 0.8060 0.8114 0.9849 0.9894

Table 16. The results for the Longkou dataset using 25% of the total number of features.

Class Number MRMR JOMIC JMIM CMIM SDFE Proposed

1 99.4819 99.3237 91.1993 90.2739 99.6143 99.1987
2 92.2865 87.6963 60.2791 60.7280 87.4667 87.3533
3 97.8723 99.4382 99.2701 97.7778 99.0868 97.7376
4 96.0814 96.7295 94.9780 95.6297 97.3448 98.3615
5 81.3602 79.3367 31.2500 14.0351 83.3333 86.5169
6 96.4674 96.3504 85.2273 69.6970 96.0253 97.7860
7 99.9669 99.9668 87.4238 87.3244 99.9669 99.9503
8 92.5150 92.3767 83.2187 83.4019 92.5595 91.8999
9 92.1311 86.7069 89.6970 78.4504 92.9012 97.5430

OA (%) 97.3055 97.1480 88.8309 88.3909 97.5771 98.0389
Kappa 0.9715 0.9852 0.8583 0.8535 0.9880 0.9910
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4.4.1. The Result of the KSC Dataset

Tables 5–8 show the OA and Kappa coefficients for the KSC dataset using 10–25% of
the total number of features.

Based on Tables 5–8, it is concluded that the proposed feature selection method
outperforms MRMR, JOMIC, JMIM, CMIM, and SDFE in terms of the OA for different
numbers of features, with an improvement of over 0.7%. Furthermore, when using 20% of
the total number of features, the Kappa coefficient reaches 0.9, demonstrating that its OA is
basically anastomotic with the labels. For 25% of the total number of features, other feature
selection methods have an OA of below 91.2%, while the proposed method achieves the OA
and Kappa coefficients exceeding 92.8% and 0.916, respectively. Moreover, the proposed
method takes the OA of over 97% for five classes, with Willow swamp, Cattaial marsh, and
Mudflats even reaching 98%. In summary, it is a practical feature selection method for the
KSC dataset.

4.4.2. The Result of the Salinas dataset

Tables 9–12 present the OA and Kappa coefficients for the Salinas datasets using a
fixed number of features.

The experimental results demonstrate that the proposed method outperforms other
commonly used feature selection methods, achieving an OA of over 92% while obtaining
the total number of features by less than 20%. Moreover, the Kappa coefficient for 25%
of the total number of features is 0.2 higher than that of other methods, and the OA is
higher for each class, with an OA of over 96% for all 14 classes. Notably, the samples
of Brocoli_green_beads_1 are all correctly identified. These indicate that it achieves a
prominent OA and Kappa coefficient for each class of the Salinas datasets, demonstrating
the superiority of the proposed method.

4.4.3. The Result of the Longkou Dataset

Tables 13–16 present the OA and Kappa coefficients for the Longkou datasets using a
fixed number of features.

Tables 13–16 present the OA and Kappa coefficients in the Longkou dataset. It is
evident that the proposed method obtains prominent OA and Kappa coefficients, and
it maintains a clear advantage in the classification of a small number of features. In the
experimental comparison using 10% of the total number of features, MRMR, JOMIC, and
SDFE achieve an OA of below 97%, while the proposed method achieves an OA of as high
as 97.1%, which is 1.6%, 1.1% and 0.2% higher than MRMR, JOMIC, and SDFE, respectively.
The OA of JMIM and CMIM is lower than 89%. The Kappa coefficient also demonstrates
an overall advantage for the proposed method. Those results indicate that it is a robust and
feasible feature selection method for the Longkou dataset.

5. Discussion
5.1. Design Analysis of the Proposed Method

EA is an effective strategy to obtain a feature combination of HSI datasets with a
preferable OA in a limited time, the OA obtained on three HSI datasets exceeds 90%, and
some even reach 98%. However, it is prone to stagnation during iteration due to the insuffi-
cient interactivity of agents. Co-evolution is a prominent mechanism to improve the agents’
diversity, the original feature set is divided into some subsets, and agents are generated by
those to form subpopulations. Moreover, information interaction exchanges the optimal
feature combination searched by agents to maintain the balance of subpopulations, but
solely exchanging the optimal feature combination reduces the selected probability of
interactive features. The proposed method incorporates reliable information interaction
and a series of mechanisms focusing on features to address this. The trajectory of the OA
for each iteration indicates that the stability of the proposed method, is decreased by less
than 0.5% as the feature space condenses, and the computational time is also reduced by an
average of 15%.
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The proposed method has a prominent OA in most of the classes and even reaches
100% for Brocoli_green_beads_1 in the KSC dataset and Water in the Longkou dataset.
Although it is lower than other feature selection methods in a few classes, the difference is
not apparent in the class with small samples. Although other methods based on measure
criteria stand out in terms of efficiency, it is difficult to distinguish interactive features
as the number of instances increases. Feature discarding is an effective mechanism for
eliminating redundant information and improving the computational load. Similar to
other feature selection methods, the OA is negatively impacted due to improper discarding.
To counterbalance this effect, the feature recovering mechanism is employed to improve
the generalization ability while maintaining the OA at a high level. Experimental results
indicate that the OA of the proposed method surpasses other feature selection methods by
an average of 3%, and important features are adequately restored by the feature recovery
mechanism, thereby improving the performance and reliability of the proposed method.

5.2. Discussion for the Training Size

In Section 4.1, three HSI datasets, namely, KSC, Salinas, and Longkou, are introduced
to validate the performance of the proposed method. The OA of effective feature combi-
nation and computation time is influenced by the size of the training set. Several tests are
conducted on the proportion of the training set, ranging from 5% to 25%, because of the
small-sample learning properties to determine the appropriate size of the training set. The
change curves for the number of features and the OA of different training sets are shown
in Figure 7.
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The experimental results indicate that the increasing size of the training set from 5%
to 10% leads to a significant improvement in the OA. However, further increasing the
proportion from 10% to 25% only results in a minimal increase, while the computation
time also decreases to some extent. Additionally, the number of selected features does
not show significant fluctuations, so the size of the training set is designated as 10%. This
size strikes a balance between the OA and computational load, making it a practical and
effective choice for feature selection in HSI datasets.

5.3. Comparison with Other Co-Evolution Mechanisms

To verify the search efficiency of the co-evolution mechanism in the proposed method,
it is compared with other co-evolution mechanisms named CC-DFS [33] and CC-RFG [34];
the average fitness value of each iteration on three HSI datasets is shown in Figure 8.
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In the beginning, the fitness value of the proposed method is higher than that of
CC-DFS and CC-RFG in three HSI datasets, which demonstrates that the feature discard
mechanism effectively removes the redundant features. With further iterations, the fitness
trajectory of CC-DFS and CC-RFG gradually stabilizes while that of the proposed method
remains upward. This indicates that the co-evolution mechanism enhances the search
efficiency of agents and suggests a prominent ability to escape from local optima. As a
result, the reliable co-evolution mechanism effectively interacts with more representative
information, largely avoiding the occurrence of stagnation.

6. Conclusions

A feature selection method based on discarding–recovering and co-evolution mecha-
nisms is proposed in this study with the aim of obtaining effective feature combinations in
HSI datasets. According to the experimental results, the proposed method outperforms
other EA-based feature selection methods, including PSO, FA, GWO, and GSA, in terms
of optimization ability and search speed in the feature space. It achieves a prominent OA
with a small number of selected features, outperforming other feature selection methods
in this regard, and exhibits satisfied stability. In addition, through comparing with the
other co-evolution mechanism, the fitness trajectory exhibits that the reliable co-evolution
mechanism could interact with more representative information between agents, making
them continuously improve. The performance limitations caused by feature discarding are
improved through the recovery of dropped features, which guarantees the generalization
ability and decreases computational load.

Furthermore, the proposed method outperforms MRMR, JOMIC, JMIM, CMIM, and
SDFE in terms of the OA with varying numbers of features, and the reliable information
interaction ensures a more balanced learning process, which maintains a positive balance
between classification accuracy and the number of selected features, making it become
a suitable choice for feature selection. In future studies, more representative criteria will
be synthesized in the information interaction to further improve the diversity of agents.
Moreover, it is interesting to use feature clustering to take the population division and
further avoid population imbalance.
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