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Abstract: Soil salinization seriously threatens agricultural production and ecological environments in
arid areas. The accurate and rapid monitoring of soil salinity and its spatial variability is of great
significance for the amelioration of saline soils. In this study, 191 soil samples were collected from
cotton fields in southern Xinjiang, China, to obtain spectral reflectance and electrical conductivity
(EC) indoors. Then, multi-granularity spectral segmentation (MGSS) and seven conventional spectral
preprocessing methods were employed to preprocess the spectral data, followed by the construction
of partial least squares regression (PLSR) models for soil EC estimation. Finally, the performance of the
models was compared. The results showed that compared with conventional spectral preprocessing
methods, MGSS could greatly improve the correlation between spectrum and soil EC, extract the
weak spectral information of soil EC, and expand the spectral utilization range. The model validation
results showed that the PLSR model based on the second-order derivative (2nd-der-PLSR) had the
highest estimation accuracy among the models constructed by conventional methods. However, the
PLSR model based on MGSS (MGSS-PLSR) had the highest estimation accuracy among all models,
with Rp

2 (0.901) and RPD (3.080) being 0.151 and 1.302 higher than those of the 2nd-der-PLSR model,
respectively, and nRMSEP (5.857%) being 4.29% lower than that of the 2nd-der-PLSR model. The
reason for the high accuracy of the MGSS-PLSR model is as follows: In the continuous segmentation
of the raw spectrum by MGSS, the bands with strong and weak correlations with respect to soil EC
were concentrated during low granularity segmentation. With the increase in granularity level, the
spectral features decreased and were distributed discretely. In addition, the locations of spectral
features were also different at different granularity levels. Therefore, the spectral features of soil
EC can be effectively extracted by the MGSS, which significantly improves the spectral estimation
accuracy of soil salinity. This study provides a new technical means for soil salinity estimation in
arid areas.

Keywords: multi-granularity spectral segmentation; soil EC; cotton field; estimation model

1. Introduction

Soil salinization is a main cause of land degradation and a major threat to sustainable
agricultural development in arid areas [1]. It not only causes a decline in soil quality, crop
yield loss, and land desertification [2] but also impacts ecosystem functions and biological
diversity [3]. Over the past 20 years, about one-third of farmlands has been salinized [4],
and global salinized soil reaches about 9.55 × 108 hm2. A study has shown that the area
of salinized soil in China is about 3.6 × 107 hm2, accounting for 6.62% of the total arable
land [5]. Xinjiang is located in northwest China. Due to the influences of natural factors
such as low precipitation, large evaporation, and high groundwater level [6], Xinjiang has
the largest area of salinized soil (1.26 × 106 hm2) in China [7].
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The rapid and accurate estimation of soil salinity is of great importance for the amelio-
ration of saline soils. Conventional soil salinity measurement methods are time-consuming,
labor-intensive, and difficult to use for large-scale quantitative assessments [8]. However,
remote sensing technology can quickly and non-destructively obtain soil information.
Therefore, it has been widely used in soil salinity estimation [9]. At present, many scholars
have adopted different spectral preprocessing methods to improve the accuracy of soil
salinity spectral estimation. For example, Fu et al. [10] performed root mean square (

√
R),

reciprocal (1/R), inverse logarithmic (log(1/R)), logarithmic, and logarithmic reciprocal
preprocessing after Savitzky–Golay (SG) convolution smoothing on the raw spectra and
found that the model accuracy constructed based on SG smoothing and 1/R preprocessing
was the highest. Shi et al. [11] performed logarithmic, exponential, and square root (R1/2)
preprocessing on raw spectral data to construct spectral indices and found that prepro-
cessing obviously improved the soil salinity estimation accuracy compared with the raw
spectra data, especially R1/2 preprocessing. Wang and Li [12] constructed support vector
regression (SVR) models after preprocessing raw spectral data using average reflectance
(R), the logarithm of the reciprocal of R, and the continuum removal of reflectance (Rcr),
and they found that the R-based and Rcr-based SVR model had the highest accuracy in
estimating soil Cl− and K+ content, respectively. In addition, wavelet transform (WT),
fractional differentiation (FD), and empirical mode decomposition [13,14] have also been
used to preprocess raw spectral data and achieved high estimation accuracy.

However, the spectra of some soil parameters such as soil salinity usually overlap
with those of other parameters such as soil nutrients and heavy metals [15]. Although the
above spectral preprocessing methods can improve the estimation accuracy to a certain
extent [16,17], weak and overlapping spectra cannot be extracted after preprocessing,
leading to a loss of some spectral features [18]. In addition, wavelet transform (WT),
fractional differentiation (FD), and empirical mode decomposition can only extract floating-
point values, which increases the data volume and data processing complexity and makes
them difficult to use for large-scale parameter retrieval [19]. Therefore, Kang and Zhang [20]
proposed MGSS to segment the spectrum with the idea of circular cutting and to extract
multi-granularity spectral features for quantitative inversion. MGSS could reduce the cost
of data storage and transmission, improve computational efficiency via data simplification,
and extract weak spectral information. In particular, it can extract the overlap and full-band
spectral information. However, at present, the comparison of the soil salinity spectral
estimation accuracy based on MGSS and other commonly used preprocessing methods has
not been performed.

Cotton is a major cash crop in Xinjiang [21]. In 2021, Xinjiang planted more than
2.6 million hectares of cotton, and Xinjiang’s cotton output (5.13 million tons) accounted for
one-fifth of the world’s cotton production [22]. However, in recent years, flood irrigation
has led to increased soil salinization in Xinjiang [23,24]. About 30% of cotton crops in
Xinjiang face saline stress. High soil salinity seriously restricts cotton growth, especially
at the seedling stage [25], and leads to great yield losses [26]. Therefore, the amelioration
of saline soils is very important for sustainable agricultural development in Xinjiang.
The accurate monitoring of soil salinity is a prerequisite for saline soil amelioration [27].
Therefore, in this study, MGSS was employed to process the raw spectral data of soil
electrical conductivity (EC) for soil salinity estimation, and the estimation accuracy based
on MGSS was compared with that based on seven conventional spectral preprocessing
methods. The objectives were to (1) determine the feasibility of MGSS in soil salinity
estimation and (2) compare the estimation accuracy based on the MGSS with that based
on conventional spectral preprocessing methods. This study will provide a new technical
means for soil salinity estimation and contribute to the amelioration of saline soils and crop
yield increase in arid areas.
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2. Materials and Methods
2.1. Study Site

Southern Xinjiang, a main cotton production base of China [28], is mainly a large
closed intermountain basin (Tarim Basin, a.s.l. 1000~2000 m). Geologically, it is a stable
block restricted by many deep and large surrounding faults. The terrain of the basin is high
in the west and low in the east. The soil and rock minerals are mainly physically weathered,
forming a coarser parent material. Due to differences in latitude and terrain, the types of
landforms are very complex, resulting in different soil types [29]. The parent materials of
plain soil mainly include alluvial deposits and loess. The soil types are mainly desert soil,
meadow soil, fluvo-aquic soil, saline soil, and aeolian sandy soil. Soil texture is mainly silty
loam and sandy loam [30]. In this study, Korla, Aksu, and Kashgar in southern Xinjiang
were selected. These regions have a temperate continental climate with long sunshine
duration, low rainfall, high evaporation, and large day/night temperature difference. The
annual precipitation is 25~100 mm. The accumulated temperature is more than 3500 ◦C.
The frost-free period is 200~220 days [30].

2.2. Data Collection
2.2.1. Soil Sampling

From 22 September to 8 October 2020, cotton fields greater than 33.3 × 103 m2 were
selected in the study area (Figure 1), and five points were selected in each field along the
diagonals for soil sampling. Specifically, firstly, the two diagonal lines of a cotton field
were drawn. Then, the intersection (center point) of the two diagonal lines was selected
as a sampling point. After that, four points were selected as the other four sampling
points at half the distance from the four corners of the cotton field to the center point
(Figure 2). The sampling points were positioned using a GPS device (Garmin eTrex vistah,
Taiwan, China). After removing plant roots, stones, and other impurities, the 0~20 cm
soil layer was collected vertically using an earth-boring auger [31]. Five soil samples were
collected in each field, mixed, sealed in polyethylene bags, and brought back to the lab.
Soil samples were dried, ground, and passed through a 0.5 mm sieve [32]. After that, each
soil sample was divided into two parts: one for measuring soil EC and the other for soil
spectral acquisition.

Figure 1. Distribution of cotton fields for soil sampling in southern Xinjiang, China.
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Figure 2. Selection of sampling points.

2.2.2. Determination of Soil Salinity

Five grams of soil sample and 25 mL of distilled water were mixed in a conical flask
and shaken for 30 min [33]. Then, the mixture was filtered, followed by the measurement
of soil EC using a conductivity meter (S230, Mettler Toledo Instrument Co., Ltd., Shanghai,
China). Each sample was measured three times, and the average value was calculated.

2.2.3. Spectral Acquisition

Because soil salinity and soil EC have a positive correlation and soil EC has a more
prominent spectral response than soil salinity, the spectral information of soil EC has
been widely used to estimate soil salinity [34]. In this study, the ASD Field Spec Pro FR
spectrometer (Boulder, CO, USA) was used to collect the spectral data of soil samples in the
lab. The wavelength range was 350~2500 nm, and the spectral resolutions at 350~1000 nm
and 1000~2500 nm were 3 and 10 nm, respectively. The spectral sampling interval was
1 nm.

The spectral acquisition details were as follows: Firstly, the soil sample was placed
in an aluminum box (5 cm in radius and 1.5 cm in depth). Then, the optical fiber was
connected to the handle. After that, the switch on the handle and the APP configured for
the instrument were connected via Bluetooth, and the number of spectral curves was set to
5. After half an hour, the four walls of the luminous port at the end of the handle came into
direct contact with the soil surface, forming a confined space where all light hits the soil
sample. The reflectance spectra of the soil samples were received by the probe (Figure 3).
The device was calibrated every ten minutes during measurements to prevent sensor drift
and a change in incidence angle. The spectral acquisition was performed three times for
each soil sample, and the average value was used for analysis.

Figure 3. Soil spectral data acquisition.
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2.2.4. Spectral Data Preprocessing

MGSS is developed on the basis of spectral high-order binary coding, which transforms
the data storage format to realize data compression and restoration (i.e., transforming
16-bit data into 12-bit data) [35]. Compared with high-order binary coding, MGSS could
effectively reduce the loss of spectral details in the conversion process. The essence of
MGSS is a continuous operation of de-averaging the spectrum. This could highlight weak
spectral information. It is assumed that the spectral vector can be approximated by the sum
of the products of the M-order segment value (M > 0) and its coefficient, and the residual
error decreases with an increase in M:

V =
M

∑
i=1

βiHi + RM(V) ≈
M

∑
i
βiHi (1)

where Hi is the ith order segment value of the spectral vector V; Hi ∈ {−1, 1}M; βi is
the coefficient of Hi, βi > 0; and RM(V) is the residual vector of the M-order quantized
estimation of V.

The analytical solution of Formula (1) can be obtained by carrying out convex opti-
mization: {

βi =
1
N ||Ri−1(V)||L1

Hi = sign(Ri−1(V))
(2)

where i = 1, 2, . . . , M; N is the number of bands; L1 represents 1-norm; and sign() is a sign
function. When T ≥ 0, sign(T) = 1, and when T < 0, sign(T) = −1.

Then, the spectral segmentation can be summarized as follows:
SFi = SFi−1 − SLi

SLi = βi ×Hi
ASi = ∑i

t=1 SLt

(3)

where SFi is the spectral feature (i.e., residual feature) obtained at the ith spectral segmenta-
tion, that is, the raw hyperspectral data are continuously deaveraged to highlight weak and
detailed spectral information. SLi is the line for segmenting at the ith segmentation, and ASi
is the approximate spectrum after ith segmentation, which can achieve data compression.

The following (Figure 4) is an example of MGSS. Figure 4a shows the hyperspectral
curves of soil samples, the SF0 is itself. Figure 4b shows the SL1 (SL1 = β1 × H1) for the
1st segmentation, and the spectral feature at the 1st segmentation can be obtained by SF1
= SF0 − SL1. Figure 4c shows the approximate spectrum of the raw spectrum after the
1st segmentation. According to Formula (2), β2 and H2 can be calculated, and then SL2 is
calculated (SL2 = β2 × H2), after which SF2 can be obtained. SL3~SL30 can be extracted by
repeating the above process.

Figure 4. Cont.
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Figure 4. Spectral feature extraction by multi-granularity spectral segmentation (MGSS). (a) is the
raw spectrum, and (b–r) denotes the segmentation lines, approximate spectra, and spectral features
at granularity 1–6, respectively.

2.3. Selection of Spectral Features

The number of spectral bands and spectral features obtained increased exponentially
with the increase in granularity. Therefore, it is necessary to select the optimal spectral
features at each granularity after segmentation to improve the inversion accuracy. In
this study, the sequential forward selection (SFS) method [36] was used to select spectral
features after spectral preprocessing using seven conventional methods and MGSS. That is,
the optimal band was selected from the preprocessed spectral data for multiple cycles and
added to the spectral feature set until the spectral feature set can achieve the highest soil
EC estimation accuracy.
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To facilitate comparisons between conventional methods and MGSS, the same number
of spectral features (50) was selected by SFS for each conventional method and each
granularity in MGSS. Specifically, spectral data were normalized and standardized. Then,
an empty feature set y0 = {∅} was constructed. After that, a feature, x, was selected to
make J(yk + x) the optimal, that is, x+ = argmax

x∈yk
[J(yk + x)], and x+ was added to the

feature subset y (yk+1 = yk + x+, k = k + 1). Finally, the third step was repeated multiple
times until the combined performance of feature set x was satisfactory.

PLSR could reduce data dimension and collinearity between independent variables,
eliminate redundancy, and maintain the interpretation ability of principal components to
output variables [37]. In this study, the PLSR estimation model was constructed for soil
salinity spectral estimation. The entire dataset (191) was divided into a calibration set (115)
and a validation set (76) at a 3:2 ratio (Table 1) using the Kennard–Stone (K-S) method [7]
to ensure generalization and the robustness of the model [38]. The mean values of the
entire dataset, calibration set, and validation set were 0.73, 0.81, and 0.60, respectively, but
maximums, minimums, standard deviations, and coefficients of variation were very close.
This indicates that the entire dataset, calibration set, and validation set have a high degree
of similarity and consistency. To avoid overfitting, the optimal number of latent variables
(LVs) was determined by minimizing the root mean square error of cross validation based
on the calibration set [36].

Table 1. Electrical conductivity of soil samples.

Dataset No. Max. Min. Mean Std Cv Kurtosis Skewness

Full dataset 191 2.37 0.06 0.73 0.49 0.67 3.57 0.89
Calibration set 115 2.37 0.06 0.81 0.52 0.63 2.98 0.66
Validation set 76 2.33 0.07 0.60 0.42 0.70 5.49 1.28

In this study, the coefficient of determination ((R2) (Equation (4)), normalized root
mean square errors ((nRMSE) (Equation (5)), and the ratio of performance to deviation
((RPD) (Equation (6)) were used to evaluate the accuracy of the models constructed based
on different preprocessing methods [7]. The root mean square error (RMSE) and nRMSE
were calculated according to Equations (5) and (7), respectively, and the RPD was calculated
based on the standard deviation ((SD) (Equation (8)) and RMSE. These indicators were
further refined into the nRMSE of calibration (nRMSEC), R2 of calibration (Rc

2), nRMSEP
(nRMSE of validation), Rp

2 (R2 of validation), and RPD (RPD of validation). Generally, the
models with high accuracy have high Rc

2, Rp
2, and RPD and low nRMSEC and nRMSEP.

In addition, the smaller the difference between nRMSEC and nRMSEP, the more stable
the estimation accuracy of the model [39]. Rc

2 and nRMSEC were calculated based on the
optimal number of LVs:

R2 =
∑n

i=1 (Xi −
−
X)

2
(Yi −

−
Y)

2

∑n
i=1 (Xi −

−
X)

2

∑n
i=1 (Yi −

−
Y)

2 (4)

nRMSE =
RMSE

Max−Min
(5)

RPD =
SD

RMSE
(6)

RMSE =

√
∑n

i=1 (Xi − Yi)
2

n
(7)
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SD =

√√√√∑n
i=1 (Xi −

−
X)

2

n
(8)

where i represents the data of sampling point i, Xi is the measured value of soil EC at

sampling point i, Yi is the predicted value of soil EC at sampling point i,
−
X is the average

value of the measured values of soil EC,
−
Y is the average value of the predicted values

of soil EC, n is the total number of samples, and Max and Min are the maximum and
minimum values of the sample set, respectively.

2.4. Model Validation

The PLSR model constructed based on the calibration set was used to estimate the
soil salinity of sampling points in the validation set, and the Rp

2, nRMSEP, and RPD were
calculated to evaluate the model estimation accuracy. The detailed modeling process is
shown in Figure 5.

Figure 5. Flow chart of modeling.

3. Results
3.1. Spectral Features of Soil EC

In this study, conventional preprocessing methods include original (Ori), natural
logarithm of R (lnR), 1/R, root mean square of R (R0.5), the first derivative (1st-Der), 2nd-
Der, and continuum removal (CR). The variations in the correlation coefficients between
Ori, lnR, 1/R, and R0.5 preprocessed spectral data and soil EC were similar, and the
variation ranges were small. In addition, the correlation coefficients were all below 0.1. This
indicates that preprocessing using Ori, lnR, 1/R, and R0.5 has no obvious positive effect
on the extraction of spectral features (Figure 6a). However, the variations in correlation
coefficients between 1st-Der and 2nd-Der preprocessed spectral data and soil EC were
obviously larger, and more spectral features were presented. In addition, the correlation
with soil EC between adjacent bands varied greatly, which was mainly shown in scattered
bands. However, CR had poor performance, and its correlation coefficient was superior
to that of conventional methods only in several bands. On the whole, only the absolute
value of correlation coefficients between several bands of 2nd-Der preprocessed data and
soil EC was higher than 0.2. Therefore, conventional spectral data preprocessing methods
cannot extract the spectral features of soil EC. However, the correlation coefficient reached
0.3 after MGSS preprocessing (Figure 6b). Therefore, MGSS could highlight weak spectral
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information, produce more spectral features, and significantly enhance the extraction
efficiency of soil EC spectral features.

Figure 6. Correlation between spectral reflectance and soil EC based on conventional spectral
preprocessing methods (a) and MGSS (b).

At low granularity (G1–G3), the bands with high and low correlations with soil EC
were concentrated. However, at high granularity, the bands with high correlation showed
large location differences, which was conducive to the extraction of spectral features. With
the increase in granularity, the difference between adjacent bands gradually increased, and
the bands with similar correlations were gradually reduced, leading to increased bands.
Therefore, MGSS can extract more spectral information and reduce the overlap of spectra.
The correlation fluctuated greatly at low granularity, but it fluctuated within a small range
at high granularity.

3.2. Comparison of Spectral Features

The spectral features extracted from 1st-Der and 2nd-Der preprocessed data were
uniformly distributed in visible and near-infrared regions(Figure 7a). The spectral features
extracted from the R0.5 preprocessed data were mainly distributed in the mid-infrared
region. The spectral features extracted from the 1/R preprocessed data were distributed
in ultraviolet and infrared regions. The spectral features extracted from the lnR and
Ori preprocessed data were distributed in ultraviolet, mid-infrared, and near-infrared
regions. The spectral features extracted from the CR preprocessed data were mainly
distributed in mid-infrared and near-infrared regions. The spectral features extracted from
the MGSS_G1 preprocessed data were mainly distributed in the near-infrared region, and
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those at other granularity (>G1) were uniformly distributed in visible and near-infrared
regions (Figure 7b). The number of spectral features extracted from conventional method
preprocessed data was obviously lower than that extracted from MGSS preprocessed data.
In addition, the spectral features extracted from 1st-Der and 2nd-Der preprocessed data
were evenly distributed, and those extracted from the data preprocessed by other methods
clustered obviously. However, the spectral features extracted from MGSS preprocessed
data were dispersed in the full band. This is conducive to the extraction of spectral features.

Figure 7. Distribution of spectral features after spectral preprocessing using conventional methods
(a) and MGSS (b).

3.3. Model Accuracy Evaluation

The MGSS-PLSR model had the highest accuracy and stability, followed by 2nd-De-
PLSR,1st-Der-PLSR, lnR-PLSR, 1/R-PLSR, CR-PLSR, Ori-PLSR, and R0.5-PLSR models.
When the granularity was 31, the estimation accuracy of the MGSS-PLSR model was the
highest, with an Rc

2 of 0.95, Rp
2 of 0.90, RPD of 3.08, nRMSEC of 4.89%, and nRMSEP

of 5.86%, and stability was also high. For the 2nd-Der-PLSR model, the Rc
2, nRMSEC,

Rp
2, nRMSEP, and RPD were 0.94, 5.35%, 0.75, 10.15%, and 1.78, respectively. Moreover,

there were great differences between nRMSEC and nRMSEP for the models constructed
based on conventional spectral preprocessing methods, indicating the poor stability of the
models (Table 2). Therefore, MGSS exhibited better performance than conventional spectral
preprocessing methods.
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Table 2. Evaluation of the accuracy of soil EC estimation models constructed using different spectral
preprocessing methods.

Method LVs Rc
2 nRMSEC

(%) Rp
2 nRMSEP

(%) RPD

Ori 33 0.80 9.87 0.31 17.62 1.02
CR 22 0.77 10.73 0.32 17.63 1.02

1st-Der 28 0.94 5.61 0.65 10.94 1.65
2nd-De 41 0.94 5.35 0.75 10.15 1.78

1/R 30 0.77 10.73 0.33 17.49 1.03
R0.5 3 0.09 21.16 0.06 23.27 0.78
lnR 31 0.77 10.74 0.48 17.61 1.02

MGSS_31 7 0.95 4.89 0.90 5.86 3.08
Note: MGSS_31 represents the spectral features extracted at the granularity level of G31.

3.4. Model Validation

Three optimal models (Ori, CR, and 2nd-Der) with an Rp
2 of 0.313, 0.323, and 0.750,

respectively, and nRMSEP of 17.618%, 17.628%, and 10.147%, respectively, were selected.
The fitting result between the estimates of the 2nd-Der-PLSR model and the measured
values was better than that of Ori-PLSR and CR-PLSR models. However, the fitting result
of the MGSS-PLSR model was optimal. In Figure 8, the points of the MGSS-PLSR model
were close to the 1:1 line, indicating the high estimation accuracy of the model. The
MGSS-PLSR model had the highest estimation accuracy among all models, with an Rp

2,
RPD, and nRMSEP of 0.901, 3.080, and 5.857%, respectively. In addition, the Rp

2 and
RPD of the MGSS-PLSR model increased by 0.151 and 1.302, respectively, and nRMSEP
decreased by 4.29% compared with those of the 2nd-der-PLSR model, which is a model with
the highest estimation accuracy that was constructed using conventional preprocessing
methods. Therefore, MGSS can significantly improve soil EC estimation accuracy.

Figure 8. Validation of soil EC estimation models constructed using different spectral preprocessing
methods.
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4. Discussion
4.1. Analysis of Spectral Features Extracted Based on Different Spectral Preprocessing Methods

Soil salinization is the gradual accumulation of soluble salts in the surface soil. Under
the action of evaporation, deep soil water is transported to the surface through a soil
capillary, which also brings the salt in the water to the surface (0–20 cm) [40]. The surface
soil EC can effectively reflect the degree of soil salinization [1]. In recent years, with the
development of precision agriculture, satellite- and unmanned-aerial-vehicle-based remote
sensing have been widely used for large-scale soil salinity monitoring [41–43]. However,
the spectra obtained are mixtures of soil and vegetation and cannot be directly used for soil
EC estimation [44]. In addition, soil spectra are also affected by impurities, crop residues,
and water content in field soil, making it difficult to extract the spectral features of soil
EC [45,46]. Therefore, this study attempted to process soil EC spectra collected indoors
using a variety of methods and to explore the feasibility and effectiveness of MGSS in
extracting soil EC spectral features and estimation.

This study found that the correlation coefficient between MGSS preprocessed spectra
and soil EC reached 0.3 (Figure 6), which was higher than that of conventional methods.
Therefore, MGSS could significantly enhance the spectral information of soil EC and
make the spectral features of soil EC become increasingly prominent with an increase in
granularity level. It was also found that the spectral features extracted from 1st-Der and
2nd-Der preprocessed data were distributed uniformly. Therefore, 1st-Der and 2nd-Der
could help extract the spectral information of soil parameters to a certain extent, which
is similar to the results of Khosravi et al. [47] and Zhou et al. [48]. However, the spectral
features extracted from other conventional method preprocessed data exhibited obvious
aggregation (Figure 7), causing great difficulties for spectral feature extraction. It should
be noted that the spectral features extracted from MGSS-preprocessed data had a wider
distribution compared with those for conventional methods. Therefore, MGSS can highlight
the spectral features of soil EC at different granularity levels, effectively excavate some
hidden spectral information, and expand the spectral utilization range, thus improving
model accuracy. The spectral features extracted from MGSS-G2 preprocessed data were
mainly concentrated within 880–1200 nm, but the correlation analysis results (Figure 6b)
showed that the spectral features should be around 700 nm. This may be because these
spectral features at 700 nm are not extracted because of their excessively high redundancy.
Wu et al. [49] found that the spectral features of soil EC were between 346 nm and 900 nm.
This is different from our results. This may be due to differences in surface soil color,
texture, structure, and surface roughness on the one hand and higher moisture content
under vegetation cover and irrigation on the other hand [50]. In future studies, MGSS can
be applied to field experiments in order to expand the universality of MGSS.

4.2. Comparison of the Estimation Accuracy of the Models Constructed Using Different Spectral
Preprocessing Methods

Topography, climatic environment, soil physical and chemical properties, etc., affect
the spectral reflectance of soil EC [51], so the construction of the soil EC estimation model is
challenging. This study found that soil salinity had spatial heterogeneity. This is consistent
with the study results of Guo et al. [52]. In recent years, scholars have developed methods
for spectral feature extraction to improve soil salinity estimation accuracy. For example, Zhu
et al. [53] and Farahmand and Sadeghi [54] improved soil salinity estimation accuracy by
constructing normalized differential vegetation indices (NDVIs) and an S3 index ((G*R)/B).
However, their methods have some defects. For example, the bands used in the construction
of spectral indices are very close, resulting in the poor stability of the models [55]. Therefore,
some scholars further improved soil salinity estimation accuracy by transforming raw
spectra to extract more spectral features [56]. In this study, seven conventional methods
and MGSS were used to preprocess spectral data for spectral feature extraction. Among
the models constructed based on conventional methods, the accuracy of the 2nd-Der-PLSR
model was the highest. However, it was still lower than that of the MGSS-PLSR model. The
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correlation to the soil EC of the spectra extracted after MGSS preprocessing was higher than
that based on conventional methods, leading to the higher accuracy of the MGSS-PLSR
model. It was found that at low granularity levels (G1–G3), the spectral features extracted
were concentrated. With the increase in granularity level, the number of spectral features
increased, and the distribution was discrete. Therefore, more spectral features could be
extracted after MGSS preprocessing compared with conventional methods [57], especially
with respect to weak spectral information. Kang and Zhang [20] and Pang et al. [58] also
found that MGSS could significantly improve the accuracy and stability of forage protein
content estimation and grassland biomass estimation. In short, more spectral features could
be extracted after MGSS preprocessing, which could obviously improve the estimation
accuracy. It should be noted that Pang et al. [58] reported that the combination of MGSS
and the spectral index could obviously improve the accuracy of the estimation of grassland
aboveground biomass (AGB) using satellite remote sensing. Therefore, the combination
of the MGSS method and spectral index has the potential to improve the accuracy of the
estimation model, and it can be applied to the inversion of soil parameters in the future.

Similarly to empirical mode decomposition [59], the essence of MGSS is the mathemat-
ical derivation of the raw spectrum. It can be regarded as an unsupervised decomposition
of the spectrum, which can enhance the quantity and quality of spectral features extracted.
However, in the continuous segmentation of the raw spectrum by MGSS, while extracting
effective spectral information and weak spectral information, it also produces some inde-
pendent spectral information that is not related to soil EC. In addition, with the increase
in granularity level, the number of spectra produced increases exponentially, which may
cause data redundancy. Therefore, research methods that use MGSS to extract effective
spectral information while eliminating irrelevant spectral information and reducing data
redundancy will be one of our future research priorities. In addition, soil EC has certain
temporal and spatial variations due to environmental factors [60]. Therefore, some scholars
extracted the spectral features of soil EC under the influences of vegetation cover using
double extraction. That is, firstly, blind source separation (BSS) was used to extract soil
reflectance from mixed spectra, and then soil parameter information was extracted from soil
reflectance. After that, the soil parameter prediction model under vegetation cover was con-
structed. This method is mainly used for soil parameter estimation under vegetation cover
with respect to satellite and UAV remote sensing [61], but estimating soil parameters under
dense vegetation cover conditions is still difficult. In addition, methods for improving the
accuracy of soil EC estimation in cotton fields and the matching accuracy of multi-scale
(ground, UAV, and satellite remote sensing) spatiotemporal soil EC digital maps still need
to be further explored. Therefore, we will apply MGSS to multi-scale spatiotemporal soil
EC numerical modeling and mapping. On the one hand, this method can select a suitable
growth environment for crops; on the other hand, it can monitor and evaluate the degree
of soil salinization from multi-scale aspects so as to achieve accurate and efficient soil
restoration and improve soil quality. It should be noted that Pang et al. [58] applied MGSS
to preprocess Sentinel-2 images, and they found that MGSS could significantly improve
the accuracy of the satellite estimation of grassland biomass. MGSS can reduce the loss
of spectral information, extract weak spectral information, and enhance spectral features.
Therefore, MGSS has the potential to improve the accuracy of the estimation of soil parame-
ters using satellite data. This method also partially tackles the two difficult issues in satellite
monitoring. Firstly, the number of spectral bands of multispectral satellites is limited, as the
number is substantially lower than hyperspectral data, and some spectral features cannot
be utilized. Secondly, although satellite sensors have a large monitoring range, they have a
problem with low resolution compared to ground sensors, resulting in low accuracy and
specificity in monitoring. MGSS can partially tackle the two difficult issues by extracting
weak spectral information and reducing the loss of spectral information. This ultimately
increases the accuracy of satellite monitoring.
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5. Conclusions

In this study, the spectral reflectance and electrical conductivity of soils collected from
cotton fields in southern Xinjiang, China, were determined indoors. Then, soil spectral data
were preprocessed using MGSS and seven conventional methods. After that, a partial least
squares regression (PLSR) model was constructed. Finally, the accuracies of the models
were compared to determine the optimal soil EC estimation model. The results showed
that the PLSR model constructed based on the second-order derivative (2nd-der-PLSR)
had the highest estimation accuracy among the models constructed using conventional
methods. However, among all models, the PLSR model constructed based on MGSS
(MGSS-PLSR) had the highest estimation accuracy, with Rp

2 (0.901) and RPD (3.080) being
0.151 and 1.302 higher than those of the 2nd-der-PLSR model, respectively, and nRMSEP
(5.857%) being 4.29% lower than that of the 2nd-der-PLSR model. The reason for the high
accuracy of the MGSS-PLSR model is as follows: Compared with conventional spectral
preprocessing methods, MGSS could greatly improve the correlation between spectra and
soil EC, and it can disperse spectral features throughout the entire band. This can effectively
extract the weak spectral information of soil EC in complex environments and expand the
spectral utilization range. Thus, the quantity and quality of the extracted spectral features
of soil EC are significantly improved by the MGSS, which further improves soil salinity
estimation accuracy.
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