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Abstract: Global dryland areas are vulnerable to climate change and anthropogenic activities, making
it essential to understand the primary drivers and quantify their effects on vegetation growth.
In this study, we used the Time Series Segmented Residual Trends (TSS-RESTREND) method to
attribute changes in vegetation to CO2, land use, climate change, and climate variability in Chinese
and American dryland areas. Our analysis showed that both Chinese and American drylands have
undergone a greening trend over the past four decades, with Chinese greening likely linked to climatic
warming and humidification of Northwest China. Climate change was the dominant factor driving
vegetation change in China, accounting for 48.3%, while CO2 fertilization was the dominant factor
in American drylands, accounting for 47.9%. However, land use was the primary factor resulting
in desertification in both regions. Regional analysis revealed the importance of understanding the
drivers of vegetation change and land degradation in Chinese and American drylands to prevent
desertification. These findings highlight the need for sustainable management practices that consider
the complex interplay of climate change, land use, and vegetation growth in dryland areas.

Keywords: dryland areas; desertification; climatic warming; anthropogenic activities

1. Introduction

Land degradation is a global issue that affects many countries, and vegetation growth
is an important indicator for it [1]. However, regional vegetation dynamics are still poorly
understood. Dryland areas, which are home to 41% of the global population, are particularly
vulnerable to external forcing, such as anthropogenic climate change (ACC) and land use
(LU) actions [2,3]. These factors have already led to the expansion of arid areas around
the world. Additionally, the rising atmospheric CO2 concentration promotes greening,
particularly in water-limited areas [4].

Land degradation is a significant environmental issue in both China and America,
with negative impacts on the ecosystems, economy, and society [5]. By studying land
degradation in these regions, we can contribute to understanding the underlying causes
and potential solutions to this problem. Additionally, both China and America have
implemented policies and programs aimed at mitigating land degradation. By studying
these regions, we can evaluate the effectiveness of these policies and provide insights for
future policy development and implementation [6,7]. During the past decades, China and
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America have experienced different degrees of climate change. For China, it has experienced
remarkable climatic warming [8]. It has been studied that this climatic warming contributed
to Chinese vegetation growth by extending the vegetation growing season and increasing
the summer photosynthesis rate [9,10]. However, climatic warming accelerates surface
evaporation, which affects the water availability of vegetation, inducing land degradation
especially in dryland areas. For American dryland, grass predominated in the middle and
end of the 19th century in New Mexico. However, the area shifted from grass-dominated
to shrub-dominated habitats in the end of the 20th century [11]. The amount of grass
decreased to 7% and this situation led to the change in ecosystem structure and function [12].
Grass depletion resulted in nutrient loss and surface erodibility [13]. Although a number
of studies have been conducted to research the drivers of shift, overgrazing along with
nutrient depletion is regarded as a cardinal driver for land degradation in Chihuahuan
Desert [14].

Research has shown that dryland ecosystems, including those in Chinese and Ameri-
can regions, are not in a state of equilibrium [1]. Vegetation dynamics in these areas tend
to be nonlinear and sensitive to external forces, predominantly resulting from two factors:
(1) climate change caused by anthropogenic activities, which leads to changes in spatiotem-
poral precipitation and temperature and affects water availability. Rising atmospheric
CO2 levels also promote vegetation water use efficiency and the greening process of the
world [15]. (2) Land use actions such as grazing, cropping, and deforestation [16,17] have
also caused a significant part of land degradation. Anthropogenic climate change and
land use have already resulted in the expansion of arid areas worldwide [18]. However,
the key driver of increased vegetation productivity is the rising CO2 concentration. As
CO2 levels increase, plants promote carbon fixation rates, and the non-radiative effects of
increasing CO2 concentration on photosynthesis and biomass production are referred to as
CO2 fertilization effects. Previous studies suggest that these effects have a positive impact
on leaf area index (LAI) enhancement, particularly in water-limited areas during the early
stages of vegetation development [19–21].

Currently, the development of satellite-based observational data can readily provide us
with spatial and temporal information on vegetation growth [22,23]. However, quantifying
the individual contributions of different driving factors, such as climate change (CC),
climate variability (CV), CO2 fertilization, and land use (LU), remains a challenge. Without
a clear understanding of the dominant mechanisms of greening or land degradation, we lack
the theoretical basis needed to predict future dryland carbon uptake or ecosystem evolution.
Therefore, the primary aim of this study is to disentangle which areas are undergoing
greening or land degradation and quantify the contributions of these different driving
factors in China and America, focusing on dryland areas. To identify areas experiencing
vegetation reductions, we employ the satellite-based Normalized Difference Vegetation
Index (NDVI) and calculate changes in vegetation growth using a non-parametric trend
analysis on the growing maximum season NDVI (NDVIm). We then attribute these changes
to CO2 fertilization, CC, CV, and LU using the TSS-TESTREND method. To make the
results more robust, we use a 9-member ensemble consisting of statistical model runs based
on a combination of observational gridded data, including three precipitation and three
temperature datasets.

The paper is organized as follows. In Section 2, we utilize a vegetation biomass model
to identify the dominant factors affecting vegetation growth and perform a sensitivity
analysis. Additionally, we provide an overview of the datasets used and the methods
employed to attribute vegetation change. In Section 3, we present the results of our attribu-
tion analysis, as well as an examination of the trends in greening and land degradation in
dryland areas of China and the United States. In Section 4, we discuss our findings. Finally,
in Section 5, we draw some conclusions regarding our study.
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2. Materials and Methods
2.1. Vegetation Growth Dynamic Model

In order to discover what factors we need to attribute in vegetation analysis, we apply
the vegetation dynamic model mainly based on Kefi 2008 [24]. This model describes the
vegetation dynamic in dryland areas. Vegetation patterning is generally linked to the
mechanism by rainfall infiltrates into soil in combination with low annual rainfall climate
conditions [25]. Here, we have a briefly review of the model. The system mainly includes
three parts: surface water (S), soil water (W) and plant density (P). Furthermore, plant
growth takes the effects of CO2 fertilization and land use into consideration. The dynamic
of water density and vegetation biomass can be modeled in Equation (1):

dS
dt = R − αS P+k2Wo

P+k2
,

dW
dt = αS P+k2Wo

P+k2
− β W

W+k1
P − rwW,

dP
dt = cβ W

W+k1
P − lP.

(1)

In the dynamic of surface water, dS
dt is the distribution of surface water. R (mm/day) is

the rainfall. The second term represents the amount of water infiltrating into soil. It is based
on the assumption that the infiltration of water is according to the plant density of one
area. Transpiration explains the difference between saturated and actual specific humidity.
In the dynamic of soil water dW

dt , the first term is the infiltrated water from the surface.
The second term is the effects of transpiration based on the theory of saturated and actual
specific humidity and β is the transpiration coefficient. The third term represents water loss
due to evaporation and drainage. In the vegetation biomass dynamic dP

dt , the first term is
the part of water absorbed by vegetation and the second term describes the effects of land
use such as grazing on vegetation biomass. l is the land use rate. More descriptions about
the parameters and model can be found in Appendix A and Kefi et al. (2008) [24]. The
concentration of carbon dioxide is used the current value. The datasets including rainfall
and concentration of carbon dioxide, etc., are described in the following section.

Equilibrium points of the vegetation dynamic model can be estimate by setting three
equations in system (1) equal to 0 ( dS

dt = 0, dW
dt = 0 and dP

dt = 0). The model has two types of
equilibria: (1) one equilibrium has no vegetation (bare state: P∗ = 0, W∗ = R

rw
, S∗ = R

αW0
);

and (2) one equilibrium corresponds to strictly positive vegetation biomass (W∗ = k1l
cβ−l ,

S∗ = R
α

(
P∗+k2

P∗+k2W0

)
, P∗ = (R−rwW∗)(W∗+k1)

βW∗ ). The dynamic of vegetation biomass, surface
water and soil water is shown in Figure 1.

Figure 1. Evolution of vegetation biomass, surface water and soil water. R = 0.6, l = 0.15, Ca = 400.
Other parameters are shown in Appendix A.
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2.2. Sensitive Analysis

We conducted the sensitive analysis on driving factors to see how the factors affect the
vegetation biomass. Based on these results, we can attribute and quantify the contributions
of each factors on vegetation growth. We vary the rainfall of dryland areas. Additionally,
we use the values of other parameters in dryland areas. In Figure 2, there are two states
in the system. One is stable (solid line), suggesting enough vegetation cover. Another is
the unstable state (dotted line), suggesting the bare soil state. There exists one bifurcation
when the system approaches a certain value under different climate conditions. We found
that the vegetation biomass is sensitive to the CO2 concentration and land use rate. With
the increasing CO2 concentration, the system is more robust because of the benefits of CO2
fertilization effects. Furthermore, the land use rate is also one dominate factor for vegetation
biomass development. As the land use rate increases, the system more easily approaches
the tipping point and more easily shifts to a bare soil state. Based on the analysis above, we
try to attribute the vegetation biomass growth to CO2, climate and land use.

Figure 2. Sensitive analysis of different factors. (a) is for CO2 and (b) is for land use rate. Solid line is
the stable state and dotted line is the unstable state. There exists one bifurcation when the system
approaches a certain value under different climate conditions.

2.3. Vegetation Dataset

The Normalized Difference Vegetation Index (NDVI) is a commonly used remote
sensing index to measure the greenness and photosynthetic activity of vegetation. It is
calculated from the red and near-infrared (NIR) spectral bands of remote sensing data.
The formula for NDVI is (NIR-Red)/(NIR+Red), where NIR is the reflectance in the near-
infrared band and Red is the reflectance in the red band. The datasets we use contain a
gridded daily NDVI sourcing from the Surface Reflectance Climate Data Record (CDR).
We use the dataset spans from 1982–2021 derived from polar orbit satellites of NOAA
(Advanced Very High Resolution Radiometer (AVHRR) and the Visible Infrared Imaging
Radiometer Suite (VIIRS)). The resolution is generated daily on a 0.05° by 0.05° global
grid. In this work, we apply the maximum NDVI (NDVIm) of the growing season as
a proxy of vegetation growth. NDVIm is researched to be significantly correlated with
NPP (Net Primary Product) in a large range of dryland ecosystems [26]. Moreover, in
the Desertification chapter of the 2019 IPCC report, NDVIm acts as a proxy of vegetation
growth according to the UNCCD definition of land degradation (IPCC AR6). The dataset
can be searched and downloaded from https://www.ncei.noaa.gov/products/climate-
data-records (accessed on 20 May 2023).

https://www.ncei.noaa.gov/products/climate-data-records
https://www.ncei.noaa.gov/products/climate-data-records
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2.4. Meteorological Dataset

In order to quantify and reduce the uncertainties of our results, we use a combination
of a 9-member ensemble that consists of three precipitation and three temperature datasets.
They are daily records of TerraClimate [http://www.climatologylab.org/terraclimate.html
(accessed on 20 May 2023)], CRU4 [http://data.ceda.ac.uk//badc/cru/data/cru_ts/ (ac-
cessed on 20 May 2023)] and ERA5 [https://cds.climate.copernicus.eu/ (accessed on 20
May 2023)]. AI (Arid Index, P/PET) is calculated by estimates of precipitation (P) and
potential evapotranspiration (PET) from TerraClimate. Areas that are not water-limited
(AI > 0.65) and hyper-arid (AI < 0.05) are excluded from our calculation. All datasets are
remapped to the same resolution as NDVI.

2.5. Statistical Significance

There are 9 members in each driving factor ensemble. We apply the IPCC protocol
to determining ensemble significance and agreement. According the protocol, there are
two disciplines: (1) more than 50% of ensembles members should pass the significant
change (αFDR = 0.10); and (2) Of all the model runs, over 80% must agree on the direction of
change [27]. We show the dot sign on the area when the pixel fits the significant change. If
a pixel fails to agree on the second discipline, the estimates of that component are masked.

2.6. Desertification Quantification

We apply a non-parametric pixel-by-pixel trend method based on Theil–Sen slope
estimator and Spearmans’s ρ significance test to generate the ensemble members. The
vegetation change is the difference between the NDVIm in 1982 and 2021. We define the
expected NDVIm value differences between the start and end of time series as ∆ NDVIm.

2.7. Estimate of the CO2 Fertilization

A theoretical relationship is applied to attribute the CO2 fertilization effects on vegeta-
tion growth. The equation is as follows:

GPP ≈ (Ca − γ)(Ca0 + 2γ)

(Ca + 2γ)(Ca0 − γ)
(2)

GPP is the relative rate of CO2 assimilation. Ca (mol/mol) is the atmospheric CO2
concentration. γ (mol/mol) is the compensation point when the dark respiration is absent.
Ca0 is set 339 mol/mol as in 1980 and γ = 40 [28].

Then, the nonlinear relationship in Equation (2) is used to calculate a scaled NDVIa
that excludes the effects of CO2. The relationship is as follows:

NPPo

NPPb
≈ NDVIo

NDVIa
. (3)

In this paper, we assume that there is no change in the ratio of GPP to autotrophic
respiration. Based on this assumption, the relative change in GPP equates to the relative
change in NPP [29]. NPPo is the NPP at the CO2 concentration of Ca. NPPb is the basic NPP
at the CO2 concentration of Ca0. The NDVIo represents the observed NDVI value, while
NDVIa is the calculated NPP with the same climate conditions, but a fixed atmospheric
CO2 concentration of Ca0. Equation (3) is to calculate NDVIa with an atmospheric CO2
concentration source from the IPCC historical forcing data. This analysis assumes that
NPP is linear approximate to NDVI. NDVIm change due to CO2 fertilization is from the
difference between NDVIm with and without CO2 fertilization (NDVIo- NDVIa). More
description about this calculation can be found in Franks et al. [30].

http://www.climatologylab.org/terraclimate.html
http://data.ceda.ac.uk//badc/cru/data/cru_ts/
https://cds.climate.copernicus.eu/
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2.8. Attribution to Climate and Land Use

After obtaining the vegetation growth that excludes CO2 concentration effects, NDVIa
is then used to disentangle the climate effects (CV and CC) and land use (LU) on vegetation
growth. The TSS-RESTREND method was developed by Burrell et al. [31]. One major
advantage of TSS-RESTREND is its ability to handle non-linear trends, making it useful in
cases where trends are not strictly linear. This method also provides a measure of statistical
significance for the detected trends, allowing for more robust conclusions to be drawn.
Other methods, such as linear regression and Mann–Kendall trend tests, are simpler and
more straightforward, but may not be suitable for complex, non-linear trends. Overall, the
choice of attribution method depends on the specific research question, data availability,
and the characteristics of the trend being analyzed. We apply the version that contains
both precipitation and temperature to estimate the Vegetation Climate Relationship (VCR)
pixel-by-pixel [32]. LU effects are calculated using an ordinary least squared regression
between the residuals of VCR and time. A similar attribution method can be found in IPCC.
A detailed description can be found in ref. [32].

2.9. Attribution to Climate Change and Climate Variability

Climate variability and climate change are two related but distinct concepts in the
field of climate science. Climate variability refers to the natural fluctuations in climate
parameters such as temperature, precipitation, and wind patterns that occur over relatively
short periods of time (typically months to years). These variations can be driven by various
factors such as natural cycles in the Earth’s climate system, including El Niño and La Niña
events, solar variability, and volcanic activity. Climate change, on the other hand, refers to
long-term shifts in climate patterns, typically over decades to centuries, that result from
changes in the Earth’s energy balance due to human activities, particularly the emission
of greenhouse gases such as carbon dioxide. Climate change is often associated with
rising global temperatures, shifts in precipitation patterns, and changes in the frequency
and intensity of extreme weather events. In summary, climate variability refers to the
natural, short-term fluctuations in climate, while climate change refers to long-term, human-
induced changes in climate patterns. The climate effects are estimated from NDVIa through
TSS-RESTREND. Additionally, we need to separate the climate effects to climate change
(CC, change with anthropogenic activities) and climate variability (CV, change without
anthropogenic activities). We apply a 20-year leading edge moving window on observed
per-pixel precipitation and temperature datasets to remove the interannual CV. So, it is
necessary to use the dataset that dates back to 1960. The long-term trend calculated by the
Theil–Sen slope estimate is CC. NDVI change due to CV is the detrend climatology. Other
factors that cannot be attributed are defined as OF = Obs – (CO2 + CC + CV + LU). The
flowchart of the methods is shown in Figure 3.

2.10. Dominant Factor Distribution

To investigate the regional dominant driving factor that affects the vegetation growth,
we apply the ternary mapping of three main factors (CO2, LU, CC). The three limit condi-
tions are linearly stretched in the range from 0 to 255, then assigned to red (CO2), green (LU)
and blue (CC). The color map can show the results of which driving factor is the dominant
factor and the synergistic effects of three factors [33]. The ternary maps are plotted by the
package of python-ternary.
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Figure 3. Flowchart of the methods.

3. Results
3.1. Dryland Areas in China
3.1.1. Detection and Attribution of Vegetation Growth

We identify the dry land of China through Arid Index. The areas are mainly located
in the west and north of China (Figure 4). On the whole, most areas tend to be green over
the past four decades (green area). However, desertification occurs in Xinjiang, Qinghai
and Inner Mongolia (yellow area). We attribute the vegetation growth to mainly three
driving factors (CO2 fertilization effects, Land use, Climate change, Climate variability) and
quantify the contributions of each one. We find that CO2 fertilization has positive effects on
all areas, especially in northeast China. This result is in line with previous studies that CO2
fertilization effects are responsible for global green based on many observational evidences.
For land use effects, they have negative effects mainly in Xinjiang, Qinghai and west Inner
Mongolia. Overgrazing and urbanization account for most of the negative effects [34]. CC
has positive effects chiefly in the west and negative effects in the northeast. The current
internationally scientific point now is “dry areas get drier, wet areas get wetter”. However,
Shi et al. (2002) found that the climate of arid regions in Northwest China are undergoing
the shift from warm-dry to warm-wet, which shows that Chinese drylands are not in line
with that hypothesis [35].
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Figure 4. (a) Observed change of vegetation growth in Chinese dryland area. Yellow means decrease
in NDVIm and green means increase. Dotted areas suggest the change is significant (αFDR = 0.10).
Areas that have large uncertainties are masked in white. (b) The change of NDVI attributed to CO2.
(c) The change of NDVI attributed to LU. (d) The change of NDVI attributed to CC. (e) The change of
NDVI attributed to CV.

(a)

(b) (c)

(d) (e)

Figure 4. (a) Observed change of vegetation growth in Chinese dryland area. Yellow means decrease
in NDVIm and green means increase. Dotted areas suggest the change is significant (αFDR = 0.10).
Areas that have large uncertainties are masked in white. (b) The change of NDVI attributed to CO2.
(c) The change of NDVI attributed to LU. (d) The change of NDVI attributed to CC. (e) The change of
NDVI attributed to CV.

3.1.2. Dominant Factor Distribution

To investigate the dominant factors and synergistic effects of driving factors, we
applied the ternary map of CO2(red), LU (green) and CC (blue). It can be seen in the
Figure 5 that northeast China is mainly dominated by CO2 fertilization effects. For the
northwest, more regions are mainly controlled by CC. Many studies suggest that the
northwest of China is undergoing a trend of wetter and warmer from the 1980s. Shi et
al. (2002) found that the climate of arid regions in Northwest China are undergoing the
shift from warm-dry to warm-wet. This research has aroused widespread concern [35].
Additionally, this change of climate is improving the environment of the northwest of
China. Climate change has occurred longer than the 30 yr climatology and has influenced
the ecological vegetation visibly [35]. Meanwhile, most color of the northwest is purple,
which means CO2 also has non-negligible effects. LU (green) shows a main effect in the
middle of Inner Mongolia.
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3.1.3. Region Analysis

We separate China into seven regions as in the figure and the dryland areas are mainly
located in Northwest (NW), North China (NC), Northeast (NE) and Southwest (SW) (Figure
6). From Figure 7, we find that, in all dryland areas, CC contributes the most positive effects
around 48.3%. This suggests that the vegetation in Chinese drylands is very sensitive to
variations in temperature and precipitation, which is in agreement with Zhang (2021) [36].
The CO2 fertilization effects contribute about 38.6%. There are differences between regions.
For NC, the dominant factor is CO2 accounting for 34.5%. LU and CC contribute almost
the same effects (about 28.9% and 27.6%). For SW, CC has the most key role, accounting for
about 61.0%. CV has negative effects, here accounting for about 9.2%. For NW, CC also has
the most import role in vegetation growth (49.2%). From the figure, we conclude that the
change of vegetation growth is affected by anthropogenic activities.

Figure 5. Map of three dominant factors distribution in Chinese dryland areas. The areas controlled
by CO2 are shown in red. The areas controlled by LU are shown in green. The areas controlled by CC
is shown in blue.

3.1.3. Region Analysis

We separate China into seven regions as in the figure and the dryland areas are
mainly located in Northwest (NW), North China (NC), Northeast (NE) and Southwest
(SW) (Figure 6). From Figure 7, we find that, in all dryland areas, CC contributes the most
positive effects around 48.3%. This suggests that the vegetation in Chinese drylands is very
sensitive to variations in temperature and precipitation, which is in agreement with Zhang
(2021) [36]. The CO2 fertilization effects contribute about 38.6%. There are differences
between regions. For NC, the dominant factor is CO2 accounting for 34.5%. LU and CC
contribute almost the same effects (about 28.9% and 27.6%). For SW, CC has the most key
role, accounting for about 61.0%. CV has negative effects, here accounting for about 9.2%.
For NW, CC also has the most import role in vegetation growth (49.2%). From the figure,
we conclude that the change of vegetation growth is affected by anthropogenic activities.
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Figure 6. Regional separation for analysis of China. Chinese dryland areas mainly locate in Northwest
(NW), North China (NC) and Southwest (SW).
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Figure 7. The regional mean and magnitude (mean absolute value) of the different drivers of change
in NDVIm of Chinese dryland areas. The error bars show the SD of grid cells.

3.1.4. Drivers for Green and Desertification

We observed widespread green in Chinese drylands (Figure 8a). We find that CC is the
dominant factor accounting for 44.5%. CO2 and LU are a little smaller (35.3% and 26.1%).
For NC, CO2 plays the most important role here (35.1%). LU and CC are almost the same
(28.7% and 27.7%). For SW and NW, the ecological vegetation is fairly sensitive to climate.
Climatic warming and humidification here will obviously affect the vegetation. So, we
conclude that CC is the dominant factor in the vegetation growth of SW and NW (61.3%
and 46.8%). In the dryland that experienced desertification in China (Figure 8b), a negative
component of LU is the dominant factor. Even though the average values of CC and CV
are smaller than LU, climate plays an important role in desertification. For most areas, CC
plays positive effects on vegetation growth.

Figure 6. Regional separation for analysis of China. Chinese dryland areas mainly locate in Northwest
(NW), North China (NC) and Southwest (SW).
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Figure 7. The regional mean and magnitude (mean absolute value) of the different drivers of change
in NDVIm of Chinese dryland areas. The error bars show the SD of grid cells.

3.1.4. Drivers for Green and Desertification

We observed widespread green in Chinese drylands (Figure 8a). We find that CC is the
dominant factor accounting for 44.5%. CO2 and LU are a little smaller (35.3% and 26.1%).
For NC, CO2 plays the most important role here (35.1%). LU and CC are almost the same
(28.7% and 27.7%). For SW and NW, the ecological vegetation is fairly sensitive to climate.
Climatic warming and humidification here will obviously affect the vegetation. So, we
conclude that CC is the dominant factor in the vegetation growth of SW and NW (61.3%
and 46.8%). In the dryland that experienced desertification in China (Figure 8b), a negative
component of LU is the dominant factor. Even though the average values of CC and CV
are smaller than LU, climate plays an important role in desertification. For most areas, CC
plays positive effects on vegetation growth.
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Figure 8. (a) The regional mean and magnitude (mean absolute value) of the different drivers of
positive change in NDVIm of Chinese dryland areas. The error bars show the SD of grid cells. (b) The
same as (a) for negative change.

3.2. Dryland Areas in America
3.2.1. Detection and Attribution of Vegetation Growth

In the American dryland, most areas also show the significant greening trend except
west and south areas (New Mexico, Arizona, California, Utah, Nevada, Idaho). The
maximum and significant positive trend areas are mainly located in the north (Figure 9).
CO2 shows the obvious positive effects and impact on North Dakota. For most areas in
Colorado, Kansas and California, LU shows negative effects. Overgrazing followed by
nutrient depletion is considered by many studies as a cardinal element in land degradation
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in the west of the USA. Shrubs are viewed as mainly competitors when the grass is
destroyed by overgrazing [14]. CC and CV show smaller effects than LU and CO2. For
most areas, CV has negative effects on vegetation growth. Previous research found that
there is a decrease in summer rains, which benefit grass growth, and a concomitant increase
in winter rain, which benefits shrub rains in the drylands of the USA [11].
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Figure 9. (a) Observed change of vegetation growth in American dryland area. Yellow means
decrease in NDVIm and green means increase. Dotted areas suggest the change is significant (αFDR =
0.10). Areas that have large uncertainties are masked in white. (b) The change of NDVIm attributed
to CO2. (c) The change of NDVIm attributed to LU. (d) The change of NDVIm attributed to CC. (e)
The change of NDVIm attributed to CV.

3.2.2. Dominant Factor Distribution

In this section, we discover the regional dominant factor of American drylands (Fig-
ure 10). We attributed the vegetation growth to three main factors (CO2, CC and LU). We
found that most areas of American dryland were controlled by CO2 and LU. Previous
studies found that in some west areas such as New Mexico, grass predominated in the

Figure 9. (a) Observed change of vegetation growth in American dryland area. Yellow means decrease
in NDVIm and green means increase. Dotted areas suggest the change is significant (αFDR = 0.10).
Areas that have large uncertainties are masked in white. (b) The change of NDVIm attributed to CO2.
(c) The change of NDVIm attributed to LU. (d) The change of NDVIm attributed to CC. (e) The change
of NDVIm attributed to CV.

3.2.2. Dominant Factor Distribution

In this section, we discover the regional dominant factor of American drylands
(Figure 10). We attributed the vegetation growth to three main factors (CO2, CC and
LU). We found that most areas of American dryland were controlled by CO2 and LU.
Previous studies found that in some west areas such as New Mexico, grass predominated in
the middle and end of the 19th century. However, the grass biomass decreased to less than
7% until the end of the 20th century due to overgrazing. This led to a shift in ecosystem
structure and function here. Grass depletion led to nutrient loss and surface erodibility.
The expanded shrub occupied the main plant biomass [37]. Additionally, the role of CC in
vegetation change cannot be ignored. It is found that a change in the rain also contributed to
the shift. The shrub expanded due to the temporal precipitation distribution characterized
by a decrease in summer rains and the concomitant increase in winter rain [11].
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3.2.3. Region Analysis

We separated the USA into four regions (West, Midwest, Northeast and South). The
dryland areas are mainly located in West, Midwest and South (Figure 11). We regionally
attributed the vegetation growth to different factors such as CO2, CC, LU, CV and other
factors our methods cannot attribute (Figure 12). For all American dryland areas, we found
that CO2 is the dominant factor accounting for 47.9%. LU accounts for 36.8%. Among the
dryland areas, the West shows the most significant positive trend. CO2 plays the most
important role accounting for 61.7%, LU is 30.2%. It is notable that CV contributed negative
effects on vegetation growth for 40 decades. For the Midwest, LU contributed the most
on greening here, accounting for 44.6%. For the South, only a few areas are included in
dryland and the observed change can be ignored.

Figure 10. Map of three dominant factors’ distribution in American dryland areas. The areas
controlled by CO2 are shown in red. The areas controlled by LU are shown in green. The areas
controlled by CC are shown in blue.

3.2.3. Region Analysis

We separated the USA into four regions (West, Midwest, Northeast and South). The
dryland areas are mainly located in West, Midwest and South (Figure 11). We regionally
attributed the vegetation growth to different factors such as CO2, CC, LU, CV and other
factors our methods cannot attribute (Figure 12). For all American dryland areas, we found
that CO2 is the dominant factor accounting for 47.9%. LU accounts for 36.8%. Among the
dryland areas, the West shows the most significant positive trend. CO2 plays the most
important role accounting for 61.7%, LU is 30.2%. It is notable that CV contributed negative
effects on vegetation growth for 40 decades. For the Midwest, LU contributed the most
on greening here, accounting for 44.6%. For the South, only a few areas are included in
dryland and the observed change can be ignored.

Figure 11. Regional separation for analysis of America. American dryland areas mainly locate in
West, Midwest and South.
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Figure 12. The regional mean and magnitude (mean absolute value) of the different drivers of change
in NDVIm of American dryland areas. The error bars show the SD of grid cells.

3.2.4. Drivers for Green and Desertification

In this section, we analyzed the drivers for green and desertification of American
dryland. Most areas show positive trend. CO2 always shows positive effects (Figure 13a).
For the whole dryland, CO2 contributes the most, accounting for 42.9%. LU is a little
less than CO2 (39.3%). CC accounts for 14.8%. Among the three regions, the West shows
apparently positive trend. Here, CO2 is the primary driver in 53.7%. CV notably has
negative effects on vegetation growth. For the Midwest, LU (46.4%) is the largest driver of
change. We also observed some part of desertification areas. For the whole regions that
experienced desertification, we found that LU is the largest attributed driver, followed by
CC and CV. For the West, the positive effects of CO2 almost offset the negative effects of
LU. Even though the effects of CC and CV are a little smaller than LU and CO2, climate
remains a significant driver of land degradation. In the West dryland, the land degradation
expanded due to the temporal precipitation distribution characterized by a decrease in
summer rains and the concomitant increase in winter rain [11].
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Figure 13. (a) The regional mean and magnitude (mean absolute value) of the different drivers of
positive change in NDVIm of American dryland areas. The error bars show the SD of grid cells.
(b) The same as (a) for negative change.
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4. Discussion

Our study is compared to two recent global studies by Song et al. [4] and Zhu et al. [38]
that investigated the drivers of global vegetation change. Zhu et al. employed a 10-
model ensemble and performed change attribution by running models with and without
different drivers, then comparing the results. Meanwhile, Song et al. used AVHRR-derived
vegetation fractions to analyze changes in vegetation types and used high-resolution
imagery at 1500 locations worldwide to attribute the change. They identified visible signs
of human activity at each location and attributed the observed change to land use if present,
or to indirect drivers such as climate change if not. Both Song et al. and Zhu et al. have
demonstrated the inconsistency that exists within the published literature, as they reveal
large differences in attribution, while also highlighting the consistency in broad trends
in vegetation change. While our study only focuses on the dryland biomes of China and
America, it is worth noting that these global studies have used different spatial domains,
which makes direct comparison challenging.

Zhu et al. found that nitrogen deposition was the second largest global driver, but this
finding was uncertain since only two of their models could be run with and without nitrogen
deposition. However, it is widely accepted that nitrogen deposition is not a significant driver
of vegetation change in drylands. Recent research on the effects of nitrogen deposition on
plant species showed that drylands are not responsive to increased nitrogen loads due to
their overwhelming water limitation, and are predominantly located in regions with very low
nitrogen deposition, except for a small part of the southwestern United States [39].

5. Conclusions

Dryland areas are undergoing changes under the influence of global warming. These
ecosystems are fragile and extremely sensitive to external forces such as climate change
and deforestation, which can significantly impact social and economic development. While
there are many factors contributing to dryland ecosystem change, discovering the dominant
factor that impacts each region and quantifying the effects of each factor remain worldwide
hotspot issues.

In our study, through statistical methods, we disentangled the state of the ecosystem
in Chinese and American dryland areas over the past 40 years. We attributed the vegetation
change to CO2, land use (LU), climate change (CC), and climatic variability (CV) and
quantified the effects of each factor on regional analysis. Additionally, we discovered the
drivers for green and desertification regionally.

Our results showed that most of the Chinese and American dryland areas exhibit a
greening trend, suggesting that the states of ecosystems in dryland areas are improving.
However, desertification exists in some regions, such as Xinjiang, Qinghai, and Inner
Mongolia in China and Colorado, Kansas, and California in the USA.

Furthermore, we found that the most dominant driver for vegetation changes in
Chinese dryland areas is CC (48.3%), while CO2 is the most dominant driver for the USA
(47.9%). The primary factor of positive trends in America is the CO2 fertilization effect
(42.9%), while LU is the primary factor for desertification. For China, CC is the main driver
for positive trends (35.3%), while LU is the primary driver for desertification. Our analysis
for greening and desertification in each dryland area is summarized in Table 1.
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Table 1. Descriptions of detection and attribution on dryland areas in China and America.

Dryland Areas of China Dryland Areas of America

1 Most areas show a green trend over the past decades. How-
ever, there exists desertification in Xinjiang, Qinghai and
Inner Mongolia of China.

1 Most areas show a green trend over the past decades. De-
sertification mainly exists in Colorado, Kansas and Califor-
nia.

2 The most dominant driver for vegetation changes in Chi-
nese dryland areas is CC. China is undergoing fast de-
velopment. Urbanization has changed most areas from a
natural state to cities.

2 The most dominant driver for America is CO2 fertilization
effects.

3 The main driver for positive trends is CC. However, the
primary driver for desertification is LU.

3 The primary factor for positive trends is the CO2 fertiliza-
tion effect. For desertification, LU is the primary factor.
Overgrazing is also an unignorable factor for desertifica-
tion.

All in all, our study highlights the importance of understanding the driving factors
behind the green and land degradation of Chinese and American dryland areas. While
our approach quantifies the impact of CO2, LU, CC, and CV on vegetation change, we
acknowledge that there may be other factors at play, such as nitrogen deposition. Under-
standing the dominant factors can help prevent desertification and promote sustainable
development in these areas.

Author Contributions: Z.C. and J.L. designed the study. X.H., P.F. and Z.Q. conducted the data and
wrote the paper. L.L. and Z.Z. contributed to writing. G.S., B.L. and G.F. helped with validations. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under Grant
nos. 41975062. This work was funded by the National Natural Science Foundation of China under
Grant nos. 42130610, 41905053, 42275034, 42075029, 41675050, and 11801398 and the Outstanding
Young Talents Support Plan of Shanxi province.

Data Availability Statement: The NDVI dataset is from NOAA and can be accessed from https://
www.ncei.noaa.gov/products/climate-data-records (accessed on 20 May 2023). We use a combination
of a 9-member ensemble that consists of three precipitation and three temperature datasets. They are
daily records of TerraClimate [http://www.climatologylab.org/terraclimate.html (accessed on 20
May 2023)], CRU4 [http://data.ceda.ac.uk//badc/cru/data/cru_ts/ (accessed on 20 May 2023)] and
ERA5 [https://cds.climate.copernicus.eu/ (accessed on 20 May 2023)].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Model Description

Appendix A.1. Dynamic of Surface Water

When the rain falls to the ground, one part is left on the ground and the other part
will infiltrate into the soil. The infiltration rate is based on the surface vegetation biomass
because the vegetation reduces the surface crust and the root system increases the fraction
sites of macro-pore sites near the soil surface. The dynamic of the surface water can be
characterized as:

https://www.ncei.noaa.gov/products/climate-data-records
https://www.ncei.noaa.gov/products/climate-data-records
http://www.climatologylab.org/terraclimate.html
http://data.ceda.ac.uk//badc/cru/data/cru_ts/
https://cds.climate.copernicus.eu/
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dS
dt

= R − αS
P + k2Wo

P + k2
. (A1)

In which, R (mm/d) is the precipitation. α (d−1) is the maximum infiltration rate. k2
(gm−2) is the water infiltration constant. Wo is dimensionless, characterizing a measure of
the infiltration contrast between vegetated and bare soil.

Appendix A.2. Dynamic of Soil Water

The water infiltrated from the surface is lost because of the plant absorption, evapora-
tion or run-off.

dW
dt

= αS
P + k2Wo

P + k2
− β

W
W + k1

P − rwW . (A2)

where β (mm g−1 m2 d−1) is the maximum specific water uptake. rw (d−1) is the specific
soil water loss because of evaporation and run-off. k1 (mm d−1) is the half-saturation
constant of vegetation growth and water uptake.

Appendix A.3. Dynamic of Vegetation Biomass

Plant growth and loss are characterized by carbon gain by photosynthesis, which
depends on CO2 concentration and land use change. The dynamic can be modeled by:

dP
dt

= cβ
W

W + k1
P − lP . (A3)

where c = Ca(1 − Ci
Ca
)C1 describe the photosynthesis of vegetation. Ca (mol mol−1) is the

current CO2 concentration. Ci (mol mol−1) is the effective canopy intercellular concentra-
tion. C1 (g mol−1) is the coefficient of conversion of photosynthesis (mol) into biomass (g).
l (d−1) characterizes the land use rates such as grazing and land restoration.

Appendix B. Parameter Values Used

k1 = 5, k2 = 5, rw = 0.2, W0 = 0.2, β = 0.05, α = 0.2, C1 = 12, Ci = 0.6Ca.
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