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Abstract: Exploring land use change is crucial to planning land space scientifically in a region. Taking
the ecological conservation area (ECA) in western Beijing as the study area, we employ ArcGIS 10.2,
landscape pattern index and multiple mathematical statistics to explore the temporal and spatial
variation of land use from 2000 to 2020. Patch-generating Land Use Simulation (PLUS), Future Land
Use Simulation (FLUS) and Markov models were used to simulate and predict the current land use in
2020. The models were evaluated for accuracy, and the more accurate PLUS model was selected and
used to simulate and predict the potential land use in the study area in 2030 under two management
scenarios. The main findings of this research are: (1) From 2000 to 2020, the construction land
increased constantly, and the area of cultivated land and grassland decreased significantly. (2) For
predicting the spatial distribution of land use in the study area, the PLUS model was more accurate
than the FLUS model. (3) The land-use prediction of the study area in 2030 shows that the area of
grassland, forest and water is approximately equal to their corresponding value in 2020, but the
construction land increased constantly by occupying the surrounding cultivated land. According to
this research, the continuous decrease of cultivated land in favor of increasing construction land will
cause losses to the ecological service function of the ECA, which is not beneficial to the sustainable
development of the region. Relevant departments should take corresponding measures to reduce this
practice and promote sustainable development, particularly in the southern and western areas of the
ECA where there is less construction land.

Keywords: land-use change; simulation; prediction; PLUS model; FLUS model; ECA; Beijing

1. Introduction

Land resources are an indispensable factor for all human activities and economic soci-
etal development. Due to limited land resources and the lack of rational land-use planning,
the paradox between human activities and natural resources has become prominent in
recent years due to the expansion of urbanized land, which has led to a series of ecological
security problems. For example, the land productivity was seriously damaged [1], the
quality of land resources decreased [2], the ecological service function of land degraded [3]
and the primary forest was developed, resulting in habitat and species loss [4]. The nature
of land use is the most direct driving factor for the change in overall landscape pattern [5],
and relatively subtle land cover and land-use change can have a significant impact on
future landscapes [6]. The ecological conservation area (ECA) of Beijing was established to
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protect and conserve natural resources while also enabling societal development. Therefore,
it is of great significance to carry out a multi-model comparison of regional land-use models
and to select the optimal model to simulate and predict future land-use development,
thereby providing a tool to guide the expansion and optimization of green ecological space,
promoting ecological security and sustainable development in the region.

In recent years, many scholars have utilized remote sensing to undertake land-use
change studies [7–9]. Zhao DY et al. [10] and Chen ZZ et al. [11] simulated future land-use
changes in different scenarios based on different land-use needs and policies. Some scholars
have conducted more in-depth research on land-use change from a micro perspective. For
example, Tadesse et al. [12] studied the temporal and spatial changes of land use and soil
erosion in river basins, and Debnath et al. [13] concluded that river channel migration had
a direct impact on land-use change through their study. Studies have shown that land-
use change is of great significance to urban development [14,15], and ecosystem service
value [16].

Researchers have developed many land use and land cover change models to better
understand, evaluate and predict land-use change, including the Cellular Automata (CA)
model, CLUE-S model and FLUS model. Among them, the cellular automata model is
the earliest model applied to the prediction of future land-use spatial distribution, and
other models have further developed and improved on the cellular automata model. The
concept of the cellular automata model was initially developed in the mid-twentieth
century, by Von Neumann J and Stanislaw M. Ulam as a discrete dynamic model in time,
space and state [17]. Basse et al. [18] further developed cellular automata and artificial
neural networks to model land-use changes in 2014. Ku [19] also incorporated a spatial
regression model into the cellular automata to simulate land-use changes, which improved
the performance of the land-use model in his study area. However, the simulation accuracy
of the traditional cellular automata model for land-use change is insufficient [20]. In order
to improve the accuracy of land-use simulation and reduce errors, scholars have improved
the original cellular automata model from different perspectives. For example, Verburg
et al. [21] proposed the CLUE-S model based on the systems theory, and the FLUS model
proposed by Liu et al. [22] transformed and upgraded the original cellular automata model
by establishing self-adaptive inertia and a competition mechanism to process the complex
competitions and interactions between the different land-use types. Liang et al. [23],
taking Wuhan as an example, compared the simulation accuracy of the PLUS model with
other land-use models and found that the PLUS model can obtain a higher simulation
accuracy. The PLUS model is a patch-generating land-use simulation model that integrates
a land expansion analysis strategy and a CA model based on multi-type random patch
seeds. Compared with other models, the PLUS model can better reveal the relationships
underlying land-use change.

At present, land-use change scholars utilizing these models have mainly concentrated
on urban areas [24–29] and rarely in the ECA [30,31]. Moreover, as a newly proposed land-
use model, there are few studies incorporating the PLUS model. The ECA in western Beijing
is a key resource to protect the ecological environment of Beijing and act as an important
barrier to protect the ecological security and well-being of the residents in Beijing [32]. The
aim of this paper is to explore the characteristics of land-use change using a geographic
information system (GIS) and mathematical statistics, by selecting the environmental and
population driving factors that may cause this change and taking these driving factors into
the simulation of PLUS and FLUS models in the ECA in western Beijing. To perform this,
we compared the observed current land use in 2020 with the land-use prediction result
from the PLUS and FLUS models in the study area in 2020. We subsequently selected
the most accurate model to predict the future spatial distribution of land use in the ECA
of western Beijing in 2030. The results and conclusions of this study area can be used as
a framework for policymakers and stakeholders, so as to alleviate the conflicts of land
development, promote the enhancement of the capital’s ecosystem service value and aid in
the sustainable development of land resources.
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2. Materials and Methods
2.1. Study Area

The ECA study area (115◦24′57” E–116◦20′42” E, 39◦30′20” N–40◦37′44” N) is located
in western Beijing (Figure 1). It is located between the North China Plain and the Mon-
golian Plateau, and plays a transitional role between the two terrains, covering an area
of approximately 11,140 km2 [33]. The study area is mostly covered by mountains, with
the lowest elevation of 33 m and the highest elevation of 2273 m. The area belongs to
the mid-latitude continental monsoon climate; the average annual temperature range is
between 8–19 ◦C, and the average annual rainfall is about 555 mm. The region is rich
in water resources and is of great significance in regulating water flow, improving water
quality and protecting the natural environment of the capital. In the past 20 years, with
the rapid economic development and population growth of the capital, the land use of the
ECA in western Beijing has been through great changes, including the accelerating process
of urbanization, increasing construction land, decreasing cultivated land and grassland
and the reduction of ecological function.
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Figure 1. Location of the ECA study area within the Beijing boundary.

2.2. Data Source and Processing

The data used in this research include land-use data and data for eight quantifi-
able driving factors in the study area from 2000 to 2020. Global land cover data (http:
//globeland30.org, accessed on 10 March 2021) from 2000, 2010 and 2020 were downloaded
to calculate land use. The land-use data of the study area were reclassified into the five
dominant land-use types including: grassland, forest, water, construction land and culti-
vated land based on the initial data from 2000 (Table 1). By studying relevant data and the
actual development of the study area, and by considering the principles of data availability,
consistency, quantification, spatial difference and comprehensiveness, this paper selected
eight driving factors. The eight driving variables include three environment variables of
elevation, slope and aspect and five population-driven variables of population density,
gross domestic productivity (GDP) and accessibility—i.e., the Euclidean distance from road,
rail and water. The elevation data were calculated from the national DEM data (spatial

http://globeland30.org
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resolution is 250 m) and downloaded from the Resource and Environment Science and
Data Center (http://www.resdc.cn, accessed on 10 March 2021). Slope and aspect data
were calculated in ArcGIS 10.2. The national population density (people/km2) and GDP
spatial distribution (yuan/km2) data-set was provided by the Resource and Environmental
Science and Data Center. The value of each pixel represents the GDP or population within 1
km2. The Euclidean distance between the main roads, high-speed rail and other influencing
factors were calculated using the spatial processing tool in ArcGIS 10.2 (ESRI, Redlands,
California, USA).

Table 1. Land-use type classification for the ECA in western Beijing.

Land Type Number Land Type Name Description

1 Grassland

Land types with surface coverage above 10% are
mainly natural herbaceous vegetation, such as

grassland, meadow and artificial grassland
constructed by urban greening.

2 Forest

Forest land mainly refers to the land surface
covered by trees and shrubs. In the ECA of

western Beijing, the coverage of tree crown and
shrub is more than 30%. Common tree types

include deciduous broad-leaved forest,
deciduous coniferous forest, evergreen

coniferous forest and mixed forest. Shrub types
include mountain shrub, deciduous and

evergreen shrub.

3 Water The area covered by liquid water as is displayed
on satellite images, such as rivers and lakes.

4 Construction land

Human beings need to build artificial surfaces to
meet the needs of living space and economic

development. Common urban residential areas,
villages, industrial and mining production land,

traffic land, etc.

5 Cultivated land

Land used by rural residents to farm a variety of
food crops and cash crops, such as irrigated

drylands, vegetable greenhouses and land that
grows fruit trees or other economically

valuable trees.

In order to simulate land-use change using PLUS and FLUS models (models detailed
below in Section 2.3), the following reprocessing of the raw land use and driving factor data
were conducted: (1) reclassify the land-use data and assign continuous numbering (Table 1),
(2) unify the coordinate system and column number of all land-use data and driving factor
data, (3) convert data in tiff format to unsigned char format using the conversion module
in PLUS, and (4) normalize all data values for all driving factors. Do all steps for the PLUS
model and only steps 1, 2 and 4 for the FLUS model.

2.3. Methods
2.3.1. Technical Pathway

The technical pathway (Figure 2) mainly includes data preparation (as detailed above
in Section 2.2) and simulation and prediction processes. In the prediction simulation
process, the present land-use data and driving factors, the simulation parameters including
neighborhood weights (as detailed below in Section 2.3.4) and the number of future pixels
of each land-use type were entered into the PLUS and FLUS models to simulate the land
use in 2020. The predicted acreage of the various land uses was obtained by the Markov
model (as detailed below in Section 2.3.6). The mathematical statistics method, Kappa
coefficient and landscape pattern index were used to compare the simulation results in

http://www.resdc.cn
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2020 of the PLUS and FLUS models and to select the optimal model for the study area,
which was then used to simulate and predict the land use in 2030.
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2.3.2. Driving Factors

In order to clarify the relationship between the various land types and the selected
driving factors in the northwest ECA of Beijing, this study used the logistics regression
method. The land-use raster data of the study area in 2010 with a pixel spatial resolution of
100 m × 100 m (1 hm2) were used to produce the binary image of the year. One indicates
that there is a set type of land use, and 0 indicates another land-use type, except the set
type. The binary image of five land-use types was used as the dependent variable, and the
independent variable was the data for the eight selected driving factors. Logistic regression
equations with the regression coefficient for the different driving factors were determined
to evaluate the probability of the different driving factors. We verified the accuracy of
the logistic regression model analysis results through the relative operating characteristic
(ROC). The closer the ROC value was to 1, the more similar the results calculated by the
regression equation were to the observed situation. The closer the ROC value was to 0.5,
the more inconsistent the calculation results were with the actual situation. When the ROC
value was greater than 0.7, representing the logistic regression equation was effective. The
ROC values calculated by the regression of the different land types were greater than 0.75,
indicating that the selected eight driving factors had good correlation with each land-use
type in the ECA, which met the requirements and could subsequently be applied to the
following model.

2.3.3. Landscape Pattern Indices

The landscape pattern index is a series of indices describing the spatial structure
of a landscape. The landscape pattern index reflects the spatial structure characteristics
of patches with different sizes and shapes and quantitatively describes the evolution of
regional landscape patterns and ecological environment change. Analysis of landscape
pattern change is a deeper measurement of land-use change and an important means to
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study landscape characteristics [34,35]. The spatial and temporal evolution of landscape
pattern has a direct impact on the realization of ecological function in the ECA of western
Beijing. Based on ArcGIS 10.2 (ESRI, Redlands, California, USA) and Fragstats 4.2 software
(Oregon State University, Covallis, Oregon, USA), the landscape pattern index with a high
sensitivity to land-use change was selected to study the landscape pattern of the study
area in terms of both the landscape type scale and overall landscape scale. At the overall
landscape level, Shannon’s Diversity Index (SHDI), Shannon’s Evenness Index (SHEI) and
CONTAG were selected for analysis. Land cover diversity can reflect the complexity of
the landscape and whether the landscape distribution is balanced in spatial and temporal
levels, that is, the heterogeneity of landscape. This paper selected SHDI and SHEI to study
land cover diversity. SHDI can sensitively detect the uneven spatial distribution of different
plaque types, and SHEI represents the complexity of the landscape in the region, which can
reflect whether the study area is dominated by one or several plaque types [36]. CONTAG
can reflect the spatial distribution of patches in the landscape. On the scale of the landscape
type, number of patches (NP), patch density (PD), largest patch index (LPI), aggregation
index (AI) and SPLIT were selected to analyze the changes of every land-use type in the
ECA area of northwest Beijing from 2000 to 2020. NP reveals the spatial distribution pattern
of the landscape, and PD represents the number of patches per unit area. Both of them are
important references for landscape fragmentation. According to the LPI, the dominance
of each landscape type can be determined, which is obtained by dividing the area of type
patches by the total area of the landscape. AI can explain the connectivity between various
types of patches in the landscape. SPILT can reflect landscape fragmentation.

In the validation period, a total of landscape pattern indices were selected to quantita-
tively analyze the similarity between the simulation results and the observed landscape
in 2020. This study selected NP, LPI and perimeter area ratio indicators including: mean
(PARA_MN), weighted mean (PARA_AM), median (PARA_MD), extreme (PARA_RA),
standard deviation (PARA_SD), coefficient of variation (PARA_CV), Euclidean nearest
neighbor distance indicators including: mean (ENN _ MN), weighted mean (ENN_AM),
median (ENN_MD), extreme (ENN_RA), standard deviation (ENN_SD), coefficient of
variation (ENN_CV) and similar adjacent proportion (PLADJ) for a total of 15 landscape
pattern indices.

2.3.4. PLUS Model

The PLUS model integrated a rule-mining framework based on the land expansion
analysis strategy (LEAS) and a cellular automata model based on multi-type random seeds
(CARS), which can illustrate the drivers of land expansion and project future landscape
dynamics [23].

The random forest parameters in the LEAS module were set as follows: uniform
sampling method was used, the number of decision trees was 20, the sampling rate was
0.01 and the number of features used to training random forests was eight, which was the
same as the number of driving factors. The constraint map is a binary image in which
1 represents that this land-use type can convert to other land-use types, and 0 represents
that this land-use type cannot convert to other land-use types. In the constraint map in this
research, we set that water and construction land cannot convert to other land-use types
and that grassland, forest and cultivated land can convert to other land-use types. The
land-use transfer matrix is detailed in Table 2, and the neighborhood weights for land-use
types are detailed in Table 3. Tables 2 and 3 are set according to the article of Liang et al. [22]
and the situation of the study area.
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Table 2. Land-use conversion matrix, where the horizontal land use describes the initial land-use
state, and the vertical land use is the possible conversion pathways.

Land-Use Type Grassland Forest Water Construction Land Cultivated Land

Grassland 1 1 0 0 1
Forest 1 1 0 0 1
Water 1 1 1 0 1

Construction land 1 1 0 1 1
Cultivated land 1 1 0 0 1

Table 3. Neighborhood weights for land-use types.

Land-Use Type Grassland Forest Water Construction Land Cultivated Land

Neighborhood
weight 0.5 0.7 0.1 0.1 0.1

The land-use transfer matrix indicates whether conversion can occur between different
land types. Theoretically, conversion between different land types is free and unrestricted.
One represents that the land class is allowed to be converted to other land classes, and
0 represents that the land class is not allowed to be converted to other land classes. In this
paper, according to the actual situation of land change and land transfer matrix in the ECA
of western Beijing from 2010 to 2020, the water and construction land were not converted
to other land, and the conversion between the other three types was not limited.

The range for the neighborhood weight parameter was 0–1, where the larger value
means a stronger expansion ability of the land type and a lower probability for the land
to be occupied by another land type (Table 3). According to the transfer matrix of the
study area from 2010 to 2020, the neighborhood weights were constantly adjusted, and the
simulation accuracy under different parameters was compared. The factor parameters with
the highest accuracy were selected.

2.3.5. FLUS Model

The FLUS model is a model developed by Professor Liu Xiaoping of Sun Yat-sen
University to simulate future land-use change considering natural and human factors. It
includes an artificial neural network (ANN)-based probability calculation module and
adaptive inertia mechanism cellular automata module based on roulette wheel selection.
Firstly, the ANN algorithm was used to integrate various driving factors such as natural and
social economy to obtain the adaptive probability of each land-use type. Then, combined
with the base period land-use classification data, the final results were obtained by an
adaptive inertia competition mechanism [22]. In this study, both natural and human factors
were taken into account in the simulation process, and eight driving factors of natural
geography, traffic location and social economy were selected.

In the ANN-based probability estimation module of the FLUS model, the sampling
ratio of random sampling was set to 2%, that is, the sampling parameter was set to 20 (unit
is one thousandth). In the cellular automata module, the setting of the land-use transfer
matrix and neighborhood weights is consistent with the PLUS model.

2.3.6. Markov Model

In the last century, Russian scholar Markov proposed a model based on pixel scale
with strong quantitative prediction ability, which is called the Markov model. In order
to predict the future number of pixels of each land type in the study area, the Markov
model was applied in the simulation of land-use change. The use of the Markov model
enables quantity prediction, which is deficient in ordinary spatial models and plays an
auxiliary role in the prediction process of the PLUS model. The Markov model calculates
the probability matrix of land-use transfer through the initial and end periods of land-use



Remote Sens. 2022, 14, 1452 8 of 20

data. On the basis of this data, the number of pixels in the future is predicted using the
mathematical expression as follows:

St = St+1 × Pij (1)

Pij =

 P11 · · · P1n
...

. . .
...

Pn1 · · · Pmn

 (2)

Pij ∈ [0, 1) and
n

∑
n=1

Pij = 1(i, j = 1, 2, . . . , n) (3)

where St represents the condition of a certain land-use type at time t; St+1 represents the
status of this type of land use at t+ 1. The probability matrix of land-use transfer is obtained
from the Pij value, which is calculated from the land-use status of the previous two periods
in the predicted period representing the probability of conversion from land type i to land
type j, and n is the number of land-use types.

3. Results
3.1. The Overall Characteristics of Land Use in Western ECA of Beijing

The spatial structure of land use can reflect the land-use situation in the study area that
has been developed by human beings. Scientific spatial structure of land use is conducive to
the protection and construction of the ECA. With the support of ArcGIS 10.2, the land-use
type maps of the western ecological conservation area of Beijing in 2000, 2010 and 2020
were classified and summarized. The total area and the proportion of each land-use type
from 2000 to 2020 were obtained, as shown in Table 4.

Table 4. The area of land-use type in the ECA in western Beijing from 2000 to 2020 (unit: hm2).

Land-Use Type
2000 2010 2020

Area/hm2 Proportion/% Area/hm2 Proportion/% Area/hm2 Proportion/%

Grassland 49,913.55 9.69 37,644.30 7.30 37,845.81 7.35
Forest 346,655.25 67.26 346,481.01 67.23 348,170.04 67.58
Water 2426.85 0.47 1088.19 0.21 2349.27 0.46

Construction
land 21,870.27 4.24 28,844.01 5.60 51,410.97 9.98

Cultivated land 94,508.37 18.34 101,316.78 19.66 75,394.89 14.63
Total area (hm2) 515,374.29 515,374.29 515,374.29

As shown in Table 4 and Figure 3, there was no significant change in the spatial
distribution of land-use types in the ECA of western Beijing from 2000 to 2020. Forest is
always the land-use type with the largest area and the widest distribution in the whole
western ECA. In 2000, 2010 and 2020, the proportion of forest area is 67.26%, 67.23% and
67.58%, respectively, and it is mainly distributed in the central and southern of the western
ECA of Beijing, which is mainly mountainous, and there is very little forest in the northeast.
The second is cultivated land. The cultivated land area fluctuated between 75,394 hm2 and
101,316.78 hm2 in the three periods, and the proportion of cultivated land and forest can
reach more than 80% of the total area of the ECA in the west. Cultivated land, construction
land and grassland are mainly distributed in the eastern and northern parts of the study
area, and grassland is widely distributed around cultivated land and construction land. In
the past 20 years, the area of water was the smallest in the study area, and it was extremely
small in the whole study area. Most of the water was distributed in the northwestern part
of the study area, and there was cultivated land near the water source.
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3.2. Temporal and Spatial Variation of Land Use

The dynamic degree of land-use change reveals the temporal and spatial trend of
land-use change in the study area through mathematical quantitative calculation, which
plays an important role in predicting the dynamic change of land use in the region in the
future [37].

The overall dynamic of land use in the study area from 2000 to 2010 and from 2010 to
2020 were 0.266% and 0.505%, respectively, indicating that the change in land-use type in
the ECA was more active from 2010 to 2020. From 2000 to 2020, the dynamic degrees of
change for the water land-use type was the largest and most varied, showing a significant
decreasing trend in 2000–2010 (−5.516%); however, from 2010 to 2020, the trend was a
significant increase (11.589%). The dynamic of forest change was the smallest in both
periods, indicating that forest land cover is relatively stable (Table 4).

The land-use transfer matrix describes the transition from one land type to other
types in the study area during the study period. Using the spatial analysis tool of ArcGIS
10.2 software, the land-use transfer matrix table of 2000–2020 was obtained by using the
land-use data of three periods of ECA in western Beijing (Table 5).

Table 5. Land-use dynamic in the ECA of western Beijing from 2000 to 2020 for each land-use type
and for the overall landscape dynamic.

Land-Use Type 2000–2010
(% Change)

2010–2020
(% Change)

2000–2020
(% Change)

Grassland −2.458 0.054 −1.209
Forest −0.005 0.049 0.022
Water −5.516 11.589 −0.160

Construction land 3.189 7.824 6.754
Cultivated land 0.721 −2.590 −1.028
Overall dynamic 0.266 0.505 0.304

Compared with the other land types, grassland, cultivated land and construction
land had the greatest degree of change, with construction land having the most significant
change. In contrast, the total area of forest land and water was relatively stable. From 2000 to
2020, the reduction of cultivated land area was the greatest, decreasing by 19,098 hm2, with
the majority of this land converted to construction. The total area of grassland decreased
by 12,053.52 hm2 by 2020, with 8888.13 hm2 and 5375.07 hm2 converted to cultivated land
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and forest, respectively. Construction land area increased by 29,568.15 hm2, mainly from
grassland, forest and cultivated land.

3.3. Land-Use Landscape Pattern Change Analysis

From 2000 to 2020, the value of SHDI varied, first decreasing by 2010 and then
increasing by 2020, with a small upward trend in overall change, indicating that the land
cover types in the study area have become more diverse in the past 20 years. The value of
SHEI gradually decreased between 2000 and 2020, with a faster decrease in 2010–2020 in
terms of the magnitude of the change, indicating an increasingly uneven spatial distribution
of landscape patches in the study area (Table 6).

Table 6. Land-use area transfer matrix from 2000 to 2020 (unit: hm2).

2000
2020 Grassland Forest Water Construction

Land
Cultivated

Land
Total
2020

Grassland 30,191.94 3267.09 509.58 441.27 3450.15 37,860.03
Forest 5375.07 335,275.02 114.3 87.12 7463.52 348,315.03
Water 215.19 243.99 1415.43 99.45 376.38 2350.44

Construction land 5243.22 6361.11 117.18 20,001.15 19,715.76 51,438.42
Cultivated land 8888.13 1508.04 270.36 1241.28 63,502.56 75,410.37

Total 2000 49,913.55 346,655.25 2426.85 21,870.27 94,508.37 515,374.29

During 2000–2020, the value of CONTAG showed a continuous upward trend, and
the trend in 2010–2020 was larger than that in 2000–2010, indicating that the connectivity
of patches in the study area was increasing during this period, especially during the last
decade (Figure 4).
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Between 2000 and 2020, the indices of patch diversity (through the metrics of patch
number, density, size and aggregation) varied across land cover types (Table 7). NP and
PD values for grassland were the largest of all land-use types, indicating that grassland
landscape patches were the most fragmented, while the NP and PD values of water were
the smallest. The PD value of forest decreased slightly, and the NP of construction land
and cultivated land increased significantly. The majority of LPI was forest land, followed
by cultivated land. The LPI for grassland, water and construction land suggests that these
land-use types form smaller patches in the landscape. The LPI value of construction land
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gradually increased in the first decade, but it doubled in the second decade, indicating that
human impact was becoming more concentrated during this period, and construction land
was given more priority in the overall landscape. The LPI value of grassland gradually
decreased, whereas forest LPI halved in the last decade. The AI value of grassland changed
little and was the lowest in all kinds of land types, indicating that grassland aggregation
was the worst. The AI values of forest and construction land did not change significantly,
whereas the trend of AI for water and cultivated land varied during the study periods,
with no consistent trend (Table 7).

Table 7. Landscape class-level index change in the ECA of western Beijing from 2000 to 2000.

Landscape
Index Year Grassland Forest Water Construction

Land
Cultivated

Land

NP
2000 19,721 4240 255 397 504
2010 21,217 4279 166 716 639
2020 20,148 4032 99 833 1266

PD
2000 3.8265 0.8227 0.0495 0.077 0.0978
2010 4.1168 0.8303 0.0322 0.1389 0.124
2020 3.9109 0.7827 0.0192 0.1617 0.2457

LPI
2000 0.4562 58.413 0.2188 0.4758 5.5887
2010 0.3469 58.350 0.0295 0.6134 7.7833
2020 0.331 28.804 0.137 1.2581 6.7998

AI
2000 79.211 97.138 87.064 94.906 96.156
2010 74.1297 97.110 83.632 94.339 96.403
2020 75.4517 97.142 90.704 94.919 94.778

From 2000 to 2020, the SPLIT of forest was the lowest among all types of land use,
indicating that the spatial distribution of forest in the study area was relatively concentrated
and the degree of landscape fragmentation was the lowest. The landscape fragmentation
of water and grassland was the greatest, which is related to the scattered distribution of
water and grassland in the study area. Conversely, the degree of landscape fragmentation
of construction land had been eased in the past 20 years, showing that the construction
land and, therefore, the living area of residents was becoming increasingly concentrated,
and the degree of landscape fragmentation was reducing (Table 8).

Table 8. The index of landscape fragmentation from 2000 to 2020.

Land-Use Type 2000
SPLIT

2010
SPLIT

2020
SPLIT

Grassland 8900.71 20,823.10 20,747.92
Forest 2.91 2.92 6.15
Water 197,097.68 4,145,895.14 409,223.17

Construction land 16,916.41 9909.91 2720.01
Cultivated land 197.68 101.39 204.30

3.4. Comparison and Accuracy Evaluation of Simulation Results

The parameters (pixel number of future land type, constraint matrix and neighborhood
weight), constraint map and land-use data of the ECA in western Beijing in 2010 were
imported into PLUS and FLUS models, respectively, and the land-use simulation results
from 2020 were obtained (Figure 5).
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We used mathematical statistics, the landscape pattern index and the Kappa coefficient
to test the quantitative accuracy of the PLUS and FLUS models, the landscape similarity
and spatial accuracy, respectively.

It can be concluded that the overall quantitative accuracy of the land-use maps sim-
ulated by the two models in the ECA in 2020 were above 75% on average, indicating
a good simulation. The simulation effect of grassland, water and construction land in
2020 simulated by the PLUS model was slightly better than that of the FLUS model in
quantitative accuracy (Table 9).

Table 9. Comparison of the pixel number of simulated and observed land use in the ECA of western
Beijing in 2020.

Land-Use
Type

Reality
2020

PLUS
Simulation

Correct Number
Accuracy (%)

FLUS
Simulation

Correct Number

Accuracy
(%)

Grassland 37,865 25,844 68.25% 24952 65.90%
Forest 348,365 331,697 95.22% 331787 95.24%
Water 2338 1698 72.63% 1681 71.90%

Construction
land 51,427 26,453 51.44% 25,900 50.36%

Cultivated
land 75,389 68,287 90.57% 68,358 90.67%

The land-use landscape indices in 2020 simulated by the PLUS model had greater
similarity to the observed landscape pattern indices in 2020. Compared with the FLUS
model, the PLUS model had eight landscape pattern indices (PARA_MN, PARA_AM,
PARA_SD, PARA_CV, ENN_MN, ENN_AM, ENN_CV, PLADJ), which were closest to
the observed data in 2020, suggesting that the simulation results of the PLUS model were
generally more similar to the real landscape (Table 10).
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Table 10. Landscape similarity of the simulation results in the ECA of western Beijing in 2020.

Landscape Indices Observed 2020 PLUS FLUS

NP 7973 8463 8402
LPI 57.64 59.15 59.12

PARA_MN 320.29 331.41 333.67
PARA_AM 45.55 44.24 43.72
PARA_MD 400 400 400
PARA_RA 380.54 379.57 380.54
PARA_SD 99.93 90.45 89.29
PARA_CV 31.2 27.29 26.76
ENN_MN 342.06 327.27 326.37
ENN_AM 225.53 216.69 214.14
ENN_MD 223.61 223.61 223.61
ENN_RA 15,599.05 15,466.84 15,466.84
ENN_SD 467.65 447.15 446.76
ENN_CV 136.71 136.63 136.89

PLADJ 88.61 88.94 89.07

The Kappa coefficient was used to test the reliability of the two models and evaluate
the spatial similarity between the simulation results and the actual land-use classification.
In this verification, the sampling rate was set to 0.01. The Kappa coefficient of the PLUS
model was 0.7647, and that of the FLUS model was 0.7579. It can be seen that both models
have high accuracy; however, the Kappa coefficient of the PLUS model is slightly higher
than that of the FLUS model.

We can conclude that the accuracy of the PLUS and FLUS models to simulate the land
use of the study area was high, but the simulation results of the PLUS model were more
accurate in terms of quantitative accuracy, landscape quantitative comparison or spatial
accuracy, indicating that this model is more suitable for the future prediction of land-use
spatial structure simulation in this area. Therefore, we utilized the PLUS model to simulate
the spatial distribution of future land-use types in the ECA in western Beijing.

3.5. Prediction

The PLUS model provides both linear regression and the Markov chain method to
predict the categorization of land-use demand in the future. In this study, we utilized the
output from the Markov chain. To reduce the potential for errors, due to the lack of elastic
space in the Markov model, this study only predicted the number of land use in the next
10 years under the natural development situation of the region.

The PLUS model was used to predict the land-use status of the ECA in western Beijing
in 2030 under two scenarios. Firstly, the natural development scenario and, secondly,
including the influence of planning policy (Figure 6). In the first scenario of natural
development, land change was not affected by other external factors and was only related
to the characteristics of historical land change. Natural and geographical factors and
economic and social conditions were consistent with the current situation, that is, setting
the same pattern and speed of land-use change in 2020–2030 as in 2010–2020. In the second
scenario, the planning policy mainly refers to the regional planning. Regional planning not
only focuses on large-scale planning policies, which explicitly prohibit some construction
areas, but also delineates areas that encourage development, such as the planning of
development zones [38]. For our study, the planning development zone of the study area
was taken as the planning policy. The data of the planning development zone comes
from the General Plan of Beijing (2016–2035) issued by the Beijing Municipal People’s
Government in 2017 [39] (Figure 7). Supported by ArcGIS 10.2, we made a restricted
development zone and development zone map and added this to the PLUS (v1.3.5) CARS
module, so that policy intensity had the development weight of 0.5 for development type 4
(construction land).
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Figure 7. Land-use simulation maps under the: (a) natural development scenario, and (b) regional
planning policy impact scenario in the ECA of western Beijing in 2030. The black circles in this figure
are different places between the two scenarios.

In both scenarios, the area of forest and cultivated land decreased by 188 hm2 and
17,220 hm2, respectively, and the area of grassland, water and construction land increased
by 99 hm2, 689 hm2 and 16,620 hm2, respectively. Among them, more than 99% of the
increased construction land came from cultivated land, and the increased areas of grassland,
water and construction land mainly came from surrounding forest and cultivated land
(Tables 11 and 12).
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Table 11. Land-use area transfer matrix under the natural development scenario of the ECA in
western Beijing from 2020 to 2030 (unit: hm2).

2020
2030 Grassland Forest Water Construction

Land
Cultivated

Land Total 2030

Grassland 37,865 82 17 37,964
Forest 348,177 348,177
Water 6 2338 683 3027

Construction
land 100 51,427 16,520 68,047

Cultivated
land 58,169 58,169

Total 2020 37,865 348,365 2338 51,427 75,389 515,384

Table 12. Land-use area transfer matrix under the regional planning policy impact of the ECA in
western Beijing from 2020 to 2030 (unit: hm2).

2020
2030 Grassland Forest Water Construction

Land
Cultivated

Land Total 2030

Grassland 37,865 77 22 37,964
Forest 348,177 348,177
Water 1 2338 688 3027

Construction
land 110 51,427 16,510 68,047

Cultivated
land 58,169 58,169

Total 2020 37,865 348,365 2338 51,427 75,389 515,384

The inconsistent areas predicted under the two scenarios can be seen in the diversity
map (Figure 8). Compared with Figures 6 and 7 and Tables 11 and 12, it can be found
that the inconsistent areas are mostly construction and cultivated land. There was 10 hm2

cultivated land converted to construction land under the natural development scenarios,
which were converted to grassland and water under the influence of the regional planning
policy. Compared with the natural scenario, in the regional planning policy impact scenario,
the development area had more construction land. However, in the restricted area, the
construction land was reduced. This demonstrates that the government’s planning policy
can play a key role in the future land-use change.
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4. Discussion

In our study of the land-use types of the ECA in western Beijing, forest land was
dominant, accounting for about 67% of the total, and the proportion of water was smallest.
Land-use dynamics suggested that the evolution of the quantitative structure of the study
area is characterized by the continuous growth of construction land. Between 2000 and
2020, the single dynamic value of cultivated land and grassland was negative, indicating
that cultivated land and grassland were decreasing. The land transfer matrix confirmed
that the construction land had increased significantly from 2000 to 2020, with an increase of
29,568 hm2, coinciding with the large decrease in cultivated land of 19098 hm2, which was
mainly converted into construction land. The result of the reduction of rural cultivated land
in China was mainly related to the increase of construction land, which was consistent with
the findings of Zhao et al. [40]. The change of land use in the study area inevitably leads to
the change of landscape patterns in the region. At the overall landscape level, the degree
of landscape fragmentation in the study area is reduced. On the scale of the landscape
type, the LPI value of construction land increased significantly in the past 20 years. The
fragmentation index of construction land is getting smaller and smaller, indicating that its
distribution is more and more concentrated, and the residents’ lives are more concentrated.
Furthermore, we found that incorporating the regional planning policy to protect the
ECA using the planning development zone into our 2030 model prediction did result in a
partial restriction in the conversion of cultivated land to construction land, highlighting the
importance of planning policy in future land-use change.

Urbanization caused by the increase of construction land has the potential to bring
a series of negative effects to human life and the environment. Shi et al. [41] indicated
that urbanization can change the pattern of heavy rainfall in China. The research of Brend
et al. [42] indicated that urbanization can endanger food security, thereby endangering
human survival [40]. Yan et al. [43] revealed that urbanization can exacerbate daytime
warming effects. Wei et al. [44] indicated that urbanization causes the change of PM2.5 con-
centration. Wu et al. [45] revealed that urbanization has inevitably caused environmental
pollution. Lepeška et al. [46] found that urbanization in the Prądnik river basin had a direct
impact on the water retention losses of this region. The research results of Wang et al. [47]
showed that urbanization had a significant impact on the maximum temperature in Beijing
in the past 10 years.

As our study has highlighted a rapid expansion of construction land in recent decades,
it may be necessary to adopt a series of land policies to limit the increase of construction
land and prevent the land-use pattern from developing in a negative direction in terms of
environmental and societal ecosystem services. Hu et al. [48] believe that it is necessary to
adopt a local-based policy to solve the problem of urban encroachment on farmland from
the perspective of landscape sustainability. Our study highlighted that regional planning
policies can impact on the degree of urbanization. Regional planning policies that were
used in this article are issued by local governments. This policy has become a legal blueprint
for urban development in Beijing after its approval by legal procedures. However, further
work looking into the impact of planning policies is needed. In the study of Gong et al. [49],
where the impact of six land-use policies on the future LUCC (land use and land cover)
and the environmental sustainability of the landscape were assessed, they demonstrated
that land-use policies did increase ecosystem services, but they also caused further water
shortages. Zhang et al. [50] also explored multiple scenarios of urban expansion simulation
under the multiple ecosystem services (MESs) constraint, and they found that, compared
with the strong MESs constraint strategy, the “moderate MESs” (one scenario when β = 0.3,
β is a power exponent that reflects the subjective preferences of decision makers) strategy
was identified as providing the best outcome. Ma B. [51] and others proposed a policy of
linking urban and rural construction land to prevent the continued decline of cultivated
land, and this policy will affect the rural landscape pattern. Land price can also be an
effective regulator of consistent urban expansion [25]. Based on this, we could also consider
controlling land prices in the region to encourage sustainable development.
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According to our research results, construction land in the study area has increased
sharply in the past 20 years. The cost is the reduction of grassland, forest and cultivated
land, which is not conducive to the sustainable development of the study area. We think
that many other regions are also experiencing this. Therefore, combined with the peer
studies in the last paragraph on land-use policy, this study made the following suggestions
for the ECA of western Beijing:

1. Restrict new construction land and enhance land use economically. The expansion of
construction land in the ECA in western Beijing is potentially insufficiently regulated,
resulting in a chaotic spatial distribution that can have greater negative implications
on the landscape. Therefore, in the next development plan, controls may be needed
to limit the increase in construction land and improve the utilization rate of land
resources. At the same time, existing construction land resources in the western
suburbs of Beijing could be optimized to reduce damage caused by new construction
to the environment.

2. Stick to the red line of cultivated land (a cultivated land protection system in China)
and protect cultivated land resources. While urbanization is developing and build-
ing area is increasing, it also decreases the area of cultivated land around the city.
Cultivated land is an important land resource that satisfies people’s most basic food,
clothing, housing and transportation needs. The loss of cultivated land will hinder
social and economic development. When planning the future land use in the ECA
of western Beijing, we must pay attention to protecting the basic status of cultivated
land and strictly control the further reduction of cultivated land.

3. Increase stakeholder knowledge and innovate suitable sustainable local land-use patterns.
4. Control land prices reasonably.

The analysis of landscape pattern change is a deeper measure of land-use change [34],
and it is also an important means of studying landscape characteristics. In addition to using
the land-transfer matrix and the land-use dynamic to analyze the spatial and temporal
changes of land use, this study also increased the analysis of landscape pattern changes. In
addition to the conventional quantitative and spatial accuracy verification, the landscape
pattern index is added to compare and analyze the results of land-use simulation, so that
the accuracy assessment is more nuanced.

When using the PLUS model to predict land use in the ECA of western Beijing, the
demand of each area is predicted by the Markov model, and then the spatial pattern is
allocated. However, the model only refers to historical data when predicting the quantity
and does not take other factors into consideration. The accuracy of such simulation results
can meet the basic needs, but there is still some gap with the observed land use. This is
the main limitation of this study. Based on this, we can consider adding some parameters
on the basis of the original model to improve accuracy. Due to the difficulty of obtaining
data and the limitations of simulation, many factors have not been added to the model at
this time, which will inevitably have an impact on the accuracy of future land prediction
results. Therefore, increasing the way to obtain data and improving the model are very
important to improve the similarity with observed data. The setting of model parameters
is very important to the quality of the simulation effect. When setting the parameters, it is
greatly affected by human subjective factors, which can produce large errors in the results.
In future research, attention should be paid to the improvement of the model and adaptive
tuning to achieve better simulation results. The PLUS model has recently been developed,
and it is still in the initial stage of understanding, and therefore there is great potential for
further work using this model.

5. Conclusions

This study used the land transfer matrix, land-use dynamics and landscape pattern
index to analyze the temporal and spatial changes of land use in the study area from 2000
to 2020. We then evaluated the use of PLUS and FLUS models to simulate the land-use
status in 2020 based on the real land-use change from 2010 to 2020, and by using the more



Remote Sens. 2022, 14, 1452 18 of 20

accurate PLUS model, we were subsequently able to simulate and predict the probable
land-use conditions of the study area in 2030 under the natural development scenario
and assess the impact of the regional planning policy, enabling us to draw the following
conclusions:

1. Forest is the main land-use type in this area, accounting for more than half of the area.
In contrast, the proportion of water is the smallest. The area of construction land in
the study area continued to increase from 2000 to 2020. The landscape is becoming
more and more diversified; however, patch connectivity is good, but the landscape
fragmentation of water and grassland is increasing from 2000 to 2020.

2. When simulating the land-use conditions in the study area, the PLUS model is better
than the FLUS model in terms of the numerical accuracy of the simulation results, the
quantitative comparison of landscapes and the spatial accuracy.

3. The prediction results show that construction land will continue to increase in 2030,
forest and cultivated land will continue to decrease and government policies can play
a role in land-use changes.

4. There is an unsustainable land-use pattern in the ECA of western Beijing, which needs
to be adjusted as soon as possible, otherwise it will affect the ecological environment.
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