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Abstract: The radiometric terrain correction (RTC) is an essential processing step for supervised
classification applications of polarimetric synthetic aperture radar (PolSAR) over mountainous
areas. However, the current angular variation effect (AVE) correction methods of three-step RTC
processing are difficult to apply to PolSAR supervised classification because of the problem of
interdependence between AVE correction and classification. To address this issue, based on the
three-step semi-empirical RTC approach, we propose an improved AVE correction method suitable
for the supervised classification of PolSAR. We make full use of the prior knowledge required for
supervised classification and RTC processing, that is, samples and elevation data, to calculate the
parameters of AVE correction by constructing a weight coefficient matrix. GaoFen-3 QPSI (C-band,
quad-polarization) data were used to verify the proposed method. Experimental results showed that
the proposed method is available and effective for PolSAR supervised classification. The new method
can effectively remove the AVE effect in the PolSAR image, and the overall accuracy of PolSAR
supervised classification can be improved about 9% compared to that without AVE correction. For
the fine classification of forest types, the AVE correction can improve the classification accuracy by
about 20%.

Keywords: polarimetric SAR; radiometric terrain correction; supervised classification; angular
variation effect

1. Introduction

Due to the characteristics of the side-looking of synthetic aperture radar (SAR) imaging
system, SAR images present obvious topographical effects in mountainous areas, which is
a great resistance to the application of SAR data. Therefore, radiometric terrain correction
(RTC) is an indispensable processing step in the application of SAR in mountainous areas [1].
For polarimetric SAR (PolSAR), the influence of terrain undulations mainly includes three
aspects, namely the polarization orientation angle (POA), the effective scattering area (ESA),
and the angular variation effect (AVE) [2–5]. Correspondingly, two or three steps of RTC
are usually required to remove the influence of terrain in the PolSAR data [6–8].

Among them, the POA correction corresponds to the influence of the slope of azimuth
direction, which can affect the intensity of the electromagnetic wave received by radar
antenna by changing the polarization direction of the incident wave. The core of POA
correction is the calculation of the shift angle of POA. Currently, the most commonly
used calculation method is the circular polarization method, which only needs to use the
information of the PolSAR data itself [3]. The ESA correction corresponds to the influence
of terrain on the scattering area of each pixel of the SAR image. For example, on the front
slope, one pixel corresponds to more ground area (i.e., ESA) than it would on the back slope.
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The larger the ESA, the greater the number of scatterers and the stronger the radiation
intensity of the SAR image. In order to eliminate this effect, it is necessary to accurately
calculate the ESA of each pixel. Several methods have been proposed and published on
this topic [9–13]. These methods can be divided into two types: homomorphic [9–12] and
heteromorphic [4,13]. The homomorphic methods ignore the one-to-many and many-to-one
relationships between map and slant range radar geometry. Representative homomorphic
methods include projection angle method [10], local incidence angle method [12], etc. The
heteromorphic methods represented by the area integral method are the most accurate,
but it needs to rely on digital elevation model (DEM) data with higher resolution than
SAR data. In addition, the projection angle method is the classic and commonly used
method [6,9,12]. For ESA correction, regardless of the method used, DEM data are required
to assist in the calculation of local imaging geometry. The AVE correction corresponds
to the influence of terrain on the scattering mechanisms and penetration depth, among
others [5,7]. This correction step is mainly for vegetation coverage areas, and different
vegetation types often require different degrees of correction. At present, the proposed
methods can be divided into two categories, empirical methods [14] and semi-empirical
methods [5,6,15]. The empirical methods lack the theoretical model basis such as look-up
table methods [14]. Although some cases have demonstrated the effectiveness of such
methods, their generalizability remains to be verified. The semi-empirical AVE correction
methods are the current mainstream method, usually based on a basic model using the
n-th power of the cosine of the local incident angle or other angles [5,15,16]. The key
problem lies in determining the value of n, which depends on the land cover type, radar
frequency, and polarization mode [6,15]. In addition to the completely empirical method
to determine the value of n [7], when the land cover type is known, the value of n can
be determined automatically by statistical methods such as the minimum correlation
coefficient [6], fit [15], etc.

In summary, the POA and ESA corrections only need to be based on the informa-
tion of the PolSAR data itself or DEM assistance to complete the correction. However,
in AVE correction, the land cover type needs to be known in advance to calculate the
correction parameter n. This means that AVE correction is difficult to apply to the land
cover classification of PolSAR data. Currently, in many studies, AVE correction is usually
developed for quantitative parameter estimation such as forest biomass or stock volume
estimation [6,7,17]. For some classification applications of PolSAR data, POA and ESA
corrections are considered sufficient [6,8,15]. However, this situation should be limited
to rough classification (e.g., forest/non-forest) of land cover types in areas with generally
complex terrain, and is not suitable for the fine classification (e.g., coniferous/broad-leaved
forest) of areas with severely complex terrain. Obviously, when the AVE effect is severe
enough to affect the land cover classification of PolSAR data, the conflicting problem of the
interdependence of AVE correction and classification should be resolved.

In this study, our objective was to address the negative impact of the AVE effect on
the land cover classification of PolSAR data. To this end, we propose a novel RTC method
suitable for supervised classification of PolSAR data based on the three-step semi-empirical
RTC approach [6]. The new correction method can conveniently eliminate the influence of
AVE on the supervised classification of PolSAR data. We innovatively used the training
sample data required for supervised classification to assist in the completion of AVE correc-
tion, thereby improving the accuracy of PolSAR classification. In addition, the proposed
method is demonstrated and analyzed using the PolSAR data of the GaoFen-3 satellite.
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2. Methods
2.1. Data Format of PolSAR

For a reciprocal medium illuminated by a monostatic SAR, PolSAR data can usu-
ally be represented by a two-dimensional complex matrix format, which is defined as a
polarimetric covariance matrix (C3):

C =


〈
|SHH |2

〉 〈√
2SHHS∗HV

〉 〈
SHHS∗VV

〉〈√
2SHVS∗HH

〉 〈
2|SHV |2

〉 〈√
2SHVS∗VV

〉
〈SVVS∗HH〉

〈√
2SVVS∗HV

〉 〈
|SVV |2

〉
 (1)

where <> indicates multilook averaging; * denotes conjugate; and SHH, SHV, and SVV are
the single-look complex observations of different polarization channels. The polarization
covariance matrix is usually obtained from the Level-1 products of airborne or spaceborne
PolSAR after pre-processing steps such as calibration and multilook.

2.2. Local Geometry of SAR Imaging

For the RTC process of SAR data, acquiring local imaging geometric information is an
indispensable step. Figure 1 shows the local geometry of SAR imaging in an Earth centered
rotating (ECR) coordinate system. The projection angle (ψ), local incidence angle (θloc), and
incidence angle of a horizontal surface (θ) are the local imaging angle information required
by the three-step RTC approach. In order to calculate the angle information, it is necessary
to complete the geocoding of terrain correction (GTC) of the SAR data.

Figure 1. Local geometry of SAR imaging in an Earth centered rotating (ECR) coordinate system.
O is the center of the Earth; S represents the position of the SAR sensor; T is a target point with a
certain elevation; and S’ and T’ is the projection point of S and T on the surface of the Earth ellipsoid.

Based on precise satellite orbit information, imaging parameters and DEM data, GTC
can be performed using the range-doppler position model. Then, we can obtain the
geographic location (T) of each pixel in the SAR image and the corresponding sensor
location (S). That is, the vectors OT, OS, and TS are known. Based on the DEM data, the
normal vector of local surface (TN) is easy to calculate. Finally, the local angle information
required by RTC can be calculated based on Equations (2)–(4).

θ = arccos
(

OT · TS
|OT| · |TS|

)
(2)
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θloc = arccos
(

TN · TS
|TN| · |TS|

)
(3)

ψ = arccos
(

TN · TP
|TN| · |TP|

)
(4)

where TP is the vector that perpendicular to the incidence plane [12], and TP = TS × (TS ×
OT), · denotes the dot product, × denotes the cross product.

2.3. Three-Step Semi-Empirical RTC Approach for PolSAR Data

The three-step semi-empirical RTC approach, which includes the POA, ESA, and AVE
correction methods, was developed fully applicable to the PolSAR matrix data [6]. The
first step is POA correction. For the C3 matrix, the POA correction can be completed by
Equation (5):

CPOA = VCVT ,

V =

 1 + cos2δ
√

2 sin 2δ 1− cos2δ

−
√

2 sin 2δ 2cos2δ
√

2 sin 2δ

1− cos2δ −
√

2 sin 2δ 1 + cos2δ

 (5)

where δ denotes the POA shift angle, which can be calculated by the circular polarization
method [3].

The second step is ESA correction [6,12]. Based on the C3 matrix after POA correction,
the ESA correction can be performed by Equation (6):

CPOA_ESA = CPOA · cosψ (6)

It should be noted that the premise of applying Equation (6) is that the backscatter
coefficients of different polarization channels of the pre-processed PolSAR data correspond
to beta naught (β0) backscatter [4,10].

The third step is AVE correction [5–7], which is usually based on a basic model using
the n-th power of the cosine of the local incident angle. The correction coefficient of AVE
correction is defined as

k(n) = (cosθ/cosθloc)
n (7)

Since the value of n depends on the land cover type, radar frequency, and polarization
mode, for a certain land cover type at a certain radar frequency, the AVE correction of
PolSAR data needs to know the n values of the three polarization channels, which can be
denoted as nhh, nhv, and nvv, respectively. If this combination of n-values is known, we can
obtain the correction coefficient matrix (K) for the C3 matrix, and the AVE correction can
be performed:

CPOA_ESA_AVE = CPOA_ESA ⊕K,

K =

 k(nhh)
√

k(nhh)k(nhv)
√

k(nhh)k(nvv)√
k(nhh)k(nhv) k(nhv)

√
k(nhv)k(nvv)√

k(nhh)k(nvv)
√

k(nhv)k(nvv) k(nvv)

 (8)

where ⊕ denotes the hadamard product.
Obviously, the key to AVE correction is the acquisition of n values of different po-

larization channels. On this point, Zhao et al. [6] proposed the method of the minimum
correlation coefficient to determine the optimal n value for a certain land cover type, which
is shown in Equation (9):

n = argmin{|ρ(θloc, σ · k(n))|} (9)

where σ is the backscattering coefficient of a certain polarization channel after POA and
ESA correction, and ρ( ) denotes the correlation function.
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2.4. Improved AVE Correction for Supervised Classification of PolSAR

The objective of supervised classification of PolSAR is to obtain the land cover type
information corresponding to each pixel of the PolSAR image by training the classifier
based on the PolSAR data and sample data. Obviously, there are three key points for
supervised classification of PolSAR, namely: PolSAR data, sample data, and classifier.
Among them, the most basic is the PolSAR data, which should be calibrated by GTC and
RTC. Benefiting from the acquisition of full polarization information, PolSAR data have the
potential for fine classification. However, this latent ability is also easily disturbed by other
factors, one of which is the AVE effect.

Unlike quantitative applications of PolSAR, for AVE correction of supervised classifi-
cation, what we need is a combination of n-values suitable for a holistic scene of PolSAR
data, rather than n-values for a certain land cover type. Moreover, the land cover type map
of the area covered by PolSAR data was our purpose, and may not be a priori knowledge.

In fact, for the AVE correction for the supervised classification of PolSAR data, there is
still a lot of prior knowledge that is not used, that is, the sample data required for training
the classifier of the supervised classification. If the training samples are relatively evenly
distributed under different terrain conditions, we can calculate the n-value combinations of
different classes through the training sample data and Equation (9). Assuming that there
are a total of M classes, these n-value combinations can form an n-value matrix (N), as
shown in Equation (10).

N =

 n1
hh n2

hh · · · nM
hh

n1
hv n2

hv · · · nM
hv

n1
vv n2

vv · · · nM
vv

 (10)

where nm
x denotes the n value of the x polarization channel of the m-th class.

Then, a weight matrix (W) reflecting the degree of terrain influence of different classes
can be defined, as shown in Equation (11).

W =
[

w1 w2 · · · wM ]T (11)

where wm represents the weight coefficient of the m-th class, and the sum of the weight
coefficients of all classes equals 1. The weight coefficients of different classes can also
be set based on the analysis of the sample data of supervised classification. The weight
coefficients of different categories should reflect the impact of AVE on the classification
results, mainly considering two aspects: the degree of a single pixel affected by AVE (that
is, the possibility of a single pixel being misclassified due to AVE) and the number of pixels
affected by AVE (that is, the number of pixels that may be misclassified).

In practice, two factors can be comprehensively considered to determine the weight matrix:

(1) The first is the steepness of the terrain where the samples are located, which can be
analyzed based on the sample location and DEM data. The slope angle (u) can be
calculated using Equation (12).

u = arccos
(

TN ·OT
|TN| · |OT|

)
(12)

Based on the slope angle, it can be determined which classes are distributed in the flat
terrain area (e.g., u < 3◦). Then, the weight factor for the classes of the flat terrain area can
be set to zero. For example, for water, building land, and farmland (except terraces) and
other land cover types, they are usually distributed on flat terrain. Therefore, the weight
coefficients corresponding to these land cover types can be set to 0 or a small value.

(2) The second is the area ratio of different classes, and it should not be difficult to learn
the rough ratio after preparing the sample data. Except for the types on flat terrain,
the weight coefficient of remaining types can be set according to the area ratio of
these types. In addition, if the area ratio of different classes cannot be obtained in
the process of preparing sample data, we can consider setting the weight coefficients
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of different classes to the same value for AVE correction. Alternatively, rough area
ratio information can also be obtained based on the classification results of PolSAR
data after POA and ESA correction. It should be noted that the area ratio is the most
important factor to consider, but the weight coefficient is not necessarily set strictly
according to the area ratio. For some categories with a small proportion and strong
heterogeneity, the value of n calculated by Equation (9) has a certain uncertainty, so
the weight coefficient of these categories can be appropriately adjusted.

Once the weight matrix (W) is determined, the combination of n-values required for
AVE correction can be calculated using Equation (13). n∗hh

n∗hv
n∗vv

 = N×W =

 n1
hhw1 + n2

hhw2 + · · ·+ nM
hhwM

n1
hvw1 + n2

hvw2 + · · ·+ nM
hvwM

n1
vvw1 + n2

vvw2 + · · ·+ nM
vvwM

 (13)

where n∗hh, n∗hv, and n∗vv are the combination of n-values that take into account the impact of
terrain on different land cover types, so they are suitable for the AVE correction of PolSAR
data in the whole scene. Finally, AVE correction can be completed based on Equations (8)
and (13).

2.5. Supervised Classification and Evaluation

The supervised classification of PolSAR contains three key points: PolSAR data,
sample data, and classifier. First, after the three-step correction, the PolSAR data for
classification is ready. Second, the sample data need to be prepared. In this step, we need to
conduct a field survey of the PolSAR data coverage area to obtain the information of land
cover types. High-resolution optical images (satellites, UAV, etc.) of the same time period
can be used to aid the survey. The number of sample data should be large enough and be
evenly distributed within the coverage of PolSAR data to be representative and able to
overcome the influence of various accidental factors. In addition, the sample data should be
divided into two groups (e.g., 50% each), namely, training samples and validation samples.
The former is used to train the classifier, and the latter to evaluate the classification effect.
Finally, a classifier needs to be chosen. In this study, we used the classic Wishart classifier to
perform classification experiments [18]. This classifier only uses the most basic information
of PolSAR data. In actual classification applications, more polarimetric decomposition
features can be extracted based on PolSAR data, and better classification results may be
achieved by using classifiers such as SVM [19].

In addition, the confusion matrix, user accuracy (UA), producer accuracy (PA), overall
accuracy (OA), and Kappa coefficient (Kap.) are used to evaluate the classification results
of different steps of the three-step RTC approach [19]. If it is assumed that there are a total
of N classes, the number of samples of the i-th class is Ai, and the number of pixels in which
the samples of i-th class are divided into i-th class by the classifier is Bi, then the PA of the
i-th class can be calculated using Equation (14).

PAi =
Bi
Ai

(14)

Assuming that in all samples the total number of samples classified into i-th class is Ci,
then the UA of the i-th class can be calculated using Equation (15).

UAi =
Bi
Ci

(15)

The OA can be calculated using Equation (16)

OA =
N

∑
i=1

Bi/
N

∑
i=1

Ai (16)
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and the Kappa coefficient can be calculated using Equation (17).

Kap. =
OA− Pe

1− Pe
, Pe =

N

∑
i=1

Ai · Ci/

(
N

∑
i=1

Ai ·
N

∑
i=1

Ai

)
(17)

3. Test Site and Data
3.1. Test Site

This study was conducted at the test site in Chifeng City, Inner Mongolia, China. The
selected 11 km × 10 km study area (Figure 2) is located in the Wangyedian forest farm and
contains a town called Meilin (118.3◦E, 41.7◦N). The slopes in this area are relatively short
and steep, with slope angles up to 35◦. The elevation range of this area is 934 to 1602 m.
This area covers many land cover types such as forests, farmland, construction land, and
so on. The forests in this area are plantations, and the main tree species are Chinese Pine
(Pinus tabulaeformis Carr) and Larix Principis (Larix principis-rupprechtii May). The former is
an evergreen tree species, and the latter is a deciduous tree species. As shown in Figure 3,
it is a schematic diagram of a single tree of Chinese Pine and Larix Principis [20]. Although
both are coniferous species, the two trees differ in their structural characteristics. The
Larix Principis has a very straight trunk with a regular crown shape and internal structure
(Figure 3b). However, the trunk of Chinese Pine has a certain curvature, the branches are
irregular, and the shape of the crown of different trees is also quite different (Figure 3a).

Figure 2. Location of the test site.

Figure 3. Schematic diagram of a single tree of Chinese Pine and Larix Principis. (a) Chinese Pine;
(b) Larix Principis.
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3.2. PolSAR and Reference Data

One scene from China’s GaoFen-3 PolSAR data was acquired over the test site on
25 September 2019. The data were obtained through the right side view imaging of the
descending orbit. It was single-look complex (SLC) data (L1A level) and the observation
mode was quad polarization stripe 1 (QPSI). The SLC pixel spacing of the azimuth and
range direction were 5.0 and 4.5 m, respectively. In the subsequent processing, SLC data
needs to undergo calibration, multilook, and GTC processing. The PolSAR Pauli RGB of
the test site after GTC processing is shown in Section 4.2.

Figure 4a presents the false-color combinations image acquired by China’s GaoFen-2
satellite on 1 January 2019. The image is a fusion of panchromatic image and multi-
spectral image, with a high resolution of 0.8 m. Since the acquisition of GaoFen-2 data is in
winter, it is easy to distinguish evergreen forests and deciduous forests on the false-color
composite image. As shown in Figure 4a, evergreen forests are red, and deciduous forests
are brown-green. These features are very helpful for comparative analysis with GaoFen-3’s
PolSAR images.

Figure 4. The optical satellite image and DEM data in the test area: (a) The false-color combinations
image (Band_4: 0.77~0.89 µm; Band_3: 0.45~0.52 µm, Band_2: 0.52~0.59 µm) acquired by the GaoFen-
2 satellite on 1 January 2019. The resolution of the fused image was 0.8 m. (b) The SRTM DEM data
were resampled to 10 m resolution.

The 1-arcsec SRTM DEM of the test site shown in Figure 4b was used for GTC and
to derive local slope information. Taking into account the short slope of the test area and
the SLC resolution of PolSAR data, the original 30 m resolution SRTM DEM data were
resampled to a 10 m resolution using bilinear interpolation.

In addition, the field survey in the test site was carried out from 16–28 September 2019.
In conjunction with the high-resolution optical image shown in Figure 4a, field survey data,
and the classification potential of PolSAR, the sample data required for the classification
experiment of this study was obtained, as shown in Figure 5.
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Figure 5. The classification sample data of the test site. (a) The spatial distribution map of sample
data of different land cover types. (b) The field shots of different land cover types.

The classification system contains six categories including Chinese Pine (CP), Larix
Principis (LP), construction land (CL), corn farmland (CF), bare soil farmland (BF), and
shrub-grass vegetation (SG). At the end of September, in the test area, the leaves of Larix
Principis had turned yellow and gradually fell; most of the crops had been harvested.
Among them, most of the corn plants were still left on the farmland after manual picking.
Other farmland was plowed into bare soil after harvest. The distribution of the sample
data is shown in Figure 5a. The survey photos of different land cover types are shown in
Figure 5b.

4. Results
4.1. Pre-Processing of PolSAR

The pre-processing mainly consists of three steps, namely, calibration, multilook,
and GTC. First, the calibration is completed based on the parameters in the metadata
file (*.meta.xml) provided by GaoFen-3’s L1A data. The multilook step is completed
with two looks in the azimuth direction and two looks in the range direction. Then, the
multilook complex matrix C3 is obtained, and on this basis, the POA shift angle can be
calculated (slant-range radar geometry). Finally, through the GTC process, the geocoded
POA shift angle image and the local imaging angle information required by three-step
RTC are obtained, as shown in Figure 6. It should be noted that the geocoded PolSAR
data and various angle image had the same resolution of 10 m. Inaddition, the slope angle
information of the experimental area is calculated using Equation (12). The slope angle
information of different land cover types is shown in Figure 7.
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Figure 6. The angle information required by the three-step RTC approach: (a) POA shift angle δ;
(b) projection angle ψ; (c) local incidence angle θloc; (d) incidence angle of the flat surface θ.

Figure 7. The boxplots of different land cover types for slope angle.
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In this study, the above pre-processing step was completed using GAMMA software
(https://www.gamma-rs.ch/, accessed on 7 December 2021), PolSARpro software (https://
earth.esa.int/web/polsarpro/home, accessed on 7 December 2021), and our own program.
The processing flow and our shareable program can be found in [21,22].

4.2. Three-Step Semi-Empirical RTC

In the first step, the POA correction can be completed by substituting the POA shift an-
gle (Figure 6a) into Equation (5), and the correction result is shown in Figure 8b. Compared
to the uncorrected case (Figure 8a), it can be seen that the green spots in the forest area
have been eliminated. This reflects the correction of cross polarization. In addition, in order
to show the correction effect more clearly, we display an enlarged area in Figure 8 (black
polygon) for a more detailed demonstration. As shown in the enlarged images (Figure 9), it
can be seen more clearly that the forest area in Figure 9a has a few more green spots than
the forest area in Figure 9b. Overall, the effect of POA correction was not obvious. The
main reason is that the C-band PolSAR data used in this study have limited penetration of
forests and limited influence of azimuth slopes compared with long-wavelength data such
as L and P-band.

Figure 8. The PolSAR Pauli RGB after each correction step: (a) GTC (i.e., no correction); (b) POA
correction; (c) POA + ESA correction; (d) POA + ESA + AVE correction.

https://www.gamma-rs.ch/
https://earth.esa.int/web/polsarpro/home
https://earth.esa.int/web/polsarpro/home
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Figure 9. Enlarged image of the GaoFen-3 PolSAR Pauli RGB after each correction step, GaoFen-2
false-color combinations image, and SRTM DEM: (a) GTC (i.e., no correction); (b) POA correction;
(c) POA + ESA correction; (d) POA + ESA + AVE correction; (e) GaoFen-2 false-color combinations
image; (f) SRTM DEM.
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In the second step, the ESA correction is performed based on the projection angle
(Figure 6b) and Equation (6), and the correction result is shown in Figures 8c and 9c.
The effect of ESA correction is obvious. It can be seen that the “brightness” of the front
slope and the “darkness” of the back slope are obviously more balanced. However, in
Figures 8c and 9c, there are still obvious topographic effects that can be seen in the PolSAR
Pauli RGB. Moreover, referring to Figures 4a and 9e, the distribution of the two forest types
(Chinese Pine and Larix Principis) cannot be seen in Figures 8c and 9c. This means that
ESA correction is insufficient for the fine classification of forests using PolSAR data in this
study area.

In the third step, the AVE correction needs to be assisted by sample data. First, the
classification sample data shown in Figure 5a are randomly divided into two parts: 50% of
the samples were used for AVE correction and the training of classifier, and the rest were
used as verification samples to evaluate the classification results. Then, the n-value matrix
(N) is calculated based on the training samples and the method of minimum correlation
coefficient (Equation (9)), as shown in Equation (18):

N =

CP LP CL BF CF SG 1.21 0.88 0.00 0.00 1.92 1.50
1.17 0.84 0.76 0.22 1.13 0.81
1.17 0.83 0.51 0.00 0.67 1.48

 HH
HV
VV

(18)

Next, the weight coefficient matrix (W) is determined according to the influence of
the AVE phenomenon on different classes. The statistical analysis can be performed on the
slope angle information of different categories, as shown in Figure 7. Here, we define areas
with an average slope of less than 3◦ as flat terrain. Obviously, as shown in Figure 7, the
construction land and bare soil farmland are distributed in flat terrain. Therefore, we set
the weight coefficient of construction land and bare soil farmland to 0.

Among the remaining types distributed in the mountainous areas, forest areas ac-
counted for about 90% of the remaining area, with Chinese Pine and Larix Principis each
accounting for approximately half. It should be noted that above 90% was the approximate
proportion we obtained in the process of preparing the sample data. Then, the weight
coefficient of these two forest types were set to 0.45, and the remaining two classes (corn
farmland and shrub-grass vegetation) were set to 0.05 due to their small proportions. In
summary, based on the above prior knowledge and analysis, the weight coefficient matrix
(W) can be set as:

W =
CP LP CL BF CF SG[

0.45 0.45 0.00 0.00 0.05 0.05
] (19)

Obviously, the 90% proportion of forests is rough information obtained through field
investigations. The effect of this rough setting on the AVE correction is subjected to a
sensitivity analysis in Section 4.4.

Then, the combination of n-values suitable for the PolSAR data of an entire area can
be obtained based on the matrix N and W, that is, n∗hh = 1.11, n∗hv = 1.00, and n∗vv = 1.01.
Finally, this combination of n-values was substituted into Equation (8) to realize the AVE
correction of the entire region, and the correction result is shown in Figures 8d and 9d.

Obviously, the terrain influence was further eliminated compared to the result of
the ESA correction. In Figures 8d and 9d, there are almost no traces of terrain undula-
tions. Moreover, the mountainous area clearly presents the characteristics of two types
of forest, and their distribution is consistent with the optical false-color composite image
(Figures 4a and 9e).

In addition, we used boxplots to perform statistical analysis on PolSAR data of different
categories at different correction stages, as shown in Figure 10. By comparing the boxplots
of different correction stages, it can be found that the degree of data dispersion of CP,
LP, and SG categories was greatly reduced. For example, the range of HH polarization
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backscatter coefficients for the CP category was about 9 dB without RTC (Figure 10a), while
the range after ESA correction was about 6 db (Figure 10g), and the range after further AVE
correction was about 4 db (Figure 10g). For the LP category, the corresponding value ranges
were 6 dB, 4 db, and 3 db, respectively. The reduction in the degree of dispersion effectively
reduces the feature overlap between different classes, which can effectively improve the
classification accuracy. Comparing Figure 10g,j, it can be seen that the overlap of CP and
LP was reduced from about 50% to 25%.

Figure 10. The boxplots of different classes for different polarization channels at different correction
step: (a) HH after GTC (i.e., no correction); (b) HV after GTC (i.e., no correction); (c) VV after GTC,
(i.e., no correction); (d) HH after POA correction; (e) HV after POA correction; (f) VV after POA
correction; (g) HH after POA + ESA correction; (h) HV after POA + ESA correction; (i) VV after
POA + ESA correction; (j) HH after POA + ESA + AVE correction; (q) HV after POA + ESA + AVE
correction; (l) VV after POA + ESA + AVE correction.
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4.3. Supervised Classification of PolSAR

In order to verify the effectiveness of the proposed method for the supervised clas-
sification of PolSAR, we used the Wishart supervised classifier and training samples to
perform classification experiments based on PolSAR data in different correction steps. The
classification results are shown in Figure 11.

Figure 11. The classification result after each correction step: (a) GTC (i.e., no correction); (b) POA
correction; (c) POA + ESA correction; (d) POA + ESA + AVE correction.

Figure 11a shows the classification results of PolSAR data without terrain correction. It
can be seen that the most obvious problem is that there was a large number of misclassified
construction land in mountainous areas. After the POA correction, the misclassification of
construction land was still serious, but it can also be seen that the mixing of construction
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land into Larix Principis has diminished (Figure 11b). Immediately after the ESA correction,
the problem of misclassification of construction land was significantly improved, and only
a small number of pixels in the lower left and right corners of the image were misclassified
as construction land (Figure 11c). After the AVE correction, this problem has been further
improved (Figure 11d). There is basically no phenomenon of construction land mixed into
forest types. In addition, it can be seen from Figure 11a–c that the mixing of the two forest
types was also very serious. After AVE correction, the two forest types were relatively
clearly separated (Figure 11d).

To further quantitatively evaluate the impact of three-step RTC on classification, the
confusion matrix of the classification results of different correction steps was calculated
based on the verification samples, as shown in Tables 1–4. The UA, PA, OA, and Kappa
coefficient calculated based on the confusion matrix are also shown in the tables and
Figure 12.

Table 1. Confusion matrix of the classification results of PolSAR data after GTC (i.e., no correction).

CP LP CL BF CF SG UA (%)

CP 1130 2324 653 120 189 909 21.22
LP 861 2194 653 1 45 290 54.25
CL 275 652 1410 1 20 306 52.93
BF 958 42 5 1543 94 331 51.90
CF 659 116 118 50 3732 122 77.80
SG 66 203 386 1 22 1684 71.30

PA(%) 28.61 39.67 43.72 89.92 90.98 46.24

Overall Accuracy: 52.75%; Kappa coefficient: 0.4282.

Table 2. Confusion matrix of the classification results of PolSAR data after POA correction.

CP LP CL BF CF SG UA (%)

CP 1076 2323 684 121 232 842 20.39
LP 990 2436 580 1 52 315 55.69
CL 148 366 1435 1 21 239 64.93
BF 942 38 6 1541 99 326 52.20
CF 722 156 112 51 3673 192 74.87
SG 71 212 408 1 25 1728 70.67

PA(%) 27.25 44.04 44.50 89.80 89.54 47.45

Overall Accuracy: 56.64%; Kappa coefficient: 0.4376.

Table 3. Confusion matrix of the classification results of PolSAR data after POA + ESA correction.

CP LP CL BF CF SG UA (%)

CP 2007 1300 250 147 268 823 41.86
LP 1070 3677 872 2 114 602 58.02
CL 13 158 1727 1 24 129 84.16
BF 609 16 6 1517 61 342 59.47
CF 140 1 93 18 3593 8 93.25
SG 110 379 277 29 42 1738 67.50

PA(%) 50.82 66.48 53.55 88.51 87.59 47.72

Overall accuracy: 64.34%; Kappa coefficient: 0.5631.
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Table 4. Confusion matrix of the classification results of PolSAR data after POA + ESA +AVE
correction.

CP LP CL BF CF SG UA (%)

CP 2940 651 314 55 268 621 60.63
LP 670 4521 907 1 81 652 66.17
CL 2 41 1684 1 22 48 93.66
BF 37 1 6 1525 36 320 79.22
CF 142 3 107 19 3638 29 92.38
SG 158 315 207 114 57 1972 69.85

PA(%) 74.45 81.72 52.22 88.92 88.69 54.15

Overall accuracy: 73.45%; Kappa coefficient: 0.6729.

Figure 12. The overall accuracy, Kappa coefficient, producer accuracy, and user accuracy of different
classes in different correction steps: (a) overall accuracy and Kappa coefficient; (b) producer accuracy;
(c) user accuracy.

As shown in Tables 1–4 and Figure 12a, after three-step RTC, the OA was increased
from 52.75% to 73.45%, and the Kappa coefficient increased from 0.4282 to 0.6729. The total
increase of OA was about 21%, and the contribution of POA, ESA, and AVE correction
was 4%, 8%, and 9%, respectively. For the Kappa coefficient, the total increase was about
0.25, while the contribution of POA, ESA, and AVE correction was 0.01, 0.13, and 0.11,
respectively. By comparing the PA and UA of different land cover types, it can be seen that
the two categories with the greatest increase in PA were Chinese Pine and Larix Principis,
and the two categories with the greatest increase in UA were Chinese Pine and construction
land, and the accuracy increase was about 40%. The contribution of AVE correction to
the above 40% increase was around 20%. These results illustrate the importance of RTC
for PolSAR classification, and AVE correction is also an indispensable step of RTC for
PolSAR classification.

To visually show the influences of different correction steps on PolSAR classification,
the confusion matrix was transformed into a histogram of mixed proportion between
classes, as shown in Figure 13. In Figure 13, for the column bar of certain class, the length of
the bar represents the proportion of each class with regard to the total samples of this class.
For this class itself, the length represents PA, and for other classes, it is the misclassification
ratio. First, for the two forest types, in addition to the misclassification between themselves,
the main mixed classes were bare soil farmland and construction land. The former mainly
occurs on the back slope because of the low backscatter coefficient caused by the terrain, and
the latter mainly occurs on the front slope because the terrain causes the high backscatter
coefficient. This problem was suppressed to a certain extent after POA and ESA correction,
and was completely resolved after AVE correction. Second, for construction land, it can be
seen from Figure 13 that a large number of samples of these types were classified as forest
types. Moreover, after three correction steps, the mixing situation had not been significantly
improved. The main reason is that the mixing occurs mainly on flat terrain, which is not a
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problem that can be solved by terrain correction. Next, for the two types of farmland, they
were also very little affected by the terrain, so they maintained high classification accuracy
(close to 90%) in different correction steps. Finally, for shrub-grass vegetation types, after
three steps of correction, nearly half of the samples were still misclassified as bare soil
farmland and forest. The main reason is that the spatial heterogeneity of shrub-grass is
large compared with other land cover types. For example, when there are many lush
shrubs, the polarization features of shrub-grass are close to forest, and when there are few
shrubs and grass is sparse, the polarization features of shrub-grass is close to bare soil.

Figure 13. The mix proportion between classes after each correction step: (a) GTC (i.e., no correction);
(b) POA correction; (c) POA + ESA correction; (d) POA + ESA + AVE correction.

4.4. Sensitivity Analysis of Weight Matrix

For the AVE correction method proposed in this paper to be applied to PolSAR su-
pervised classification, the setting of the weight matrix is obviously the most critical. The
weight matrix is directly related to the determination of the n-value combination in the
AVE correction, thereby affecting the effect of the subsequent AVE correction and the final
classification accuracy. However, in this paper, the determination of the weight coefficient
depends on certain prior knowledge, and is not calculated through strict mathematical
formulas. This means that the weight matrix contains some uncertainty, and how the uncer-
tainty affects the subsequent PolSAR classification needs to be further clarified. Therefore,
we performed a sensitivity analysis of the weight matrix in this section.

In this paper, as shown in Equation (19), the weight matrix contains six weight coef-
ficients. Obviously, it is difficult to analyze the impact of the final classification accuracy
of the changes in the six weight coefficients at the same time. Therefore, only the most
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important weight coefficients in the weight matrix are analyzed here. First, it is relatively
clear that the weight coefficients of CL and BF are set to 0, so the sensitivity analysis does
not consider the changes of these two weight coefficients. Second, since the CF and FG
categories have a relatively small proportion in the entire region, the weight coefficients of
these two categories are considered as a whole when doing sensitivity analysis, and the
weight coefficients of these two categories are equal by default. With the above restrictions,
if we assume that the weight coefficient of CP is x and the weight coefficient of LP is y, then
the weight matrix is:

W =
[

x y 0 0 1−x−y
2

1−x−y
2

]
(20)

where x∈[0, 1], y∈[0, 1], and x+y∈[0, 1].
Based on Equation (20), we calculated the n-value combination of AVE correction and

overall accuracy of PolSAR supervised classification corresponding to all weight matrices
with a step size of 0.05. The analysis results are shown in Figure 14.

Figure 14. The effect of different weight coefficient combinations on overall accuracy (OA) and the n
value combination of AVE correction: (a) OA; (b) n∗hh; (c) n∗hv; (d) n∗vv.

As can be seen in Figure 14a, the weight matrix we determined according to the prior
knowledge (i.e., Equation (19)) corresponded to the group with the highest overall accuracy
(73.3–73.6%). To a certain extent, this shows that the weight coefficient setting method
adopted in this paper is reasonable.
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However, it should be noted that the sensitivity between the overall accuracy of
classification and the weight matrix was not high. First, a wide range of weight coefficient
combinations could achieve a high overall accuracy of classification (73.3–73.6%) such as
in the case of WLP = 1. Second, the overall accuracy of classification did not vary widely,
only about 3% (70.9–73.6%). The main reason is that the weight matrix does not directly
affect the final classification accuracy. In other words, the final classification accuracy is
directly affected by the n-value combination in the AVE correction, which is obtained by
multiplying the weight matrix and the n-value matrix (Equation (18)). This process is
complicated, and the difference in the n-value combination obtained by multiplying the
two weight matrices with great differences by the n-value matrix is not necessarily large,
and may even be equal.

Comparing Figure 14b–d, it can be seen that the variation range of n∗hh was larger, that
is, 0.8–1.8; and the variation range of n∗hv and n∗vv was smaller, that is, 0.8–1.2. Obviously,
the classification accuracy is mainly affected by the change of n∗hh. This can also be verified
by comparing Figure 14a,b.

Through the above analysis, some preliminary understanding can be obtained. First of
all, the sensitivity between the weight matrix and the classification accuracy is not strong,
and the deviation of the weight coefficient of about 0.1 corresponds to the classification
accuracy deviation of basically no more than 0.3%. This also shows that the setting of the
weight matrix can tolerate a certain uncertainty. Second, the above phenomenon does not
mean that the weight matrix can be set arbitrarily. However, in the experiments of this paper,
the classification accuracy corresponding to different weight matrices had a maximum
deviation of only 3%. However, it should be noted that this result is limited by the n-value
matrix corresponding to the data in this paper. When the n-value matrix changes, the
classification error caused by the uncertainty of the weight matrix may be larger.

5. Discussion

By making full use of the prior knowledge available in the supervised classification
(i.e., samples data) and RTC process (i.e., DEM data), we developed an improved version
of the three-step RTC approach for supervised classification of PolSAR. Although the
experimental results verify the effectiveness of the proposed method, the advantages and
disadvantages of the proposed method, some key issues and future developments still
need to be discussed.

The effect of topography on PolSAR classification is clearly an issue, but there has
not been much research devoted to this issue. Existing terrain correction methods mainly
focus on the quantitative application of PolSAR, especially biomass estimation [5–7,17].
In the existing research and application, there are three typical strategies to deal with the
terrain problem in PolSAR classification. (1) Ignoring the effect of the AVE phenomenon on
classification, only POA or ESA corrections were performed on the PolSAR data [8,23]. This
strategy is useful for generally complex terrain or coarse classification, but is insufficient
for severely complex terrain or fine classification. For example, as shown in Figure 10g,
after ESA correction, the forest and construction land were well differentiated, but CP
and LP within the forest were still mixed together. Clearly, without AVE correction, both
the classification potential and accuracy of PolSAR data are affected. (2) Strategies for
hierarchical classification and stepwise correction [15]. First, separate the types on the flat
terrain; next, complete the preliminary RTC processing (such as ESA correction); then,
separate the types that have not been affected by the terrain effect; finally, assume that the
remaining types in the feature space are separable, and make finer terrain corrections (such
as AVE corrections) for the remaining terrain types. The problem with this type of approach
is that it assumes that at each step, there are some classes that are not characteristically
confused with other classes. For classes in flat terrain, this assumption may be satisfied,
and the results of Figure 12 in this paper also support this assumption. However, for classes
distributed in mountainous areas, stepwise correction cannot solve the problem of interde-
pendence between fine terrain correction and fine classification. Moreover, this approach
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makes the classification process more complicated and limits the user’s choice of classifiers.
(3) Coupling terrain corrections into the interior of the classification algorithm [24]. This
method does not correct for the entire polarimetric SAR data (e.g., C3 matrix), but for a
feature used for fine classification. Therefore, only specific scenarios and specific classi-
fication methods can be applied. For example, the classification method for coniferous
and broad-leaved forests based on the parameters of the Stokes vector [24]. In contrast,
the method proposed in this paper is relatively independent in the PolSAR supervised
classification process, and the correction algorithm does not affect the user’s choice of
polarization features and classifiers at all. This is one of the advantages of our method. In
addition, the proposed method in this paper is theoretically applicable to polarimetric SAR
data of different frequencies because the underlying method for calculating the n value
in this paper is the minimum correlation coefficient method (Equation (9)), which does
not depend on the variation law of the scattering mechanism at a specific frequency [6].
However, it is definitely necessary to use more PolSAR data of other frequencies to verify
the effectiveness of the method proposed in this paper.

Moreover, for AVE correction, the core difficulty is the determination of the value of n
for three polarization channels, that is, a total of three unknown parameters. Although we
know that the value of n depends on the land cover types, radar frequency, and polarization
mode [6,15], it is difficult to determine the value of n suitable for the classification of PolSAR
based on this simple indication. For example, for the C-band PolSAR data in this paper, the
n value of forest type was around 0.8–1.2 (Equation (18)), and there were large differences
between different forest types, but not much between different polarizations. However,
for the L-band PolSAR data in [6], the n value of forest type was around 0.45, and the
difference between different polarizations was large. In this paper, we transformed the
problem of determining the value of n into a problem of determining the weight coefficient
matrix through the proposed new method. It should be noted that the number of unknown
parameters in the weight coefficient matrix is equal to the number of categories, which is
usually greater than 3. Nevertheless, the difficulty of determining the weight coefficient
matrix is much easier than directly determining the value of n. The main reason is that the
weight coefficient has a clear meaning than the value of n, that is, it represents the extent
to which the PolSAR data of a certain land cover type is affected by the terrain. When
the influence of terrain is small, the weight coefficient is small, and when the influence of
terrain is large, the weight coefficient is also large. In other words, the weight coefficient
reflects the influence of terrain on the final classification result. According to the method
proposed in this paper, users only need to master a small amount of prior knowledge (slope
angle, rough area of different classes, etc.) to determine the weight matrix. The sensitivity
analysis of Figure 14a can also help the user to set the weight matrix. For example, if
we assume that the area ratio of CP, LP, and CF + SG is 1:1:1, the corresponding weight
matrix is:

W =
CP LP CL BF CF SG[

0.33 0.33 0.00 0.00 0.17 0.17
] (21)

As can be seen from Figure 14a, the total classification accuracy corresponding to
Equation (21) was around 72.7%, which is also a good result.

In addition, a problem that needs to be noted is that the same combination of n-values
(Equation (13)) is used for different land cover types in the AVE correction. However,
different land cover types have their own optimal combination of n values, which is
Equation (10). What we need to pay attention to here is the application purpose of PolSAR
data. For classification applications, the combination of n values shown in Equation (13) is
to achieve better classification results of PolSAR data. For any single category, Equation (13)
obviously cannot achieve the optimal terrain correction effect. Therefore, for specific
applications of a single land cover type such as estimating the biomass of Chinese Pine, it
is necessary to use a combination of n-values of this type for AVE correction. In practice,
you can first use the method proposed in this paper to realize the supervision classification
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of land cover types, then re-complete the AVE correction according to specific categories
before finally carrying out specific applications for specific categories.

Last but not least, the disadvantage of the method proposed in this paper is that the
entire correction process is not automated enough, mainly because the weight coefficient
matrix still needs to be set manually. This problem will be improved in the future, perhaps
one feasible idea is as follows. First, the initial weight coefficient matrix can be automatically
given based on the sample and DEM data to realize the AVE correction and obtain the
initial classification result. Then, the weight coefficient matrix is updated according to the
initial classification result and other prior knowledge (e.g., slope information). Finally, the
total classification accuracy can be used as a constraint index, and the optimal classification
result of PolSAR is achieved by an iterative method.

6. Conclusions

In this study, we proposed an improved three-step semi-empirical radiometric terrain
correction approach. The main innovation lies in the improvement of AVE correction, that
is, making full use of the prior knowledge in supervised classification to make the new AVE
correction method suitable for PolSAR supervised classification. The proposed approach
was verified by GaoFen-3 QPSI PolSAR data.

Experimental results revealed the following findings: (1) After POA and ESA cor-
rection, the PolSAR data still contained an obvious AVE effect, which can be effectively
removed by the proposed method. (2) The proposed method is available and effective for
supervised classification of PolSAR data. Compared to the case without AVE correction,
the overall accuracy of PolSAR supervised classification improved by 9%, and the Kappa
coefficient improved by 0.11. For the two forest types distributed in mountainous areas in
the test area of this paper, AVE correction improved their classification accuracy (PA) by
about 20%. Obviously, AVE correction is an indispensable step of RTC for PolSAR classi-
fication over mountainous areas. (3) The experimental results of the sensitivity analysis
show that the proposed AVE correction method has certain robustness.

In the future, we will further enhance the degree of automation of the improved
three-step RTC approach, making it embedded in the supervised classification process of
PolSAR data without any user intervention. In addition, in this paper, only the C-band
PolSAR data were used to verify the effectiveness of the method. In future work, it is
necessary to use more PolSAR data of other frequencies for further verification.
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