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Abstract: Vibration dampers and insulators are important components of transmission lines, and it is
therefore important for the normal operation of transmission lines to detect defects in these compo-
nents in a timely manner. In this paper, we provide an automatic detection method for component
defects through patrolling inspection by an unmanned aerial vehicle (UAV). We constructed a dataset
of vibration dampers and insulators (DVDI) on transmission lines in images obtained by the UAV. It is
difficult to detect defects in vibration dampers and insulators from UAV images, as these components
and their defective parts are very small parts of the images, and the components vary greatly in terms
of their shape and color and are easily confused with the background. In view of this, we use the
end-to-end coordinate attention and bidirectional feature pyramid network “you only look once”
(BC-YOLO) to detect component defects. To make the network focus on the features of vibration
dampers and insulators rather than the complex backgrounds, we added the coordinate attention
(CA) module to YOLOv5. CA encodes each channel separately along the vertical and horizontal
directions, which allows the attention module to simultaneously capture remote spatial interactions
with precise location information and helps the network locate targets of interest more accurately.
In the multiscale feature fusion stage, different input features have different resolutions, and their
contributions to the fused output features are usually unequal. However, PANet treats each input
feature equally and simply sums them up without distinction. In this paper, we replace the original
PANet feature fusion framework in YOLOv5 with a bidirectional feature pyramid network (BiFPN).
BiFPN introduces learnable weights to learn the importance of different features, which can make the
network focus more on the feature mapping that contributes more to the output features. To verify
the effectiveness of our method, we conducted a test in DVDI, and its mAP@0.5 reached 89.1%, a
value 2.7% higher than for YOLOv5.

Keywords: vibration dampers; insulators; feature fusion; YOLOv5; defect detection; attention mecha-
nism

1. Introduction

Insulators and vibration dampers are exposed to the outdoor environment for long
periods of time, are subject to weather and high mechanical tension, and are therefore
likely to fail physically [1,2]. The primary function of insulators is to support wires and
prevent the current from returning to ground, and when insulators have problems such
as fractures or cracks, they are easily pierced, resulting in zero insulation resistance at
both ends of the insulator string. Insulation is then lost, leading to power interruptions
and outages [3]. The primary function of vibration dampers is to protect power lines
from wind-induced periodic vibrations, thus reducing accidents such as transmission line
fatigue and segmental strands [4]. When vibration dampers are exposed to the environment
for a long period, they tend to rust. Furthermore, rusting may cause the steel strands to
loosen, and the hammer head of the vibration dampers will then easily deform, slide, and
fall off [5,6], which affects power transmission. The timely detection and replacement
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of damaged insulators and vibration dampers can therefore guarantee the effective and
normal operation of the transmission lines.

Transmission line inspection is an important component of a power system, and the
most primitive form is manual inspection. However, traditional manual inspection requires
significant human and material resources, and the detection speed is slow. With the con-
tinuous development of science and technology, modern power line inspection involves
helicopter [7], robot [8], and unmanned aerial vehicle (UAV) inspection methods [9] rather
than the original manual methods. Of these, UAV inspection has gradually become an
important part of transmission line inspection due to its low cost, high efficiency, and
flexibility [10]. However, in the transmission line images taken by UAVs, the vibration
dampers are relatively small, and defects such as rust are easily confused with the back-
ground color. Although the insulators are much larger than vibration dampers, the location
of their self-destruction defect may only be a small piece, so it is also difficult to locate
on longer insulation strings in the remote sensing images. Moreover, the insulators and
vibration dampers are distributed in complex environments such as forests, houses, and
fields, making inspection challenging. The above problems are common in UAV inspection,
belonging to small target detection problems in computer vision. The existing methods are
insufficient for the accurate detection of insulators and vibration dampers; therefore, this
area needs to be further studied. The research we have conducted can be summarized in
the following two points:

• We construct a dataset of images of vibration dampers and insulators using remote
sensing images taken by UAVs, which we refer to as DVDI. There are three types of
insulators (XWP, LXY, and FXBW) and four types of vibration dampers (FD, FDZ,
FFH, and FR). Each type of vibration damper or insulator may have defects, or may be
normal.

• We propose a defect detection method for insulator and vibration dampers, named BC-
YOLO. We introduce the CA module into YOLOv5. This module embeds the location
information into the channel attention by decomposing the channel attention. The CA
module enhances the network’s ability to detect insulators and vibration dampers in
complex backgrounds. We use BiFPN instead of the original PANet feature fusion
framework to better balance the feature information at different scales by weighting
each scale. The BiFPN feature fusion framework enhances the network’s ability to
detect small targets such as vibration dampers.

The rest of this paper consists of the following chapters. Section 2 presents the relevant
literature on target detection. Section 3 introduces our dataset and gives an overview of
its pre-processing part. Section 4 introduces our proposed BC-YOLO network structure.
Section 5 presents the related experiments and analysis. Section 6 analyzes the confusion
matrix generated by training. Section 7 concludes the paper while suggesting future work.

2. Related Work

Tiantian et al. [11] proposed a feature fusion-based insulator detection method, which
consisted of a histogram of directional gradient features after principal component analysis
dimensionality reduction and local binary pattern features. Support vector machine (SVM)
fusion features were used to build the training model. The sliding window method was
used to search for candidate regions, and the non-maximum suppression method was
applied to fuse the candidate windows. Finally, the location of insulator strings was
calculated by linear fitting. In Reddy et al. [12], video monitoring technology is used
to obtain insulator images, and discrete orthogonal s-transform and k-means clustering
algorithms are used to determine the state of insulators. In Reddy et al. [13], the features
of the insulator are extracted by discrete orthogonal transformation, after which the state
of the insulator is estimated by SVM. Li et al. [14] based a tilt correction method on
principal component analysis, which enabled them to obtain accurate feature extraction
curves from insulator images. Five features were extracted from the feature curves, and
finally SVM was used to identify insulators with these five features. In Zhao et al. [15],
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insulators are located by azimuth angle detection and binary shape prior knowledge. The
possible orientation angles of the insulator are initially detected, and for each possible
angle, the insulator is retained according to its binary shape prior knowledge, and finally,
all possible angles are traversed to locate the insulator. Wu et al. [16] proposed a new
texture segmentation algorithm to segment complex insulator images into subregions with
closed, smooth contours. The texture features of the insulators were extracted using a gray
level co-occurrence matrix and calculated using a fast gray level co-occurrence integrated
algorithm. In Liao et al. [17], the insulators are located using the local features of the
insulators. Firstly, multi-scale and multi-features are introduced to represent the local
features of the insulators. After that, the local features of the insulators are trained, and
finally, the insulators are localized by a coarse-to-fine strategy. Jabid et al. [18] proposed
a new rotation-invariant insulator detection method. Rotational invariance was achieved
by an efficient method to estimate the rotation angle of all insulators in an image. Local
directional map features based on sliding windows were extracted from the images, and
each sliding window was classified using a support vector machine. Zhao et al. [19]
proposed a method for representing the appearance of insulator string infrared images
based on binary robust invariant scalable key points and vectors of local aggregation
descriptors. An SVM-based classification model was integrated into a multi-scale sliding
window framework for locating insulator strings in infrared images. Guifeng et al. [20]
proposed a swarm optimization clustering algorithm for insulator image segmentation.
Their method used an ant colony clustering algorithm for the clustering and segmentation
of insulator images. Images taken during a UAV inspection are of very high resolution,
but the insulators, and particularly the vibration dampers, on the transmission line are
relatively small. The above methods are not effective for the detection of small target objects
in high resolution images. In addition, vibration dampers may be easily confused with
trees in the forest due to their color, which makes the defect detection difficult.

With the rise of deep learning techniques, more and more people are conducting
target detection based on deep learning. The detection methods based on deep learning
can be divided into two main categories: single-stage methods (e.g., SSD and YOLO) and
two-stage methods (e.g., Faster-RCNN). In general, two-stage methods are not as fast as
single-stage methods, and have larger network weight files. Li et al. [21] proposed a method
for automatically detecting birds’ nests on transmission lines based on Faster-RCNN. The
problem of insufficient data samples was solved by zooming in on the bird nest images.
Wanguo et al. [22] chose a candidate region-based SSD algorithm for defect localization
and identification. The problem of insufficient samples is solved by horizontal mirroring
and multi-scale training, and the network parameters are adjusted to select the appropriate
network parameters for transmission line defect detection. Wu et al. [23] proposed a
CenterNet-based insulator defect detection method. Blurred images are reconstructed using
super-resolution in the data pre-processing part to enhance the dataset, while attention
mechanisms are used in the net to reduce the interference of the background. Wu et al. [24]
proposed an improved YOLOv3 algorithm for the detection of electrical connector defects.
First, the K-means clustering algorithm was used to cluster the dataset and improve the
detection accuracy of the defective targets. Then, single-scale feature mapping was used
for detection rather than multi-scale prediction as in the original network, which not only
reduced the computational effort, but also avoided false detection to some extent. Bao
et al. [25] proposed a YOLOv4-based PMA-YOLO network, which adds parallel mixed
attention (PMA) to the YOLOv4 network to make the network more focused on the target
information. In addition, the K-means algorithm is introduced to re-cluster the anchor of
vibration dampers. Finally, a multi-stage migration learning strategy is used to improve
the training efficiency.

The YOLO series of target detection networks is a popular one-stage object detection
method, which has made great progress in target detection by directly predicting the class
and location of various objects using separate CNN networks. Compared with Regions
with Revolutionary Neural Networks (RCNN) series object detection methods, YOLOv5
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achieves a balance between detection speed and accuracy. In particular, YOLOv5 uses the
most advanced optimization strategies in the field of CNNs, which is based on an iteration
of the original YOLO series. Different degrees of optimization have been applied to data
pre-processing, backbone networks, activation functions, training strategies, and anchor
clustering, among others. So YOLOv5 is more suitable as a rapid benchmark network for
detecting defects in insulators and vibration dampers on transmission lines. However, due
to the high resolution of the remote sensing images taken by UAVs, the size of the target
represented by the vibration dampers is small, and there is a large difference between the
vibration dampers and insulator in size. Therefore, in this paper, a CA module is added
to the structure of the backbone, and the original PANet module is replaced with Bi-FPN
to improve the detection accuracy of the network. The BC-YOLO network can detect four
transmission line defects (normal and damaged insulators, and normal and dislodged
vibration dampers), with a mAP@0.5 reaching 89.1%.

3. Dataset

In this paper, we construct a dataset containing insulators and vibration dampers,
called DVDI. All of the images in the dataset were taken by UAVs during overhead trans-
mission line inspections by the Chinese Academy of Electric Power. The filming equipment
used during the transmission line inspection was a UAV manufactured by DJI, model
Phantom 4 Pro V2.0. The UAV maintains a distance of about 10 m from the transmission
tower during each power inspection. The UAV model and the image during the inspection
are shown in Figure 1.
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Figure 1. (a) Phantom 4 Pro V2.0 UAV; (b) UAV inspection shooting data.

3.1. DVDI Dataset

There are many types of insulators and vibration dampers on transmission lines, and
the corresponding type is chosen according to the usage scenario. For the most common
vibration dampers, there are four types (FD, FDZ, FDY, and FFH), as shown in Figure 2.
There are three common types of insulators (FXBW, LXY, and XWP), as shown in Figure 3.
The DVDI dataset includes normal and defective vibration dampers as well as normal and
defective insulators, as shown in Figure 4.



Remote Sens. 2022, 14, 5176 5 of 23

Remote Sens. 2022, 14, 5176 5 of 23 
 

 

3. The DVDI dataset includes normal and defective vibration dampers as well as normal 

and defective insulators, as shown in Figure 4. 

 

(a) (b) (c) (d) 

Figure 2. Four common types of vibration dampers: (a) FD; (b) FDZ; (c) FDY; (d) FFH. 

   

(a) (b) (c) 

Figure 3. Three common types of insulators: (a) FXBW; (b) LXY; (c) XWP. 

 

(a) 

Figure 2. Four common types of vibration dampers: (a) FD; (b) FDZ; (c) FDY; (d) FFH.

Remote Sens. 2022, 14, 5176 5 of 23 
 

 

3. The DVDI dataset includes normal and defective vibration dampers as well as normal 

and defective insulators, as shown in Figure 4. 

 

(a) (b) (c) (d) 

Figure 2. Four common types of vibration dampers: (a) FD; (b) FDZ; (c) FDY; (d) FFH. 

   

(a) (b) (c) 

Figure 3. Three common types of insulators: (a) FXBW; (b) LXY; (c) XWP. 

 

(a) 

Figure 3. Three common types of insulators: (a) FXBW; (b) LXY; (c) XWP.

Remote Sens. 2022, 14, 5176 5 of 23 
 

 

3. The DVDI dataset includes normal and defective vibration dampers as well as normal 

and defective insulators, as shown in Figure 4. 

 

(a) (b) (c) (d) 

Figure 2. Four common types of vibration dampers: (a) FD; (b) FDZ; (c) FDY; (d) FFH. 

   

(a) (b) (c) 

Figure 3. Three common types of insulators: (a) FXBW; (b) LXY; (c) XWP. 

 

(a) 

Figure 4. Cont.



Remote Sens. 2022, 14, 5176 6 of 23Remote Sens. 2022, 14, 5176 6 of 23 
 

 

 

(b) 

Figure 4. (a) Examples of normal and defective vibration dampers; (b) examples of normal and de-

fective insulators. 

After screening, there were a total of 976 UAV remote sensing images, which con-

tained complex backgrounds with areas such as trees, forests, and mountains, as shown 

in Figure 5. It can be seen from these images that the colors of some insulators and vibra-

tion dampers mean that they are easily confused with the background, and they are there-

fore not easy to detect. 

Figure 4. (a) Examples of normal and defective vibration dampers; (b) examples of normal and
defective insulators.

After screening, there were a total of 976 UAV remote sensing images, which contained
complex backgrounds with areas such as trees, forests, and mountains, as shown in Figure 5.
It can be seen from these images that the colors of some insulators and vibration dampers
mean that they are easily confused with the background, and they are therefore not easy to
detect.
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Figure 5. Partial images with vibration dampers and insulators.

3.2. Data Pre-Processing

There are 976 vibration damper and insulator images in the DVDI dataset. In order
to improve the generalization ability of the models, the data augmentation techniques are
often used in deep convolutional networks. These images are rotated 12◦ and 180◦, and
flipped horizontally to obtain the images of defective insulators and vibration dampers
from different perspectives. The number of images in the DVDI is increased to 1500 after
augmentation. The process of power inspection is affected by the intensity of the light, and
insulators and vibration dampers often appear against complex mountainous backgrounds.
The dual effects of light intensity and a complex environment can cause false detections
and missed detections, and we therefore enhanced the contrast of the detected images to
improve the overall quality. For this purpose, we used a gamma transform [26] to enhance
the contrast of the image, specifically to correct images with too much or too little gray.
The transformation formula is shown in Equation (1), and is a product operation that is
applied to each pixel value in the original image. When γ > 1, this has a stretching effect on
the histogram of the gray distribution of the image (making the grayscale stretch toward a
high gray value), while a value of γ < 1 has a shrinking effect on the histogram of the gray
distribution of the image (making the grayscale move toward a low gray value). Examples
of pre-processed images are shown in Figures 6 and 7.

s = cyγ (1)
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3.3. Data Annotation

We used LabelImg as a labeling tool for the insulators and vibration dampers. The
labeling rules were as follows: if an insulator was normal, it was labeled as 1, while if
there was damage, it was labeled as 2. If a vibration damper was normal without serious
bending, it was labeled as 3, while if there was shedding or serious bending, it was labeled
as 4. An example of partial image annotation is shown in Figure 8. The labeled data were
stored in Pascal VOC [27] format, and the labeled file format was XML. After that, we
divided our dataset into a training set, validation set, and test set in the ratio of 6:2:2. The
number of annotations for each class is shown in Table 1.
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Table 1. Label numbers per class.

Classes Number

1 (normal insulators) 2252
2 (damaged insulators) 632

3 (normal vibration dampers) 3610
4 (damaged vibration dampers) 636

4. Method
4.1. YOLOv5 Network Architecture

YOLOv5 is a single-stage target inspection method that locates and classifies targets by
directly regressing the relative positions of candidate boxes. YOLOv5 is the latest network
in a series of several iterations of the original YOLO model. Various improvements have
been made in terms of data pre-processing, feature extraction, and feature fusion, have
been made to greatly improve the detection accuracy of the network. A diagram of the
structure of the original YOLOv5 is given in Figure 9. It has three main parts: a backbone,
neck, and head. The backbone contains C3, CBL, Focus, and spatial pyramid pooling (SPP)
modules [28] to extract features from the input image and pass them to the neck layer. The
CBL module is composed of Convolution, Batch Normalization, and Leaky Rule functions.
The C3 module splits the input into two branches, one passing through the CBL first and
then through the residual structure. After the other branch passes through the CBL, concat
combines the outputs of the two branches. The SPP module is a multi-scale feature fusion
stage that uses four different sizes of maximum pooling. The Focus module is a slicing
operation of the image, preserving more complete information about the down-sampling
of the image for subsequent feature extraction. A detailed diagram of the C3, CBL, Focus,
SPP module is shown in the last panel of Figure 9. The neck layer exploits the structure of
PANet [29] to produce feature pyramids. The algorithm enhances the detection capability
of targets at different scales by the bidirectional fusion of low-level semantic space and
high-level semantic features. The head layer consists of an anchor frame that is applied to
the multi-scale feature map of the neck module that generates detection frames and divides
them into corresponding categories, coordinates, and confidence levels.
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4.2. Architecture of the BC-YOLO Network

The remote sensing images taken by UAVs during power inspections have complex
backgrounds, and the different types of insulators and vibration dampers may have varying
fault shapes and sizes. Existing methods cannot achieve accurate detection and classifi-
cation of insulators and vibration dampers at the same time. Therefore, we improve on
YOLOv5 and propose the BC-YOLO network. In the backbone module, we introduce a
CA [30] mechanism, which can help the network to locate the detection target more accu-
rately, thus reducing the interference of target background information. In the neck module,
we introduce Bi-FPN [31] to replace the original PANet, which enhances the detection
capability of the network for small targets such as vibration dampers by adding weights
to each scale to adjust the contribution of each scale. A diagram of the structure of the
YOLOv5 is given in Figure 10.
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4.2.1. Attention Mechanism Module

The attention mechanism emerged to make the network more focused on the target
information of the current task and less on other information. However, traditional attention
mechanisms such as squeeze-and-excitation (SE) [32] only consider the channel information,
where location information is equally important in visual targets. In view of this, the
convolutional block attention module (CBAM) [33] was derived from SE, and aims to
introduce location information through the use of global pooling on the channels. However,
this approach can only capture local information, and cannot obtain long-range-dependent
information. After several convolution layers, each position of the feature maps contains
information about a local area of the original image, and CBAM is used as a weighting
factor by taking the maximum and average values of multiple channels for each position,
meaning that this weighting only takes into account the information on the local area. In
contrast, CA attention avoids the introduction of a larger overhead by embedding the
location information into the channel attention, thus allowing the mobile network to obtain
information about a larger area. We therefore introduce a CA attention mechanism to
improve the detection performance of our network. To solve the problem of position loss
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due to global average pooling, we efficiently integrate spatial coordinate information by
decomposing channel attention into two parallel 1D feature encodings. Specifically, in
order to focus attention on the height and width of the image and to encode the precise
location information, the input features are divided into two directions, height and width,
for global averaging pooling to obtain feature maps in both the height and width directions,
respectively, as shown in Equations (2) and (3). The feature maps in the height and width
directions of the obtained global perceptual field are then stitched together, after which they
are fed into the convolution module with a shared convolution kernel of 1 × 1. Following
this, the batch-normalized feature map F1 is fed into the sigmoid activation function to
obtain f, as shown in Equation (4). The feature map f is then convolved with a convolution
kernel of 1 × 1 according to the original height and width, and the attention weights in
the height and width directions are obtained after the activation function, as shown in
Equations (5) and (6). Finally, the attention weights in the height and width directions and
the original feature map are calculated by multiplying and weighting to obtain feature
maps with attention weights in the width and height directions, as shown in Equation (7).
The structure of the coordination of the attention mechanism is shown in Figure 11.

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (2)

zw
c (h) =

1
H ∑

0≤j≤H
xc(j, w) (3)

f = δ
(

F1

([
zh, zw

]))
(4)

gh = σ
(

Fh

(
f h
))

(5)

gw = σ(Fw( f w)) (6)

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (7)
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4.2.2. Feature Fusion-Enhanced BiFPN

Feature pyramids emerged as a feature fusion framework that was derived to detect
objects at different scales. However, the traditional structures of feature pyramids such as
FPN (feature pyramid network) [34] and PANet add up different input features when fusing
them. Since these different input features have different resolutions, the contributions of
these features to the fused features usually vary. To solve this problem, we adopt BiFPN, a
feature fusion framework, and replace the original PANet with BiFPN in the neck module.
The main improvement made at this stage is to remove any node with only one input edge,
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since without feature fusion, this will contribute less to the feature network with different
feature fusion. Secondly, if the original input node is at the same level as the output node,
the amount adds an extra edge between the input node and the output node to fuse more
features without adding too much cost.

PANet simply adds up the different features when fusing them, as shown in Equations
(8) and (9). Since the resolution of different input features is different, the contribution
to the input features is usually also different. To solve this problem, BiFPN adjusts the
contribution of each scale by adding weights to each scale feature. We take the features of
the middle layer as an example, and describe the two fusion features of BiFPN at level 2,
where Ptd

2 is the intermediate feature at level 2 of the top-down path and Pout
2 is the output

feature at level 2 of the bottom-up path, as shown in Equations (10) and (11). All of the
other features are constructed similarly. It is worth noting that BiFPN uses a depthwise
separable convolution for feature fusion and adds batch normalization and activation after
each convolution. The principle of operation of PANet and BiFPN is illustrated in Figure 12.

Ptd
2 = Conv

(
Pin

2 + Resize
(

Pout
3
))

(8)

Pout
2 = Conv

(
Ptd

2 + Resize
(

Pout
1
))

(9)

Ptd
2 = Conv

(
ω1Pin

2 +ω2Resize(Pin
3 )

ω1+ω2+ε

)
(10)

Pout
2 = Conv

(
ω′1Pin

2 +ω′2Ptd
2 +ω′3Resize(Pout

1 )
ω′1+ω′2+ω′3+ε

)
(11)

Remote Sens. 2022, 14, 5176 13 of 23 
 

 

 

Figure 12. Diagram of the structure of PANet and BiFPN. 

4.3. Proposed Framework 

Figure 13 illustrates the framework of our transmission line defect detection method. 

The framework consists of data acquisition, pre-processing, and the BC-YOLO network 

testing module. We use remote sensing images taken during UAV power inspections to 

construct a dataset of vibration dampers and insulators called DVDI. 

The specific steps in the transmission line defect detection process are as follows: 

1. Remote sensing images of transmission lines are taken by the UAV during a power 

inspection. 

2. The images are pre-processed using the gamma transform, and the defect dataset is 

expanded by rotational mirroring. 

3. LabelImg is used to label the dataset, and the categories and boxes of insulators and 

vibration dampers are saved in an XML file. 

4. The dataset is divided into a training set, validation set, and test set in the ratio of 

6:2:2, and the resolution of the images is adjusted to 416 × 416 after feeding into the 

network. 

5. The divided dataset is trained using BC-YOLO. 

6. The loss function is observed during training, and the network weights are saved 

when the loss is minimized. 

7. The saved network weights are used to detect insulators and vibration dampers with 

anomalies. 

Figure 12. Diagram of the structure of PANet and BiFPN.



Remote Sens. 2022, 14, 5176 13 of 23

4.3. Proposed Framework

Figure 13 illustrates the framework of our transmission line defect detection method.
The framework consists of data acquisition, pre-processing, and the BC-YOLO network
testing module. We use remote sensing images taken during UAV power inspections to
construct a dataset of vibration dampers and insulators called DVDI.

The specific steps in the transmission line defect detection process are as follows:

1. Remote sensing images of transmission lines are taken by the UAV during a power
inspection.

2. The images are pre-processed using the gamma transform, and the defect dataset is
expanded by rotational mirroring.

3. LabelImg is used to label the dataset, and the categories and boxes of insulators and
vibration dampers are saved in an XML file.

4. The dataset is divided into a training set, validation set, and test set in the ratio of
6:2:2, and the resolution of the images is adjusted to 416 × 416 after feeding into the
network.

5. The divided dataset is trained using BC-YOLO.
6. The loss function is observed during training, and the network weights are saved

when the loss is minimized.
7. The saved network weights are used to detect insulators and vibration dampers with

anomalies.
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5. Experimental Results and Analysis
5.1. Experimental Environment and Parameters

The software environment and hardware parameters we used during the experiment
are shown in Table 2.
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Table 2. Software and hardware configuration of the experimental environment.

Platform Configuration

Integrated development environment PyCharm
Scripting language Python3.8

Deep learning frame
CPU model

Operating system
GPU model

GPU accelerator
Neural network accelerator

PyTorch1.9.1
Inter Core i7-9700k

Ubuntu18.04 LTS 64-bits
NVIDIA GeForce RTX 2080Ti

CUDA 10.2
cuDNN7.6.5

The parameters of our experiments in training BC-YOLO are shown in Table 3.

Table 3. BC-YOLO experimental training parameters.

Parameter Configuration

Neural network optimizer SGD
Learning rate

Training epochs
Momentum
Batch size

Weight decay

0.01
300

0.937
4

0.0005

5.2. Performance Evaluation Index

In this paper, we use the Precision, Recall, Average Precision, and Mean Average
Precision as evaluation indices for the network performance. The Recall rate represents
how many true positive samples are retrieved by the network compared to the total number
of positive instances, and is calculated as shown in Equation (12). Precision indicates how
many of the predicted positive samples are positive, and the calculation method is shown
in Equation (13). The AP is the area of the region enclosed by the Precision–Recall (P-R)
curve and the coordinate axis, which is calculated as shown in Equation (14). The mAP is
the average accuracy, which measures the overall detection effect of the network, as shown
in Equation (15). The confusion matrix is given in Table 4.

Table 4. Confusion matrix.

True False

Positive TP FP
Negative NT FN

TP is predicted by the network as a positive sample of positive class, FP is predicted by the network as a negative
sample of positive class, FN is predicted by the network as a positive sample of negative class, and TN is predicted
by the network as a negative sample of negative class.

Recall = TP
TP+FP (12)

Precision = TP
TP+FN (13)

AP =
∫ 1

0 P(R)dR (14)

mAP = ∑i=n
i=0 AP

n
(15)

5.3. Results and Analysis
5.3.1. Comparative Experiments on Attention Mechanisms

In this paper, we compare the three common attention mechanisms of SE, CBAM, and
CA, which are commonly used in target detection tasks, and the results are shown in Table 4.
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The three attention mechanisms are consistent in the positions they add in the YOLOv5
network. There are four versions of the YOLOv5 detection network, namely YOLOv5x,
YOLOv5l, YOLOv5m, and YOLOv5s. The model used in this paper is YOLOv5x, which has
the highest accuracy among the four versions. Firstly, adding the SE attention mechanism
to the backbone improves the Recall by 1.9 points and the mAP by 1.9 points compared to
the original YOLOv5x. Secondly, when the CBAM attention mechanism is added, the Recall
is improved by 1.9 points and the mAP by 1.6 points. Finally, adding the CA attention
mechanism improves the Recall by 4.1 points and the mAP by 2.0 points. From the results
shown in the Table 5 below, we see that the effect of CA is the most significant.

Table 5. Effects of different attention mechanisms on network performance.

Baseline SE CBAM CA Recall(%) Precision(%) mAP(%)

YOLOv5x
√ 82.7

84.6
89.9
88.1

86.4
88.3√

84.6 87.4 88.0√
86.8 88.0 88.4

We use heat maps to visualize the output feature maps for adding different attention
mechanisms, as shown in Figure 14. From the results shown in the heat map of Figure 14,
the network module with the CA mechanism detects the critical parts of transmission line
detection more accurately than with SE or CBAM.
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5.3.2. Comparison of Experiments That Add Different Modules

In this experiment, we first used YOLOv5x as a baseline and tested the effect of adding
the new feature pyramid BiFPN. The results showed that the mAP was improved by 1.8
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points, and Recall by 2.7 points. This indicates that the new feature fusion can effectively
fuse more feature layers. At the same time, in the process of feature fusion, the network
pays more attention to the input features with great contribution, which enhances the
learning ability of the model. In the second test, we compared the addition of the CA
attention mechanism. The results showed that the mAP increased by two points and
Recall by 4.1 points compared to the original baseline, which indicates that adding the
attention mechanism to the backbone can effectively help the network to capture important
information and long-distance dependencies when extracting features. Finally, the effect of
fusing BiFPN and CA was explored, and the results showed that the mAP improved by 2.7
points and Recall by 4.0 points compared to the original baseline, meaning that the fusion
of BiFPN and CA can effectively improve the accuracy of transmission line defect detection.
The network detection results are presented in Table 6.

Table 6. Effect of each module on network performance.

Baseline BiFPN CA Recall(%) Precision(%) mAP(%)

YOLOv5x

82.7 89.9 86.4√
85.4 87.3 88.2√
86.8 88.0 88.4√ √
86.7 86.2 89.1

5.3.3. Comparison of Different Object Detection Networks

To further verify the advantages of our method, we compare it with SSD [35], Reti-
naNet [36], CenterNet [37], and YOLOv4 [38] methods, and the detection results are shown
in Table 7. Our method outperformed the other methods for all classes of mAP, especially
for small targets such as vibration dampers. This is due to the small sizes of the numerous
vibration damper targets, some of which are easily confused with forests, fields, and dead
leaves due to their color, making it difficult for general target detection methods to detect
them. In contrast, the methods used in the YOLO series can effectively handle detection
tasks involving large differences in target sizes. When the CA mechanism and the new
Bi-FPN feature fusion method were added, the accuracy of all categories improved signifi-
cantly, indicating that this module can effectively improve the detection accuracy of the
network. A visualization of the test results for each type of method is shown in Figure 15.

Table 7. Detection results for some mainstream object detection networks.

Method 1(AP) 2(AP) 3(AP) 4(AP) mAP(%)

SSD 73.0 81.0 22.0 47.0 55.86
RetinaNet 78.0 78.0 26.0 36.0 54.37
CenterNet 85.0 85.0 52.0 59.0 70.33
YOLOv4 87.0 78.0 74.0 83.0 80.26

YOLOv5x 88.4 87.0 82.9 87.4 86.4
Proposed method 90.0 89.2 84.3 92.7 89.1
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6. Discussion

The confusion matrix is a standard form of representing the accuracy evaluation, also
known as the error matrix, and is represented by an n × n matrix form. A confusion matrix
was obtained from our training results after normalization, as shown in Figure 16, where
each row represents the true attribution category of the data and each column represents
the category predicted by the network. The total amount of data in each row represents
the total amount of true data in that category, and the values in each column represent the
number of categories predicted by the network for that category.
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From the confusion matrix, it can be seen that the detection of defects in both insulators
and vibration dampers is affected by the background; the vibration dampers are influenced
more strongly by the background than the insulators, as the latter are larger and less likely
to be obscured. The color of an insulator is less likely to be confused with the background
color, and there is therefore less interference from the background. In contrast, the vibration
dampers are easily obscured by transmission towers, transmission lines, and buildings
due to their small size. The number of vibration dampers is also large, and since they are
easily confused with the background color, this causes certain difficulties in detection. In
particular, normal vibration dampers are easily confused with dead leaves, houses, and
forests, and the background therefore has more influence on the normal vibration dampers
than the defective ones. Due to the excessive number of insulator pieces in some insulator
strings, their damage may not be easily detected and therefore may be mistaken for normal
insulators.
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Although the detection accuracy of defective vibration dampers and insulators images
is improved using the method proposed in the paper, a few defective vibration dampers
were still missed. Some examples are shown in Figure 17. In Figure 17a, the missed
detection of the defective vibration dampers is caused by the fact that their color is very
close to the color of the land. In Figure 17b, a defective vibration damper is partially
occluded, so it is also undetected. Therefore, occlusion and similar color are the main
reasons for missed detection, which are also the limitations of the proposed method.
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7. Conclusions

To accurately detect insulators and vibration dampers on transmission lines with a
complex background, in low light, and with large size differences between targets, we
have proposed an optimized version of YOLOv5 through the use of methods such as a CA
mechanism and Bi-FPN enhanced feature fusion, to develop the BC-YOLO insulator and
vibration damper defect detection method. The findings of this paper can be summarized
in the following three points: (i) the datasets used in the experiments contained pictures
of multiple types of insulators and vibration dampers, taken during the power inspection
process; (ii) a CA mechanism is added to the feature extraction module of YOLOv5, which
allows the mobile network to obtain information about a larger area without introducing a
larger overhead by embedding the location information into the channel attention; (iii) for
the case of insulators and vibration dampers with large differences in size, we introduce
Bi-FPN, based on the original feature fusion method, which can effectively improve the
efficiency of feature fusion and improve the detection accuracy of small targets. Through
an experimental comparison, it was found that the mAP@0.5 for BC-YOLO reached 89.1%
on the test set of the DVDI, a value 2.7% higher than for YOLOv5.

In future research, we will collect additional data on defective insulators and vibration
dampers taken during UAV inspections, and will expand the types of defects for the
insulators and vibration dampers, which will allow the network to be adapted to the
detection of insulators and vibration dampers with various types of defects. We will also
investigate how to compress the model as a way to increase the detection speed while
maintaining the detection accuracy of the model.
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