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Abstract: Calibration and reconstruction of time series DMSP-OLS nighttime light images are critical
for understanding urbanization processes and the evolution of urban spatial patterns from a unique
perspective. In this study, we developed an improved stepwise calibration (ISC) method based
on numerical constancy to correct and reconstruct the time series of China’s regional nighttime
light data, thus eliminating the drawbacks of the invariant target region method. We evaluated
the different calibration methods and quantitatively validated the calibrated nighttime light data
using gross domestic product (GDP) and electricity consumption (EC) at municipal, provincial, and
national scales. The results indicated that the ISC method demonstrated its advantage in screening
stable lit pixels and maintaining the temporal variability of multi-year nighttime light variation.
The variation curve of reconstructed multi-year nighttime light obtained by the ISC method based
on numerical constancy was more consistent with the actual urban development. The ISC method
retained the original data’s most abundant and complete information than other calibration methods.
Moreover, the significant advantages of this method in the low-light high-variation regions and
high-light low-variation regions offered new possibilities for understanding the development of
small- and medium-sized nighttime light centers such as towns and villages from a nighttime light
perspective. This is an advantage that other calibration methods do not offer. The correlation between
the multi-year nighttime light dataset obtained by the ISC method and the socio-economic data
was significantly improved. The correlation coefficients with GDP and EC are 0.9695 and 0.9923,
respectively. Last but not least, the ISC method is more straightforward to implement. The new
framework developed in this study produces a more accurate and reliable long time series nighttime
light dataset and provides quality assurance for subsequent research in socio-economic development,
urban development, natural disasters, and other fields.

Keywords: DMSP-OLS; nighttime light data; improved stepwise calibration; time series images;
reconstruction

1. Introduction

Since the Operational Linescan System (OLS) was issued and used by the Defense
Meteorological Satellite Program (DMSP) in the 1970s, the stable nighttime light images
have been widely used for monitoring socio-economic development [1–3], urban devel-
opment [4,5], natural disasters [6,7], environmental quality [8], and the effects of war
and disease in regional scales [9,10]. Although DMSP is not a professional nighttime
light remote sensing satellite, it has the advantages of providing high spatial resolution
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(1km × 1km), long-period (1992–2013), and global spatial coverage data. Compared with
traditional statistical data, DMSP is time-sensitive and economical to serve as an ideal
data source for related studies. The first application of DMSP-OLS nighttime light data
was reported by Elvidge et al., who used the DMSP-OLS nighttime light data to obtain
the lit area and explored the development potential of nighttime light data in estimating
socio-economic parameters [11]. Since then, nighttime light images have been widely used
in social, environmental, and economic fields [12–14]. Furthermore, nighttime light images
were inherently associated with human activity and urban development. In recent years as
the quality of nighttime light images responding to urban evolution improved, DMSP-OLS
nighttime light data has been widely applied to monitor urbanization [15–17].

However, previous studies found that long time series DMSP/OLS nighttime light data
has poor continuity and stability at spatial and temporal scales [18,19]. Additionally, the
uncalibrated processed data are not directly comparable [20,21]. Currently, the DMSP/OLS
data have the following drawbacks:

• Due to the lack of spaceborne radiant calibration of the OLS sensor, the total DN value
of lit pixels in consecutive years obtained by the same sensor has abnormal fluctuation.
There are many unstable lit pixels between images in the same sensor in successive
years [22,23].

• As the performance of sensors degrades over time and the image acquisition is in-
terfered with by many factors, the total DN values of lit pixels obtained by different
sensors in the same year are different, and the DN values of lit pixels at the same
location are different [24,25].

• The long time series DMSP-OLS images of 34 periods are obtained from 6 sensors
(F10–F18). The differences in detection performance of different sensors lead to incon-
sistent and poor data continuity between various sensors and large fluctuations and
poor data stability within their respective sensors. These make the data incomparable
among years [26].

Given the above problems of DMSP/OLS data, various methods such as inter-sensor
mutual calibration, intra-sensor continuity calibration, and inter-annual calibration have
been proposed to obtain a long time series of nighttime light image sets with higher
accuracy, better continuity, and stability. The invariant target region method proposed by
Elvidge et al. applies to the calibration of nighttime light images on a global scale [23].
As the most commonly used method in the nighttime light data calibration, this method
corrects the nighttime light images by selecting certain fixed regions as the invariant target
region and defaulting the DN value of its lit pixel does not result in change in the time
sequence. Since then, scholars have derived many improved methods at regional and field
scales [21,27]. Nevertheless, the DN value of lit pixels in certain fixed regions cannot remain
unchanged during a long time series according to the law of urbanization development. For
studies in the same region, scholars choose the invariant target region differently, making
the calibrated nighttime light data results differ significantly [5,25].

Since then, Liu et al. proposed a new method for nighttime light image calibration
in China by referring to the invariant target region method and effectively reducing the
anomalous differences of stable lit pixels [5]. This method is widely used in urban expansion
monitoring [28]. However, it has been shown that the nighttime light data obtained from
this method does not correlate well with GDP, leading to low efficiency in explaining
social economy and urbanization [29]. Li et al. proposed a stepwise calibration method to
make the nighttime light dataset more consistent with temporal trends by systematically
improving the underestimation and overestimation of the nighttime light images in specific
satellites and years [21]. The nighttime light time series curves processed by this method
have apparent advantages in correlation with socio-economic parameters. Still, the stepwise
calibration method calibrates for the global scale, and the application effect of the regional
scale is insignificant. Currently, the calibration research of nighttime light data focuses on
improving the calibrated data quality.



Remote Sens. 2022, 14, 4405 3 of 17

Several drawbacks limit the development of the relevant research to a certain extent,
for example, apparent inconsistency of the data results after calibration by different cali-
bration methods. Therefore, we proposed an improved stepwise calibration (ISC) method
to calibrate all the nighttime light images of Chinese regions to overcome these draw-
backs. Meanwhile, we applied this method to construct the 1992–2013 Chinese regional
DMSP-OLS nighttime light calibration image set with higher accuracy, efficiency, and con-
sistency. This method provides possibilities to understand the development of small- and
medium-sized nighttime light centers such as towns and villages from a nighttime light
perspective and facilitates the explanation of the deeper reasons affecting socio-economic
development. Our study could provide new implications for many fields, such as social
economy, urban development, public safety, energy and environmental protection, and
ecological environment management.

2. Materials

The DMSP-OLS non-radiation calibration annual stable nighttime light remote sensing
data provided by NOAA/NGDC was used to conduct this research. The dataset was
obtained from six sensors (F10–F18) from 1992 to 2013. All images were calibrated with
the WGS-84 coordinate system at a spatial resolution of 30 arc-second (about 1 km near the
equator and 0.8 km at 40◦N) and with a DN value range of 0–63. Each image is a year-round
composite with global coverage. All images were downloaded from the NGDC website
(https://www.ngdc.noaa.gov/eog/download.html last access: accessed on 10 May 2022).
A total of 34 nighttime light images were used to obtain a national-covered image in
China. The total DN values of nighttime light of each period of the images were calculated
separately to construct the trend of long-term series nighttime light images, as shown in
Figure 1.
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In addition, GDP and electricity consumption (EC) datasets were obtained from
the China Statistical Yearbook, provincial public information, and the World Bank (http:
//data.worldbank.org/ last access: accessed on 10 May 2022).
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3. Methods

In this study, two principles were followed when we pre-processed the DMSP-OLS
nighttime light data: (1) the lit pixels in the previous year’s image should remain lit at the
same position as the following year’s image. Additionally, the DN values of lit pixels in the
last year should not be greater than the DN value of lit pixels at the same position in the
next year [25]. (2) The lit pixels of the same year acquired by different sensors should be
consistent in quantity, geographical location, and the DN value of the same pixel [5,22]. If
the above two principles are not satisfied, it is considered an instable lit pixel with abnormal
nighttime light in the DN value. The flowchart of the improved stepwise calibration (ISC)
method is shown in Figure 2.
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Figure 2. The flowchart of the improved stepwise calibration (ISC) method.

The flowchart clearly shows the ISC data processing flow. Step 3 is the key to the
whole calibration process. From the perspective of numerical constancy, we propose the
constant lit pixels method to perform the hybrid calibration for F16. This is the core of the
ISC method. The calibrated nighttime light data retain the most abundant and complete
information in the original data. The time series curves have better stability and continuity,
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and the trend was more consistent. The following subsections describe each step of the ISC
method in detail.

3.1. Step 1: Systematic Calibration of F12

First, we adjusted the systematic overestimation of F12 so that the trend of the total
DN value of lit pixels was consistent with that of F10 and F14. Here, we assumed that the
total DN values of lit pixels of F10 and F14 were reliable for several reasons: (1) from the
acquisition years of F10 and F12, there are no other overlapping years except 1994, which is
the last year of F10 sensor operation and the first year of F12 sensor operation, respectively.
If the F10 and F12 sensors are used as the reference to reconstruct the nighttime light time-
series curves, the system consistency is inevitably limited, and high inconsistency between
F10 and F12 can be expected [27]; (2) the variation trend of the total DN value of F14 lit
pixels is more stable and less volatile than that of F12 lit pixels. Thus, F10 and F14 were
selected as the calibration benchmarks to align with the actual changes in nighttime light.

In the study of mutual calibration, we adopted backwards calibration in the calibration
process, considering the degradation of the sensors’ performance. The backward calibration
of F12 using F10 obtained the minimum error and made the total DN values of lit pixels
between F12 and F14 closer after calibration. If F14 was used for forwarding correction of
F12, the total DN values of the calibrated F12 lit pixels were much higher than that of F10
in 1994, resulting in poor data continuity. To sum up, we used a second-order regression
model to construct the relationship between F10 and F12, as shown in Equation (1):

DNre f = aDN2 + bDN + c (1)

where DNref and DN represent the DN value of lit pixels derived from F10 and F12,
respectively; a, b, and c are the fitting parameters of the second-order regression model.
The obtained fitting parameter and the variation trend of the total DN value of calibrated
lit pixels are shown in Figure 3.
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3.2. Step 2: F14-Based F15 Inter-Calibration

Compared with the overlapping years of F14, we found that the variation trend of
the total DN value of F15 lit pixels was volatile before 2003 (Figure 1), and abnormal data
fluctuations led to poor availability in F152000–2002. Furthermore, the total DN values
of F152003–2007 lit pixels were systematically underestimated [5]. In order to maintain
consistency with the trend of nighttime light changes during the historical period, we
constructed a second-order regression model using the DN values of the lit pixels of
F142003 and F152003. The DN values of the lit pixels with the minimum mutual error
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among the overlapping years were used as the calibration benchmark, and the obtained
model fitting parameters were used to calibrate the systematic underestimation in the F15
back-end data (2003–2007). The obtained fitting parameters and the variation trend of the
total DN value of calibrated lit pixels are shown in Figure 4.
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3.3. Step 3: A Hybrid Calibration of F16

Observing the trend of the total DN value of F16 lit pixels, we found no apparent
consistency. The data within the sensor fluctuates greatly and has poor stability, making
it challenging to fully utilize the F16 data for calibration. It was observed that there were
apparent abnormal fluctuations in F162008–2009. So, it was necessary to calibrate the data
for these two years. Therefore, we proposed the constant lit pixels method for calibration,
which was different from the screening method of the invariant target region method.
The invariant target region method uses the DN value of lit pixels in the region that does
not change with time as the base for correction. This method is a theoretical constant
method. However, this method has some drawbacks, since it is impossible for the DN
value of lit pixels in certain fixed regions selected as an invariant target region to have no
luminance variation in the study of long time series. In this paper, we used the constant
lit pixels regions for many years as the invariant target region from the perspective of
numerical constancy.

First, we extracted the calibrated F152003–2007 to calculate the variance. All lit pixel
regions with zero variance and non-zero total DN values were considered invariant target
regions I. We repeated the above steps to extract the calibrated F162005–2007 and calculate
the variance. After calculating the variance, the lit pixel regions were considered invariant
regions II according to the above discriminant rule. After that, the invariant target regions I
and II were intersected to obtain a constant lit pixel region between different sensors for
many years, regarded as the invariant target regions III.

Using the invariant target regions III as the boundary, we extracted F152005–2007
obtained by steps 2 and F162005–2007, respectively. The total DN values of the above lit
pixels were introduced into the second-order regression model as the calibration benchmark
to obtain the fitting parameters by inversion. These parameters were applied to the
calibration of F162008–2009. The obtained fitting parameter and the variation trend of the
total DN value of calibrated lit pixels are shown in Figure 5.
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3.4. Step 4: F182010 Calibration Using the Constant Lit Pixels Method

Observing the variation trend of the total DN value of F18 lit pixels, we found anoma-
lous overestimation in 2010. Moreover, previous studies also found many deviations and
noises in the 2010 nighttime light image [24]. Therefore, F182010 is considered an anoma-
lous observation in this paper. Only the anomalous overestimation of F182010 needed to be
corrected, and the data for the remaining years remained unchanged. Using the invariant
target regions III as the boundary, we used the constant lit pixels method to extract F162009
obtained from steps 3 and F182010. After that, the total DN values of the above two lit
pixels were introduced into the second-order regression model as the calibration benchmark
to obtain the fitting parameters by inversion. Then, we applied these parameters to the
correction of F182010. The obtained fitting parameter and the variation trend of the total
DN value of calibrated lit pixels are shown in Figure 6.
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3.5. Step 5: Long Time Series Nighttime Light Dataset Reconstruction and Continuity Calibration

In order to ensure that the corrected nighttime light brightness is ever-increasing, we
launched a comprehensive screening of the data to obtain a new nighttime light dataset.
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This dataset consisted of F10, corrected F121995–1996, F14, corrected F152004–2007, cor-
rected F162008–2009, corrected F182010, and F182011–2013, as shown in Figure 7.
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Figure 7. The trend of the total DN value of lit pixels in the reconstructed nighttime light dataset.

According to the two principles in the method, combined with the relationship be-
tween the development of urbanization and the nighttime light brightness in China, we
found that the reconstructed nighttime light data set did not conform to the principles for
some years. In order to ensure the continuity and stability of the reconstructed nighttime
light dataset, the continuity calibration at the pixel scale was performed as in Equation (2):

DNn+1 =

{
DNn DNn+1 < DNn
DNn+1 DNn+1 ≥ DNn

(2)

where n = 1992, 1993, ..., 2011, 2012; DNn is the total DN value of lit pixels in the previous
year; and DNn+1 is the total DN value of lit pixels in the following year. The Chinese
regional DMSP-OLS satellite long time series nighttime light reconstruction dataset based
on the ISC method was obtained, as shown in Figure 8.
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4. Results
4.1. Analysis of the Differences in Calibration Methods in a Traditional Invariant Target Region

Many studies of nighttime light calibration often chose Sicily, Italy, as the invariant
target region for the global scale, and Jixi or Hegang City was frequently selected as the
invariant target region for the Chinese regional scale [21,27]. Therefore, we selected Jixi
and Hegang cities as the traditional invariant target regions to analyze the differences in
calibration methods. In order to analyze the differences between the constant lit pixels
method (using in ISC method) and the invariant target region method (Liu et al. & Li et al.),
we performed a full-time series comparison of the global-scale correction method, the
Chinese regional-scale correction method, and the improved stepwise calibration (ISC)
method [5,21]. In this paper, the global-scale correction method and the Chinese regional-
scale correction method were proposed by Li et al. and Liu et al., respectively [5,21]. We
used the standard deviation maps to show the advantages and disadvantages of each
calibration method. The results are shown in Figures 9 and 10.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 17 
 

 

4. Results 
4.1. Analysis of the Differences in Calibration Methods in a Traditional Invariant Target Region 

Many studies of nighttime light calibration often chose Sicily, Italy, as the invariant 
target region for the global scale, and Jixi or Hegang City was frequently selected as the 
invariant target region for the Chinese regional scale [21,27]. Therefore, we selected Jixi 
and Hegang cities as the traditional invariant target regions to analyze the differences in 
calibration methods. In order to analyze the differences between the constant lit pixels 
method (using in ISC method) and the invariant target region method (Liu et al. & Li et 
al.), we performed a full-time series comparison of the global-scale correction method, the 
Chinese regional-scale correction method, and the improved stepwise calibration (ISC) 
method [5,21]. In this paper, the global-scale correction method and the Chinese regional-
scale correction method were proposed by Li et al. and Liu et al., respectively [5,21]. We 
used the standard deviation maps to show the advantages and disadvantages of each cal-
ibration method. The results are shown in Figures 9 and 10. 

 
Figure 9. Standard deviation maps of three different calibration methods in Jixi and Hegang cities. 

 
Figure 10. Standard deviation box plots of three different calibration methods in Jixi and Hegang 
cities. 

The maximum standard deviation of the global-scale correction method (Li et al.) 
was lower than that of the regional-scale correction method (Liu et al. & ISC method), 
suggesting that the regional-scale correction method performed better in preserving 
nighttime light variability over a long time. The maximum standard deviation of the ISC 
method was consistent with the original data and greater than the other two correction 
methods at the same regional scale. Moreover, the ISC method can maintain the temporal 
variability of nighttime light variation over many years to the greatest extent. This varia-
bility not only performed well in the sharply varying high-light regions but responded 
much better than other correction methods in the low-light regions. Overall, the ISC 

Figure 9. Standard deviation maps of three different calibration methods in Jixi and Hegang cities [5,21].

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 17 
 

 

4. Results 
4.1. Analysis of the Differences in Calibration Methods in a Traditional Invariant Target Region 

Many studies of nighttime light calibration often chose Sicily, Italy, as the invariant 
target region for the global scale, and Jixi or Hegang City was frequently selected as the 
invariant target region for the Chinese regional scale [21,27]. Therefore, we selected Jixi 
and Hegang cities as the traditional invariant target regions to analyze the differences in 
calibration methods. In order to analyze the differences between the constant lit pixels 
method (using in ISC method) and the invariant target region method (Liu et al. & Li et 
al.), we performed a full-time series comparison of the global-scale correction method, the 
Chinese regional-scale correction method, and the improved stepwise calibration (ISC) 
method [5,21]. In this paper, the global-scale correction method and the Chinese regional-
scale correction method were proposed by Li et al. and Liu et al., respectively [5,21]. We 
used the standard deviation maps to show the advantages and disadvantages of each cal-
ibration method. The results are shown in Figures 9 and 10. 

 
Figure 9. Standard deviation maps of three different calibration methods in Jixi and Hegang cities. 

 
Figure 10. Standard deviation box plots of three different calibration methods in Jixi and Hegang 
cities. 

The maximum standard deviation of the global-scale correction method (Li et al.) 
was lower than that of the regional-scale correction method (Liu et al. & ISC method), 
suggesting that the regional-scale correction method performed better in preserving 
nighttime light variability over a long time. The maximum standard deviation of the ISC 
method was consistent with the original data and greater than the other two correction 
methods at the same regional scale. Moreover, the ISC method can maintain the temporal 
variability of nighttime light variation over many years to the greatest extent. This varia-
bility not only performed well in the sharply varying high-light regions but responded 
much better than other correction methods in the low-light regions. Overall, the ISC 

Figure 10. Standard deviation box plots of three different calibration methods in Jixi and Hegang
cities [5,21].

The maximum standard deviation of the global-scale correction method (Li et al.) was
lower than that of the regional-scale correction method (Liu et al. & ISC method), suggesting
that the regional-scale correction method performed better in preserving nighttime light
variability over a long time. The maximum standard deviation of the ISC method was
consistent with the original data and greater than the other two correction methods at the
same regional scale. Moreover, the ISC method can maintain the temporal variability of
nighttime light variation over many years to the greatest extent. This variability not only
performed well in the sharply varying high-light regions but responded much better than
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other correction methods in the low-light regions. Overall, the ISC method responded
significantly better to the low-light regions, confirming that nighttime light brightness
changed between 1992 and 2013 in Jixi and Hegang cities. Therefore, we believed it was
undesirable to assume that the nighttime light brightness of certain fixed regions is constant
in a long time series study.

In summary, the constant lit pixels method used in the ISC method was more scientific
than the invariant target region method in screening stable lit pixels. The reconstructed
multi-year nighttime light variation curve was more suitable for the development reality
of the urbanization process in China. Regardless of the global or regional scale, the ISC
method using the constant lit pixels method was better than other existing correction
methods using the invariant target region method. Therefore, the selection of certain
fixed regions as the invariant target region should be carefully considered when correcting
nighttime light data in the future to prevent unsatisfactory research results caused by data
correction errors.

4.2. Analysis of Multi-Year Nighttime Light Variation Characteristics in Typical Cities

In order to better demonstrate regional spatial heterogeneity, we took the four most rep-
resentative cities in China (Beijing, Shanghai, Guangzhou, and Shenzhen) during 1992–2013
as examples. We compared different calibration methods horizontally from the perspective
of spatial and temporal changes. We presented the comparison results in Figures 11 and 12
using the standard deviation maps.
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From the perspective of urban development, the brightness of nighttime light in the
four cities changed dramatically, and the overall nighttime light region kept increasing,
all showing a continuous expansion trend. However, geological and geomorphological
conditions, surface water systems, and policy orientation have led to inconsistent expansion
directions for different urban developments. According to the variation of nighttime light
brightness during the past 20 years, we found that Beijing mainly took the middle part as
the center of the circle and gradually expanded outward to form a “ring” shape. Beijing’s
overall development was disorderly, with the most significant expansion, especially in the
city’s northeast, northwest, and southeast. Shanghai had been expanding to the southern
part for years while the northeast part had been developing more slowly due to natural
obstructions caused by surface water systems and other natural factors. Nevertheless, the
development mode of Shanghai has gradually changed from along-river to cross-river
development in recent years. The development trend of Guangzhou mainly centered on
the middle part and expanded to the northern, eastern, and southern parts to form the
spatial pattern of “one heart and multiple cores”. The development pattern was mainly
attributed to the strategic goals of “expanding south, optimizing north, advancing east
and connecting west” in Guangzhou’s first urban spatial development strategic plan in
2000. As one of the first special economic zones in China, the urban development of
Shenzhen depended heavily on policy orientation. Its development center of gravity is
located in the southern coastal region. Nevertheless, the dramatic change in nighttime
light brightness in the fast-developing areas such as the east and northwest may be closely
related to developing innovative and high-tech industries and other emerging industries.
Beijing, Shanghai, and Guangzhou showed more apparent boundaries between urban
centers and rapid development areas. However, Shenzhen had a multi-point development
trend along its coastal border with no specific urban centers, so the boundaries between its
urban centers and rapid development areas were difficult to define.



Remote Sens. 2022, 14, 4405 12 of 17

Using standard deviation mapping, the city’s central area can be effectively distin-
guished from the area of rapid development, and the details of the urban core boundary can
be better reflected. Regarding the effectiveness of the representation of urban development
details, the improved stepwise calibration (ISC) method outperformed both the correction
methods of Li et al. and Liu et al. [5,21]. Additionally, the correction method proposed by
Li et al. outperformed the method proposed by Liu et al. [5,21]. The ISC method performed
a more sensitive response to urban changes and a more explicit and detailed portrayal
than other correction methods. The ISC method performed significantly better in the
response effect in the low-light high-variation region and high-light low-variation region.
There was no significant difference between the correction method of Li et al. and that of
Liu et al. [5,21]. Although the correction method of Liu et al. can maintain a particular
variation pattern in the high-light low-variation region, it was not as effective as that of
Li et al. for discerning the boundary of the urban center area [5,21].

The correction results of the three methods were similar in the time series. The total
DN values of lit pixels increased in all four cities. Nevertheless, the change processes were
different, and there was a certain degree of overestimation or underestimation among
the different methods. Some methods showed reverse growth trends in specific years,
which obviously contradict urban development law. The ISC method was significantly
more stable, with fewer abnormal fluctuations between data. Meanwhile, the abnormally
high values obtained by the F18 sensor led to a certain degree of underestimation in all
the other calibration methods. Only the ISC method proposed in this study solved this
problem better.

In brief, the ISC method can maintain a high consistency with the original data, ensure
the stable increase of nighttime light brightness over the time series, and consider the
response to the high-light low-variation regions and low-light high-variation regions. It
shows that this method has great potential for application in urban research and provides
new possibilities for further understanding the development of small- and medium-sized
nighttime light centers such as villages and towns from a nighttime light perspective, which
is rare among other corrections methods.

4.3. Correlation Analysis of Nighttime Light Data and Socio-Economic Data

The results of the correlation coefficients of China’s nighttime light data obtained by
different correction methods with GDP and EC are shown in Figure 13. Among the three
correction methods, the improved stepwise calibration (ISC) method could produce the
results that had the best correlation with GDP and EC, with correlation coefficient values
of 0.9695 and 0.9923, respectively. Regarding the correlation between GDP and EC, the
correction method proposed by Li et al. was more advantageous than that of Liu et al. [5,21].
The correlation between the correction method proposed by Li et al. and GDP and EC
was 0.9152 and 0.9684, respectively [21]. The correlation between the correction method
proposed by Liu et al. and GDP and EC was 0.8701 and 0.9436, respectively [5]. In addition,
the ISC method was closer to the 1:1 line than other correction methods, indicating that this
method can minimize the ‘overestimation’ problem of the nighttime light data.

Further correlation analysis was carried out between the reconstructed nighttime light
data and GDP of provinces in mainland China, and the results are shown in Figure 14. It
shows that the correlation coefficients between the nighttime light dataset corrected by the
ISC method and GDP of provinces were different. However, R was higher than 0.6802,
and the average R reached 0.9679, which is generally a high level. It can be observed
that the nighttime light under long time sequences changed dramatically in northern
regions, especially in Qinghai, Gansu, and Ningxia in northwest China; Hebei and Inner
Mongolia in north China; and Liaoning, Jilin, and Heilongjiang in northeast China, most
prominently. While the nighttime light variation in the southern coastal regions and most
inland provinces was relatively smooth and steady, only Jiangsu, Anhui, Guangxi, and
other provinces changed significantly. Meanwhile, the variation may be closely related to
industrial restructuring, land use type change, policy shift, and other reasons.
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5. Discussion
5.1. Screening of Stable Lit Pixels

For the screening of stable lit pixels, the invariant target region method defaults that
the nighttime light brightness of certain fixed regions selected as the invariant target region
does not change under a long time sequence [23]. This method has some drawbacks as a
theoretical constant method. Considering the development of urbanization in China over
the past 20 years, the nighttime light brightness of these regions cannot remain unchanged
from a practical point of view [30,31]. Therefore, this hypothesis introduces many errors



Remote Sens. 2022, 14, 4405 14 of 17

into some existing calibration models, resulting in a deviation of the calibration results.
When the nighttime light calibration range extends to the whole country, the authenticity
of the corrected data is doubtful, with lower accuracy. In order to eliminate the drawbacks
of the invariant target region method, we innovatively propose the improved stepwise
calibration (ISC) method using the constant lit pixels method to correct and reconstruct the
time series of the regional nighttime light data in China from the perspective of numerical
constancy. By selecting the constant lit pixels as the invariant target regions for many years,
the noise generated in the modeling process is better reduced, and the correction results are
closer to the actual values. However, the ISC method also has specific errors because the DN
values of lit pixels generally concentrate in the regions with low brightness (DN ≤ 10) and
very high brightness (DN ≥ 62), resulting in an unbalanced sample distribution. Further
studies should focus on choosing more reasonable stable lit pixels regions for nighttime
light correction.

5.2. Reconstruction of Nighttime Light Curves for Long Time Series

When reconstructing the time series of the corrected nighttime light dataset, it is nec-
essary to make a choice for the same-year data acquired by different sensors. Maintaining
stable growth of the nighttime light data is a challenge for data reconstruction in time series.
Some scholars used the mean value method to balance the characteristics of two sensor data
while others used pixel continuity correction methods to ensure the continuous growth of
the time series nighttime light data [32,33]. This study reconstructed the time series curves
using the continuity correction method to ensure a stable growth trend of DN values at the
pixel scale. However, this method masked the disappearance of lit pixels in some regions
due to policy shifts, land use type changes, and large-scale relocation. In the future, more
practical exploration is needed to propose methods to filter and select the night light data
after correction to reconstruct the scientific and reasonable variation curve of the nighttime
light curve in long time series.

5.3. Correlation with Socio-Economic Data

In calibration studies in the field of nighttime light, most scholars choose to use the
DMSP-OLI nighttime light dataset. The obtained calibration results are different according
to different methods proposed by scholars. We conduct a comparative analysis of three
different calibration methods in Table 1, clarifying their differences in methodological
details and their correlation results with socio-economic data (such as GDP, EC, etc.).

Table 1. Comparative analysis of three different calibration methods.

Calibration
Method

Application
Region

Calibration
Site

Reference
Image

Basis for
Reference Image

Selection

Empirical
Model

Correlation
Coefficient
(GDP, EC)

Liu et al.
(2012) [5]

Regional:
China

Heilongjiang
Province

(Northeast
China)

F162007 Maximum DN
values

2nd order
polynomial

GDP: 0.8701
EC: 0.9436

Li et al.
(2017) [21] Global Sicily F162007 Maximum DN

values
2nd order

polynomial
GDP: 0.9152
EC: 0.9684

ISC method Regional:
China

Constant lit
pixels area Full sequence Constant lit

pixels
2nd order

polynomial
GDP: 0.9695
EC: 0.9923

The correlation coefficients between the reconstructed nighttime light data and GDP
of provinces perform well and are generally at a high level. However, the nighttime light
brightness shows a distinct difference in the southern and northern parts (Figure 14). This
difference may derive from the fact that the development of most northern regions is
mainly dependent on primary and secondary industries such as agriculture, industry,
and manufacturing (for example, Gansu, Inner Mongolia, Qinghai, and Liaoning). These
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industries are the key to the high-quality development of the real economy and have an
inseparable relationship with improving nighttime light brightness [34]. On the other hand,
the southern coastal regions (for example, Guangdong, Hainan, Shanghai, Hong Kong,
and Macao) and most inland provinces (for example, Beijing, Chongqing, and Hunan)
are mainly dominated by non-real economies such as the internet economy, financial
industry, and some service industries. These regions reached the saturation threshold
of the sensor earlier due to the early start of urban development. As a result, there is
no significant variation in nighttime light brightness over a long period, making the
correlation between the nighttime light and GDP of provinces weak [29,35]. Therefore,
the extensive use of nighttime light data and other data may explore the excellent value
of socio-economic data, making the nighttime light data promising for a wide range of
application prospects in reflecting the direction of regional development [36], guiding
urban industrial restructuring [30], and formulating development and reform policies [37].

6. Conclusions

We proposed an improved stepwise calibration (ISC) method in this study. This
method adopted the second-order regression model as the base calibration model, which
had achieved good calibration results in many studies. From the perspective of numerical
constancy, we innovatively proposed a constant lit pixels method different from the existing
invariant target region method in the calibration stage F16 and F18 sensors. This method is
the key to the ISC method. We obtained the corrected nighttime light image set over a long
time series by screening the stable lit pixels and then reconstructed the variation curve of
nighttime light for many years.

The main conclusions are as follows: (1) As far as the screening method of stable lit
pixels is concerned, the constant lit pixels method adopted by the ISC method is more
scientific than the invariant target region method. Numerical constancy is more reasonable
than theoretical constancy. The variation curve of reconstructed multi-year nighttime light
is more consistent with the actual situation. (2) Compared with the global-scale-based
correction method, the regional-scale-based correction method is better at preserving the
variability of nighttime lights under long time series. The ISC method performs the best at
the same regional scale. This method maintains the temporal variability of nighttime light
over the years to the maximum extent and preserves the original data’s most abundant
and complete information. (3) The ISC method is more sensitive to the response of urban
development changes. The details of urban development are more clearly portrayed,
especially in the low-light high-variation regions and high-light low-variation regions.
The significant advantages of the ISC method in these regions offer new possibilities for
understanding the development of small- and medium-sized nighttime light centers such
as towns and villages from a nighttime light perspective. This is an advantage that other
calibration methods do not offer. Hence, this method is more suitable for application
in urbanization research. (4) The multi-year nighttime light dataset obtained by the ISC
method correlates best with the socio-economic data. The correlation coefficients with GDP
and EC are 0.9695 and 0.9923, respectively. This method can provide better reliability for
explaining human socio-economic activities compared to previous methods. Moreover,
our proposed improved stepwise calibration (ISC) method is also not perfect. Currently, in
many nighttime light calibration studies based on DMSP-OLS data, different calibration
methods contain different implicit assumptions, and the ISC method is no exception.
Although these assumptions cannot be verified, better calibration results can be obtained.
Therefore, our proposed ISC method strongly depends on the data itself. The calibrated
nighttime light may differ from the actual nighttime light and is not an entirely realistic
representation of the surface nighttime light.

In summary, the ISC method proposed in this study is simple and easy to implement
to obtain an accurate and reliable multi-year nighttime light dataset, which provides
new possibilities to understand the development of small- and medium-sized nighttime
light centers such as towns and villages from a nighttime light perspective. Furthermore,
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due to the apparent advantages of the method at the regional scale, it helps explain the
more profound reasons affecting socio-economic development and provides a new data
correction method for subsequent application to the urban field.
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