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Abstract: This paper presents two categories of features extraction and mapping suite, a very high-
resolution suite and an ultra-resolution suite at 2 m and 0.5 m resolutions, respectively, for the
differentiation and mapping of land cover and community-level vegetation types. The features
extraction flow of the ultra-resolution suite involves pan-sharpening of the multispectral image,
color-transformation of the pan-sharpened image, and the generation of panchromatic textural
features. The performance of the ultra-resolution features extraction suite was compared with the
very high-resolution features extraction suite that involves the calculation of radiometric indices
and color-transformation of the multi-spectral image. This research was implemented in three
mountainous ecosystems located in a cool temperate region. Three machine learning classifiers,
Random Forests, XGBoost, and SoftVoting, were employed with a 10-fold cross-validation method
for quantitatively evaluating the performance of the two suites. The ultra-resolution suite provided
5.3% more accuracy than the very high-resolution suite using single-date autumn images. Addition
of summer images gained 12.8% accuracy for the ultra-resolution suite and 13.2% accuracy for the
very high-resolution suite across all sites, while the ultra-resolution suite showed 4.9% more accuracy
than the very high-resolution suite. The features extraction and mapping suites presented in this
research are expected to meet the growing need for differentiating land cover and community-level
vegetation types at a large scale.

Keywords: WorldView; vegetation; machine learning; mapping; pan-sharpening; HSVs; textures;
ultra-resolution; very high-resolution

1. Introduction

Earth Resources Technology Satellite (later renamed Landsat 1), launched on 23 July
1972 by the National Aeronautics and Space Administration (NASA), was the first earth-
observing satellite explicitly designed for the study of planet Earth [1]. In 2008, the United
States Geological Survey (USGS) offered the Landsat data, accessible via the internet for
free [2]. Since then, the free and open data policy of the Landsat satellite missions has led
to a rapid expansion of earth monitoring and operational applications [3,4], and driven the
adoption of similar policies by other countries, including the European Space Agency’s
Copernicus Program [5]. The Sentinel-2 mission satellites of the European Space Agency
(ESA), after the launch of the first satellite on 23 June 2015, have expanded science and
operational research by providing global acquisitions of high-resolution and high-revisit-
frequency multi-spectral imagery [6,7]. These high-resolution satellites are capable of
observing Earth’s land surface at spatial resolutions ranging from 10–60 m. Concurrently,
many commercial Earth-imaging satellites have been developed and ultra-resolution im-
ages at sub-meter resolutions and very high-resolution images at sub-decameter resolutions
are being offered by both the private and public sectors [8]. Well-known earth-observing
satellites with the capability to acquire very high and ultra-resolution imagery include SPOT
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6/7 (panchromatic 1.5 m, multispectral 6 m), Pléiades-1A/B (panchromatic 0.5 m, multispec-
tral 2.8 m), WorldView-1/2/3/4 (panchromatic 0.3–0.5 m, multispectral 1.24–1.84 m), and the
SkySats constellation (panchromatic 0.57–0.86 m, multispectral 0.75–1 m) as some examples.

The differentiation and mapping of land cover and vegetation types at a high-spatial
resolution is important for better understanding of the earth systems, including climatic,
biogeochemical, and hydrological processes [9,10]. Several researchers have reported sig-
nificant effects of the spatial resolution of remote sensing images in a number of cases, such
as identification of land cover classes [11], tree species and forest classification and map-
ping [12–14], and assessment of forest fragmentation and ecosystem characterization [15,16],
as some examples. One of the major problems associated with very high-resolution satel-
lites is that they operate in a narrow swath width and a trade-off exists between the spatial
resolution of the acquired images and the revisit time (temporal resolution) of the satel-
lite [17]. Plants exhibit seasonal characteristics such as onset of leaves, active growing
period and leaf fall, etc. [18,19]. Thus, the temporal resolution of very high-resolution satel-
lites may become a bottleneck to retrieve seasonal information. To cope with this problem,
effectiveness of the features extraction techniques that can augment additional information
from the limited number of very high-resolution images such as radiometric indices [20],
color transformations [21], and textural properties [22,23] is expected. Researchers have
reported better performance of the Hue–Saturation–Value (HSV) color space [24] over
the Red–Green–Blue (RGB) color space for aerial or satellite imagery in land cover and
vegetation-mapping applications including precise detection, classification, and mapping
of crops and weeds [25–27], and detection and classification of urban vegetation and tree
species [28,29]. In addition, Haralick’s textures [30], as a measure of the tonal variability be-
tween neighboring pixels, have provided significant improvements in a number of research
areas such as discrimination of heterogeneous landscape vegetation types [31–34], wetland
vegetation classification [35], and detection of species-specific differences and intra-class
separability [36,37].

Irrespective of the high costs associated with ultra-resolution and very high-resolution
satellite images, many researchers have utilized ultra-resolution and very high-resolution
satellite images in a number of ecological applications, particularly at local scales, such
as coastal or freshwater vegetation mapping [38–40], tree species detection and classifica-
tion [41–44], and detection and mapping of invasive species such as bracken fern [45–48],
to name some examples. As far as the methodology is concerned, both pixel and object-
based approaches have been employed for the classfication of very high-resolution satellite
images using machine learning classifiers [49–53].

The major objective of this research is to present an ultra-resolution features extraction
and classification suite for the differentiation and mapping of land cover and community-
level vegetation types at 0.5 m resolution with a limited number of temporal images. The
features extraction flow of the ultra-resolution suite involves pan-sharpening of the multi-
spectral image, color-transformation of the pan-sharpened image, and the generation of
panchromatic textural features. The performance of the ultra-resolution features extraction
suite is compared with a very high-resolution features extraction suite at 2 m resolution that
involves the calculation of radiometric indices and color transformation of the multi-spectral
image. Three machine learning classifiers, Random Forests, XGBoost, and SoftVoting
were employed with a ten-fold cross-validation method for quantitatively evaluating the
performance of the ultra-resolution suite against the very high-resolution suite for the
differentiation and mapping of land cover and community-level vegetation types.

2. Materials and Methods
2.1. Study Area

This research was conducted at three study sites, Hakkoda, Zao, and Shiranuka,
located in the Aomori, Miyagi, and Hokkaido prefectures in Japan, respectively. These sites
represent mountainous cool temperate forest ecosystems. The location map of the study
sites is shown in Figure 1.
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Figure 1. Location map of the study sites: Hakkoda, Zao, and Shiranuka.

2.2. Collection of Ground Truth Data

This research utilized the ground truth data prepared in the previous study [54].
The ground truth data were prepared by field survey, accompanied with an existing
vegetation survey map (1:25,000 scale), and visual interpretation of the time-lapse images
available in Google Earth. The sample points (longitudes and latitudes) were prepared from
homogenous areas belonging to each land cover and vegetation type concerned. In total,
1200–2400 sample points were prepared for each land cover and vegetation type for each
site. The vegetation types were classified by adopting the genus–physiognomy–ecosystem
system developed for satellite-based classification of plant communities in the previous
study [55]. The ground truth data were prepared by considering unchanged areas between
2018–2020. However, since the study sites were usually devoid of human disturbances and
landscape changes, the ground truth data could represent a few more nearby years. The
distribution of the ground truth data size for each site is shown in Figure 2. The sample
points were prepared by considering the proportional coverage of the land cover and
vegetation types in each site. Therefore, vegetation types with large coverage, such as Abies
ECF, Quercus DBF, and Fagus DBF, consisted of large sample sizes; whereas low-coverage
vegetation types such as Acer DBF and Quercus Shrub received small sample sizes. This
research dealt with the classification and mapping of 16 land cover and vegetation types
in Hakkoda, 23 land cover and vegetation types in Zao, and 12 land cover and vegetation
types in Shiranuka.
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2.3. Processing of WorldView-3 Images

For each site, two cloud-free scenes taken by the WorldView-3 satellite were utilized
in this research. The bi-seasonal WorldView-3 scenes acquired in the summer and autumn
seasons for the Hakkoda (20 September 2019 and 10 June 2016), Zao (26 October 2017 and
8 September 2017), and Shiranuka (16 October 2020 and 1 June 2021) sites were utilized
in the research. The summer and autumn seasons were chosen to capture phenological
variations among the vegetation types because leaves are photosynthetically active during
summer and deciduous shrubs and trees change color during autumn in the study sites
located in cool temperate zones. Due to lack of cloud-free scenes available in the same
year, the images were acquired from different years in two sites. However, the study sites
were usually devoid of human disturbances and landscape changes and thus the acquired
images were still appropriate.

WorldView-3 is a very high-resolution commercial imaging satellite which acquires
11-bit data in nine spectral bands (panchromatic, coastal, blue, green, yellow, red, red
edge, near infrared 1, and near infrared 2), and additional 14-bit data in eight shortwave
infrared bands. The nominal ground sample distances of the acquired images were 0.5 m
for panchromatic and 2.0 m for multi-spectral images. Ortho-rectification of the WorldView-
3 images was done using 30 m digital elevation model data [56] to remove geometric
distortions [57,58] and topographic correction was done using a modified sun-canopy-
sensor model [59,60]. The band-wise radiometric calibration factor and effective band
width data were read from the metadata of the given WorldView-3 products and top-
of-atmosphere radiance was calculated from the pixel-wise digital numbers. Then, the
top-of-atmosphere reflectance was calculated accounting for the earth–sun distance, band-
averaged solar spectral irradiance, and solar zenith angle [61].

2.4. Features Extraction

This research proposed two categories of feature extraction suite, a very high-resolution
suite and an ultra-resolution suite for differentiation and mapping of land cover and vegeta-
tion types from a limited number of multi-spectral and panchromatic images. The features
extraction flow of the ultra-resolution suite involves pan-sharpening of the multispectral
image, color-transformation of the pan-sharpened image, and the generation of panchro-
matic textural features; whereas the very high-resolution features extraction suite involves
the calculation of radiometric indices and color-transformation of the multi-spectral image.

For the very high-resolution suite, nine radiometric indices were calculated (Table 1)
and combined with the multi-spectral image consisting of 8 bands (coastal, blue, green,
yellow, red, red edge, near infrared 1, and near infrared 2), which yielded 17 spectral–
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radiometric features. In addition, the 8-band multispectral images were transformed into
the Hue–Saturation–Value (HSV) color space. For this purpose, by taking 3 out of the
8 bands at a time, 120 permutations were calculated which yielded 336 sets of RGB images
(1008 features). OpenCV (https://opencv.org, accessed on 15 April 2022)—Open Source
Computer Vision Library—was used for the HSV transformations. It produced a large
dimension of data in which some features exhibited multicollinearity. To cope with the
complexity associated with the multicollinearity, 27 least-correlated features were extracted
and combined with the 17 spectral–radiometric features prepared earlier.

Table 1. Radiometric indices calculated and used in the research.

Indices References

Normalized Difference Vegetation Index Rouse et al. [62]
Green–Red Vegetation Index Falkowski et al. [63]

Soil-Adjusted Vegetation Index Huete [64]
Modified Soil-Adjusted Vegetation Index Qi et al. [65]

Atmospherically Resistant Vegetation Index Kaufman and Tanre [66]
Modified Chlorophyll Absorption Ratio Index Daughtry et al. [67]

Non-Homogeneous Feature Difference Wolf [68]
Structure-Insensitive Pigment Index Penuelas et al. [69]

Enhanced Vegetation Index Huete et al. [70]

For the ultra-resolution suite, pan-sharpening of the multi-spectral images (8 bands)
was carried out with the panchromatic image using the local mean and variance matching
method [71] to generate a pan-sharpened image (8 bands) at 0.5 m resolution. The 8-band
pan-sharpened image was transformed into the Hue–Saturation–Value (HSV) color space
and 27 least-correlated features were extracted from the pan-sharpened image in a manner
similar to the HSV transformation of the very high-resolution suite. In addition, twenty-six
Haralick’s textural images were generated from the panchromatic image using a sliding
window of 3 × 3 pixels. To cope with the complexity associated with the multicollinearity,
out of 18 textural features, 8 least-correlated features were extracted. Orfeo ToolBox
(https://www.orfeo-toolbox.org, accessed on 15 April 2022)—an open-source C++ library
for image processing—was used for pan-sharpening and the calculation of Haralick’s
textures. A summary of the features extracted for the ultra-resolution and very high-
resolution mapping suites is described in Table 2.

Table 2. Description of the features extracted for very high-resolution and ultra-resolution map-
ping suites.

Suite Features Total Features

Very high-resolution suite
(2 m)

Multi-spectral bands 8

44
Multi-spectral indices 9
Color-transformation

(multi-spectral) 27

Ultra-resolution suite
(0.5 m)

Panchromatic band 1

44
Pan-sharpened bands 8

Textural features 8
Color-transformation

(pan-sharpened) 27

2.5. Machine Learning and Mapping

The pixel values corresponding to the ground truth data (geo-location points) were
extracted from both the ultra-resolution and very high-resolution suites of images. Three
machine learning classifiers, Random Forests (RF), eXtreme Gradient Boosting (XGBoost),
and a predicted-probabilities-based fusion (SoftVoting) of the RF and XGBoost classifiers,
were employed for the differentiation and mapping of land cover and vegetation types.

https://opencv.org
https://www.orfeo-toolbox.org
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Random Forests (RF) is an ensemble of decision trees, which are built by splitting the
attributes of the data and averaging the output value of all trees [72]. The Gradient Boosting
(GB) technique was designed to minimize the loss function of the model by adding weak
learners [73]. XGBoost is one of the implementations of the Gradient Boosting technique
designed for highly efficient and parallel machine learning capabilities [74]. The RF and
XGboost classifiers have shown outstanding performance in classification of the satellite
data [75–80]. Researchers have reported higher performance of the fusion of multiple
classification results in land cover and vegetation mapping [81,82].

The ten-fold cross-validation method was utilized for quantitatively evaluating the
performance of the ultra-resolution suite and the very high-resolution suite based on
accuracy metrics, such as overall accuracy, kappa coefficient, F1-score, recall, and precision.
After confirming the best-performed classifier and its parameters through the 10-fold cross-
validation method, the best-performed model was built by training on 85% data for the
prediction (mapping) of new data.

3. Results
3.1. Extraction of Least-Correlated Features

The correlation matrix plot of the 27 least-correlated HSV features generated from the
multispectral image is shown in Figure 3. None of the extracted features were correlated
with more than a 0.7 Pearson correlation coefficient to each other. This is for the case of
the single-date autumn images of the Shiranuka site. Likewise, for the pan-sharpened
images, Figure 4 shows the 27 least-correlated HSV features generated in the case of the
single-date autumn images of the Shiranuka site. In addition, the eight least-correlated
textural features extracted based on the criteria of a Pearson correlation coefficient less than
0.7 is shown in Figure 5, in the case of the single-date autumn images of the Shiranuka site.
The least-correlated features were extracted from the multispectral, pan-sharpened, and
textural images for other seasons and other sites in a similar way.
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3.2. Pan-Sharpened versus Multi-Spectral Images

An example demonstrating the superior capacity of a pan-sharpened image over a
multispectral image for distinguishing the tree canopy is shown in Figure 6. In contrast to
the multi-spectral image, the pan-sharpened image has captured the canopy details clearly
and thus the pan-sharpened image is effective for distinguishing the plant communities.
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3.3. Effect of Classifiers in the Case of Single-Date Autumn Images

The 10-fold cross-validation accuracies obtained from the two categories of features
extraction suites (very high-resolution versus ultra-resolution) proposed in this research
have been shown in Tables 3 and 4. In all three sites (Hakkoda, Zao and Shiranuka) studied
in this research, the SoftVoting classifier showed slightly better performance than the other
two classifiers (XGBoost and Random Forests) without a substantial difference among the
three classifiers (XGBoost, Random Forests, and SoftVoting).

Table 3. Performance of the very high-resolution suite using single-date autumn images.

Site Model Overall
Accuracy

Kappa
Coefficient F1-Score Recall Precision

Hakkoda XGBoost 0.653 0.622 0.653 0.653 0.653
RF 0.659 0.629 0.659 0.659 0.659

SoftVoting 0.663 0.634 0.663 0.663 0.663

Zao XGBoost 0.590 0.566 0.590 0.590 0.590
RF 0.601 0.577 0.601 0.601 0.601

SoftVoting 0.606 0.582 0.606 0.606 0.606

Shiranuka XGBoost 0.673 0.627 0.673 0.673 0.673
RF 0.665 0.619 0.665 0.665 0.665

SoftVoting 0.676 0.631 0.676 0.676 0.676



Remote Sens. 2022, 14, 3145 9 of 24

Table 4. Performance of the ultra-resolution suite using single-date autumn images.

Site Model Overall
Accuracy

Kappa
Coefficient F1-Score Recall Precision

Hakkoda XGBoost 0.715 0.690 0.715 0.715 0.715
RF 0.720 0.696 0.720 0.720 0.720

SoftVoting 0.726 0.703 0.726 0.726 0.726

Zao XGBoost 0.652 0.631 0.652 0.652 0.652
RF 0.659 0.638 0.659 0.659 0.659

SoftVoting 0.666 0.645 0.666 0.666 0.666

Shiranuka XGBoost 0.707 0.666 0.707 0.707 0.707
RF 0.704 0.662 0.704 0.704 0.704

SoftVoting 0.712 0.672 0.712 0.712 0.712

The variation of the classification accuracy in terms of the F1-score with the classifier
is summarized and shown in Figure 7. There was not a substantial difference among the
three classifiers (XGBoost, Random Forests, and SoftVoting) employed for the classification
of land cover and vegetation types using both categories of features extraction suite. In
all sites, as described in Figure 7, the ultra-resolution suite showed superior performance
over the very high-resolution suite using any machine learning classifier employed in the
research. It should be noted that both suites utilized the same size of ground truth data.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 29 
 

 

Table 4. Performance of the ultra-resolution suite using single-date autumn images. 

Site Model Overall Accuracy 
Kappa Coeffi-

cient 
F1-Score Recall Precision 

Hakkoda  XGBoost 0.715 0.690 0.715 0.715 0.715 
 RF 0.720 0.696 0.720 0.720 0.720 
 SoftVoting 0.726 0.703 0.726 0.726 0.726 

Zao XGBoost 0.652 0.631 0.652 0.652 0.652 
 RF 0.659 0.638 0.659 0.659 0.659 
 SoftVoting 0.666 0.645 0.666 0.666 0.666 

Shiranuka XGBoost 0.707 0.666 0.707 0.707 0.707 
 RF 0.704 0.662 0.704 0.704 0.704 
 SoftVoting 0.712 0.672 0.712 0.712 0.712 

The variation of the classification accuracy in terms of the F1-score with the classifier 
is summarized and shown in Figure 7. There was not a substantial difference among the 
three classifiers (XGBoost, Random Forests, and SoftVoting) employed for the classifica-
tion of land cover and vegetation types using both categories of features extraction suite. 
In all sites, as described in Figure 7, the ultra-resolution suite showed superior perfor-
mance over the very high-resolution suite using any machine learning classifier employed 
in the research. It should be noted that both suites utilized the same size of ground truth 
data. 

 
Figure 7. Accuracy variation with classifiers using single-date autumn images. 

3.4. Effect of Classifiers in the Case of Bi-Seasonal Images 
The 10-fold cross-validation accuracies obtained from the two categories of features 

extraction suite (very high-resolution versus ultra-resolution) by using bi-seasonal images 
are shown in Tables 5 and 6. Similar to the case of a single-date autumn image, the Soft-
Voting classifier showed slightly better performance than the other two classifiers 
(XGBoost and Random Forests) without substantial difference among the three classifiers 
in all sites. 

  

Figure 7. Accuracy variation with classifiers using single-date autumn images.

3.4. Effect of Classifiers in the Case of Bi-Seasonal Images

The 10-fold cross-validation accuracies obtained from the two categories of features
extraction suite (very high-resolution versus ultra-resolution) by using bi-seasonal images
are shown in Tables 5 and 6. Similar to the case of a single-date autumn image, the
SoftVoting classifier showed slightly better performance than the other two classifiers
(XGBoost and Random Forests) without substantial difference among the three classifiers
in all sites.

The variation of the classification accuracy in terms of the F1-score with the classifier
using bi-seasonal images is summarized and shown in Figure 8. Similar to the case of single-
date autumn images, there was not a substantial difference among the three classifiers
(XGBoost, Random Forests, and SoftVoting) employed for the classification of land cover
and vegetation types using both categories of features extraction suite. However, in contrast
to the case of single-date autumn images, performance of the RF was slightly lower than
that of the XGBoost classifier. In all sites, as described in Figure 8, the ultra-resolution
suite showed superior performance over the very high-resolution suite using any machine
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learning classifier employed in the research. It should be noted that both suites utilized the
same size of ground truth data.

Table 5. Performance of the very high-resolution suite using bi-seasonal images.

Site Model Overall
Accuracy

Kappa
Coefficient F1-Score Recall Precision

Hakkoda XGBoost 0.783 0.752 0.783 0.783 0.783
RF 0.779 0.746 0.779 0.779 0.779

SoftVoting 0.786 0.755 0.786 0.786 0.786

Zao XGBoost 0.729 0.700 0.729 0.729 0.729
RF 0.728 0.699 0.728 0.728 0.728

SoftVoting 0.730 0.701 0.730 0.730 0.730

Shiranuka XGBoost 0.818 0.776 0.818 0.818 0.818
RF 0.818 0.776 0.818 0.818 0.818

SoftVoting 0.825 0.784 0.825 0.825 0.825

Table 6. Performance of the ultra-resolution suite using bi-seasonal images.

Site Model Overall
Accuracy

Kappa
Coefficient F1-Score Recall Precision

Hakkoda XGBoost 0.832 0.807 0.832 0.832 0.832
RF 0.828 0.803 0.828 0.828 0.828

SoftVoting 0.835 0.811 0.835 0.835 0.835

Zao XGBoost 0.797 0.776 0.797 0.797 0.797
RF 0.794 0.773 0.794 0.794 0.794

SoftVoting 0.798 0.777 0.798 0.798 0.798

Shiranuka XGBoost 0.852 0.818 0.852 0.852 0.852
RF 0.849 0.815 0.849 0.849 0.849

SoftVoting 0.855 0.822 0.855 0.855 0.855
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3.5. Confusion Matrices Using Bi-Seasonal Images

The confusion matrix figures calculated with the 10-fold cross-validation method
using the SoftVoting classifier for the Hakkoda, Zao, and Shiranuka sites are shown in
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Figures 9–11, respectively. Though most of the classes were discriminated satisfactorily,
weak classification of some classes, for instance Juglans DBF, Fagus DBF, and Alnus DBF in
site Hakkoda (Figure 9); Hydrangea Shrub and Pinus ECF in site Zao (Figure 10); and Salix
DBF and Wetland Herb in site Shiranuka (Figure 11) was detected.
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3.6. Class-Wise Changes

The changes in the class-wise accuracy by the addition of a summer image for each site
are shown in Figures 12–14 for the Hakkoda, Zao, and Shiranuka sites, respectively. The
addition of summer images substantially increased the classification accuracy for most of
the land cover and vegetation types in all sites studied. This improvement was substantial
for both the ultra-resolution and very high-resolution mapping suites. The ultra-resolution
suite using bi-seasonal images showed the highest performance in the differentiation of
almost all land cover and vegetation types in all sites. This trend was followed by the
very high-resolution suite using bi-seasonal images. The performance of both the ultra-
resolution and very high-resolution suites using single-date autumn images was inferior to
the performance gained by using bi-seasonal images with any feature extraction suite.
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3.7. Performance Summary

The performance of the two categories of features extraction and mapping suites
(ultra-resolution and very high-resolution suites) is summarized and shown in Figure 15. It
is based on the 10-fold cross-validation accuracy (F1-score) using the SoftVoting classifier.
For the case of single-date autumn images, the ultra-resolution suite provided 6.3% more
accuracy (F1-score) than the very high-resolution suite in the Hakkoda site with 16 land
cover and vegetation classes. In the Zao site with 23 classes, the ultra-resolution suite
provided 6% more accuracy (F1-score) than the very high-resolution suite. For the classi-
fication of 12 classes in the Shiranuka site, the ultra-resolution suite provided 3.6% more
accuracy (F1-score) than the very high-resolution suite. On average, the ultra-resolution
suite provided 5.3% more accuracy (F1-score) than the very high-resolution suite across
the three sites. A similar trend was obtained by using bi-seasonal images (summer and
autumn). In the case of bi-seasonal images, the ultra-resolution suite provided 4.9% more
accuracy in the Hakkoda site, 6.8% more accuracy in the Zao site, and 3% more accuracy in
the Shiranuka site over the very high-resolution suite. On average, the ultra-resolution suite
showed 4.9% higher performance than the very high-resolution suite using bi-seasonal
images across three sites.

The addition of summer images with the previous autumn season images increased the
classification accuracy substantially for both the ultra-resolution and very high-resolution
suites in all sites. In the Hakkoda site, the gain by increasing the temporal images was
10.9% for the ultra-resolution suite and 12.3% for the very high-resolution suite. The Zao
site gained 13.2% accuracy in the case of the ultra-resolution suite and 12.4% in the case
of the very high-resolution suite. The gain by increasing the temporal images was 14.3%
for the ultra-resolution suite and 14.9% for the very high-resolution suite in the Shiranuka
site. On average, the ultra-resolution suite gained 12.8% accuracy; whereas 13.2% gain was
achieved by the very high-resolution suite across the three sites. The very high-resolution
suite gained slightly more accuracy than the ultra-resolution suite while increasing the
temporal images.
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However, it should be noted that the accuracy obtained from the ultra-resolution suite
using single-date autumn images was not higher than the accuracy obtained from the very
high-resolution suite using bi-seasonal images. Therefore, increasing the temporal images
was found to be more crucial than the usage of ultra-resolution suites. Nevertheless, merely
increasing the bi-temporal images was not found to be sufficient unless the ultra-resolution
suite was applied.

3.8. Ultra-Resolution Maps

Since the SoftVoting classifier showed slightly better performance than the Random
Forests and XGBoost classifiers employed in the research, the SoftVoting classifier was
chosen for the mapping of land cover and vegetation types. Furthermore, due to superior
performance of the ultra-resolution suite over the very high-resolution suite using bi-
seasonal images, the land cover and community-level vegetation maps were produced
by utilizing the ultra-resolution suite using bi-temporal images. The ultra-resolution
(0.5 m) land cover and community-level vegetation maps produced in this research are
shown in Figures 16–18 for the Hakkoda, Zao, and Shiranuka sites, respectively. These ultra-
resolution maps show the detailed view and distribution of land cover and community-level
vegetation types.
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Figure 18. Ultra-resolution map with 12 classes produced for the Shiranuka site (top). The red
polygon area has been zoomed in to show finer details (bottom left) along with the true-color
composite image (bottom right).

In Figure 16, the zoomed-in map (bottom left) shows the distribution of Abies ECF
(olive color) among the Sasa Shrub (lime color) with some barren lands (pink red color).
This distribution is well matched with the true-color composite image (bottom right). The
dark green trees are Abies ECF in the true-color composite image whereas the light green
areas are Sasa Shrub.

In Figure 17, the zoomed-in map (bottom left) shows the distribution of Abies ECF
(olive color) and Pinus Shrub (dark green) among the Sasa Shrub (lime color) with built-up
areas (red color). This distribution is well matched with the true-color composite image
(bottom right). The dark green trees are Abies ECF and Pinus Shrub in the true-color
composite image, whereas the light green shrubs are Sasa Shrub.

In Figure 18, the zoomed-in map (bottom left) shows the distribution of Abies ECF
(olive color)) among the Quercus DBF (green color) with a few scattered barren pixels (pink
red color). This distribution is well matched with the true-color composite image (bottom
right). The dark green trees are Abies ECF in the true-color composite image, whereas the
light green trees are Quercus DBF.

4. Discussion

In this research, we conducted ultra-resolution classification and mapping of land
cover and vegetation types by employing machine learning techniques. Supervised classifi-
cation of satellite images by employing machine learning classifiers such as Random Forests
and XGBoost has been applied efficiently by previous studies for mapping of land cover
and vegetation types [83,84]. The mapping suites presented in this research are built on the
recent improvements of land cover and vegetation mapping through the utilization of ma-
chine learning and fusion of classification [85–88] and it indicates an enhanced performance
by combining the probabilities of predictions from multiple classifiers. The ultra-resolution
and very high-resolution suites proposed in this research should be effective and useful for
land cover and vegetation mapping in other large regions of interest as well.
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High-spatial-resolution images from earth-observing satellites have been effective for
acquiring detailed information on land cover and vegetation types [89–91]. Previous studies
have utilized high-spatial-resolution images for discriminating land cover and vegetation
physiognomic types such as deciduous broad-leaved forests and evergreen broad-leaved
forests [92–96]. Though some researchers have tried unsupervised segmentation and
labeling methods such as k-means and hierarchical clustering techniques for land cover and
vegetation classification and mapping [97,98], supervised classification of land cover and
vegetation types by employing machine learning classifiers has been frequently utilized in
recent studies [99,100].

Despite the free accessibility of high-resolution satellite images such as those from
Sentinel-2 and Landsat 8, a number of ecological studies have utilized ultra-resolution
and very high-resolution satellite images. Review of these studies indicates that ultra-
resolution and very high-resolution satellite images have been adapted mainly for the
detection and mapping of small patches of vegetation such as endangered plants and
invasive species [101–104] or for the differentiation and mapping of mixed vegetation in a
heterogeneous environment [105–107]. The vegetation mixedness is a matter of the spatial
resolution of the imagery. The vegetation mixed in high-resolution imagery (e.g., 30 m
resolution) can be unmixed in very high-resolution or ultra-resolution imagery. Therefore,
very high-resolution or ultra-resolution imagery are very suitable for the mapping of mixed
vegetation in a heterogeneous environment, as in this research.

The study led by Li et al. [108] for urban tree species mapping concluded that single-
date WorldView-2 images did not produce satisfying classification results, with relatively
low accuracy (44.7–82.5%), and found that usage of bi-temporal images could produce,
on average, 10.7% higher accuracy. In a similar way, the addition of summer images
to the previously used autumn-season images provided 12.8% higher accuracy for the
ultra-resolution suite and 13.2% higher accuracy for the very high-resolution suite in this
research across three cool temperate ecosystem sites. Wendelberger et al. [109] also ex-
plored bi-seasonal versus single-season WorldView-2 images to map three mangrove and
four adjacent plant communities and found that bi-seasonal images were more effective
than single-season to differentiate all communities of interest, in line with this research
carried out in three mountainous ecosystems. Ferreira et al. [37] utilized WorldView-3
images acquired in the dry and wet seasons and emphasized the usage of seasonal images
for tree species discrimination in semi-deciduous forests. The previous studies were also
based on a limited number of temporal images, and thus improving the classification
accuracy using limited temporal images, as carried out in this research, is an important
contribution. The ultra-resolution suite involves pan-sharpening of the multispectral image,
color-transformation of the pan-sharpened image, and the generation of panchromatic
textural features. The advantages of pansharpened images and textural features have been
reported by previous studies. Ibarrola-Ulzurrun et al. [110] described the effectiveness of
pan-sharpening techniques to generate accurate vegetation maps in heterogenic and mixed
ecosystems. Similarly, Castillejo-González [111] reported high performance of pansharp-
ened QuickBird images for mapping of olive trees. Another study by Ferreira et al. [37]
recommended the usage of texture features and pan-sharpening approaches for improved
classification of tropical tree species from WorldView-3 satellite images. Therefore, the
features extraction techniques implemented in this research are robust and trustworthy. In
addition, the ultra-resolution suite expands these ideas by additional features retrieved
from the color-transformation of the pan-sharpened images for distinguishing vegetation
types at the community level such as Quercus DBF and Quercus Shrub.

On the other hand, the study led by Karlson et al. [112] compared wet season, dry
season, and multi-seasonal WorldView-2 images for the classification of agroforestry tree
species and found that the multi-seasonal dataset produced the most accurate classifications.
Another study by Adamo et al. [113] has also focused on multi-seasonal images for the
classification of grassland ecosystem types. Therefore, there is a possibility of increasing
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the accuracy further for the discrimination of complex vegetation types by the addition of
more seasonal images in this research.

5. Conclusions

This research study proposed two categories of feature extraction suite, a very high-
resolution suite and an ultra-resolution suite at 2 m and 0.5 m resolutions, respectively,
and applied them for the differentiation and mapping of land cover and community-level
vegetation types. In spite of a limited number of multi-spectral and panchromatic images
available to the research, the ultra-resolution suite showed superior performance over the
very high spatial resolution suite in all three sites studied. Achieving a 5.3% increase in
the classification accuracy in terms of the F1-score using single-date images and a 4.9%
increase in the classification accuracy using bi-seasonal images by the ultra-resolution suite
are remarkable contributions. The ultra-resolution mapping suite based on pan-sharpened
images and image textural properties has the capacity to capture plant communities cl to
the individual canopy level. The image textural information incorporated by the ultra-
resolution suite is not available for the very high-resolution suite. The ultra-resolution suite
can be suitable for discovering small patches of rare and endangered species which would
otherwise be difficult to detect solely from coarse-resolution images. The features extraction
suites presented in this research can also be applied with more temporal images. Addition
of more temporal images can be useful for retrieving detailed phenological information, and
thus can increase the classification accuracy further. The ultra-resolution suite presented in
this research is expected to meet the growing need for differentiating a wide variety of land
cover and vegetation types, particularly at large regions of interest, irrespective of limited
temporal images.
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