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Abstract: This paper analyzes sea clutter by a random series without assuming the scattering being
independent. We quantitated the complexity of sea clutter by applying multiscale sample entropy. We
found that above certain wave heights or wind speeds, and for HH or VV polarization, the target can
be distinguished from sea clutter by regarding (i) the sample entropy at large scale factors or (ii) the
complexity index (CI) as entropy metrics. This is because the backscattering amplitudes of range bins
with the primary target were found equipped with the lowest sample entropy at large scale factors or
the lowest CI compared to that of range bins with sea clutter only. To further cover low-to-moderate
sea states, we constructed a polarized complexity index (PCI) based on the polarization signatures of
the multiscale sample entropy of sea clutter. We demonstrated that the PCI is yet another alternative
entropy metric and can achieve a superb performance on distinguishing targets within 1993’s IPIX
radar data sets. In each data set, the range bins with the primary target turned to have the lowest
PCI compared to that of range bins with sea clutter alone. Moreover, in our experiment using 1993’s
IPIX radar data sets, the PCIs of range bins with sea clutter only were almost the same and stable in
each data set, further suggesting that the proposed PCI metric can be applied in the presence of no or
multiple targets through proper fitting curves.

Keywords: radar scattering; sea clutter; marine radars; target detection; sample entropy;
multiscale entropy

1. Introduction

Detecting surface targets on the sea surface finds wide applications, including but not
limited to navigation security (e.g., anti-collisions), law enforcement (e.g., illegal fishing),
maritime surveillance, and emergency responses or rescues [1], just to name a few. Sea
clutter, which refers to the radar echo amplitudes of a patch of the sea surface, is commonly
recognized as one of the stumbling blocks in achieving stable and convincible radar per-
formances on detecting surface/floating targets on the sea surface, notably those targets
with a small radar cross section (RCS) and under high sea conditions. Relevant studies
on this topic have been carried out in the past decades, macroscopically speaking, and
the proposed methods in previous studies were all based on single or joint characteristics
of sea clutter or targets, say, amplitude distributions and predictions, fractal or chaotic
properties, the targets’ polarimetric characteristics, information entropy, complex entropy
rate, and signal time–frequency analysis (doppler spectrum features, etc.) [2–18].

One of the most fundamental characteristics of radar echo amplitudes is the scattering
signal statistics. Starting with five assumptions [19], the Rayleigh distribution is commonly
applied to model the radar backscattering from terrain surfaces and then is modified to
Rician or Weibull distributions in the presence of strong coherent scattering centers [19–21].
The high-resolution radar-returned amplitudes from the sea surface are well modeled
by the K distribution [2,3], in which the shape parameters are estimated from measured
amplitudes. Figure 1 depicts the probability density of the radar echo amplitudes of two
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range bins selected from the data sets (for more details, see Section 2) we applied in this
study, accompanied by their estimated shape parameters, which are dependent on the
range bin size, incident grazing angle, sea states, and radar parameters (e.g., operating
frequency, resolutions). This can be evidently observed from Figure 1 by comparing the
probability densities from pure sea clutter and the primary target. Although the radar
performances were significantly enhanced by applying adaptive techniques to guarantee a
constant false alarm rate (CFAR), the statistical models are still not effective [11]. Besides,
the probability density function (PDF) itself is not enough in characterizing a random
series; one vivid case is that a Gaussian-distributed white noise series can be transformed
into a Gaussian-distributed pink noise series through rearranging the elements’ orders
only, while the latter has a totally different power spectral density (PSD) function and turns
out to be fractal [22].

Figure 1. The probability density of sea clutter and Rayleigh, Weibull and K distributions with estimated shape parameters:
(a) sea primary target and (b) sea clutter only.

We have noticed that ocean waves are fractal in nature, and sea clutter is deduced
and observed to be fractal. The fractal structures and metrics have been widely applied to
model sea clutter or detect targets [4–8]. To characterize the fractal properties of radar echo
amplitudes, e.g., in [11], sea clutter is assumed as a random walk process y(n) in time, and
whether the scaling law [11]

F(q)(m) =
〈
|y(n + m)− y(n)|q

〉1/q ∼ mH(q) (1)

hold is further examined. In Equation (1), m, n, and q are all positive integers, and the aver-
age processes on the left-hand side should be conducted under all possible (y(n), y(n + m))
pairs to generate the F(q)(m) series. With proper fitting curves and by setting q = 2, the
Hurst parameter H(2) is estimated for backscattering amplitudes of each range bin. Sea
clutter strongly exhibits multifractal behaviors and is non-stationary in the timescale range
of about from 0.01 s to a few seconds. It has been observed that a significant difference in
the estimated Hurst parameter exists between the range bins with and without a target
under sea clutter, implying that the Hurst parameter can be an alternative metric for detect-
ing surface targets (HH polarization only). For this reason, the authors of [11] claimed that
the scattering statistics only offer a limited physical understanding of sea clutter and are
not effective in detecting targets under sea clutter.

We also noticed that the condition of using the Hurst parameter as a metric is that sea
clutter must be treated as a random walk process but not non-stationary. Thus, both the
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scattering statistics and the Hurst parameter metric are based on an independent scattering
assumption. More specifically, in scattering statistics, interactions among N scatters within
the antenna-illuminated area are ignored; the total scattered field Es is then simply a linear
superposition of the scattered field of each scatter,Em (m = 1, 2, 3, · · · , N), as shown in
Figure 2, that is,

Es = Es0eiθ =
N

∑
m=1

Em =
N

∑
m=1

Em0eiθm (2)

where Em0 is the amplitude and θm is the associated random phase. Under the random
walk process, the scattered fields in each range bin are assumed independent of each other
at different sampling. That is, the temporal correlation is not yet considered.

Figure 2. Illustration of backscattering from N scatters within A.

The above discussions lead us to attempt two objectives: (i) treating the backscattering
amplitudes as a random series without physical assumptions and (ii) exploring a metric that
can distinguish the surface/floating targets in sea clutter. From previous studies [23–27],
we found that the multiscale sample entropy (MSE) might be a good candidate due to the
following facts:

(i) Like other entropy measures [15,17,23], the MSE algorithm only focuses on data
processing without assumptions, such as independent scattering.

(ii) The entropy kernel applied in the MSE algorithm was investigated for complex
dynamics such as non-stationary or long-range correlations in [24], and it affords
theoretical evidence for applying the MSE to radar signals, particularly to sea clutter,
which turns out to have fractal or non-stationary characteristics [11].

(iii) Compared to the information or complex entropy metrics [15,17], the MSE algorithm
guarantees showing both statistical and fractal properties, qualitatively. It is found
that under the Gaussian distribution, and the same mean and standard deviation
value, the series with the exponential power spectrum density (PSD) function turns
out to have larger estimating sample entropy values than that of the one with a Gaus-
sian PSD function at each scale factor. For showing fractalities, as shown in [25–27],
pink noise turns out to have an invariant estimated sample entropy value at all scale
factors, whereas the estimated sample entropy of white noise decreases along with
the increasing scale factors and becomes smaller than pink noise at large scale factors.
Due to the well-known fractal properties of pink noise [22] (also explained in [25,26]),
it is then reasonable to deduce that the random series is fractal if its estimated sample
entropy value is invariant within a certain range of scale factors.

(iv) Successful cases of using entropy measures for target detection from sea clutter
or radar imageries have been reported in [15,17,18]; however, applying the MSE
algorithm to this issue has never been investigated before.

Following this, we attempt to explore the feasibility of using the MSE or its variants
as metrics in detecting a surface target in sea clutter. The rest of this paper shows our
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endeavors in detail and is organized as follows: Section 2 first introduces the data sets we
selected as test samples, Section 3 presents the details and discussions of the MSE algorithm
and how the proposed entropy metrics were constructed step by step, Section 4 validates
and discusses the performances of the proposed entropy metrics, and finally, a conclusion
is drawn to close this paper.

2. Data Description

The sea clutter data applied in this study were obtained from the IPIX radar web-
site [28]. The McMaster IPIX radar operates at X band with a frequency of 9.39 GHz and
dual polarization (H and V). The 1993’s data sets contain 14 sets; each data set includes
14 range bins, and we then have a total of 392 (14 × 14 × 2) data series. Each range bin
contains 131,072 (217) numbers, and with a sample interval of 1 ms, the data of each range
bin last for about 2 min (131.072 s). The target was made of a spherical block of Styrofoam
with a diameter of 1 m and was wrapped with a wire mesh. As an example, Figure 3
depicts the backscattering amplitudes of some range bins in data set 54 and intuitively
shows the differences between HH and VV polarizations, sea clutter only, and the target.

Figure 3. Backscattering amplitudes of some range bins in data set 54: (a) pure sea clutter, and HH and VV polarization and
(b) and primary target, and pure sea clutter and HH polarization.

Due to the oversampling in range dimension, the target then hits a few range bins.
The range bins, except with the primary target, are therefore remarked as containing a
secondary target. Table 1 presents more details of these 14 data sets, accompanied by wave
heights, wind speeds, and their corresponding sea states. Unlike the data descriptions
in [11], where the wind speeds or wave heights were generally summarized for all of 1993’s
data sets, we searched and outlined the sea conditions for each data set separately. From
the website, we noticed that the wind speeds for the data sets can only be recorded as
higher or lower than 5.56 m/s; however, the data set 54 data with wind speed being around
20 km/h (about 5.56 m/s, or 11 knots) can be clearly identified. Their corresponding sea
states were estimated according to the wave height, and the Douglas scale was applied
instead of the standard proposed by the World Meteorology Organization (WMO) [3].

Note that in Table 1, if the instantaneous wind speeds were set as the metric in
estimating the sea state, then the sea states given in Table 1 were over- or underestimated,
given rise by the complicated nonlinear air–wave interactions and many other factors, such
as wind fetch and wave age. In Table 1, data sets 310, 311, and 320 were all with low sea
states but at higher wind speeds. Hereafter, we treated the cases with both low sea states
and wind speeds as low or moderate sea conditions. For simplicity, we classified the cases
with high sea states or wind speeds as high sea conditions. Thus, these 14 data sets covered
typical sea conditions.
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Table 1. Target information and sea conditions of the 14 data sets of the 1993 IPIX radar.

Data Set 7 18 19 25 26 30 31 40 54 280 283 310 311 320

Primary
target 9 9 8 7 7 7 7 7 8 8 10 7 7 7

Secondary
target 8:11 8:11 7:9 6:8 6:8 6:8 6:9 5:8 7:10 7:10 8:12 6:9 6:9 6:9

Wave
height

(m)
2.1 2.1 2.0 1.0 1.0 0.9 0.9 0.9 0.7 1.4 1.3 0.9 0.9 0.9

Sea state 4 4 4 3 3 2 2 2 2 3 3 2 2 2
Wind
speed
(m/s)

<5.56 <5.56 <5.56 <5.56 <5.56 <5.56 <5.56 <5.56 5.56 <5.56 <5.56 >5.56 >5.56 >5.56

3. Methodologies, Feasibility Analysis, and Entropy Metrics Construction

This section gives the basics of the MSE algorithm and three additional remarks. After
that, the MSE under a general template vector length of 14 data sets is calculated for HH
and VV polarizations. Based on the calculated MSE, two entropy metrics, namely sample
entropy (SampEn) at large scale factors and the CI, described under high sea conditions
only. To consider the low or moderate sea conditions, we make use of the polarization
signatures of the calculated MSE, a nonlinear polarization combination, and the PCI metric.

3.1. Brief Reviews on the MSE Algorithm

The MSE algorithm [25,26] contains two main procedures: coarse graining and Sam-
pEn estimations. For a data series {x} with length N, the coarse graining is mathematically
given by

y(τ)j =
1
τ

jτ

∑
i=(j−1)

xi (3)

where 1 ≤ j ≤ N/τ; i, j denotes the identity number of elements in the original series

{x} and the coarse-grained subseries
{

y(τ)
}

; and τ is the scale factor that determines the
length of coarse-grained subseries. It is readily seen from Equation (3) that the original
series {x} corresponds to the scale factor at τ = 1, that is, {x} =

{
y(1)

}
.

For each coarse-grained series (including the original one), the SampEn estimation [25,29]
is applied. The SampEn of a series {s} = {s1, s2, s3, · · · } is defined as

SampEn(s, m, r) = − ln((∑ Ak)/(∑ Bk)) (4)

where k denotes the ID of the elements in series {s}; m is a preset template vector length
and determines the dimension of the template vector; and r is a threshold: a commonly
selected r value is r = constant ∗ std{s}, where std denotes the standard deviation, and
constants 0.15 or 0.2 are the default ones in [26,27]. In addition, in Equation (4), Ak is the
number of matches of length m + 1 with the k-th template and Bk is the number of matches
of length m with the k-th template. More specifically, in the SampEn algorithm, the k-th
template is given by

Sm(k) = {sk, sk+1, sk+2, · · · , sk+m−1} (5)

and the distance between the k-th and the l-th (k 6= l) template vector is defined as
d[Sm(k), Sm(l)], and k 6= l means that the self-matches are precluded. Figure 4 shows a
case of the k-th template vector Sm(k) and Sm+1(k) at m = 3. In the SampEn algorithm, the
Euclidian distance between two template vectors is selected. Then, Bk satisfies

d[Sm(k), Sm(l)] < r (6)

and Ak satisfies
d[Sm+1(k), Sm+1(l)] < r (7)
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It follows that for the k-th element, we have Ak ≤ Bk. For all k and template vectors,
there exists the relationship

∑ Ak/∑ Bk ≤ 1 (8)

Finally, the estimated SampEn is presented in the form of a mean value with an
error bar under a 95% confidence interval [25]. For more details on the MSE and SampEn
estimation, readers are referred to [25,26,29].

Figure 4. Illustration of the k-th template with template vectors Sm(k), Sm(k + 1) at m = 3.

3.2. Remarks on the MSE and Properties

We now provide details of three additional remarks regarding the MSE.

3.2.1. Complexity Index

The complexity index, also named the area under the curve (AUC), is defined as the
integrated complexity of a random series. Based on its definition, the CI is then expressed
in terms of the estimated SampEn at each scale factor as

CI =
τ

∑
i=1

SampEn(i) (9)

where SampEn(i) represents the estimated SampEn under scale factor i.

3.2.2. Convergence of MSE and SampEn

As shown in Section 3.1, under a certain scale factor τ, the estimated SampEn is
determined jointly by m and r. If the constant in r increases, then the estimated SampEn
approaches zero due to an infinitely large threshold. However, if the constant is infinitely
small, the estimated SampEn tends to be infinitely large. Thus, talking about the conver-
gence of SampEn under the parameter r is meaningless, and like mentioned before, 0.15 or
0.2 is the default constant in r. Now, only the effects on estimating SampEn of template
vector length m remain to be investigated. It can roughly be deduced from Equations (6)
and (7) that the Euclidian distance between two template vectors increases along with
increasing m. Then, for a fixed r, there must be a maximum template vector length mmax,
and for template vectors longer than the maximum one, we always have Equations (6)
and (7) established simultaneously. As a result, the left-hand side of Equation (8) evolves
into a constant, and so do the estimated SampEn values. The maximum template vector
length is of paramount importance since the PCI metric proposed later only works under
the maximum template vector length. We therefore defined and set a criterion to determine
the maximum template vector length as follows.

To further exhibit the convergence of the MSE with m, as an example, the Sam-
pEn of range bin 1 (sea clutter only) of data set 17 was estimated under the parameters
r = 0.2 ∗ std{s}, τ = 20, and is depicted in Figure 5 for both polarizations. It is observed
from Figure 5, for both polarizations and at a certain scale factor, the estimated SampEn
decreases and then saturates along with increasing template vector length. To obtain mmax,
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one can apply the Euclidian distance between the two MSE series, which is estimated
under an adjacent template vector length m and m + 1, and then compare it with a preset
precision τδ, namely

d[MSE(τ, r, m), MSE(τ, r, m + 1)] < τδ (10)

Figure 5. Convergence of SampEn and MSE of pure sea clutter (data set 17, range bin 1): (a) VV polarization and (b) HH
polarization under the parameters τ = 20, r = 0.2 ∗ std{s}.

The preset precision is associated with the scale factor τ since the scale factor deter-
mines the length of the MSE series. Then, Equation (10) can also be regarded as comparing
the mean Euclidian distance between two MSE series with δ. In practice, δ must be gauged
by a given precision τδ and a certain scale factor τ, instead of assigning it with the highest
priority. If it is assigned first, then under large scale factors, the maximum template vector
length might be underestimated due to the large τδ values. It should be noted that each
range bin in a data set has a maximum template vector length, and mmax of a data set is
defined as

mmax = max
{

mmax,1, mmax,2, mmax,3, · · · , mmax,rb
}

(11)

where rb is the range bin numbers in a data set. By setting precision τδ = 0.2 and under the
selected scale factor τ = 20 in this study, δ then turns out to be 0.01 and mmax is found to
be 6 in this case. It is observed from Figure 5 that the obtained maximum template vector
length mmax acquires desired accuracies under these given parameters. The MSE under the
maximum template vector length is also named the converged MSE.

3.2.3. Significance of the Difference

We may make use of the significance of the difference between two MSE series because
(i) it can be regarded as a signature in pattern classifications and (ii) two MSE series might
have overlapped error bars. Compared to the original series, the MSE series have shorter
lengths, making the non-parametric test, say, the rank-sum test, more suitable. One example
is that without loss of generality, if the p-value is smaller than 0.05, then the two MSE series
in the rank-sum test have a significant difference and can be classified as two different
patterns.

Thus, if the MSE series between sea clutter and the target have significant differences,
then we could say that we can distinguish the range bins with targets from those in sea
clutter. Unfortunately, after a thorough check within all range bins in 1993’s data sets, we
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found that the MSE series between range bins with sea clutter only are also significantly
different. Thus, it is impossible to distinguish the target from sea clutter by checking the
significance of the difference between the MSE series of range bins. We may conclude at
this point that sea clutter cannot be simply characterized by a distribution or by specific
shape parameters.

3.3. The MSE of Sea Clutter and Discussions

Following the MSE algorithm, we calculated the MSE of sea clutter for all samples
under the parameters τ = 20, r = 0.15 ∗ std{s}, and template vector length m = 2 [19,20].
Figures 6 and 7, respectively, depict the MSE of each data set for HH and VV polarizations,
presenting in the form of the imageries of matrices MSEvv and MSEhh.

1 

 

 

 

 

 

Figure 6. (a–n) MSE of 14 sea clutter data sets (HH polarization, m = 2, τ = 20, r = 0.15 ∗ std{s}).
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Figure 7. (a–n) MSE of 14 sea clutter data sets (VV polarization, m = 2, τ = 20, r = 0.15 ∗ std{s}).

It is observed from Figure 6 that at wave heights larger than 2.0 m (data sets 17 and
18) or at wind speeds equal to or higher than 5.56 m/s (data sets 56, 310, 311, and 320), the
MSE of range bins with the primary target can be easily distinguished from that of range
bins in sea clutter by (i) the estimated SampEn at large scale factors, for instance, at scale
factor τ = 10, and (ii) the CI introduced in Section 3.2.1 since the MSE of range bins with
the primary target is smaller than that of range bins in sea clutter. Meanwhile, within the
same data sets, the same performances can be observed from Figure 7 for VV polarization.
From Figures 8 and 9, we see that the CIs are effective under high sea conditions.
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Figure 8. (a–h) Complexity indices of data sets 17, 18, 54, 280, 283, 310, 311, and 320 (HH polarization, under the same
parameters as Figure 6).

Figure 9. (a–h) Complexity indices of data sets 17, 18, 54, 280, 283, 310, 311, and 320 (VV polarization, under the same
parameters as Figure 7).

With these two metrics, we then turned to data sets with low or moderate sea condi-
tions (data sets 19, 25, 26, 30, 31, 40, 280, and 283). It is seen from Figures 6 and 7, within
data sets 19, 25, 26, 30, 31, and 40, and for both polarizations, these two metrics are no
longer effective, perhaps because the MSE of the range bins with the target cannot be
distinguished from that of the range bins in sea clutter. data set 283 showed that for both
polarizations, these two metrics are still effective, while as depicted in Figures 8h and 9h,
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data set 280 showed the differences between polarizations, since the range bin with the
target could only be distinguished by VV polarization.

Until now, it may be reasonable to conclude that for both VV and HH polarizations,
these two metrics are effective, and even more so if linearly combining two polarizations.
Under low or moderate sea conditions, these two metrics perform poorly. Compared to HH
polarization, VV polarization performs better under all sea conditions under consideration.
This is somehow different from our belief that the targets can be easy detected under a
calm sea. Possible causes are deduced as follows. First, these two metrics are all entropy
based to describe the complexity of sea clutter, which, under high sea conditions, is only
much higher than that with the targets. The complexity of sea clutter reduces under low or
moderate sea conditions, making these two metrics less pronounced and indiscernible in
the presence of the targets. On the aspects of scattering mechanisms [3], under high sea
conditions, the long bursts (also named whitecap modulations) and short bursts endow
HH polarization with interrupted peaks (also see Figure 3). These irregular peaks then
enhance the HH polarized complexity and yield a larger MSE than that of the targets. These
bursts vanish under low or moderate sea conditions, and the MSE decreases.

Compared to HH polarization, VV polarization is more pronounced with Bragg
modulations. For X-band radars, Bragg scattering mainly originates from the capillary
gravity or capillary waves with resonance wavelengths on the sea surface, and then the
wind speed has paramount importance. The interferences between these resonant waves
and many other scattering components endow the VV-polarized sea clutter with larger
complexity than that of the targets.

Thus, under high sea conditions, these two metrics are effective with both HH and
VV polarizations. Moreover, as shown in Figures 6–9, the VV-polarized amplitudes turn
out to have higher complexity compared to the HH-polarized ones, notably under high
wind speeds, suggesting that VV polarization is more sensitive to the backscattering from
seawater. However, due to the complicated sea conditions and with limited test data
samples, it is not yet possible to obtain a certain sea state as the standard to quantify the
scope of application of these two metrics. Nevertheless, these two metrics are alternatives
to existing methods in the context of target detection in sea clutter, particularly under high
sea conditions.

Next, we turned to further develop an entropy metric by combining the polarization
signatures of the MSE; compared to the above-mentioned two metrics, it covered all the
sea conditions involved in this study.

3.4. A Non-Linear Polarization Combination for Generalities

We turned to construct another entropy metric by combining the polarization signa-
tures of the MSE, as shown in Figures 6 and 7, and ensured it is effective under all sea
conditions. Obviously, for low or moderate sea conditions, where the VV- or HH-polarized
MSE becomes invalid, we deduced that linear combinations of the VV- and HH-polarized
MSE remain invalid. Besides, the linear relationships yielded nonunique coefficients. Then,
building a nonlinear polarization combination deserved a deeper look.

From our previous tests, we saw that the MSE of VV polarization was much larger
than that of HH polarization. The increasing of the MSE, from HH polarization to VV
polarization, with and without sea clutter is different. We took the data sets in which
the CI metric turned out to be invalid, for example, since we needed to take a deeper
look into these cases. The MSE ratio, namely ∑

col
(MSEvv/MSEhh) of data sets 25, 26, 30,

31,40, 280, and 19 were calculated under the same parameters as Figures 6 and 7, and are
presented in Table 2. It is seen from Table 2 that the MSE ratios of range bins with the
primary target were all higher than those of the ones with sea clutter only, except data set
19, in which the range bin with the primary target had the lowest MSE ratio. When the
polarized MSEs were combined, the highest or lowest MSE ratio in Table 2 corresponded
to a high or low MSE compensation to the CI of the range bin with the primary target
or, equivalently, a low or high compensation to the CI of range bins with sea clutter only.
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These compensations may yield undistinguishable CI metrics and are the risk of detecting
targets by a deterministic characteristic. In other words, Table 2 suggests that we keep
an eye on full use of the items MSEhh/MSEvv (data sets 25, 26, 30, 31, 40, and 280) and
MSEvv/MSEhh (data set 19) simultaneously.

Table 2. MSE ratio ∑
col

(MSEhh/MSEvv) of data sets 25, 26, 30, 31, 40, 280, and 19.

Range Bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data set 25 9.27 9.41 9.61 8.70 9.11 12.39 15.55 * 15.21 9.53 10.25 7.67 9.47 10.61 10.90
Data set 26 7.53 7.37 7.25 9.29 11.22 11.81 13.82 13.64 10.88 9.41 9.27 9.86 10.56 11.14
Data set 30 8.85 10.08 10.54 8.26 10.06 12.71 14.14 12.62 11.35 11.79 11.32 10.90 9.89 8.52
Data set 31 9.95 10.72 8.87 7.32 10.47 12.86 14.41 13.15 11.68 10.12 9.60 9.56 10.01 8.39
Data set 40 8.43 6.70 7.04 6.96 10.07 12.81 14.19 12.26 7.80 8.68 8.79 6.92 6.36 6.58
Data set 280 9.09 9.61 9.40 8.62 7.97 8.47 11.81 12.39 12.95 12.57 10.92 10.54 9.67 9.53
Data set 19 18.89 15.04 27.11 28.07 30.48 26.40 17.17 11.56 20.43 27.56 24.45 22.37 20.48 23.45

* The value of the range bin with the primary target is highlighted in both italic and bold for each data set.

Together with these polarization signatures of the MSE, we sought a nonlinear rela-
tionship that (i) keeps the dominance of the HH- or VV-polarized MSE under high sea
conditions to ensure that the target is detectable as the two former metrics did under high
sea conditions, and (ii) compensates the MSE of range bins with pure sea clutter more but
the MSE of range bins with targets less, to ensure that the targets are distinguishable by
their lowest complexity under low or moderate sea conditions.

To this end, we started with the sigmoid function

f (x) =
1

1 + exp(−αx)
(12)

where α is a constant that controls the convergent rate of f (x) to limit. It follows that the
nonlinear polarization combination is then given by

− αx = −(aξ + bη) (13)

with
a =

MSEvv

MSEhh
; b =

MSEhh
MSEvv

(14)

and
ξ = MSEvv; η = MSEhh (15)

where MSEvv, MSEhh denotes the element in the τ × rb matrix MSEvv and MSEhh, respec-
tively. rb stands for the range bin numbers, as defined in former sections. In matrix form,
we have the polarization combination

PMSE = [1 + exp(−MSEvv

MSEhh
MSEvv −

MSEhh
MSEvv

MSEhh)]
−1

(16)

or equivalently

PMSE = [1 + exp(−MSEvv
3+MSEhh

3

MSEvvMSEhh
)]
−1

(17)

where PMSE,MSEvv,MSEhh are all τ× rb matrices. The two limits can be readily obtained
from Equation (15). For VV dominance, we have bη → 0 , and then aξ → αx ; and for HH
dominance, we have aξ → 0 , and then bη → αx . Thus, either the VV or the HH dominance
is preserved. This corresponds to the superb performance of the VV- or HH-polarized
MSE under high sea conditions. Under low or moderate sea conditions, the polarized MSE
of sea clutter and targets determines the ratios a, b and the abscissa’s location ξ, η in the
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sigmoid function. Finally, following the CI in Equation (9), the polarized complexity index
(PCI) is defined as

PCI= ∑
column

PMSE (18)

The PCI is a vector with length rb and is regarded as a novel entropy metric. The PCI
performance was validated under different template vector lengths in the next section.

4. Performance

This section validates the PCI performances under different template vector lengths,
and other parameters in the MSE are set at r = 0.15 ∗ std{s} and τ = 20. Section 3.2.2
explains why the threshold and scale factor can be fixed at certain values.

4.1. Performance under the General Template Vector Length

Under the general template vector length m = 2, the PCI defined in Equation (18) of all
14 data sets was calculated and is depicted in Figure 10. We see from Figure 10 that the PCI
significantly improved the detection performance under low or moderate sea conditions;
that is, the primary targets in data sets 25, 26, 30, 31, and 40 now could be distinguished
in sea clutter for their lowest PCIs. However, the target in data set 19 was still unable to
be detected, and the PCI under the general-template vector length even showed poorer
performance in data set 17. Clearly, a better solution is desirable. In line with this, we
cameup with the template vector length gauged by the converged MSE.

 

3 

 
 

 
Figure 10. (a–n) PCIs of 14 data sets at template vector length m = 2·(τ = 20, r = 0.15 ∗ std{s}).
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4.2. Performance under mmax

Following Section 3.2.2, the maximum template vector length of the 14 data sets was
obtained as mmax = 6. Similar to Figure 10, the PCIs of all 14 data sets were then calculated
and are shown in Figure 11.

From Figure 11, we see that the range bins with the primary target now all had the
lowest PCIs compared to other range bins without a target. In data set 17, the range bins 10
and 11 with the secondary target has lower PCIs than range bin 9 with the primary target,
and the PCI of the range bin in data set 17 with the primary target was smaller than that of
any range bins without targets. Thus, we may conclude that the PCI performed well for
all 14 data sets. Furthermore, precluding the range bins with secondary targets, the range
bin with the primary target showed the lowest PCI value compared to the range bins with
sea clutter and could be distinguished from those range bins without targets. Then, the
lowest PCI of range bin 9 in data set 17 showed the law we found in other data sets. It is
also worth noting that even for mmax, the SampEn at large scale factors and the CI were
not effective under low or moderate sea conditions.

In what follows, we summarize the procedures of applying the PCI metric in terms of
a pseudo-algorithm.

 

4 

 

Figure 11. (a–n) The polarized complexity index (PCI) of 14 data sets at template vector length m = 6·(τ = 20, r =

0.15 ∗ std{s}).
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4.3. Procedures of Applying the PCI Metric

For simplicity, details of the classical MSE algorithm are omitted here and can be
found in [25,26]. Applying the PCI metric consists of three main steps:

1. Under the defaulted scale factor and threshold, obtaining the maximum template
vector length mmax

2. Under mmax, the defaulted scale factor and threshold, constructing the MSE matrix
MSEvv and MSEhh for both polarizations

3. Constructing the PMSE matrix by Equations (16) or (17) and calculating the PCI for
each range bin by Equation (18), followed by finding the smallest PCI value and
recording its corresponding range bin identity number, which is then recognized as
containing the target.

The pseudo-algorithm of the procedures outlined above is presented in MATLAB®

customs in Appendix A.

5. Discussion

Unlike the scattering statistics or the Hurst parameter in the fractal model, the basis of
the three proposed entropy metrics in this study emphasizes the complexity differences
between with and without targets in sea clutter. As shown in Figures 6–9, for HH or VV
polarization, SampEn at large scale factors and the CI are only effective under high sea
conditions. However, the proposed PCI metric is effective as a target detector in sea clutter
under all sea conditions. More specifically, the range bins with targets were all found to
have the lowest PCI within 1993’s IPIX radar data sets.

For practical use of the PCI, we have to preset a threshold such that a minimum PCI
difference between with and without targets is detectable. In Figure 11, the minimum PCI
difference occurred in data set 310, and the PCI difference between range bins 1 and 7 was
0.1289. For all the 14 data sets, if the PCI difference between the range bin with the lowest
PCI and any one of the remaining range bins was smaller than 0.1289, then the range bin
with the lowest PCI was recognized as sea clutter only (the fake target). Conversely, it
would be recognized as the real target.

One question is how to deal with cases with no or multiple targets. Indeed, to achieve
the desired CFARs, it is necessary to set a threshold adaptively. A unique property of the
proposed PCI metric in the context of surface target detection in sea clutter found in this
study is helpful. We can see from Figure 11 that the PCIs of range bins with sea clutter
only were relatively stable in all data sets. The sudden bursts, e.g., range bin 2 in data set
18, range bin 4 in data set 25, and range bin 10 in data set 26, can be smoothed or even
eliminated by applying proper filtering. The result is that for one or multiple targets, only
one or few obvious inflection points (with the lowest PCI) are left. For sea clutter only (no
target), the PCI curve flattens without presenting dominant inflection points.

6. Conclusions

We quantitatively investigated the complexities of sea clutter using multiscale entropy
measures without assuming the scattering being independent. From extensive tests on the
1993’s IPIX radar data sets under high sea conditions, we found that the entropy metric is
able to effectively discern the surface targets in sea clutter. An entropy metric, PCI, that
combines the polarization signatures was proposed to render itself as an effective target
detector under low-to-high sea conditions.

The proposed entropy metrics show potential in applications of marine radar target
detection as an alternative to current known methods. The following observations are in
order:

First, the coarse graining in Equation (3) is equivalent to the incoherent accumulations
in radar signal processing. Consequently, the temporal correlation effects were ignored in
SampEn under large scale factors.
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Second, the averaging in coarse graining essentially is a lowpass filter such that the
long or short bursts in HH polarization can be filtered out. It helps explain why SampEn
slowly saturates at HH polarization than at VV polarization.

Finally, the fractal properties of sea clutter are fully contained and exhibited by the
MSE. The invariant SampEn with the scale factor of pink noise confirms that sea clutter
is fractal. Results indicate that both HH-polarized and VV-polarized sea clutter shows
fractal properties at larger and smaller scale factors under high sea conditions, respectively.
The difference in fractal properties also implies that the VV-polarized scattering is more
sensitive to Bragg resonance and is less impacted by whitecaps or breaking waves.
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Appendix A

The appendix is presented for showing the main procedures of realizing the proposed
PCI metric, without loss of generalities, and the pseudo-algorithm is given in MATLAB
language format.
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Step 1: Obtain the Maximum Template Vector Length-Mmax

Input: Scale Factor: tao = 20; Amplitude Series: Si, i = 1, 2, 3, . . . , rb; Threshold: tao*c = 0.2
for i = 1:rb
ri = 0.15*std{Si}; %Threshold in MSE algorithm

for m = 1
MSE(i,m) = MSEA(tao, ri, m, Si); % MSEA: MSE algorithm
MSE(i,m + 1) = MSEA(tao, ri, m + 1, Si);
dMSE(i) = Euclid {MSE(i,m + 1),MSE(i,m)}; % Euclid: Euclidian distance
if (dMSE(i) < tao*c)
Mi = m+1;
else
m = m+1;
end for

end for
Mmax = max {M1, M2, M3, . . . , Mrb};

Step 2: Construct the MSE Matrices–MSE (pol)

Input: Pol: HH or VV; Amplitude Series: Si, i = 1, 2, 3, . . . , rb; Scale Factor: tao = 20; Mmax
for i = 1:rb
ri = 0.15*std{Si};
MSE(i, pol) = MSEA(tao, ri, Mmax, Si);
end for
MSE(pol) = MSE; % Dimension: tao*rb

Step 3: Calculate the PCI

PMSE = PMSEA(MSE(HH), MSE(VV)); % PMSEA: Equation (16) or (17)
PCI = column-sum(PMSE);

References
1. Bole, A.; Wall, A.; Norris, A. Radar and ARPA Manual: Radar, AIS and Target Tracking for Marine Radar Users, 3rd ed.; Elsevier:

Waltham, MA, USA, 2014.
2. Jakeman, E.; Pusey, P.N. A model for non-Rayleigh sea echo. IEEE Trans. Ant. Prop. 1976, 24, 806–814. [CrossRef]
3. Ward, K.; Tough, R.; Watts, S. Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd ed.; IET: London, UK, 2013.
4. Matorella, M.; Berizzi, F.; Mese, E.D. On the fractal dimension of sea surface backscattered signal at low grazing angle. IEEE

Trans. Ant. Prop. 2004, 52, 1193–1204. [CrossRef]
5. Berizzi, F.; Mase, E.D.; Martorella, M. A sea surface fractal model for ocean remote sensing. Int. J. Remote Sens. 2004, 25, 1265–1270.

[CrossRef]
6. Savaidis, S.; Frangos, P.; Jaggard, D.L.; Hizanidis, K. Scattering from fractally corrugated surfaces: An exact approach. Opt. Lett.

1995, 20, 2357–2359. [CrossRef] [PubMed]
7. Berizzi, F.; Mese, E.D. Scattering from a 2D sea fractal surface: Fractal analysis of the scattered signal. IEEE Trans. Antennas Propag.

2002, 50, 912–925. [CrossRef]
8. Franceschetti, G.; Iodice, A.; Migliaccio, M.; Riccio, D. Scattering from natural rough surfaces modeled by fractional Brownian

motion two-dimensional processes. IEEE Trans. Antennas Propag. 1999, 47, 1405–1415. [CrossRef]
9. Haykin, S.; Bakker, R.; Currie, B.W. Uncovering nonlinear dynamics—The case study of sea clutter. IEEE Proc. 2002, 90, 860–861.

[CrossRef]
10. Haykin, S.; Puthusserypady, S. Chaotic dynamic of sea clutter. Chaos 1997, 7, 777–802. [CrossRef]
11. Hu, J.; Tung, W.; Gao, J.B. Detection of low observable targets within sea clutter by structure function based multifractal analysis.

IEEE Trans. Antennas Propag. 2006, 54, 136–143. [CrossRef]
12. Davidson, G.; Griffiths, H.D. Wavelet detection scheme for small targets in sea clutter. Electron. Lett. 2002, 38, 1128–1130.

[CrossRef]
13. Thayaparan, T.; Kennedy, S. Detection of a maneuvering air target in sea-clutter using joint time-frequency analysis techniques.

IEE Proc. Radar Sonar Navig. 2004, 151, 19–30. [CrossRef]
14. Ferrentino, E.; Nunziata, F.; Marino, A.; Migliaccia, M.; Li, X.M. Detection of wind turbines in intertidal areas using SAR

polarimetry. IEEE Geosci. Sens. Lett. 2019, 16, 1516–1520. [CrossRef]
15. Ghahramani, H.; Parhizgar, N.; Arand, B.A.; Barari, M. Polarimetric detection of maritime floating small target based on the

complex-valued entropy rate bound minimization. Heliyon 2020, 6, e05138. [CrossRef] [PubMed]
16. Ma, L.; Wu, J.J.; Zhang, J.P.; Wu, Z.S.; Jeon, G.; Tan, M.Z.; Zhang, Y.S. Sea clutter amplitude prediction using a long short-term

memory neural network. Remote Sens. 2019, 11, 2826. [CrossRef]

http://doi.org/10.1109/TAP.1976.1141451
http://doi.org/10.1109/TAP.2004.827533
http://doi.org/10.1080/01431160310001592157
http://doi.org/10.1364/OL.20.002357
http://www.ncbi.nlm.nih.gov/pubmed/19865218
http://doi.org/10.1109/TAP.2002.800695
http://doi.org/10.1109/8.793320
http://doi.org/10.1109/JPROC.2002.1015011
http://doi.org/10.1063/1.166275
http://doi.org/10.1109/TAP.2005.861541
http://doi.org/10.1049/el:20020790
http://doi.org/10.1049/ip-rsn:20040158
http://doi.org/10.1109/LGRS.2019.2905714
http://doi.org/10.1016/j.heliyon.2020.e05138
http://www.ncbi.nlm.nih.gov/pubmed/33088941
http://doi.org/10.3390/rs11232826


Remote Sens. 2021, 13, 3950 18 of 18

17. Li, Y.Z.; Xie, P.C.; Tang, Z.S.; Jiang, T.; Qi, P.H. SVM-based sea-surface small target detection: A false-alarm rate controllable
approach. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1225–1229. [CrossRef]

18. Wang, X.; Liu, J.; Liu, H.W. Small target detection in sea clutter based on doppler spectrum freatures. In 2006 CIE International
Conference on Radar; IEEE: Manhattan, NY, USA, 2006.

19. Ulaby, F.T.; Dobson, M.C. Handbook of Radar Scattering Statistics for Terrain; Artech House: Nordwood, MA, USA, 1989.
20. Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive, Vol. 2: Radar Remote Sensing, Surface Scattering

and Emission Theory; Artech House: Nordwood, MA, USA, 1982.
21. Chen, K.S. Principles of Synthetic Aperture Radar: A System Simulation Approach; CRC Press: Boca Raton, FL, USA, 2016.
22. Holden, J.G. Gauging the Fractal Dimension of Response Times from Cognitive Tasks. Available online: https://www.nsf.gov/

pubs/2005/nsf05057/nmbs/chap6.pdf (accessed on 8 June 2021).
23. Wang, X.L.; Chen, C.X. Ship detection for complex background SAR images based on a multiscale variance weighted image

entropy method. IEEE Geosci. Remote Sens. Lett. 2017, 14, 184–187. [CrossRef]
24. Xiong, W.T.; Faes, L.; Ivanov, P.C. Entropy measures, entropy estimators, and their performance in quantifying complex dynamics:

Effects of artifacts, nonstationarity, and long-range correlations. Phys. Rev. E 2017, 95, 062144. [CrossRef] [PubMed]
25. Richman, J.S. Sample entropy. In Computer Numerical Method: Part E; Elsevier: Oxford, UK, 2004.
26. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Phys. 2005, 71, 021906.

[CrossRef]
27. Humeau, A.; Mahe, G.; Blondeau, F.C.; Rouseeau, D.; Abraham, P. Multiscale analysis of microvascular blood flow: A multiscale

entropy study of laser doppler flowmetry time series. IEEE Trans. Biomed. Eng. 2011, 58, 2970–2974. [CrossRef] [PubMed]
28. The IPIX RADAR Website. Available online: http://soma.ece.mcmaster.ca/ipix/dartmouth/datasets.html (accessed on 19 May

2021).
29. Richiman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.

Heart Circ. Physiol. 2000, 278, 2039–2049. [CrossRef]

http://doi.org/10.1109/LGRS.2019.2894385
https://www.nsf.gov/pubs/2005/nsf05057/nmbs/chap6.pdf
https://www.nsf.gov/pubs/2005/nsf05057/nmbs/chap6.pdf
http://doi.org/10.1109/LGRS.2016.2633548
http://doi.org/10.1103/PhysRevE.95.062114
http://www.ncbi.nlm.nih.gov/pubmed/28709192
http://doi.org/10.1103/PhysRevE.71.021906
http://doi.org/10.1109/TBME.2011.2160865
http://www.ncbi.nlm.nih.gov/pubmed/21712149
http://soma.ece.mcmaster.ca/ipix/dartmouth/datasets.html
http://doi.org/10.1152/ajpheart.2000.278.6.H2039

	Introduction 
	Data Description 
	Methodologies, Feasibility Analysis, and Entropy Metrics Construction 
	Brief Reviews on the MSE Algorithm 
	Remarks on the MSE and Properties 
	Complexity Index 
	Convergence of MSE and SampEn 
	Significance of the Difference 

	The MSE of Sea Clutter and Discussions 
	A Non-Linear Polarization Combination for Generalities 

	Performance 
	Performance under the General Template Vector Length 
	Performance under mmax  
	Procedures of Applying the PCI Metric 

	Discussion 
	Conclusions 
	
	References

