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Abstract: Accurate inundation maps for flooded wetlands and rivers are a critical resource for their
management and conservation. In this paper, we automate a method (thresholding of the short-wave
infrared band) for classifying peak inundation in the Okavango Delta, northern Botswana, using
Landsat imagery and Google Earth Engine. Inundation classification in the Okavango Delta is complex
owing to the spectral overlap between inundated areas covered with aquatic vegetation and dryland
vegetation classes on satellite imagery, and classifications have predominately been implemented on
broad spatial resolution imagery. We present the longest time series to date (1990–2019) of inundation
maps for the peak flood season at a high spatial resolution (30 m) for the Okavango Delta. We validated
the maps using image-based and in situ data accuracy assessments, with overall accuracy ranging from
91.5% to 98.1%. Use of Landsat imagery resulted in consistently lower (on average, 692 km2) estimates
of inundation extent than previous studies that used Moderate Resolution Imaging Spectroradiometer
(MODIS) and National Oceanic and Atmospheric Administration Advanced Very-High-Resolution
Radiometer (NOAA AVHRR) imagery, likely owing to the increased number of mixed pixels that
occur when using broad spatial resolution imagery, which can lead to overestimations of the size
of inundated areas. We provide the inundation maps and Google Earth Engine code for public use.
This classification method can likely be adapted for inundation mapping in other regions.

Keywords: Okavango Delta; inundation maps; inundation extent; Landsat; Google Earth Engine;
automated time series

1. Introduction

The Okavango Delta (the delta) in northern Botswana is a wetland of international and domestic
significance [1–3], yet pressures on its water resources from water abstraction (for agriculture and human
consumption), damming for power generation, and climate change are growing [1,4,5]. This large
wetland consists of a panhandle region; a channel system surrounded by permanent swamps; and a
large, low gradient alluvial fan [4,6,7]. The delta is subject to an annual flood event asynchronous with
the local rainy season; rainfall in the highlands of Angola flows into the Okavango River, entering
the Botswana panhandle, and slowly moves down the fan, reaching maximum inundation extent in
July–September [2,4,6,8–10]. Intra and inter-annual variations in the frequency, duration, and extent of
the inundation produce a complex mosaic of vegetation, supporting a vast number of ecological niches
and a rich diversity of flora and fauna [1,11,12].

The hydrology of the delta, including temporal and spatial changes in its inundation history,
has been investigated through inundation maps [1]. These maps can be used to study the past and
present state of the delta; to predict its future transformations; and to understand how it is affected by
natural processes, climate change, and human resource use [13]. They may also be incorporated into
management strategies and biodiversity studies. Inundation maps can be created using satellite imagery,
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which are available from a range of spatial and temporal resolution products. While differentiating open
water (e.g., channels, lagoons) from dryland vegetation (e.g., shrublands, grasslands) is relatively simple,
there is substantial overlap in the spectral values of inundated areas covered in aquatic vegetation
(e.g., floodplain) and some dryland vegetation classes, making the separation of these classes difficult
and traditional water classification methods unviable [2,8–10,14,15]. For example, the normalized and
modified normalized difference water index (NDWI and MNDWI), which were specifically developed
to map waterbodies, had the least ability to classify inundation compared with six other methods [9].
Therefore, a range of classification methods (unsupervised, supervised, band thresholding, band
ratios, indices, and combinations of these methods) have been implemented [2,4,6,8–10,15]. Recently,
band thresholding has been successful [2,8,15], with thresholding of the short wave infrared (SWIR)
band producing high accuracy results on Moderate Resolution Imaging Spectroradiometer (MODIS)
imagery [9]. The SWIR band is highly sensitive to moisture content [16], and can differentiate densely
vegetated inundated areas from non-inundated vegetation [9]. As well as its accuracy, the advantage
of this method is its relative simplicity, meaning it is easily automated, which reduces the time (and
thus cost) of implementation compared with more complex methods.

The majority of delta inundation studies have used imagery with broad spatial resolution (MODIS
(250 m, 500 m, and 1 km) [8,9,15] and National Oceanic and Atmospheric Administration Advanced
Very-High-Resolution Radiometer (NOAA AVHRR) (1 km) [6,10]), taking advantage of the high
temporal resolution of these sensors, which allows daily and sub-monthly analysis of inundation [9].
However, dependent on the intended use of the inundation maps, such broad spatial resolution may
result in unacceptable simplification of the complex mosaic of the delta [8]. Further, high spatial
resolution information can increase confidence in associated decision-making [17–25]. Broad spatial
resolution can be downscaled to achieved finer spatial resolution, if access to high temporal resolution
data is a pertinent factor [8,26–28]. In addition, broad spatial resolution increases the likelihood of
mixed pixels (e.g., pixels containing both inundated and dry areas), which can confuse classification
attempts [4,9,29], although methods exist to reduce this issue [26,30,31].

Computational power; data procurement, management, and storage; and processing times have
also traditionally been a motivation for using broad spatial resolution images, particularly when creating
time series over large areas [4,8,9,15]. Recent advances in computing power and cloud-processing
infrastructure (e.g., Google Earth Engine [32]) have enabled much wider access to satellite image time
series, along with the capacity to process and analyse these data.

In this paper, we utilised the family of Landsat satellite sensors to create the longest time series of
inundation maps for the peak flood season for the delta at a high spatial resolution (30 m pixels) to
date. We adapted a previously developed method based on thresholding of the SWIR band [9], and
implemented an automated version in Google Earth Engine [32], a cloud-based geospatial analysis
platform. We created a time series of peak inundation for the last 30 years, up to and including the flood
event of 2019, thought to be the lowest flood season on record [33]. Further, we provide validation
results that confirm the accuracy of the SWIR thresholding method. The inundation maps and Google
Earth Engine code are provided publicly for use and adjustment by stakeholders, land managers,
and researchers.

2. Materials and Methods

2.1. Annual (July–September) Landsat Composites

Unless otherwise stated, all processing was conducted using Google Earth Engine. Every tier 1
atmospherically corrected surface reflectance Landsat (Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI)
scene covering the Okavango Delta (Figure 1) for the peak inundation period (1 July to 30 September)
from 1990 to 2019 was used (Step 1 in Figure 2). Scenes occurred within six Landsat path/row footprints
(174/073, 174/074, 175/073, 175/074, 176/072, 176/073). These sensors capture scenes with 30 m spatial
resolution, containing eight (Landsat 5 and 7) and eleven (Landsat 8) bands, including the SWIR band
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(band 7) used in this study. For each scene, pixels classified as cloud or cloud shadow on the Landsat
cloud mask band were masked (Step 2 in Figure 2). These pixels were then filled using the median
value for the pixel from a year before and after the scenes’ date, using a gap-filling algorithm [34]
(step 3 in Figure 2). The SWIR band was selected for each scene (step 4 in Figure 2) and then, for each
year, a composite was created from the median value of all the scenes for that year (step 5 in Figure 2).
Annual composites with large areas missing (e.g., there were no scenes available for a path/row) were
filtered out (step 6 in Figure 2). This occurred five times (1993, 2000, 2009, 2010, and 2012).
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recommended by Wolski et al. [9]. Owing to the different imagery used in this study, we confirmed 
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Figure 1. Okavango Delta study area (black outline) in northern Botswana. White and black hatched
areas are the permanent water (permanent swamps and channels) and dry areas, respectively, used in
calculating the threshold value, and blue lines are the major channels of the delta.

2.2. Annual (July–September) Inundation Maps

The composites were transformed into inundation maps using an SWIR thresholding technique.
To apply this method, we assessed and digitised areas that had permanent water (e.g., permanent
swamp or main channels) or were permanently dry, based on Wolski et al.’s [9] designated areas,
but altered slightly to suit our use of higher spatial resolution imagery (Figure 1, step 7 in Figure 2).
The median SWIR value for the inundated (SWIRwet) and dry (SWIRdry) areas was calculated for each
individual composite, and a composite-specific SWIRthreshold value was calculated using Equation (1)
(taken from Wolski et al. [9]) (step 8 in Figure 2).

SWIRthreshold = SWIRwet + 0.3 ∗(SWIRdry − SWIRwet) (1)

The relative frequency of SWIR values for the wet and dry areas is shown in Figure S1, with the
SWIRwet, SWIRdry, and SWIRthreshold values marked. Pixels with an SWIR value below the threshold
were classified as inundated, and vice-versa for dry pixels (step 9 in Figure 2). Calculating the
threshold value separately for each image accounts for the dynamic (seasonal and annual) nature of the
inundation patterns of the delta [9]. The multiplier of 0.3 represents the value needed to calculate the
correct threshold to classify a pixel with an inundation fraction of 50% as inundated, as recommended
by Wolski et al. [9]. Owing to the different imagery used in this study, we confirmed the value of
0.3 was appropriate, by also assessing inundation maps developed using values of 0.25 and 0.35 (see
next section). Further details about this classification method and its development are provided in
Wolski et al. [9].
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2.3. Validating Inundation Maps (Image-Based Accuracy Assessment)

Gathering in situ data for historical time series is difficult, and in many cases, these data simply
do not exist. To enable validation for at least some of the time series, we used a visual interpretation
approach to generate reference data. Although this method can be subjective, it is a generally accepted
approach, particularly when historical data are limited [2,35–41]. We validated the accuracy of three
sets of inundation maps (produced using 0.25, 0.3, and 0.35 in Equation (1)) by visual assessment of
true colour versions of the Landsat composites used to make the inundation maps, and high-resolution
satellite images. The inundation maps were created without filling masked pixels, and only comprised
a subset of the years (2000–2016). High resolution imagery taken between July and October was
accessed via Google Earth’s historical imagery function and the Digital Globe collection (obtained from
the DigitalGlobe Foundation). Given that the study area (Figure 1) included large tracts of permanently
dry areas (i.e., the Kalahari Desert), which we predicted would rarely be misclassified [9], we used
an amended area for the validation, removing some of the larger dry areas (Figure S2). Using this
amended area, fifty sample points (Figure S2) were randomly generated using the sampleRandom
function (raster package [42]) in R [43]. For each year, the same 50 sample points were visually assigned
as inundated or dry on the Landsat and high-resolution imagery before progressing onto the next
year. This prevented the assessors from making classifications based on a sample point’s previous
inundation history. The classification (inundated or dry) of each sample point was extracted from the
relevant inundation map and an error matrix was created. Overall accuracy (the sum of the diagonal
entries (correctly classified points) divided by the total sampled points), producer’s accuracy (the
diagonal entry divided by its respective column total), and user’s accuracy (the diagonal entry of each
row divided by its respective row total) were calculated.

2.4. Validating Inundation Maps (In Situ Data Accuracy Assessment)

To validate the accuracy of the classification method, we carried out a field examination of
inundated and dry regions within one Landsat scene (scene 175/73, 25 July 2018). Owing to accessibility
and safety constraints, we only sampled from the Abu Concession (Figure S3), where inundated areas
could be accessed by field personnel by wading (within 100 m of dry land). Sampling points were
chosen using a random stratified sampling approach, where inundated and dry were the stratification
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levels. The sampling area was created in QGIS [44] by outlining islands that were accessible by
vehicle, applying a 100 m buffer, and clipping the inundation map to this shape. The raster was
imported into R [43] and 55 points in each stratum were randomly selected (Figure S3) using the
sampleStratified function (raster package [42]), which were then exported and uploaded to a handheld
Garmin GPSMAP® 64 GPS. This number of sample points was chosen to ensure that if some points
were inaccessible (e.g., vegetation too thick to drive through, unsafe to wade into water, wildlife
within close proximity), the recommended minimum number of 50 [35] could still be obtained. Data
collection occurred within two days of the sensor’s collection of the scene (25–27 July 2018), with each
point classified as either inundated (standing water) or dry, based on which class occurred over the
majority of the 30 m2 area centered on each point. Where the proportion of each class was approaching
equality, the point was classified, but was also noted as an uncertain classification. The classification
for each sample point was extracted from the inundation map created from the Landsat scene and an
error matrix was created. Overall accuracy, user’s accuracy, and producer’s accuracy were calculated
as above.

3. Results

The extent and distribution of the peak inundation varied annually (Figures 3 and 4), with the
smallest inundation extent occurring in 2019 (3487 km2) and the greatest in 2011 (10,109 km2) (Figures 4
and 5). The average inundation extent was 6635 km2. The SWIRthreshold values ranged from 1306 (2014)
to 1637 (2003) (Figure S1), emphasising the importance of calculating this variable individually for each
composite. On average, estimates of inundation extent were 692 km2 smaller than those from previous
studies, which used MODIS (250 m and 500 m spatial resolution) and NOAA AVHRR (1000 m spatial
resolution) imagery, with a maximum difference of 2373 km2 (Figure 4).Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 13 
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Figure 4. Annual (July–September) inundation extent (km2) of the Okavango Delta from our data
and other studies. Inundation maps from other studies were developed using imagery predominately
from MCD43A4 (500m spatial resolution) (Wolski et al. 2017 [9]), MOD09Q (250 m spatial resolution)
(Thito et al. 2016 [8]), and NOAA AVHRR (1000 m) (Gumbricht et al. 2004, McCarthy et al.
2003 [6,10]). Note: inundation extents from other studies were taken from tables and figures (using
http://www.graphreader.com/) for the same months as those used in this study.

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 13 

 

 
Figure 4. Annual (July–September) inundation extent (km2) of the Okavango Delta from our data and 
other studies. Inundation maps from other studies were developed using imagery predominately 
from MCD43A4 (500m spatial resolution) (Wolski et al. 2017 [9]), MOD09Q (250 m spatial resolution) 
(Thito et al. 2016 [8]), and NOAA AVHRR (1000 m) (Gumbricht et al. 2004, McCarthy et al. 2003 [6,10]). 
Note: inundation extents from other studies were taken from tables and figures (using 
http://www.graphreader.com/) for the same months as those used in this study. 

 

Figure 5. ‘Natural’ colour composite (short wave infrared (SWIR), near infrared (NIR), green bands), 
SWIR band composite, and inundation map (black area is inundated) for years with minimum, mean, 
and maximum flood extent. In 2019, inundated pixels in the southwest of the map are likely 
misclassified. Note: flood extent in 2005 was within 100 km2 of average flood extent. 

3.1. Validating Inundation Maps 

Using the true colour Landsat composites, a total of 691 points were visually classified; fifty 
points per year, except for years without inundation maps and 2010 and 2011, where five and four 
validation pixels were masked, respectively. There were fewer points (123) visually classified using 
the high-resolution imagery owing to a lack of available data. For inundation maps created using a 
multiplier of 0.3, based on the visual assessment of Landsat composites, the inundation maps had 
few misclassified pixels (1.9%), but this was slightly higher based on the visual classification of high-
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and maximum flood extent. In 2019, inundated pixels in the southwest of the map are likely misclassified.
Note: flood extent in 2005 was within 100 km2 of average flood extent.
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Validating Inundation Maps

Using the true colour Landsat composites, a total of 691 points were visually classified; fifty
points per year, except for years without inundation maps and 2010 and 2011, where five and four
validation pixels were masked, respectively. There were fewer points (123) visually classified using
the high-resolution imagery owing to a lack of available data. For inundation maps created using
a multiplier of 0.3, based on the visual assessment of Landsat composites, the inundation maps
had few misclassified pixels (1.9%), but this was slightly higher based on the visual classification of
high-resolution imagery (4.1%) (Table 1). Inundation maps created using a value of 0.25 had slightly
lower overall accuracy, and using a value of 0.35 had almost identical overall accuracy (Table S1).
Misclassified points were located predominately on the boundary of inundated and dry areas and
where there was high inter-annual variation in inundation (Figure S2).

Table 1. Error matrices and overall accuracy of inundation maps using image-based accuracy assessment
(Landsat and high-resolution imagery) and in situ points. Note: values in square brackets are based on
points noted as ‘uncertain’ being removed.

Landsat Hi-res Visual Interp. In Situ
Dry Wet Dry Wet Dry Wet

Map Dry 526 10 82 3 45 [44] 1 [0]
Wet 3 152 2 36 8 [2] 52 [52]

Overall accuracy 98.1% (678/691) 95.9% (118/123) 91.5% (97/106)
[98.0% (96/98)]

Producer’s accuracy—Landsat, dry = 99.4% (526/529) and wet = 93.8% (152/162); high-resolution imagery,
dry = 97.6% (82/84) and wet = 92.3% (36/39); in situ, dry = 84.9% (45/53) [95.7% (44/46)] and wet = 98.1% (52/53)
[100% (52/52)]. User’s accuracy—Landsat, dry = 98.1% (526/536) and wet = 98.1% (152/155); high-resolution imagery,
dry = 96.5% (82/85) and wet = 94.7% (36/38); in situ, dry = 97.8% (45/46) [100% (44/44)] and wet = 86.7% (52/60)
[96.3% (52/54)].

Out of the 110 sample points that were generated for the in situ validation, we classified 106 (four
were inaccessible). The inundation map had an overall accuracy of 91.5% (nine sample points were
misclassified) (Table 1, Figure S3). Of these nine misclassified points, seven were noted as uncertain
in the field as they had approximately equal areas of inundation and dry. There was an additional
uncertain point that was correctly classified. When these uncertain points were removed, overall
accuracy increased to 98.0% (Table 1).

4. Discussion

Our study details the longest ever time series of peak flooding extents for the Okavango Delta at a
high spatial resolution (30 m), demonstrating the remarkable inter-annual variability of this system;
the largest inundation extent recorded was almost three times that of the smallest (Figures 4 and 5).
There are also inter-annual variations in the spatial distribution of inundation (Figures 3 and 5, Data S1
(annual rasters)), driven by the volume of water discharged into the system, but also factors such as
sedimentation, channel blockage from vegetation, and avulsion [6,8,45,46]. On the basis of the maps
produced in this study, the 2019 flood event represents the smallest inundation since 1985, being around
769 km2 smaller than the previous record in 1996 (Figure 4). Estimations of inundation extent going back
to 1934 calculated the lowest inundation to be approximately 5100 km2 [6]. Our estimate of inundation
extent in 2019 was 3483 km2, making it the smallest flood in the last 85 years. This exceptionally
low flood is likely driven by a multi-decadal (16–20 years) rainfall cycle in Southern Africa [6,47,48],
being 14 years since the previous dry year. The delta is also at risk of drying owing to increases in
temperature and evaporation and decreases in rainfall and river flow due to climate change and water
abstraction and damming [4,49].

The annual inundation extent estimates in our study were systematically smaller than previous
studies, but showed a similar trend (Figure 4). The most likely cause for this effect is our use of higher
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resolution imagery, an effect that is also evident in other study systems when comparing estimates
from different sensor resolutions [50–53]. Broad spatial resolution imagery (as used in existing studies)
increases the number of mixed pixels, and can lead to overestimations of the size of the inundated
areas [4,29], which we reduced by using Landsat images. Another potential cause for smaller estimates
is our use of three-month composites rather than individual consecutive images, concealing the time of
true maximum inundation, although our use of median values should be robust to this effect.

Accuracy assessments of delta inundation maps have generally not included in situ data
(Murray-Hudson et al. [15] is an exception), instead using comparisons to high resolution aerial
orthomosaics [2], other inundation maps [8,9,15], or hydrological observations [6,9]. The overall
accuracy of the method used in this study as determined by the image-based assessment (95.9%–98.1%)
is comparable to these other studies, being predictably higher for the Landsat composites than the
independent high-resolution images, as these are the true colour version of the images on which the
inundation maps were based. Also contributing to the reduced accuracy, high-resolution images
covered a slightly longer time period (July–October) than that used to make the inundation maps (done
to increase available data), and were individual images, as opposed to composites, meaning they may
have occurred before/after the full extent of the flood. Although only a subset of the maps (2000–2016)
was validated, Figure S1 provides further evidence that the thresholding method can accurately detect
the boundary between inundated and dry pixels, with non-validated and validated years following a
similar pattern.

The overall accuracy from in situ data validation (91.5%) was slightly lower than from the
image-based assessment, although not so (98.0%) when we removed points we had flagged as uncertain
in the field. These were points that were approximately half inundated and half dry (i.e., a mixed pixel)
and had remaining moisture in the soil (i.e., were muddy) where the flood had recently receded (but
which we classified as dry as there was no standing water) (Figure S3). In situ data collection in this
area is difficult owing to logistics, accessibility, and safety issues, particularly during the high flood
period [2,4,10,54]; so, while our in situ validation was small in scale, it represents a rarely conducted
true accuracy assessment of delta inundation mapping. In addition, given that the sampling area was
centered on small islands and edges of the floodplain, it fittingly represents the boundary between dry
and inundated areas, the area where most classification errors are likely to occur [9] (Figure S2), and
which was under-represented in the sample points of the image-based accuracy assessment. Therefore,
the high accuracy within this sampling area suggests the overall delta wide classification is likely to be
reliable, confirmed by the delta-wide image-based validation.

In addition to inaccuracy caused by mixed pixels, we noted, as did Wolski et al. [9], the presence of
some true misclassification when using this method. Visual inspection of our maps suggests riparian
woodland vegetation is sometimes misclassified as inundated area, a known problem in the delta
where these classes can have overlapping spectral signatures [2] and where riparian woodland can
saturate Landsat pixels [14]. A potential solution to minimise this would be filtering out pixels that
are discontinuous from the larger inundated area [2], although for the sake of simplicity, we have not
attempted to do this. Misclassifications can also occur where there is a small difference between the
SWIR value of the dry and inundated areas used for the threshold calculation, typically during the wet
season [9], which this study did not measure. The anomalously low flood level in 2019 meant it was
difficult to get suitable training data that were consistent with the other maps. Therefore, dry pixels
within the permanent water polygon increased the range of SWIRwet values (Figure S1). This may
have led to a higher level of misclassification (Figure 5).

Choosing a sensor is a compromise between spatial and temporal resolution and the computational
time and power required to process the images. Google Earth Engine allowed us to take advantage
of high-resolution images with minimal effort; all images are called directly to the software without
downloading and functions (e.g., cloud masking) can be automated. In an ecosystem as complex
as the delta, broad spatial resolution maps may have restricted utility [6]. Using 500 m spatial
resolution imagery, Wolski et al. [9] noted that some important terminal rivers of the delta were not
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well represented on their inundation maps as they were narrower than the resolution of the imagery.
However, by using Landsat imagery, the mosaic of floodplains and islands are well represented,
and rivers that are important indicators of the hydrology of the delta, as well as essential to local
communities (e.g., the Thamalakane River), are clearly mapped (Figure 3).

5. Conclusions

Wolski et al. [9] developed a simple method (thresholding of the short wave infrared band) to
accurately classify inundation in the Okavango Delta using broad spatial resolution (500 m) satellite
imagery, noting the method was suitable for automation, but also cautioning that creating inundation
maps using Landsat imagery was “laborious . . . making creation of a consistent, long time series of
inundation maps difficult”. In this paper, we have shown that periodic, accurate inundation maps
can be created using relatively high-resolution imagery (Landsat) suitable to capture the complexity
of this important ecosystem, by utilizing Google Earth Engine, a cloud-based platform. We provide
the longest time series (1990–2019) of inundation maps for the peak flood season at a relatively high
spatial resolution (30 m) to date. The inaccessibly of remote sensing methods and processing capability
has prevented wide-spread adoption of its use by non-experts. We anticipate that the methods/code
and the data produced in this paper can be used and adapted by land managers, researchers, and
other stakeholders, who require access to accurate high resolution inundation maps. Further, the
classification method is likely to be suitable for mapping inundation in other regions, with only minimal
adaptation of the methods and code presented here.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/8/1348/s1,
Figure S1: Density of SWIR values for permanent water and dry areas, with median values (dashed line) and
threshold value (solid line) for each year; Figure S2: Location of validation points for image-based accuracy
assessment. Black points were always correctly classified, red points were incorrectly classified at least once
(label displays the number of times incorrectly classified out of total times classified). Dashed line represents
amended area for point sampling and background map is the summed annual inundation map; Figure S3:
In situ accuracy assessment of a single inundation map (25 July 2018) showing (a) all sampling points and
their classifications and examples of (b) an incorrectly classified point that was classed as uncertain in the
field, (c) a correctly classified inundated point, and (d) a correctly classified dry point. Overview map shows
average inundation extent; Table S1: Error matrices and overall accuracy of inundation maps using image-based
accuracy assessment (Landsat and high-resolution imagery) using alternative values of f in the threshold
equation SWIRthreshold = SWIRwet + f ∗(SWIRdry − SWIRwet); Data S1: Rasters of individual inundation
maps (1990–2019); Data S2: Raster of sum of all inundation maps; Data S3: Raster of variance of all inundation
maps; Data S4: Annual inundation extents; Code S1: Google Earth Engine code and inundation rasters
are available on Github (https://github.com/VictoriaInman/OkavangoDelta_flooding) and archived on Zenodo
(DOI: 10.5281/zenodo.3693153); Code S2: Link to Google Earth Engine repository https://code.earthengine.google.
com/?accept_repo=users/victoriainman/OkavangoDelta_TechnicalNote.
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