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Abstract: The single-pass geosynchronous synthetic aperture radar interferometry (GEO InSAR)
adopts the formation of a slave satellite accompanying the master satellite, which can reduce the
temporal decorrelation caused by atmospheric disturbance and observation time gap between repeated
tracks. Current formation design methods for spaceborne SAR are based on the Relative Motion
Equation (RME) in the Earth-Centered-Inertial (ECI) coordinate system (referred to as ECI-RME). Since
the Earth rotation is not taken into account, the methods will lead to a significant error for the baseline
calculation while applied to formation design for GEO InSAR. In this paper, a formation design
method for single-pass GEO InSAR based on Coordinate Rotational Transformation (CRT) is proposed.
Through CRT, the RME in Earth-Centered-Earth-Fixed (ECEF) coordinate system (referred to as
ECEF-RME) is derived. The ECEF-RME can be used to describe the accurate baseline of close-flying
satellites for different orbital altitudes, but not limited to geosynchronous orbit. Aiming at the problem
that ECEF-RME does not have a regular geometry as ECI-RME does, a numerical formation design
method based on the minimum baseline error criterion is proposed. Then, an analytical formation
design method is proposed for GEO InSAR, based on the Minimum Along-track Baseline Criterion
(MABC) subject to a fixed root mean square of the perpendicular baseline. Simulation results verify
the validity of the ECEF-RME and the analytical formation design method. The simulation results also
show that the proposed method can help alleviate the atmospheric phase impacts and improve the
retrieval accuracy of the digital elevation model (DEM) compared with the ECI-RME-based approach.

Keywords: GEO InSAR formation design; Earth rotation; Coordinate Rotational Transformation
(CRT); Relative Motion Equation in ECEF coordinate system (ECEF-RME); Minimum Along-track
Baseline Criterion (MABC)

1. Introduction

Geosynchronous synthetic aperture radar (GEO SAR) is a spaceborne SAR system operating at
geosynchronous orbit with a height of about 36,000 km [1,2]. Compared with the traditional low Earth
orbit SAR (LEO SAR), GEO SAR has the advantages of a short revisit period (several hours to one day)
and extensive coverage (imaging swath wider than 2000 km). Additionally, the baseline brought by
orbit perturbation can be adopted to realize the applications of SAR interferometry (InSAR) [3], SAR
tomography (TomoSAR), etc. [4], so it has significant application potential for disaster prevention and
mitigation, including flood disaster, geological disaster, etc. [1,5–7].
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The performance of InSAR and TomoSAR based on monostatic GEO SAR significantly degrades
due to temporal decorrelation (caused by the scene scattering fluctuation during the observation time
gap between repeated tracks) and atmospheric disturbance. Similar to LEO SAR [8], we can use
the formation GEO SAR to form a real-time baseline to improve interferometry performance [9,10],
realizing single-pass GEO InSAR. Additionally, multiple phase centers can be generated in GEO SAR
formation, and a flexible baseline configuration can enrich the functions.

The primary task of SAR formation is to design the satellite orbital elements to obtain a reasonable
formation configuration and then meet the application performance requirements. The formation
design of LEO SAR has been adequately studied, and a very mature solution has been found. A very
typical method is to describe the geometry of the formation using the Relative Motion Equation
(RME) based on the difference between the master satellite’s and slave satellite’s orbital elements, and
combining the mission requirements to design the satellite’s orbital elements [11].

The theoretical study of the Relative Motion Equation has gone through three stages. The earliest
form of RME, which was used to complete spacecraft rendezvous and docking tasks [12], was obtained
by solving the Hill equation in the 1960s. However, the solving process is complicated, and the
analytical solution has a relatively limited scope of application. To solve this problem, in 2002,
Hanspeter Schaub of Orion International Technologies in the United States used the orbital element
differences between master and slave satellites to describe the relative motion geometry between
satellites [13]. The RME of this form can easily correspond to many typical configurations. This result
has been widely used in the research of SAR missions. Subsequently, Giancarmine Fasano of the
University of Naples Federico II in Italy, as a representative of the scholars, made a breakthrough in
the theoretical research of the RME affected by the perturbation. In 2006, he proposed an approximate
RME considering the influence of the J2 perturbation, with an error of only 0.1% [14], which can be
used to optimize the typical configurations further. In 2007, he proposed a second-order analytical
RME, which can be applied to a much wider range of bistatic angle of the formation, thus can be used
to design the configurations for bistatic observations [15,16].

In the aspect of the application of RME for spaceborne SAR formation design, most scholars
use it to propose various configurations or to evaluate system performances. In [17], the regular
hexagon configuration was proposed. By using the RME, many typical InSAR formations are proposed,
including Cartwheel [18], Pendulum, Carpe [19], and Helix configurations [8]. Most of the subsequent
InSAR formation design studies in LEO SAR are only to refine these typical configurations. In 2012,
with respect to TomoSAR application, Giancarmine Fasano used the RME to optimize the multiple
Cartwheel/Pendulum/Helix configurations to realize uniform samplings in the height direction, and
found that only slight adjustment of the right ascension of ascending node (RAAN) and eccentricity
were needed [20]. In [21], the maximum detective velocity, minimum detective velocity, elevation
sensitivity, and elevation ambiguity indexes were associated mathematically with formation geometry
parameters, and a multiple-satellite formation for GMTI and InSAR was designed. In [22], taking the
optimal baseline of InSAR as an index, a satellite formation with the best DEM measurement accuracy
was designed by using the method based on mean elements. In [23], the perturbation effect of the J2
term of the Earth is considered, and the ant colony algorithm is used to optimize the formation of
3-satellite so that the baseline of formation is as stable as possible and the DEM measurement accuracy
can be improved. In [24], formation baseline, available orbit duty for InSAR, and latitude coverage are
considered, and the influence of orbital elements on Cartwheel configuration is analyzed, to evaluate
the feasibility of adding formation satellites for Cosmo/Skymed. Reference [25] analyzed the InSAR
baseline, ground coverage, and imaging resolution of typical configuration, to evaluate the feasibility
of launching nanosatellites CANX-4 and CANX-5.

The above RME equation is defined in the Earth-Centered-Inertial (ECI) coordinate system
(referred to as ECI-RME in this paper). Thus, the baseline is calculated according to the satellite velocity
in the ECI coordinate system. However, GEO SAR is severely affected by the Earth rotation. Therefore,
the baseline needs to be calculated based on the satellite velocity in the Earth-Centered-Earth-Fixed
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(ECEF) coordinate system. Using ECI-RME will bring significant errors to the baseline calculation, so
the performances of the designed formation based on ECI-RME will also be far from the requirements.
This issue will be addressed in detail in the following context. In [16], the optimal baseline of GEO
SAR formation is designed by using the Hill equation, but the effect of Earth rotation has not been
considered. There is no other literature on SAR formation design.

To solve the problem that the ECI-RME cannot be applied to GEO InSAR formation design directly,
this paper proposes a formation design method of single-pass GEO InSAR based on Coordinate
Rotational Transformation (CRT). By this method, the Relative Motion Equation in the ECF coordinate
system (called ECEF-RME) is obtained. Firstly, it is proved that the ECEF-RME and ECI-RME satisfy
the relationship of coordinate rotational transformation, and the ECEF-RME is derived after calculating
the rotation transformation matrix. This equation can be used to describe the accurate baseline of
close-flying satellites for different orbital altitudes, but not limited to geosynchronous orbit. However,
different from ECI-RME, ECEF-RME does not show apparent geometric features. Aiming at this
problem, a general numerical optimization method for formation design based on the minimum
baseline error criterion is proposed. Then, in GEO SAR, the Minimum Along-track Baseline Criterion
(MABC) subject to a fixed root mean square of the perpendicular baseline is proposed, through which
an analytical method for GEO InSAR formation design is given. Finally, the simulation results verify
the validity of the ECEF-RME and the analytical design method. The simulation also shows that the
proposed method can help alleviate the atmospheric disturbance, improve the digital elevation model
(DEM) retrieval accuracy compared with ECI-RME-based approach.

The structure of this paper is as follows. In Section 2, we describe the GEO InSAR formation
and design criteria. In Section 3, we give an analysis of the influence of Earth rotation on baseline
calculation and then derive the ECEF-RME based on CRT. In Section 4, we propose the GEO InSAR
formation design method based on MABC. Simulation is conducted in Section 5 to verify the accuracy
of ECEF-RME and the validity of the GEO InSAR formation design method, and the advantages of the
proposed method in the InSAR application are also shown. The advantages are further discussed in
Section 6. We conclude this paper in Section 7.

2. GEO InSAR Formation and Design Criteria

We consider the GEO InSAR formation shown in Figure 1a. The system consists of a master
satellite and a slave satellite. The master satellite can both transmit and receive signals, while the slave
satellite serves as a passive receiver. The nadir tracks of the formation are as shown in Figure 1b (the
inter-satellite distance is exaggerated. It is much smaller in practice). The maximum inter-satellite
distance is several hundred kilometers, depending on the critical baseline for InSAR. The critical
baseline refers to the maximum baseline to ensure that the correlation coefficient of the image pairs is
just reduced to zero, which can be expressed as Bc = λRBw tanθi/c [26], where λ is the wavelength, R
being the slant range, θi being the incidence angle, Bw being the bandwidth of the transmitted signal, c
being the light speed. Taking as an example, the typical wavelength 24 cm in L band, a bandwidth of
18 MHz, an incidence angle of 30◦, the critical baseline is around 303 km.

For the atmospheric disturbance, L-band GEO SAR is severely affected by the ionosphere,
which will cause 2D image migration, and 500 s of integration time can cause a certain degree of
azimuth defocusing [27]. The advantage of InSAR using formation is that temporal decorrelation and
atmospheric disturbance can be significantly alleviated. Besides, since the revisit time of GEO SAR is
only 24 h, a large number of InSAR data can generate interferogram sequences, which provide the
possibility for deformation observation and retrieval of deformation velocity.
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Figure 1. GEO InSAR formation. (a) Sketch map; (b) Nadir tracks. 
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Figure 1. GEO InSAR formation. (a) Sketch map; (b) Nadir tracks.

Two of the essential factors in the formation design of GEO InSAR are to minimize the along-track
baseline and to optimize the DEM retrieval accuracy. In interferometry, the main baseline components of
formation include vertical baseline and along-track baseline, which are the components perpendicular
to the slant range plane and the motion direction, respectively. The vertical baseline is necessary for
DEM retrieval. In contrast, the along-track baseline brings a line of sight (LOS) difference between
satellites in the azimuth direction, thus introduces rotation decorrelation, which should be eliminated
as much as possible [3,26]. InSAR process is a maximum likelihood estimation, and the most important
performance is the accuracy of DEM retrieval, which is related to the correlation coefficient γ of the
image pair, and the size of the vertical baseline B⊥. The Cramer-Rao Lower Bound (CRLB) of the DEM
retrieval accuracy can be expressed as σh = λR

√
1− γ2/

(
4
√

2LπB⊥γ
)
, where L is the number of looks.

Furthermore, without considering the temporal decorrelation and the atmospheric disturbance, the
correlation coefficient is related to the signal-to-noise ratio (SNR) RSN of the image, and the vertical
baseline. Therefore, there is a vertical baseline that achieves optimal DEM retrieval accuracy. This
baseline is called the “optimal baseline,” which can be expressed as [28]:

B⊥,opt =
[
1−

(
0.618− 1.171R−1

SN

)(
1 + R−1

SN

)]2λRBw tanθi
c

(1)

Therefore, to optimize the performances of GEO InSAR formation, we need to reduce the
along-track baseline as much as possible, while the vertical baseline should be as close to the optimal
baseline as possible. The master satellite of the formation is selected with an inclination of 16◦ [29],
which has an excellent coverage performance of low and medium latitude regions (such as China), so
we only need to design the slave satellite’s orbital elements.

3. Influence of Earth Rotation and ECEF-RME Derivation

3.1. Influence of Earth Rotation on Baseline Calculation

3.1.1. ECI-RME and Corresponding Formation Design Method

In satellite formations, ECI-RME (or the Hill equation) is usually used to describe the relative
motion between satellites [30,31]. This equation describes the position of the slave satellite relative to
the master satellite w.r.t. time. In ECI-RME, the origin is located in the master satellite, and the position
of the slave satellite relative to the master satellite is represented by three orthogonal components in X,
Y, and Z directions. The coordinate system composed of X-Y-Z three directions is called the spacecraft
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orbit coordinate system (OCS) (referred to as ECI-OCS, since it is defined in the ECI coordinate system),
also called the Hill frame [31], as shown in Figure 2. The X-axis is along the radial direction from the
Earth center to the master satellite. The X-Y plane is the orbit motion plane, and the Y-axis points to
the velocity side of the master satellite. If the eccentricity is zero, then the Y-axis has the same direction
as the velocity. The Z-axis is perpendicular to the orbit motion plane, and X-Y-Z is a right-handed
coordinate system.
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The three components of the ECI-RME can be expressed as:
x(t) = −A1 cos(n · t + α1)

y(t) = 2A1 sin(n · t + α1) + l
z(t) = A2 cos(n · t + α2)

(2)

where n is the angular velocity of the master satellite. A1, α1, l, A2, α2 are related to the orbital elements
of the master and slave satellites [30], which satisfy:

A1 = a
√
(ed cos ∆M− ec)

2 + (ed sin ∆M)2

A2 = −a
√
(∆Ω sin ic)

2 + (∆i)2

l = a[∆ω− ∆M + ∆Ω cos ic]
sin(α1 −Mc) = ed sin ∆M · a/A1

cos(α1 −Mc) = (ed cos ∆M− ec) · a/A1

sin(α2 −Mc −ωc) = ∆i · a/A2

cos(α2 −Mc −ωc) = ∆Ω sin ic · a/A2

(3)

where a, e, i, Ω, ω and M are semi-major axis, eccentricity, inclination, right ascension of the ascending
node (RAAN), the argument of perigee (AOP), and the mean anomaly of one satellite. These variables
are the six orbital elements determining the motion of a spacecraft. The subscript c and d represent the
center spacecraft (master satellite in the paper) and the slave satellite, respectively. ∆σ = σd − σc is
the orbital element difference of the master and slave satellite, where σ can be an arbitrary element
mentioned above. Generally, the master and slave satellites have the same semi-major axis so that the
formation is stable.

The along-track and perpendicular baseline can be expressed as:

BAT(t) =
∣∣∣y(t)∣∣∣

B⊥(t) =
∣∣∣z(t) cosθd − x(t) sinθd

∣∣∣ (4)

where θd represents the off-nadir angle.
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Equation (1) shows that the three components of X-Y-Z vary periodically with the satellite motion
time, and the variation period is consistent with the orbital period. It can be seen that the ECI-RME has
a very apparent geometric meaning. In the orbit plane (i.e., X-Y plane), the slave satellite moves in an
elliptical motion w.r.t. the master satellite. The center of the ellipse is in the along-track direction of the
master satellite, with a distance of l. The ratio of the major axis and the minor axis of the ellipse is
2:1. The slave satellite moves in a simple harmonic motion in the direction perpendicular to the orbit
plane, i.e., Z direction. The ECI-RME can be characterized by five geometry parameters, including the
minor semi-axis A1 of the elliptical motion, the initial phase α1 of the elliptical motion, the along-track
distance l of the elliptical motion trajectory center, the amplitude A2 of the harmonic motion, and the
initial phase α1 − α2 of the harmonic motion [32].

Usually, the orbital elements of the master satellite are determined, and the objective of the
formation design is to determine the orbital elements of the salve satellite according to the application
requirement. In the current literature, satellite formations are primarily designed based on the geometry
parameters of ECI-RME or the expression of the baseline. In the geometry parameter-based design
method, the Cartwheel configuration and the Pendulum configuration can be obtained by setting the
amplitude of the harmonic motion, A2, and the minor semi-axis of the elliptical motion, A1, to be zero,
respectively [18,24]. In the baseline expression-based design method, since the baseline varies over
the entire orbit, the existing studies mainly design the orbital elements of the salve satellite to meet
the baseline requirement at certain orbit positions, such as the initial orbit position [22] or above the
equator [20].

3.1.2. Influence of Earth Rotation on Baseline Calculation

In the ECI-RME, the y-axis has the same direction as the satellite velocity, that is, the direction of
velocity in the ECI coordinate system,

→
v ECI(t). However, the effective velocity of the SAR imaging

satellite is the velocity of the satellite relative to the scene; that is, the velocity in the ECEF coordinate
system,

→
v ECEF(t). Therefore, the calculation of the along-track baseline and perpendicular baseline

should be based on the direction of
→
v ECEF(t). The projection of the baseline in

→
v ECEF(t) direction is

the along-track baseline, and the perpendicular baseline is determined by the baseline component
perpendicular to

→
v ECEF(t) and the off-nadir angle. There is a velocity difference between

→
v ECI(t) and

→
v ECEF(t) caused by the Earth rotation, as follows:

→
v ECEF(t) =

→
v ECI(t) −

→
nE ×

→
r (t) (5)

where
→
nE is the angular velocity of the Earth, and

→
r (t) is the vector from the center of the Earth to

the satellite.
It is worth noting that the baseline calculation method based on

→
v ECEF(t) is accurate for LEO

SAR, Medium-Earth-Orbit (MEO) SAR, and GEO SAR. Furthermore, whether
→
v ECI(t) can be used as

an approximate replacement depends on whether the Earth rotation will bring a significant direction
difference between

→
v ECEF(t) and

→
v ECI(t). In LEO SAR, because

→
r (t) is relatively small,

→
v ECEF(t) and

→
v ECI(t) are very close in size and direction, that is to say, the influence of Earth rotation can be ignored,
so it is accurate enough to use

→
v ECI(t) to calculate the baseline and then design formation configuration.

However, the semi-major axis of GEO SAR is increased by two orders of magnitude,
→
v ECEF(t) and

→
v ECI(t) are quite different, especially in the direction, so the Earth rotation cannot be ignored.

The formula of the angle between
→
v ECEF(t) and

→
v ECI(t), θ, in the case of small eccentricity, will

be derived in the next sub-section, with the result shown in (11). Here we present the result in LEO
SAR and GEO SAR in advance in Figure 3 to show the impacts of the Erath’s rotation on the baseline
calculation. The orbital elements are shown in Table 1, where the orbital elements of LEO SAR are
similar to that of TerraSAR-X. Supposing a formation without an along-track baseline (suitable for
InSAR application) in the ECI coordinate system has the perpendicular baseline of B⊥, the relative
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baseline error caused by the Earth’s rotation is (B⊥ − cosθB⊥)/B⊥ = 1− cosθ. For LEO SAR, the angle
between the directions of

→
v ECEF(t) and

→
v ECI(t) is not more than 4◦, whose corresponding relative

baseline error is 0.24%. However, in GEO SAR, the angle can reach 80◦, whose corresponding relative
baseline error is 82.6%, which will lead to the conversion of the along-track baseline to the cross-track
baseline and vice versa. Therefore, in GEO SAR, the baseline component cannot be calculated accurately
with

→
v ECI(t).
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Figure 3. Angle between velocities in ECF and ECI coordinate. (a) Definition of the angle; (b) the angle
in LEO SAR; (c) the angle in GEO SAR.

Table 1. Orbital elements for simulation.

Orbital Element
LEO SAR MEO SAR GEO SAR

Master Slave Master Slave Master Slave

Semi-major axis (km) 7003.52 7003.52 30,000 30,000 42,164 42,164
Eccentricity 0.00118 0.00118 0 0 0 0

Inclination (◦) 97.86 97.86 112 112 16 16
AOP (◦) 90 90 0 0 0 0

RAAN (◦) 0 0.01 0 0.05 0 0.25
Mean anomaly (◦) 0 0 0 0 0 0.1

3.2. Derivation of ECEF-RME Based on CRT

It can be seen from the previous section that the Earth rotation results in a significant error in
calculating the baseline of GEO SAR using the ECI-RME. To correctly calculate the baseline component
under the influence of Earth rotation, we need to derive the Relative Motion Equation under the ECEF
coordinate system. For this purpose, we firstly establish a coordinate system with

→
v ECEF(t) as the

coordinate axis, which we refer to as the orbital coordinate system in the ECEF coordinate system
(ECEF-OSC). The orbital coordinate system with

→
v ECI(t) as an axis is ECI-OSC, which has illustrated

in Section 3.1. In ECEF-OSC O−X′Y′Z′, the Y′-axis coincides with
→
v ECEF(t) in the positive direction,

and the component of the spatial baseline in the Y′-axis is the along-track baseline after considering
the Earth rotation.

Because ECEF-OSC and ECI-OSC have the same origin, the relationship between the two
coordinate systems can be expressed by the rotation transformation. By calculating the rotation matrix,
the representation of spatial baseline in O −X′Y′Z′ coordinate system can be obtained. It is worth
noting that

→
v ECEF(t) is still in the Y-Z plane of ECI-OSC, that is to say, in the two coordinate systems,

X′ and X are coincident. We can calculate the inner product of
→
v ECEF(t) and X-axis to verify this

conclusion. Let x̂, ŷ and ẑ represent the unit vectors of X, Y, and Z axes, respectively. Then it is
easy to check that

〈
→
v ECEF(t), x̂

〉
=

〈
→
v ECI(t) · ŷ−

→
nE × x̂ · r(t), x̂

〉
= 0. An inner product of 0 indicates

that
→
v ECEF(t) has no component in the x-axis direction, so it is still in the Y-Z plane. Therefore, the
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relationship between ECEF-OSC and ECI-OSC can be expressed by the rotation matrix around the
x-axis, i.e.,

R =


1 0 0
0 cosθ sinθ
0 − sinθ cosθ

 (6)

where θ is the rotation angle, the value can be determined by the following formula:

cosθ =
〈
→
v ECEF(t), ŷ(t)

〉
/‖
→
v ECEF(t)‖

sinθ =
〈
→
v ECEF(t), ŷ(t)

〉
/‖
→
v ECEF(t)‖

(7)

Formula (5) can be calculated by establishing an auxiliary coordinate system, O−XaYaZa, shown
in Figure 4. The subscript a stands for auxiliary. Xa passes through the satellite ascending node, Ya

pointing to the highest point of the orbit, and Za being in the same direction as the angular velocity
of the orbit.

→
n s and

→
nE are the angular velocities of the satellite and the Earth, respectively. ic is the

orbital inclination of the master satellite.
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It is easy to know that the direction of z(t) is consistent with
→

OZa. In the auxiliary coordinate
system, assuming that the argument of latitude (AOL) of the master satellite is α(t) (the angle from the
ascending point to the current position), then:

α(t) = nst + Mc +ωc (8)

where Mc andωc are the mean anomaly and argument of perigee (AOP) the master satellite, respectively.
From Figure 4, we have

→
v (t) = ωsr(t) · (cosα(t), sinα(t), 0). v(t) is also the direction of y(t).

So we have:
x̂ = (cosα(t), sinα(t), 0)
ŷ = (− sinα(t), cosα(t), 0)
ẑ = (0, 0, 1)

(9)

The angular velocity of the Earth rotation is
→
ωE = (0, nE sin ic, nE cos ic). In the formula of the

influence of the Earth rotation on the velocity, i.e.,
→
v E f f (t) =

→
v (t) −

→
ωE ×

→
r (t), we have

→
r (t) = r(t) · x̂.

Considering the case where the eccentricity of the master satellite is small, the variations of r(t) and
v(t) during the entire orbit are negligible. So we can get:〈

ŷ,
→
v E f f (t)

〉
≈ nsr−

〈
→
n s,
→
nE

〉
r = (ns − nE cos ic)r〈

ẑ,
→
v E f f (t)

〉
≈ nE sin ic · cosα(t) · r

(10)
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Thus, we get:
cosθ = ns−nE cos ic√

(ns−nE cos ic)
2+(nE sin ic·cosα(t))2

sinθ =
nE sin ic·cosα(t)√

(ns−nE cos ic)
2+(nE sin ic·cosα(t))2

(11)

By substituting (10) into (4), the expression of the rotation matrix can be obtained.
Finally, the ECEF-RME can be expressed as:

[x̃(t), ỹ(t), z̃(t)]T = R · [x(t), y(t), z(t)]T (12)

where the superscript T indicates transpose. For the detailed form, one can substitute (1) and (10)
into (11).

To design formation SAR according to an application, we need to establish the relationship
between baseline and orbital elements. Similar to (2), the baseline in the ECF coordinate system can be
expressed as:

BAT(t) =
∣∣∣ỹ(t)∣∣∣

B⊥(t) =
∣∣∣̃z(t) cosθd − x̃(t) sinθd

∣∣∣ (13)

It is worth noting that the ECEF-RME determined by (1), (10) and (11) applies to LEO/MEO/GEO
SAR, but we can simplify its form according to orbital altitude.

• In LEO SAR, ns � nE, so nE can be ignored. Thus, we have cosθ ≈ 1, sinθ ≈ 0, the rotation
matrix is approximately the unit matrix, so the baseline calculated by ECEF-RME and ECI-RME is
very close.

• In MEO SAR, the order of magnitude of ns and nE do not differ from each other considerably
enough, so it is difficult to simplify the ECEF-RME further.

• In GEO SAR, the angular velocities of the Earth and the satellite cancel each other; instead, the
rotation matrix is only determined by the inclination of the master satellite. In GEO SAR, ns = nE,
(10) can be simplified as:

cosθ = tan(ic/2)/
√

tan2(ic/2) + cos2 α(t)
sinθ = cosα(t)/

√
tan2(ic/2) + cos2 α(t)

(14)

It is not difficult to imagine that, since the relative satellite-Earth motion, which is precisely
the satellite’s ECEF velocity, should be used for the spaceborne SAR focusing [33,34], the baseline
calculation will also be based on the ECEF velocity. This is true for all spaceborne SAR, no matter what
its orbit altitude is. In LEO SAR, the influence of Earth rotation is slight, and directions of satellite’s
ECEF and ECI velocities are very close to each other, so the baseline calculated by ECI-RME is of high
accuracy. However, in GEO SAR, the influence of Earth rotation is significantly more severe, resulting
in an increased difference between the satellite’s ECEF and ECI velocity directions [35,36]; therefore,
using ECI-RME to calculate the baseline will lead to significant errors.

It can be seen that the rotation matrix is time-varying, which results in the ECEF-RME not having
a regular geometry. Therefore it is challenging to adopt the geometry parameter-based design method
used for ECI-RME. To address this issue, we propose a numerical formation design method based on
the minimum baseline error criterion. For a specific application, we usually require the along-track
baseline and the perpendicular baseline as stable as possible. Assuming that the objective along-track
baseline and perpendicular baseline are B0AT and B0⊥, respectively, the average baseline error can be
expressed as:

C =

∫ T

0

[(
B2
⊥
(t) − B2

0⊥

)2
+

(
B2

AT(t) − B2
0AT

)2
]
dt (15)
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where T is the orbital period. The formation design method based on the minimum baseline error
criterion is to minimize the average baseline error shown in (14). Using a numerical optimization
method, one can obtain the orbital elements of the slave satellite.

4. GEO InSAR Formation Design Based on MABC

An obvious way to obtain a SAR formation with relatively stable baselines is to minimize the
error shown in (13) by numerical optimization. This method, however, has two disadvantages: (1) the
computation complexity is considerable; (2) it is difficult to find out a general rule of formation that
satisfies the performance requirements. In this section, we propose a GEO InSAR formation design
method based on the Minimum Along-track Baseline Criterion (MABC). According to this method,
the analytical expression of the orbital elements of the slave satellite in GEO InSAR formation can
be obtained.

According to (13), we can get the ECEF-RME in GEO SAR formation as:

x̃(t) = x(t)

ỹ(t) = tan(ic/2)·y(t)+cosα(t)·z(t)
√

tan2(ic/2)+cos2 α(t)

z̃(t) = − cosα(t)·y(t)+tan(ic/2)·z(t)
√

tan2(ic/2)+cos2 α(t)

(16)

Considering that the off-nadir angle of satellite in GEO SAR is very small, generally θd = 1.5◦ ∼
7.5◦, it can be ignored when calculating baseline according to (12), i.e., the perpendicular baseline is
almost determined by the z-axis component in ECEF-RME, shown as:∣∣∣BAT(t)

∣∣∣ = ∣∣∣ỹ(t)∣∣∣∣∣∣B⊥(t)∣∣∣ ≈ ∣∣∣̃z(t)∣∣∣ (17)

The perpendicular baseline affects the height measurement accuracy of InSAR, which should be
better able to be kept stable. On the other hand, to reduce the rotation decorrelation introduced by the
along-track baseline [3], we need to keep the baseline along the orbit as small as possible. That is to say,
in the average baseline error shown in (14), we need to set an objective perpendicular baseline B0⊥

according to height retrieval accuracy requirement and an objective along-track baseline B0AT = 0.
It is noted that the rotation matrix has nothing to do with the orbital elements of the slave satellite.

Therefore, like the ECI-RME, we need to design variables A1, A2, l1, α1 and α2. In Appendix A, we
use the combination of simulation verification and theoretical derivation to point out that according
to the average baseline error shown in (14), we can get A1 = 0, α2 = 0 or π; therefore, we can derive
the results that the orbital elements of the master and slave satellite meet ∆e = 0, ∆M = 0 and ∆i = 0.
Generally, the master and slave satellites have the same semi-major axis. So we only need to design the
RAAN and AOP of the slave satellite.

In the following, we will deduce the analytical expression of the orbital elements of slave satellite
in GEO InSAR formation by reasonably modifying the optimization problem. Based on the results of
∆e = 0, ∆M = 0 and ∆i = 0, the baseline of the formation can be further simplified to:

ỹ(t) =
a
{
∆ω tan(ic/2)−∆Ω sin(ic)/2·[tan2(ic/2)+cos(2nt)]

}
√

tan2(ic/2)+cos2(nt)

z̃(t) = −a[∆ω+ ∆Ω]
cos(n · t)√

tan2(ic/2) + cos2(n · t)︸                           ︷︷                           ︸
s(t)

(18)

It should be noted that the shape of the perpendicular baseline in the whole orbit, denoted as
s(t), is independent of the orbit elements of the slave satellite, but only related to the inclination of the
master satellite. The sum of RAAN difference ∆Ω and AOP difference ∆ω, ∆ω+ ∆Ω, only affect the
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amplitude of the perpendicular baseline. Figure 5 shows the shape of the perpendicular baseline in the
whole orbit, where 3 inclinations are selected. However, the relationship between along-track baseline
and orbit elements difference ∆Ω and ∆ω is much more complicated, shown as (17).
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Figure 5. Shape of perpendicular baseline for different inclinations in GEO SAR.

Because the perpendicular baseline and the along-track baseline vary throughout the whole orbit,
we propose the minimum along-track baseline criterion under the root mean square (RMS) constraint
of the perpendicular baseline. The objective of the criterion is to minimize the RMS of the along-track
baseline, on the premise that the RMS of the perpendicular baseline is equal to the design requirement
B0XT. The optimization problem can be expressed as:

(∆ω, ∆Ω) = arg
∆ω,∆Ω

min
∫

ỹ2(t)dt

s.t. E
{̃
z2(t)

}
= B2

0XT

(19)

Under the constraint of E
{̃
z2(t)

}
= B2

0XT, let the derivative of
∫

ỹ2(t)dt for ∆ω and ∆Ω be zero, the
orbital elements of the slave satellite can be obtained, which will be shown in the following.

From E
{̃
z2(t)

}
= B2

0XT we have:

a2(∆ω+ ∆Ω)2
1−

tan(ic/2)√
1 + tan2(ic/2)

 = B2
0XT (20)

Thus, |∆ω+ ∆Ω| = B0XT/
[
a
√

1− sin(ic/2)
]
. Denote ∆ω + ∆Ω = C1, where C1 =

±B0XT/
[
a
√

1− sin(ic/2)
]
. Suppose:

∆Ω = µ ·C1

∆ω = (1− µ) ·C1
(21)

then:

ỹ(t) =
aC1 tan(ic/2)√

tan2(ic/2) + cos2(nt)

1−
2µ

[
tan2(ic/2) + cos2(nt)

]
1 + tan2(ic/2)

 (22)

Ignoring the constant aC1 tan(ic/2), and denoting v = tan(ic/2), u = nt, C2 = 2/
[
1 + tan2(ic/2)

]
,

we can obtain:
ỹ2(u) =

1
v2 + cos2 u

− 2µC2 + C2
2µ

2
(
v2 + cos2 u

)
(23)
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In this way, only one undetermined parameter µ needs to be solved in the expression of integration
of along-track baseline as:∫ 2π

0
ỹ2(u)du = −2µC2 · 2π+ C2

2µ
2v2
· 2π+ C2

2µ
2π+

∫ 2π

0

1
v2 + cos2 u

du (24)

By finding the derivative of
∫

ỹ2(u)du for µ and letting the derivative be 0, we can get the µ value

that makes
∫

ỹ2(u)du the smallest. From ∂
∫ 2π

0 ỹ2(u)du/∂µ = 0 we can obtain:

µ =
2

C2(2v2 + 1)
=

tan2(ic/2) + 1
2 tan2(ic/2) + 1

(25)

Thus, the orbital elements of the slave satellite are:

ed = ec

id = ic
Md = Mc

Ωd = Ωc + µC1

ωd = ωc + (1− µ)C1

(26)

where
C1 = ±

B0XT

a
√

1−sin(ic/2)

µ =
tan2(ic/2)+1

2 tan2(ic/2)+1

(27)

According to the design requirements of the perpendicular baseline B0XT, the orbital inclination ic
of the master satellite, we can get the orbital elements of the slave satellite for GEO InSAR from (25)
and (26).

5. Simulation

5.1. Simulation Settings

To verify the validity of the derived ECEF-RME and the analytical expression of orbital elements
obtained by the proposed MABC for GEO InSAR formation design, we select typical orbital elements
of the LEO/MEO/GEO SAR for simulation. The sub-satellite point trajectory is shown in Figure 6.
The off-nadir angles are 35.79◦, 7.85◦, and 5.57◦, respectively, so that the incident angle is 40◦.
The satellites use 2D attitude control to achieve zero Doppler centroid [35].

The simulation includes three parts. The first part verifies the accuracy of the ECEF-RME in LEO,
MEO, and GEO SAR. The second part verifies the derived analytical expression of orbital elements and
compares the design result with the numerical optimization of (14). The third part simulates InSAR
processing using the orbital elements derived from the classical ECI-RME and the proposed formation
design method and compares their results. Please note that the orbital elements of the slave satellite in
GEO SAR listed in Table 1 are given arbitrarily and adopted only to verify the accuracy of ECEF-RME,
as will be discussed in Section 5.2. The elements suitable for GEO InSAR will be calculated according
to the analytical expression, shown in Section 5.3. The parameters for InSAR simulation are listed in
Table 2, and the formation operates above the equator. In the simulation, the satellites’ positions and
velocities come from the Satellite Tool Kit (STK) by Analytical Graphics, Inc. from the United States.
The STK’s high-precision orbit prediction (HPOP) mode provides precise satellites’ positions according
to the orbital elements. This can be served as the verification data for the proposed methods.
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Table 2. Parameters for InSAR processing simulation.

Parameters Value Parameters Value

Wavelength (cm) 24 Incidence angle (º) 30
Bandwidth (MHz) 18 Number of looks 5 × 5
Pulse width (µs) 20 SNR (dB) 10

PRF (Hz) 100 Integration time (s) 320

It is noted that the rotation matrix has nothing to do with the orbital elements of the slave satellite.
Therefore, like the ECI-RME, we need to design variables A1, A2, l1, α1 and α2. In Appendix A, we
use the combination of simulation verification and theoretical derivation to point out that according
to the average baseline error shown in (14), we can get A1 = 0, α2 = 0 or π; therefore, we can derive
the results that the orbital elements of the master and slave satellite meet ∆e = 0, ∆M = 0 and ∆i = 0.
Generally, the master and slave satellites have the same semi-major axis, so we only need to design the
RAAN and AOP of the slave satellite.

5.2. Verification of ECEF-RME

Under the above simulation parameters, the baseline obtained using the derived ECEF-RME is
shown in Figure 7. The “STK Data” line is the baseline calculated according to the satellites’ positions
obtained from STK, which is regarded to be accurate as a contrast. We also calculate the baseline
according to ECI-RME, in which the results of ECEF-RME are compared.

Since the absolute size of baselines in different orbital altitudes are quite different, to evaluate
the accuracy of the baseline calculated with ECI-RME and ECEF-RME and compare them in different
orbital altitudes, we introduce a normalized baseline error as:

η =
1
T

∫ T

0

√
∆B2

AT(t) + ∆B2
⊥
(t)∣∣∣B(t)∣∣∣ dt (28)

where ∆BAT(t), ∆B
⊥
(t) represent the error of along-track baseline and error of perpendicular baseline,

respectively. The error is calculated compared with the “STK Data”.
∣∣∣B(t)∣∣∣ = √

x̃2(t) + ỹ2(t) + z̃2(t)
represents the length of the spatial baseline using “STK Data”. The normalized baseline error of the
ECEF-RME and ECI-RME in for each orbital height is shown in Table 3.
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Figure 7. Baseline calculated using ECF equation, ECI equation, and STK data. (a) LEO SAR formation;
(b) MEO SAR formation; (c) GEO SAR formation.

Table 3. Normalized baseline error using ECEF-RME or ECI-RME in LEO SAR, MEO SAR, and
GEO SAR.

ηECF ηECI

LEO SAR 0.54% 4.4%
MEO SAR 0.056% 35%
GEO SAR 0.046% 115%

It can be seen that as the orbital altitude increases, the normalized error using ECI-RME increases,
while the ECEF-RME always has high accuracy. Besides, it is noted that in LEO SAR, the error of
ECEF-RME is higher than MEO SAR and GEO SAR. This is because the LEO SAR satellite simulated here
has a certain eccentricity. Since the RME itself is derived on the premise of small orbital eccentricity [31],
the accuracy of both ECI-RME and ECEF-RME will decrease as the eccentricity increases.

5.3. Verification of GEO InSAR Formation Design Method

It is noted that in the derivation of GEO InSAR formation design method, we obtained consistent
orbital elements of the slave satellite with the main satellite by simulating the baseline error shown



Remote Sens. 2020, 12, 573 15 of 22

in (14). In the subsequent process, to obtain the analytical expression of the orbital elements, we
made a reasonable modification to the optimization problem. Therefore, the orbital elements obtained
by the analytical expression and the numerical method will be a bit different. In this sub-section,
we first verify that the formation obtained by the analytical expression satisfies the perpendicular
baseline requirements of InSAR, and secondly compare the along-track baseline difference between the
formations obtained by the numerical method and the analytic expression.

Using the parameters in Table 2, the optimal baseline [28] can be calculated as 136 km. Setting
B0⊥ = 136km, the orbital elements of the GEO SAR master satellite are used as shown in Table 1, then
according to (25) and (26), the orbital elements of the slave satellite can be obtained as Ωd = ±0.1831◦,
ωd = ±3.546× 10−3◦. By minimizing the baseline error shown in (14) using the numerical method, the
orbital elements of the slave satellite are Ωd = −0.3131◦, ωd = 0.1262◦.

The baseline of the formations obtained by the numerical optimization method and the analytical
expression, respectively, are shown in Figure 8. It can be found that for both methods, the peak value
of the perpendicular baseline is very close to the design requirements, which are 136 km and 136.2 km
for analytical expression and numerical method, respectively; for the along-track baseline, there exist
orbital positions where one method outperforms the other. However, near the orbital position where
the perpendicular baseline reaches a peak value, the numerical optimization method has a much larger
along-track baseline, 45.0 km, which is more than twice that in the analytical expression, 18.4 km.
Therefore, the numerical optimization method will introduce a more severe rotation decorrelation
near these orbital positions. These analyses show that the InSAR formation obtained by the proposed
analytical design method, shown in (26), not only satisfies the optimal perpendicular baseline design
requirements but can also provide SAR image pairs with a higher correlation coefficient than the
numerical optimization method.
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Figure 8. Baseline comparison of numerical optimization and proposed analytical expression for GEO
InSAR. (a) Along-track baseline; (b) Perpendicular baseline.

As can be seen from both Figures 5 and 8, the GEO InSAR always has moments where the
perpendicular baseline is equal to zero. This shows that no matter how we design the orbital elements,
it is impossible to obtain perpendicular baselines that are always greater than zero or less than zero.
After using the proposed formation design method for GEO InSAR, the perpendicular baseline is a
near-periodic function whose period is half that of the orbital period. Therefore, the perpendicular
baseline will have two zero points throughout the whole orbit.

In fact, we can theoretically prove through the counter-evidence method that the perpendicular
baseline has at least two zero points, no matter it has undergone a formation design or not.
See Appendix B for the detailed process.

5.4. Comparison of InSAR Results between the Proposed Method and ECI-RME-Based Method

In this sub-section, we compare InSAR processing and results using the orbital elements derived
from the classical ECI-RME and the proposed formation design method. First of all, we give a brief
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derivation of the ECI-RME-based design results. When the ECI-RME is used to design GEO InSAR
formation, the vertical baseline is very close to the z-direction baseline due to the small off-nadir angle
of GEO SAR. The baseline in the z-direction is a cosine function, so again we use the method of mean
optimization, that is, E

{
z2(t)

}
= B2

0XT. On the other hand, the along-track baseline (y-direction) is
completely decoupled from the vertical baseline (i.e., independently determined by different orbital
elements), so we can set the along-track baseline to be zero. Furthermore, since the effective velocity
of GEO SAR above the equator reaches the peak value during the whole orbit, its corresponding
integration time will be the least. So we consider that the vertical baseline above the equator reaches
the peak. It is easy to obtain the expression of the slave satellite’s orbital elements according to
these conditions, and the results are ∆a = 0, ∆e = 0, ∆M = 0, ∆i = 0, ∆Ω = ±

√
2B0XT/(a sin ic),

∆ω = ∓
√

2B0XT/(a tan ic). Using the master satellite’s orbital elements, shown in Table 1, the design
results are ∆Ω = −0.9482◦, ∆ω = 0.9115◦. The positions of the satellites designed by the two methods
are shown in Figure 9a,b. It can be seen that the along-track baseline obtained by the proposed method
is very small while using the ECI-RME-based method will lead to a considerable deviation between
the vertical baseline and the design value. Besides, the along-track baseline is not zero as desired.
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Figure 9. Formation design results and DEM setting. (a) Formation designed by the proposed method;
(b) Formation designed according to ECI-RME; (c) DEM setting for simulation.

We set up a scene with a size of 3.5 km × 3.5 km, in the middle of which a 2.6 km × 2.6 km pyramid
with a height of 50 m is set. The DEM settings of the scene are shown in Figure 9c, and the DEM
inversion results of the scene are shown in Figure 10. It can be seen that the proposed method has the
highest retrieval accuracy, which is 0.67 m (mean root square error). For the formation designed by the
ECI-RME-based method, the perpendicular baseline is relatively short, at 34 km. However, if the data
is not optimally selected, the retrieval accuracy could be very poor due to the low correlation coefficient
(0.33). After applying the optimal data acquisition based on the minimum rotation decorrelation [3],
the correlation coefficient is much improved, reaching 0.90; but the accuracy, which is 1.01 m, is still not
as good as the proposed method. This is because the perpendicular baseline is not the desired optimal
one. Additionally, after the optimal data acquisition, the aperture center time difference between the
satellites is 222 s. That is to say, the acquisition times of the image pair have a considerable interval,
which will deteriorate the formation’s performance for eliminating the atmospheric disturbance.



Remote Sens. 2020, 12, 573 17 of 22

Remote Sens. 2019, 12, 573 17 of 22 

 

perpendicular baseline is not the desired optimal one. Additionally, after the optimal data 

acquisition, the aperture center time difference between the satellites is 222 s. That is to say, the 

acquisition times of the image pair have a considerable interval, which will deteriorate the 

formation’s performance for eliminating the atmospheric disturbance. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 10. InSAR simulation results. (a) The correlation coefficient (corr. coe.), with a mean value of 

0.53; (b) Retrieved height; (c) Retrieval error, with a mean value of 0.67 m of the SAR pairs acquired 

from the formation by the proposed method; (d) Corr. coe., with a mean value of 0.33; (e) Retrieved 

height; (f) Retrieval error, with a mean value of 7.62 m of the SAR pairs acquired from the formation 

by ECI-RME, without optimal data acquisition; (g) Corr. coe., with a mean value of 0.90; (h) Retrieved 

height; (i) Retrieval error, with a mean value of 1.01m of the SAR pairs acquired from the formation 

by ECI-RME, the optimal data acquisition was conducted. 

6. Discussion 

The proposed method can obtain a vertical baseline approaching the optimal baseline as much 

as possible and reduce the along-track baseline as much as possible, so it has the following 

advantages in InSAR applications: 

 Shorten the acquisition time interval between master and slave images, to effectively reduce 

the atmospheric impact. When applying the ECI-RME to design the formation, a relatively 

large along-track baseline will occur, decreasing the correlation coefficient. Thus, it is 

necessary to use the minimum rotation decorrelation-based method to select the optimal 

data for imaging. However, the acquisition time interval between master and slave images 

will hence enlarge, which will make it difficult to eliminate the time-varying atmospheric 

Pixel Number

P
ix

e
l 
N

u
m

b
e

r

 

 

0 100 200 300

50

100

150

200

250

300

350

Corr. Coe.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pixel Number

P
ix

e
l 
N

u
m

b
e

r

 

 

0 100 200 300

50

100

150

200

250

300

350

Height (m)

0

10

20

30

40

50

Pixel Number

P
ix

e
l 
N

u
m

b
e

r

 

 

0 100 200 300

50

100

150

200

250

300

Error (m)

-2

-1

0

1

2

Pixel Number

P
ix

e
l 
N

u
m

b
e

r

 

 

0 100 200 300

50

100

150

200

250

300

350

Corr. Coe.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pixel Number

P
ix

e
l 
N

u
m

b
e

r

 

 

0 100 200 300

50

100

150

200

250

300

350

Height (m)

-20

-10

0

10

20

30

40

50

60

Pixel Number

P
ix

e
l 
N

u
m

b
e

r

 

 

0 100 200 300

50

100

150

200

250

300

Error (m)

-20

-10

0

10

20

Pixel Number

P
ix

e
l 
N

u
m

b
e

r

 

 

0 100 200 300

50

100

150

200

250

300

350

Corr. Coe.

0.5

0.6

0.7

0.8

0.9

Pixel Number

P
ix

e
l 
N

u
m

b
e

r

 

 

0 100 200 300

50

100

150

200

250

300

350

Height (m)

0

10

20

30

40

Pixel Number

P
ix

e
l 
N

u
m

b
e

r

 

 

0 100 200 300

50

100

150

200

250

300

Error (m)

-4

-2

0

2

4

Figure 10. InSAR simulation results. (a) The correlation coefficient (corr. coe.), with a mean value of
0.53; (b) Retrieved height; (c) Retrieval error, with a mean value of 0.67 m of the SAR pairs acquired
from the formation by the proposed method; (d) Corr. coe., with a mean value of 0.33; (e) Retrieved
height; (f) Retrieval error, with a mean value of 7.62 m of the SAR pairs acquired from the formation by
ECI-RME, without optimal data acquisition; (g) Corr. coe., with a mean value of 0.90; (h) Retrieved
height; (i) Retrieval error, with a mean value of 1.01m of the SAR pairs acquired from the formation by
ECI-RME, the optimal data acquisition was conducted.

6. Discussion

The proposed method can obtain a vertical baseline approaching the optimal baseline as much as
possible and reduce the along-track baseline as much as possible, so it has the following advantages in
InSAR applications:

• Shorten the acquisition time interval between master and slave images, to effectively reduce the
atmospheric impact. When applying the ECI-RME to design the formation, a relatively large
along-track baseline will occur, decreasing the correlation coefficient. Thus, it is necessary to
use the minimum rotation decorrelation-based method to select the optimal data for imaging.
However, the acquisition time interval between master and slave images will hence enlarge, which
will make it difficult to eliminate the time-varying atmospheric impact. The proposed method can
achieve near-real-time baseline to reduce the impact of the atmosphere.

• Improve the accuracy of DEM retrieval. A large part of the vertical baseline obtained by using
the ECI-RME-based method is transformed into the along-track baseline because the satellite’s
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effective velocity direction changed much due to the Earth’s rotation, so it is far from the design
requirements. By considering the Earth’s rotation, the formation designed by the proposed
method can be closer to the optimal vertical baseline, to achieve higher accuracy of DEM retrieval.

• Improve coverage performance and reduce beam control requirements of the satellite platform.
Because the ECI-RME-based method will bring obvious along-track baseline, if both the master
and slave satellites use the same beam control scheme, the azimuth overlap rate of the beam will
be reduced. The proposed method can eliminate the along-track baseline so that the master and
slave satellites can achieve a higher beam overlap rate while using the same beam control scheme.

7. Conclusions

In this paper, the Relative Motion Equation under ECEF coordinate system (ECEF-RME) is
obtained based on the Coordinate Rotational Transformation, which can accurately calculate the
baseline of the spaceborne SAR formation for all orbital altitude. The ECEF-RME no longer has
significant geometry features, so it is challenging to design a formation using the geometry parameters
as ECI-RME does. To address this issue, we can obtain the orbital elements by minimizing the mean
square root of the baseline proposed in this paper, using a numerical optimization method. In GEO
InSAR, we only need to design the RAAN and AOP of the slave satellite, whose analytical expressions
are exclusively related to the inclination angle of the master satellite and the perpendicular baseline
requirement. The GEO InSAR formation obtained by this analytical expression meets the perpendicular
baseline requirements and has a small along-track baseline, and thus can improve the correlation
coefficient of the interferogram. This method can realize a real-time vertical baseline, thus can alleviate
the atmospheric disturbance and help improve the DEM retrieval accuracy.
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Appendix A

In this Appendix, we present partial simulation and theoretical verification of ECEF-RME
simplification in the GEO InSAR formation design. Through numerical simulation, we can find that
when α1 and α2 are fixed, A1 = 0 is always true when the baseline error shown in (14) is minimum.
Figure A1 shows the simulation of baseline error under some parameters, where B0XT = 150.

In theory, we can verify that A1 = 0 is a solution of ∂C/∂A1 = 0. This will partially support the
conclusion that A1 = 0. The verification is as follows.

Denote  cos β(t) = cosα(t)/
√

tan2(ic/2) + cos2 α(t)
sin β(t) = tan(ic/2)/

√
tan2(ic/2) + cos2 α(t)

(A1)

then
ỹ(t) = sin β(t)y(t) + cos β(t)z(t)
z̃(t) = − cos β(t)y(t) + sin β(t)z(t)

(A2)
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Please note that sin β(t + T/2) = sin β(t) (called "even function"), cos β(t + T/2) = − cos β(t)
(called “odd function”). Therefore, ỹ(t) and z̃(t) can be written as the sum of the odd function and the
even function, respectively, i.e.,

ỹ(t) = [A1 sin(nt + α1) sin β(t)]︸                          ︷︷                          ︸
yo

+ [l1 sin β(t) + A2 cos β(t) cos(nt + α2)]︸                                           ︷︷                                           ︸
ye

z̃(t) = [−l1 cos β(t) + A2 sin β(t) cos(nt + α2)]︸                                              ︷︷                                              ︸
zo

+ [−A1 cos β(t) sin(nt + α1)]︸                            ︷︷                            ︸
ze

(A3)

where yo, ye, zo and ze represents the odd and even components of ỹ(t) and z̃(t). Therefore∫
ỹ2(t)dt =

∫
(yo)2 + (ye)2dt∫

z̃2(t)dt =
∫
(zo)2 + (ze)2dt∫

ỹ4(t)dt =
∫
(yo)4 + (ye)4 + 6(yo)2(ye)2dt∫

z̃4(t)dt =
∫
(zo)4 + (ze)4 + 6(zo)2(ze)2dt

(A4)

Thus, the orders of A1 are all no less than two, which means the derivative of C w.r.t. A1 is at
least the first-order term of A1, so A1 = 0 is a solution of ∂C/∂A1 = 0. From A1 = 0 we can obtain
ec = ed and ∆M = 0. Therefore, there are three independent variables l1, A2, and α2 left in the baseline
error expression.Remote Sens. 2019, 12, 573 19 of 22 
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Figure A1. Part of the simulation verification of numerical optimization with fixed α1 and α2. The
corresponding parameters are: (a) α1 = 30◦,α2 = 20◦,ic = 8◦; (b) α1 = 0◦,α2 = 90◦,ic = 12◦; (c)
α1 = 90◦,α2 = 90◦,ic = 16◦.

It can be seen from a further simulation that when A2 is a fixed value, the minimum baseline error
can be obtained at α2 = 0 or π. Figure A2 shows the baseline error under some parameters, where
B0XT = 150. According to α2 = 0 or π we can get η = 0 or π, and then get ∆i = 0.Remote Sens. 2019, 12, 573 20 of 22 
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Appendix B

In this Appendix, we will give a theoretical proof of the existence of no less than 2 zero points for
perpendicular baseline.

Since the initial value of the argument of latitude α(t) = nst + Mc +ωc, Mc +ωc, does not affect
the integral of the along-track baseline or the perpendicular baseline through the whole orbit, it may
be assumed that the initial value is 0. Thus, we have:

z̃(t) =
− cos(nt)·[A1 sin(nt+α1)+l1]+tan(ic/2)·A2 cos(nt+α2)√

tan2(ic/2)+cos2 α(t)

=
−A1 cos(nt) sin(nt+α1)·+[l1 cos(nt)+tan(ic/2)·A2 cos(nt+α2)]√

tan2(ic/2)+cos2 α(t)

(A5)

According to the formula of the auxiliary angle, l1 cos(nt + α0) + tan(ic/2) ·A2 cos(nt + α2) can be
transformed to γ1(t) = A3 cos(nt + α3), A3 > 0, and −A1 cos(nt + α0) sin(nt + α1) can be transformed
to γ2(t) = A4[sin(α4) + sin(2nt + α5)], A4 > 0. Therefore the numerator of (A5) can be expressed as:

β(t) = A3 cos(nt + α3) + A4[sin(α4) + sin(2nt + α5)] (A6)

We use the counter-evidence method to prove that β(t) always has zero points. Assuming there
are no zero points, let us set β(t) > 0 to be true. Please note that the period of γ1(t) and γ2(t) are
T1 = 2π/n and T2 = π/n, respectively. γ1(t) is a cosine function. Therefore, there exists an interval
with the length of T1/2 where it is not positive, that is, γ1(t) ≤ 0. To make β(t) > 0 always hold, γ2(t)
must be positive in this interval. Since T2 = T1/2, this interval is precisely the period of γ2(t). That is
to say, γ2(t) ≥ 0 is a necessary condition. Therefore, sin(α4) = 1, thus γ2(t) = A4[1 + sin(2nt + α5)]. It
is easy to know that there is always zero points in γ2(t), which we denote as t0. To satisfy β(t0) > 0,
there must be γ1(t0) > 0, which contradicts the hypothesis of the fact that γ1(t) ≤ 0 in the interval.
This means that β(t) has at least one zero points in this interval. Similarly, in the other half of the
period T1, the existence of zero points can be proved. Therefore, there are at least two zero points in
the perpendicular baseline.
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